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TREES, GLEASON SPACES, AND COABSOLUTES OF SN ~ N
BY
SCOTT W, WILLIAMS

ABSTRACT. For a regular Hausdorff space X, let &{ X} denate its absolute, and call
two spaces X and ¥ coabsolute (§-absalute) when &(X) and &(Y) (B&( X} and
BE(Y)) are homeomarphic. We prove X is §-absalute with a linearly ordered space
iff the POSET of proper regular-open sets of X has a cafinal tree; a Maare space is
g-absolute with a linearly ordered space iff it has a dense metrizable subspace; a
dyadic space is G-absolute with a linearly ordered space iff it is separable and
metrizable; if X s a locally compact noncompact metric space, then X ~ X is
coabsolute with a compact linearly erdered space having a dense set of P-paints; CH
implies but is net implied by “if X is a lacally compact nencempact space of
#-weight at most 2 and with a compatible complete uniformity, then gX ~ X and
AN ~ N are coabsolute.”

A tree T is a POSET (partially ordered set) in which ] < , ¢[, the set of predeces-
sors of ¢, is well ordered for each ¢ € T. The trees most familiar to topologists are the
Cantor tree, the Souslin trees, and the Aronszajn trees [Ku], [Ru]. In §1 we study
conditions under which a given POSET contains a cofinal tree.

Recall (Po], [P.S.] that if X is a space,' then the absolute &( X) of X is the unique
(up to a homepmorphism) extremally disconnected space that can be mapped
irreducibly onto X by a perfect map. Following [C.N.2] call 8&( X'} the Gleason space
of X and denote it by G(X). Two spaces X and Y are coabsolute (§-absolute)
whenever &( X) and &(Y') (respectively, 4(X) and §(Y)) are homeomorphic. Desig-
nate R.{ X) for the Boolean algebra of regular-open sets of X—then it is known that

X)) =YY Iff R(X) = RALY).
In §2, we begin an application of §! to topology with several theorems. We prove:

(2.1) X is §-absolute with a linearly ordered space if, and only if, (R.( X} ~ { X}, D)
contains a cofinal tree.

(2.3) ((2.83)) A first countable {Moore) space is §-absolute with a linearly ordered
space iff it has a dense linearly ordered {metrizable} subspace.

(2.10) A dyadic space is §-absolute with a lincarly ordered space iff it is separable
and metrizable.

We also give (2.6 and 2.7) sufficient conditions (dependent on certain cardinal
functions) for a space X to have a dense linearly ordered subspace.
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84 S. W, WILLIAMS

In §3 we censider coabsolutes of Stone-Cech remainders. For a noncampact
completely regular space X, let X* = fX ~ X, We prove

(3.5) A locally compact noncompact metric space X has X* coabsolute with a
linearly ordered space having a dense set of P-points.

(3.9) If X is a locally compact noncompact metric space of density at most 2%,
then X* is coabsolute with one of N*, R*, or N* + R*.

(3.13) The following is implied by CH, and consistent with and independent of
—CH: If X is locally compact noncompact, has #w{ X') < 2%, and if X admits a
complete uniformity, then X™* is coabsolute with N*.

A result of importance in §§2 and 3 1s the Stone duality theorem [C.N.2]. The
Stone space of a Boolean algebra B is denoted by St{B). “=" between POSETS or
Boolean algebras means “is isomorphic to”.

We assume ZFC. CH is the continuum hypothesis, SH is Souslin’s hypothesis, and
MA is Martin’s axiom. All cardinals and ordinals are von Neumann ordinals, so
B < a means f € a. «, is denoted by « and if « is a cardinal, 2* is the cardinal
number of the set of subsets of . | X | means the cardinality of X. If 4 and B are sets
4B denotes the set of functions from A to B. The standard binary tree [Ku] of height
A, an ordinal, is {f€%2: a« € A} ordered by f=<g when f= g dom({f) and is
denoted by TREE(A).

N is the space of natural numbers, Irr is the space of irrationals, and R is the space
of reals. “int” and “c!” are the interior and closure operators. “== "' between spaces
means “is homeomorphic™ and A ~ B means the complement of B in 4. “2" and
“+" denote free union.

1. Trees in POSETS. Suppose P is a POSET, p € P, and Q¢ C P. Q is cofinal if
reP=3gcOwithr<gqg. Qisafilterifp>gqeQ=pe . pc P is compatible?
with Q if, for each 4 € @, 3r with p < r and g < r. P is separative if, for each pair
P, 4 € P, pt g=3r=>gq with r and p incompatible. If F is a cofinal filter in a
separative POSET P, then each maximal incompatible family of F is a maximal
incompatible family of P. On the other hand, if J is a maximal incompatible family
of P, then {p € P: 3i € ], i < p} is a cofinal filter of P.

