John Ola-Oluwa Adeyeye

Born:

place:

thesis:: Professor of Mathematics, Johnson C. Smith University; adjunct professor University of North Carolina at Charlotte

personal or universal URL:

http://www.math.uncc.edu/people/info.php/joadeyey

email: 1. jadeyeye@jcsu.edu : 2. joadeyey@email.uncc.eduRESEARCH

Adeyeye, John O.;Uko, Livinus U.An extension of the generalized quasilinearization method of Lakshmikantham.Nonlinear Stud.10(2003), no. 2, 195--199.Uko, Livinus U.;Adeyeye, J. O.A smooth generalized Newton method for a class of nonsmooth equations.Nonlinear Stud.9(2002), no. 1, 11--25.Adeyeye, John O.Existence result for the second order nonlinear Volterra periodic boundary value problems.Dynam. Systems Appl.10(2001), no. 4, 517--522. 34B15Uko, Livinus U.;Adeyeye, John O.Generalized Newton iterative methods for nonlinear operator equations.Nonlinear Stud.8(2001), no. 4, 465--477. 65H10 (47J06 65J15)Adeyeye, John O.; Wright, Hampton Nonlinear functional differential equations with abstract Volterra operators.Nonlinear Stud.8(2001), no. 1, 79--85. 34Kxx (45P05)Akinyele, Olusola;Adeyeye, John O..Cone-valued Lyapunov functions and stability of hybrid systems.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.8(2001), no. 2, 203--214.Adeyeye, John O.Higher order boundary value problems, cone-valued Lyapunov functions, stability and practical stability.Int. J. Appl. Math.1(1999), no. 3, 311--317.Adeyeye, John O.On deriving estimates on problem with a parameter related to operator in polygonal domain.Int. J. Appl. Math.1(1999), no. 7, 765--770.Adeyeye, John O.Cone-valued Lyapunov functions, stability in two measures and strongly coupled nonlinear boundary value problems.Dynam. Systems Appl.8(1999), no. 2, 211--218.Adeyeye, John O.Interpolation spaces and application to regularity for boundary value problems in polygonal domains.Dynam. Contin. Discrete Impuls. Systems6(1999), no. 3, 319--335.Adeyeye, J. Ola-OluwaCharacterisation of real interpolation spaces between the domain of the Laplace operator and $L\sb p(\Omega)$; $\Omega$ polygonal and applications.J. Math. Pures Appl. (9)67(1988), no. 3, 263--290.Adeyeye, J. O.Generation of analytic semigroup in $L\sb p(\Omega)$ by the Laplace operator.Boll. Un. Mat. Ital. C (6)4(1985), no. 1, 113--128.Adeyeye, J. O.; Bernal, M. J. M.; Pitman, K. E. An improved boundary integral equation method for Helmholtz problems.Internat. J. Numer. Methods Engrg.21(1985), no. 5, 779--787. 65N25 (65N45)

The web pages

**MATHEMATICIANS OF THE
AFRICAN DIASPORA**

are brought to you by

**The Mathematics Department
of
The State University of New York at Buffalo.**

They are created and maintained by

Scott W. Williams

Professor of Mathematics