Mary Teuw Niane

Born: July 15, 1954; birthplace: Dakar Bango, Saint-Louis, Senegal

pre-doctoral education: Baccalaureat (1975) CEG Cazeille, College Charles of Gaulle; DEA (1981) of mathematics at the University Paul Sabatier of Toulouse

doctoral institution: Doctorate of third cycle 1984 University Sheik Anta Diop of Dakar; 1st doctorate 1990 University of Nice-Sophia - Antipolis
3rd thesis: Approximation Polyedrale Of A Convex Function Sci And Application A Vectorial Optimization. Under the direction of the professor Doudou Sakhir Thiam
single thesis: Regularite And Exact Controlabilite Of The Equation Vibrating Plates in a polygonal field. professor Pierre Grisvard.

Speciality: Equations with the partial derivatives and distributed control systems

current (12/98) employment: Dean of the Faculty of Mathematics from the University Gaston Berger in Senegal; Université Cheikh Anta Diop de Dakar (UCAD) École Nationale Supérieure Universitaire de Technologie (ENSUT), Dakar-Fann, SENEGAL

URL: http://www.chez.com/mai2000/ens1/niane.html
email: niane@ugb.sn, mtniane@hotmail.com

 

Research

11. Niane, Mary Teuw; Sene, Abdou Contrôlabilité exacte frontière et limite asymptotique des corps élastiques minces. (French) [Exact boundary controllability and asymptotic analysis of thin elastic bodies] C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 65--70.

10. Niane, Mary Teuw; Seck, Ousmane Majorations liées à la contrôlabilité spectrale élargie de l'équation des ondes. (French) [Upper bounds associated with the relaxed spectral controllability of the wave equation] Afrika Mat. (3) 3 (1994), 47--59.

9. Niane, Mary Teuw Contrôlabilité exacte frontière de l'équation des ondes en presence de singularités. (French) [Exact boundary controllability of the wave equation in the presence of singularities] Partial differential equations and functional analysis, 221--234, Progr. Nonlinear Differential Equations Appl., 22, Birkhäuser Boston, Boston, MA, 1996.

8. Ouya, Samuel; Niane, Mary Teuw Sur l'identification en dimension un d'une perturbation linéaire de l'équation des ondes par une observation frontière. (French) [Identification in dimension one of a linear perturbation of a wave equation by a boundary observation] C. R. Math. Rep. Acad. Sci. Canada 17 (1995), no. 2-3, 93--98.

7. Niane, Mary Teuw; Seck, Ousmane Exact controllability of the wave equation in a polygonal domain with cracks. Control of partial differential equations (Trento, 1993), 145--152, Lecture Notes in Pure and Appl. Math., 165, Dekker, New York, 1994.

6. Niane, Mary Teuw; Seck, Ousmane Contrôlabilité exacte de l'équation des ondes avec conditions mêlées. (French) [Exact controllability of the wave equation with mixed conditions] C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 10, 945--948.

5. Niane, Mary Teuw; Seck, Ousmane Contrôlabilité exacte frontière de l'équation des ondes en présence de fissure par adjonction de contrôles internes au voisinage des sommets des fissures. (French) [Exact boundary controllability of the wave equation in a domain with cracks by addition of internal controls near the crack tips] C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 695--700.

4. Niane, Mary Teuw; Seck, Ousmane Exact controllability of the wave equation in a polygonal domain with cracks by acting on a neighbourhood of the boundary. System modelling and optimization (Compiègne, 1993), 642--651, Lecture Notes in Control and Inform. Sci., 197, Springer, London, 1994.

3. Niane, Mary Teuw Contrôlabilité exacte spectrale élargie des systèmes distribués par action sur une partie analytique arbitraire de la frontière. (French) [Relaxed exact spectral controllability of distributed systems by an action on an arbitrary analytic part of the boundary] C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 6, 335--340.

2. Niane, Mary Teuw Interpolation du domaine du bilaplacien dans un polygone: le cas $L\sp p$. (French) [Interpolation of the domain of the biharmonic operator in a polygon: the $L\sp p$ case] C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 9, 447--451.

1. Niane, Mary Teuw Contrôlabilité exacte de l'équation des plaques vibrantes dans un polygone. (French) [Exact controllability of the vibrating plates equation in a polygon] C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 10, 517--521.

 

We had help with this web page from Idris Assani.

references: [Math Reviews]

back to Black Women in the Mathematical Sciences

The website
MATHEMATICIANS OF THE AFRICAN DIASPORA
are brought to you by


The Mathematics Department of
The State University of New York at Buffalo.

They are created and maintained by
Scott W. Williams
Professor of Mathematics

CONTACT Dr. Williams