Suppose T is a tree and a is an ordinal, then

W(T,a} = {¢t € T: | « , 1] has order type a}
is the ath level of T also denoted by lv{a) when there is no confusion. T{a) =
U (Iv(B): B € a} is the ath subtree. The heighs of T is
B(TY = inf{a: lv(a) = @ }.
A branch b of T is a maximal linearly ordered subset of T and ord(b) denotes the
arder type of b.
If every linearly ordered subset of a POSET P is bounded above, then Zorn's

lemma provides P with a cofinal tree of height 1. However, within any POSET P we
may build a tree T, recursively, by the subtrees T(«), having special properties:

3 This is the first of several traditional {Bu], [Je] definitions (also separative, k-distributive, «-closed) for
which we have reversed the usual order relation to maintain the orientation upwards far trees.
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L1. LeMMA. If P is a POSET, then there is a tree T C P satisfying:

(1Y 14(0) is a maximal incompatible family of P.

(2) If, for a € h(T), b is a branch of T(«a) bounded abouve in P, then (&) contains a
maximal incompatible family of (N {]t, ~[: t € b}, where each |t,~[= {p € P:
r<<pl.

3) N{le, = [: t € b} C T for each branch b of T.

Whenever a tree T satisfies 1.1{1)-(3)} in a POSET P, T will be called an
unbounded tree of P. Since a cofinal tree in a POSET will be unbounded it is useful
to define the ordinal invariants {under isomorphism)

#(P) = inf{h(T): Tis an unbounded tree of P}
and w#(P) = inf{ #{p, - ) p € PL.

1.2. THEOREM. For a tree T in a POSET P the following hold:

(1) T is unbounded if p € P, (p % 1Yt € T) = p is compatible with at least two
incompatible elements of T.

(2) If P is separative and T is unbounded, then (p < t1¥1 € T) = p is compatible
with two elements of some level of T.

(3} If P is separative, then #([p, - [) < #(P)Vpe L.

(4) [Ny] If every compatible pair of elements of P is linearly ordered and if T is
unhounded, then T is cofinal in P.

ProoF, (1) Certainly T satisfies 1.1(1), for otherwise some element of P would be
compatible with no elements of T. If A < A(T) and if p is a successor of each
member of a branch b of T(A), then b = {t € T(A): p and ¢ are compatible}. So
1.1(3) is immediate while 1.1(2) uses, as well, the observations for 1.1(1).

(2) We note that if [ is a maximal incompatible family of a separative POSET P
and if p € P is compatible with precisely one ¢ € I, then { < p. Otherwise, we may
find g € P so that p < g with g and i (and hence [ U {g}) incompatible.

So if p € P is compatible with at most one element of each level, then 1.1(1) and
(2) force p to be an upper bound of a branch of T. So p € T, by 1.1(3}.

(3) Suppose {J is an unbounded tree of P, #(P)=h(U),and p € P. If p < u for
some u € U, then U N [p, — [ is an unbounded tree of [p, — [. So assume p & uVu
e U. From (2) 3 a first &, € A{U)} such that p is compatible with two elements of
(U, &q). We may find a maximal incompatible family [ of {g € P:Ju € IW(U, a,),
u < g, p< q}). Starting with

T{ag + 1) = Ulag) U T U {u € IM(U, ay): p and u are incompatible }
we can build, using (2) to obtain each level, an unbounded tree T of P such that if
a € K(T) and t € W(T, a), then there is a 4 € WU, o} 3 1t < . So ALY = K(T).
Since I C[p, — [, 1.1 shows that TN [p, » [ is an unbounded tree of [p, —[.
Therefore,
h[p, > [) < &(T) = #(P).

(4} This generalization of “every linearly ordered set has a well-ordered cofinal

subset” is proved similarly to (2). O
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For a POSET P and a cardinal «, P is called x-distributive if each intersection of at
most « cofinal filters in P is cofinal; P is x-closed whenever each increasing sequence
of length at most « is bounded above. In forcing arguments the abave properties
have seen considerable activity [Bu].

1.3. LEMMA [Bu, 3.11]. Let P be a POSET and « a cardinal.

() If P is w-closed, it is x-distributive.

(2} If X is the first cardinal such that P is not A-distributive (or A-closed ), then either
A = w or A is a successor cardinal.

1.4. LEMMA. Suppose P is a POSET with no maximal elements, T is an unbounded
tree of P, and « is a cardinal,

(1} If P is w-distributive and has no maximal elements, then «* < I(T') and IW(T, a)
is a maximal incompatible family of P¥a € x™ .

