John Ola-Oluwa Adeyeye




: Professor of Mathematics, Johnson C. Smith University; adjunct professor University of North Carolina at Charlotte

personal or universal URL:
email: 1. : 2.



  1. Adeyeye, John O.; Uko, Livinus U. An extension of the generalized quasilinearization method of Lakshmikantham. Nonlinear Stud. 10 (2003), no. 2, 195--199.
  2. Uko, Livinus U.; Adeyeye, J. O. A smooth generalized Newton method for a class of nonsmooth equations. Nonlinear Stud. 9 (2002), no. 1, 11--25.
  3. Adeyeye, John O. Existence result for the second order nonlinear Volterra periodic boundary value problems. Dynam. Systems Appl. 10 (2001), no. 4, 517--522. 34B15
  4. Uko, Livinus U.; Adeyeye, John O. Generalized Newton iterative methods for nonlinear operator equations. Nonlinear Stud. 8 (2001), no. 4, 465--477. 65H10 (47J06 65J15)
  5. Adeyeye, John O.; Wright, Hampton Nonlinear functional differential equations with abstract Volterra operators. Nonlinear Stud. 8 (2001), no. 1, 79--85. 34Kxx (45P05)
  6. Akinyele, Olusola; Adeyeye, John O.. Cone-valued Lyapunov functions and stability of hybrid systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), no. 2, 203--214.
  7. Adeyeye, John O. Higher order boundary value problems, cone-valued Lyapunov functions, stability and practical stability. Int. J. Appl. Math. 1 (1999), no. 3, 311--317.
  8. Adeyeye, John O. On deriving estimates on problem with a parameter related to operator in polygonal domain. Int. J. Appl. Math. 1 (1999), no. 7, 765--770.
  9. Adeyeye, John O. Cone-valued Lyapunov functions, stability in two measures and strongly coupled nonlinear boundary value problems. Dynam. Systems Appl. 8 (1999), no. 2, 211--218.
  10. Adeyeye, John O. Interpolation spaces and application to regularity for boundary value problems in polygonal domains. Dynam. Contin. Discrete Impuls. Systems 6 (1999), no. 3, 319--335.
  11. Adeyeye, J. Ola-Oluwa Characterisation of real interpolation spaces between the domain of the Laplace operator and $L\sb p(\Omega)$; $\Omega$ polygonal and applications. J. Math. Pures Appl. (9) 67 (1988), no. 3, 263--290.
  12. Adeyeye, J. O. Generation of analytic semigroup in $L\sb p(\Omega)$ by the Laplace operator. Boll. Un. Mat. Ital. C (6) 4 (1985), no. 1, 113--128.
  13. Adeyeye, J. O.; Bernal, M. J. M.; Pitman, K. E. An improved boundary integral equation method for Helmholtz problems. Internat. J. Numer. Methods Engrg. 21 (1985), no. 5, 779--787. 65N25 (65N45)

The web pages
are brought to you by

The Mathematics Department of
The State University of New York at Buffalo.

They are created and maintained by
Scott W. Williams
Professor of Mathematics

CONTACT Dr. Williams