(2) If P is k-closed, x < cf(ord{ b))V branches b of T.

PrROOE. As (2) is obvious, we suppose P is k-distributive. Let a be the first ordinal
such that Iv{ a) is not a maximal incompatible family of P. If « € 7

C=N{U{[r,~>[:r€1B)}: B € a}
is a cofinal filter of P. Given ¢ € C we may choose 75 € IW(B)Vf € & such that
tg < ¢ As T is a tree, ¢ is an upper bound of the branch b = (15: 8 € a} of T{a).
From [.1{2), ¢ is compatible with some element of 1v{«) bounding b from above.

Thus, 1¥(a) is a maximal incompatible family of C, and hence, of P. As this is
absurd, we must have e = 7. [

1.5, THEOREM. If P is a separative POSET without maximal elements, then
wH#(P) = sup{«™ : P is x-distributive).

Proor. We denote the right-hand side of the above equation by A. Then 1.4(1)
shows k < #(P). We consider two cases.

Case 1. w#{P) = #(P}. Suppose {F,: o € A} is a family of cofinal filters in P.
Let p € P he arbitrary and J = {g € P: p and g are incompatible}. We build,
recursively, a tree Tin ] p, — [

Let T(0) = &. Suppose we are given an ordinal &, @ < X, such that for each
B << X, we have found T(£) subject to the restriction

(») If y << B, then Iv(T, ) is 2 maximal incompatible family of F, N ] p, — [.

[f & is a limit ordinal, we must set T(a) = U {T(A): B < a}. If a is a successor
ordinal, then | @ | < A since A is a cardinal. Set

F=Fn(N{U{l,-[:1€T.B)}: B+ 1 <da}).

SoJ U Fis a cofinal filter of P. Now suppose r € J U Fand r > p,

Clearly r € F and 31, for each 8 < a such that r; < r and r € 17, B). Since
T(a — 1)is a tree, {#;: f + | < a} is a branch of T(a — 1). Since F is now a cofinal
filter of | p, — [, there is a maximal incompatible family 7 of | p, — [ contained in F.
Set T(a) = F U T{a — 1. As our hypothesis {(«) 18 now met, the construction of T is
complete when we let T = T(A).
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Now let us suppose that A << #(P). Then T is not an unbounded tree of | p, — [.
From (), cach 1«7, «) is a maximal incompatible family of | p, — [, so 1.1 implies
that 7" has a branch 4 bounded above. If ord(b) < X, then there is a t € 1W(T, ord(h))
compatible with every element of . Since T is a treg, ¢ is an upper bound for b. As
the latter is impossible, ord(b) = A. Now if s is an upper bound for b, then ()
implies p < s and s € N {F,: & < X}. As p was chosen arbitrarily, N {F,: a <A} is
a cofinal filter of P. So A € A" . This is a contradiction. Therefore, A = #(P).

Case 2. w# (P} < #(P). Choose a maximal incompatible family I € P with

w#(lp, -} = #(p, ~[)vp el
Since U{]p, = [: p € I} is a cofinal filter of P, #(P) = sup{#(|p, » ) p € I}.
On the other hand, we may add U{]p, — [: p € I} to any family of cofinal filters.
So, fromcase 1, #{]p, = [} < A¥p € I. Therefore, A\ = #(P). O
We observe that case 2 of 1.5 also shows

1.6. CorOLLARY. #{P) is a cardinal whenever P is a separative POSET.

1.7. THEOREM. Suppose P is a separative POSET for which #(P) = w#(P). If P
has a cofinal family the union of #(P) incompatible families, then P has a cofinal tree
of height #(P).

ProOF. WLOG we assume U {I,: @ € #(P)} is cofinal in P where each is a
maximal incompatible family of P containing no maximal elements of P. We
construct an unbounded tree T, modifying the suceessor ordinal steps in 1.1, as
follows:

If a < &#(P), |a|<< #(P)from 1.5. By 1.4
c=(U {li,=[:i€ L})
N{N{U {[t,~ [t €MT(a— 1}, 8)}: B<a—1})
15 a cofinal filter of P. So there is a maximal incompatible family f of P2 7 C C.
Set T(a) = T(a — 1)U L
[t is clear that T is cofinal and #(T) = #(P). O

1.8. CorOLLARY. (1) (Weiss) If P is a separative k-closed POSET ¥ < X\ and P
has a cofinal family which is the union of A incompatible families, then P has a cofinal
tree. (2) (Davies) If P is a separative w-distributive POSET and | P |< |, then P has
a cofinal tree.

ProOF. Observe that hoth results follow from [.7 even if “separative” is removed
from their hypothesis since we only used “P is x-distributive Y& << #({P)’ in the
proof of 1.7. O

1.9. THEOREM. [f a separative POSET has a cofinal tree, then it has a cofinal tree of
height #(P).

PRrROOF. In proving 1.5, we observed that there is a maximal incompatible family [
of P such that, ¥i € I, w¥([i{,— [) = #([i,—[) and

#(P) =sup{#([i,=[):1 €1}
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So WLOG we may assume P has no maximal elements and #(P) = wi{P).
Suppose T is a cofinal tree in P, U/ is an unbounded tree in P, and A(U) = #(P).
From 1.4 each IW{(U, ) is a maximal incompatible famity of P. So we may choose a
maximal incompatible family of P,

Lc(U{lt,-[eemUa)})nT.

If U{l,: @ € #(P)} is cofinal, the theorem follows from 1.7. So suppose r € T
such that ¢ < ivi € I Ya € #(P). Since P is separative, we have, from 1.2(2),
da € AU) and u,, 4 € WU, a) 3 ¢ is compatible with each u,. Again using
separativity 3, for each n € {0,1}, a ¢, € T such that r < ¢, and u, < t,. 3 for each
n, i, €[, such that u, <'i, and ¢, is compatible with i,. Since T is a tree, elther
i, =t, =t {acontradiction) or i, <1,. In the latter case, ¢ and {, are compatible so
iy < rand i; <t (acontradiction). O

From 1.7, 2* = «* implies each «-distributive POSET of cardinality at most 2 has
a cofinal tree. Our next theorem represents an attempt at removing the set-theoretic
hypothesis from this result.

1.10. LEMMA. Suppose x is an infinite cardinal, P is a separative k-closed POSET,
and p € F has no maximal successor, then p has 2" incompatible successors.

Proor. We can construct a tree in [p, — [ isomorphic to TREE(«k + 1) by applying
“separative” at successor ordinals to get two incompatible elements, and “k-closed”
at limit ordinals to get a single successor of a branch. The final level of TREE(x + 1)
contains 2° incompatible elements. O

I.11. LEMMA. Suppose « is an infinite cardinal and P = { p({): § & 2%} is a w-closed
separative POSET. If I = {i{e): « € 27} is an incompatible family in P, then there is
a family I C P subject to

(T = {j(a, ) (@, &) € 2% X 2%}, where i(a) < j(a, §) for each &.

(2} If p({) is compatible with an element of J but p({) < j¥j € J, then

| {i € I p(§) and i are compatible} |<[{] .

PROOEF. J is constructed recursively via a diagonalization argument—we examine
the fAth step:

Suppose & is the first element of 2* such that, Va € 2%, p(8) < i(a) and Yy €
BYE € 2% p(8) £ (v, £), but p(8) and i(f) are compatible. For some 4 € P with
p(8) << g and i(f) < g we choose a family {j(B, £} £ € 2%} of maximal incom-
patible successars of i(8) to which g belongs. O

1.12. THEOREM. Let & be an infinite cardinal. If P is a separative x-closed POSET
with | P|< 2% then P has a cofinal tree.

Proof. From 1.10, | P|< 2% = P has a cofinal tree of height 1. So WLOG assume
P has no maximal elements and we have a listing of P, { p({): { € 2*}.

We can construct, as in 1.1, using 1.10 and 1.11, an unbounded tree T of P subject
to the additional conditions:

(4} Iv(l}) contains a successor of p(0).
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(5) If @ € A(T') and b is a branch of T(a) bounded above in P, then | Iv(a) N
(MN{[e,~ e b= 24

G IEp({) % V1 € T(a) for a € h(T), then a < ¢ and | {t € T(a): p({)and 7 are
incompatible} |<|{].

Suppose p = p({) € P and p < 1Vt € T, then there is, by 1.2(2), a first a, such
that p is compatible with two elements of lv(a,). Using 1.4(2) and following the
proof of 1.1¢, we may build a tree S C T consisting of elements compatible with p,
each of whose levels is contained in a level of T, and which is isomorphic to
TREE(x + 1). Since 3IX € A(T) such that the last level of § is contained in Iv(A), p
causes (6) to fail fora = Ax. O

1.13. LeMMa [Je, 29B). If P is a separative POSET, then there exists a unique (up to
an isomorphism) complete Boolean algebra S)( P) for which P is cofinally embedded in
(B(P) — {0}, ).

If B is a Boolean algebra such that (B — {1}, <) o5, equivalently, (B — {0}, =),
possesses (resp. a cofinal set P satisfying) the properties defined in this section for a
POSET, we say for simplicity that B (resp. cofinally) possesses said property;
therefore:

(i) Every Boolean algebra is separative.

(ii) No atomless -complete Boolean algebra is w-clased.’

(iii) B(TREE(w,)) is cofinally w-closed.

1.14. COROLLARY. Suppose « is an infinite cardinal. If €™ = 2%, then BH(TREE(2*))
is the only complete atomless Boolean algebra which is cofinally «-closed and has a
cofinal set of cardinal 2°. If 2" = 2%, then there are ar least two complete atomless
Boolean algebras cofinally x-closed and having cofinal subsets of cardinal 2,

PrOOF. The Pressing Down Lemma [Ku] shows that, for each k, B(TREE(«* ) =
B(TREE(x™ *)). On the other hand (v) in the construction of Tin 1.12 shows that if
k" =2 and P is a x-closed separative POSET without maximal elements of
cardinality 2%, then P has a cofinal tree isomorphic to U {IW(TREE(x" ), A): X is a
limit ordinalin «*}. O

1.15. On products. Suppose  is a cardinal and P(a) is a POSET for each « € «;
there are two traditional definitions for partial orders on the Cartesian product
I =T1{Pla) a € «}:

(1) The lexicagraphic product, lexI!, is ordered by “f < g whenever Ja € & with
flay<g(a) and f(B) = g{BIVBR € a”. It is easy to see that lex[] has a cofinal tree
whenever P(a) has a cofinal tree Va € k.

(2) The usual product on [I, denoted by X {P(a): « € k}, is ordered by “f=< g
whenever f(a) < g(a) Ve € . An easy application of the Pressing Down Lemma
shows TREF(w) ¥ TREE(w,) has no cofinal tree. However, 1.7 shows that P X Q
has a cofinal tree whenever each of P and ( have a cofinal tree and w#(P) = w#(Q).

1.16. REMARKS. (1) Is it consistent that “every w-distributive POSET of cardinality
w, is w-closed?” Not in a model of ZFC + SH; however, Franklin Tall has

n (Wol], [Wo3] cofinally w-closed Boolean algebras are called Canror-separable.
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communicated to the author Peter Davies’ affirmative answer under the assumption
of the consistency of certain large cardinal axioms.

(2) For the POSET P of nonempty clopen subsets of 8N ~ N (under “2 ™) 1.5,
1.9, and 1.12 were proved, independently, in [B.P.S.].

(3) 1.8(2) is due to Peter Davies. LB(1) is an observation William Weiss made
from one of our early results.

(4) Is it consistent with ZFC +  CH that “there is precisely one complete
atomless cofinally w-closed Boolean algebra with a cofinal set of cardinality 297" See
313

(5) For many POSETS P, #(P) is well defined by considering cofinal subsets of
P. With proof similar to 1.2(3) and (4), this is true when P is either separative or
when every compatible pair of c¢lements of P are linearly ordered or when P is
directed.

2. G-absolutes of linearly ordered spaces. Recall [Ju2] if (X, ) is a space, then a
cofinal subset of (v — { &}, D) is known as a 7-base ( pseudobase in [C.N.2]) and the
a-weight, mw( X), is the least cardinal possessed by a #-base for X. The weight, w( X),
1s the least cardinal possessed by a base for 7.

2.1. THEOREM. For a space X, the following are equivalent:
(1) X has a w-base with a cofinal tree.

(2) Every m-base of X has a cofinal tree.

(3) X is G-absolute with a linearly ordered space.

Proor. If ¥ is the set of 1solated points of X, then ¥ is a subset of every #-hase for
X, Y is the set of atoms of 6.¢ X), and

R(X)=R(YUin( X~ Y)).

Since the free union of linearly ordered spaces is linearly ordered, we need only
prove the theorem for X ~ ¥. WLOG we assume X has no isolated points.

(1) = (2). Let P be a #-base for X. Since a cofinal subset of a 7-base 15 a 7-base,
we suppose that (T, 3} is a tree of nonempty open subsets of X such that T has the
minimum. possible height for a tree #-base for X. Since X has no 1solated points,
A{T) and ord(k) are limit ordinals whenever & is a branch of 7. We now construct,
recursively, two trees S, C Tand S, C P.

Fori € {1,2} let §40) = 2. Suppose we are given an ordinal & < k(T such that
S;(B) has been found, for each 8 <« and each i € {1,2}, subject to the restriction
Y = B =

(a) IW(S,, v) is a pairwise-disjoint family of nonempty open sets.

(h) If b is a branch of S)(v) and if int(Md) # 2, then

int(Mb) C{{p €v(S,,v): p C Nb)}).

(S, vy C T ~ T(y).

() Ifp € I4S,, ), thenp C cl{{t € IM(S, v): t C p}).

If o 15 a limit ordinal, we set S{a) = U {S(B) B <a} Vi If @ is a successor
ordinal, the choice of IW(S,, « — 1) is straightforward (given a a-base Q of a space ¥
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and a nonempty open set G of Y, & has a dense set which is the union of a family of
pairwise-disjoint members of Q). Let S{a) = S{a — 1) U IW(S,, a — 1). Our recur-
sion hypothesis is clearly met. So our construction of S,¥i € {1, 2} is complete when
we set each S, = S (A(T)).

Now (h} and (d) imply S, is a a-base for X iff S, is cofinal in 7. (b) and (d) also
imply that if « << #(T} and if 5 is a branch of S,(a), then

int( M) C cd({r € (S, a): 1 C Nb)}).

From {c} and 1.1, §, is an unbounded tree of T. 1.2(4) shows 5, is cofinal in 7.

{2) = (3). Since an infinite Hausdorff space contains an infinite family of non-
empty pairwise-disjoint open sets, we suppose T is a cofinal tree in (X)) satisfying

(iv)if & € (T and b is a branch of T(«) bounded above in K. X), then 1«(T, «)
contains infinitely many elements each of whose closure is a subset of (4.

Following the standard [Ku] collapsing of Souslin and Aronszajn trees, order each
IW(T, @) so that lv(e)} and in the case of (iv), the successors of b in [v(«), form a
discrete linearly ordered set without endpoints.

Set L= L(T) = {b: bis a branch of T} and for &, 5, € L define by < b, if for
some ¢ € A(T)

(b N W(T, &))< (b, NIW(T,a)) whileby, N T{a}) = b N T(a).

Thus, L is linearly ordered. Set f(ry = (b€ L: t € b) foreacht € T.

Since Y(¢) has no endpoints, (t} is clopen; further, if in L, b, < b, < b,, then by
(iv), It € b ~(by U b)) 2 Y1) C |by, by[. So ¢ embeds T cofinally within R{L).
Now apply 1.13 and the Stone duality.

(3) = (1). Suppose L is a linearly ordered space without isolated points; then
P = (G € 9.(L): Gis an open interval of L} is cofinal in R.(L). Suppose T is any
unbounded tree of P and ]x, y[ € P such that ¢t € ]x, p[Vr € T. According to
1.2(2) 38 € W(T), |x,, »[ € KT, B) fori € {0, 1}, such that |x, y[ N ]x, p[ # 2,

(*) x04x<y04y, x<xl<y{y“

and there are no points between y, and x,. Since R.(L) is closed under intersection,
1x, y,[ € P. Again applying 1.2Q2) 3a € K(T), a > B, A)x,, y{ €EIW(T, a) for j €
{2,3}, such that Jxg, y{ N ]x;, Yl # D, x; <x <y, <y X <xy3<y; <y, aond
there are no points between y, and x,. In particular, y, € ]x3, y[ ~ |xq, Wl. Since T
is a tree, 8 <« and L has no isolated points, ]x,, ¥3;[MN]x,, 3! = @ which
contradicts (*). So T 15 cofinal in P. Now apply the Stone duality. O

2.2. COROLLARY. For a space X, the following are equivalent:
(1} X has a a-disjoint w-bagse.

(2) RAX ) has a cofinal tree and #{P( X)) < w.

(3) 3 a metric space M G-absolute with X.

Proof. (1) = (2). This is a corollary of 1.7 since ®.(X) is n-closed ¥ finite
cardinals ».

(2) = (3). In 2.1 (2) = (3) the tree T may be assumed to have height « (from 1.9).
Thus, the space L is metrizable via p(b,, b ) = 27" when b, N Iv(n) # b N lv(n)
and b, N T(r) = b N T(n).
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{3) = (1}. Every metric space has a o-disjoint base. [

2.3, THEOREM. Suppase X is a space whose every point has a well-grdered local base,
then X is G-absolute with a linearly ordered space iff X has a dense linearly ordered
subspace.

Proor. We need only show “=". WLOG assume X has no isolated points. For
each x € X let N (x) C R (X) be a well-ordered, by “ 2 ”, local base at x. From 2.1,
R{X) has a cofinal tree U. We construct a tree T and a function ¢: T — X as
follows:

Let T(1) = LUK1) and (¢) € ¢ be arbitrarily chosen for each ¢ € T(1). Suppose we
are given an ordinal A such that T{«) and ¢(¢) € ¢ have been constructed Yo € A V¢
€ T(«a) subject to the restrictions:

(1) T{ &) satisfies 1.1{1) and (2).

(i} T( ) satisfies (iv) of 2.1(2) = (3).

(1) If B < @ and b is a branch of T( ), then

f{rew(T(a),B):1C Nbandr g U} =1,

where equality holds only if ¥ is constant on a tail of b.
WV If B < aand: € T(R), then T(a) has abranch b with t € band (k) = {Y()}.
(W Ifs, 1 € Ta), 1 & s, and if Y1) = Y(s), then r € W((s)).
If A is a limit ordinal, set T(A) = U [T(a): a € A}, If A is a successor ordinal,
then we will assign to each branch & of T(A — 1) a family J(&) and we will set

T(A)Y = T(A — 1) U (U {I{b)}: his abranch of T(A — 1)}).

Fort € (MY ~ T(A — 1) and r € Mb, we assign Y(z) = ${s) if ¥ is constantly (s)
on a tail of b and if £ € GL{Y(s)); otherwise, Y(¢) € ¢ may be arbitrarily chosen.

Let J{p) = & whenever int{(1h) = @. If int{ M) # @ and ¢ is not constant on
a tail of A, we may choose, since X has no isolated ponts, a pairwise disjoint
subfamily I(b) of U with U{cl(u): u & I(h)} a dense subset of int((Mh). If
int{(M4) 7= @ and ¢ is constantly (s) on a tail of b with s € b, then (v) impties
int((Nh) is a nbhd of ¥(s). Choose ¢t € M{Y(s)) with <l(z) 2 int(Mb). Then I(b)
will be the union of {t} and an infinite pairwise disjoint subfamily of I/ such that
U {cl(tu): u € I(b) ~ {t}} is a dense subset of int( M b) ~ cl{z).

As the induction hypothesis is clearly satisfied, we can continue it until we have an
unbounded tree T Since y{¢) € t¥¢ € T, {T) is dense 1f T is cofinal in R(X). So
we suppose u € U such that + € uvre& 7. By 1.2(2) there is a first ordinal
B € T) such that u Mz, « N, € R(X) ~ {2} for two distinct elements ¢,
t, €T, B). So u C Mb for a branch b of T(B), and ¢, U, C MAb. Since U is a
tree, neither 7o nor ¢, is in U. This contradicts (ii1) for @ = # + 1. So T is cofinal in
X))

From {iv) and (v) there is for each t € T precisely one branch A(¢) of T such that
1 € b(t) and b(r) is a local base at ¢(7). So when {6(z): + € T} inherits the order
given in 2.1(2) = (3), the map b(z) — {1} gives Y{T) a linear order generating the
subspace topclogy inherited from X. O
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2.4. CoroLLARY [Wh]. 4 first countable space has a o-disjoint n-base iff it has a
dense metrizable subspace.

ProOE. In 2.3 each 9(x) can be assumed to have order type «, and, according to
2.2, h(UV) = w. So k(T = w. Following the proof of 2.2(2) = (3} we see that YT} is
metrizable. [

As a Souslin line has no dense metrizable subspace, it is consistent with ZFC that
“g-disjoint 7r-base” cannot be replaced by “G-absolute with a linearly ordered space”
in 2.4. However, it is replaceable for the class of first countable spaces X which have
#(R(X)) < . Therefore, we consider some cardinal functions which affect
#E(RX)).

Henceforth, we shall use #{w#] to denore #(R(X)) [wH (R(X))] when there is
no confusion. A topological translation of 1.5 and 1.9 yields

2.5. LEMMA. Let X be a space and {I,; a € «} be a collection of families of
pairwise-disjoint nonempty open sets such that (U I} = XVa € . If x < w#, then
there is an unbounded tree T of R.( X)) satisfying:

(HTY= #.

s, €T, 55 t=cl(s) C

(3) cl{Ulv(a)) = XVa € w#.

(4) T satisfies (iv) of 2.1(2) = (3).

(Syiel, =Irelva)3Ci
Further, if X is S-absolute with a linearly ordered space, then T may be assumed to be
cofinal in R X).

Recall [C.N.2] that for a cardinal x, a space X is x-Baire if the intersection of at
most x many open dense subsets of X is dense [so Baire = w-Baire]; and x € Xis a
P-point if it has a local base A-closed YA <« [so P-point = P -point]. X 1s an
almost P -space [Le] if the intersection of less than «k many nonempty open subsets of
X has nonempty interior (equivalently, if R (X) is cofinally A-closed VA < k). A
base {or 7-base) for a space will be called «-disjoint when it is the union of a
collection of « many families of pairwise disjoint sets (WLOG each family may be
assumed to have union dense in X).

The following should be compared to [C.N.1, 3.1] and [C.N.2, 6.15].

2.6. THEOREM. For a space X with a «-disjoint m-base B,

(D= # (somw(X)= #),

() if « = w#, X is k-Baire, and if B is a base, then X has a dense subset of P, -points
which is linearly orderable.

ProoF. (1) From 1.6 there is a family J of pairwise-disjoint nonempty regular-open
subsets of X such that U.J is dense in X, wH#(R(G)) = #(R(G) VG € J, and
# = sup{ #(R(G)): G €J}. From 25(5) k = #(A(G)) for each G.

(2} Let B=U{I,: & € &}, where each I, is pairwise-disjoint and has dense
union. Let T be the tree guaranteed in 2.5 and set D = {(b: b is a branch of T,
ord(h) = &, and Mb # @ }. Since X is x-Baire, 2.5(3) implies U D is dense. Since B
is a base and T is a tree, 2.5(5) implies b is a well-ordered local base at M5 and
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| Mb|= 1 whenever Mb € D. To see that U D is linearly orderable, follow the last
paragraph of 2.3. [

2.7. THEOREM. Suppose X is ¢ space whose diagonal is the intersection of & many
open subsets of X X X; then x = #. Further, if x = w#, X is x-Baire, and if X is the
intersection of at most « many open subsets of BX, then X has a dense subset of
P -points whick is linearly orderable.

PROQGE. Let {O(a): @ € «} be 2 collection of open sets of X X X whose (ntersec-
tionis A = {(x, x): x € X}. Given x € X and « € «, there is a nbhd & of x such
that G X G C O¢a). Hence, for each a € « there is a pairwise-disjoint collection
I, CR(X)such thatc(U],) = Xand G X G C 8(a)VG € I,. Let T be the tree of
2.5 constructed from (I, o € «}. If A < w#, then 2.5(5) implies A # M {O(a):
a € A). Following 2.5¢1) shows # < «.

For the further, let {H(a): a €A} be a family of open subsets of 8X whase
intersection is X, and suppose A < k. Fora € x ~ A set H(a) = SX. For each & € &,
let

J = [H(a} N intﬁx(clﬁX(G)): Ge I«}-

Let S CR(BX) be the tree of 2.5 constructed for BX from {J,: o € x}. Using
2.5(2) we see (16 is a nonempty compact subset of 8X whenever b is a branch of
S(n) for 0 < n < k. So b is always a local base for (b when 5 is a limit ordinal.
Since M {H{a): « € X} = X, 2.5(5) implies (b C X whenever b is a branch of 5(x)
for A < <« Since A = M {O(a): a € «}, 2.5(5) implies | Mb|= | whenever b is a
branch of § and ord(b) = x. As X Is «-Baire, 2.5(3) implies {x € M b: b is a branch
of S, ord(h) = «} is dense in X. Now follow the last paragraph of 2.3. O

2.8. COROLLARY. A Moore space is G-absolute with a linearly ordered space iff ir has
a dense metrizable subspace.

PROOF, A Moore space is lst countable so 2.3 applies. As it also has a Gg-diagonal
2.7, and hence 2.2, applies. [

2.9. CORQLLARY. For a Cech-complete space X, the following hold:

(1) If wit (R X)) > w, then X has a dense open locally compact subspace.

() If #(R(X)) > w and X is perfectly normal, then X is not w - Baire.

(3) If X has a Gy-diagonal, then X has a dense metrizable linearly orderable Gg-set.

ProofF. (1) Consider IWT, w) in the “further” of 2.7. (2) The Pressing Down
Lemma implies Iv(T, «,) = @ in the “further”. (3) This follows immediately from
the “further” and 2.2. O

Recall [Jul] the cardinal « is a caliber for a space X if cach collection of k¥ many
nonempty open subsets of X contains a centered subfamily of cardinality «. [Jul,
A2] shows that if X =*2 15 given the Tychonov product topology, then w| is 2
caliber for X whenever « = w,.

Suppose X is a space for which « 1s a caliber; if ¥ is the image of X under a
continuous surjection and T is an unbounded tree of R.(¥) satisfying 2.5(2) for ¥,
then | T'|<  since the inverse image of T satisfies 2.5(2).
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The next theorem is essentially the theme of [Gv]. The preceding paragraph vields
for us a shorter proof.

2.10. THEOREM. A dyadic space is G-absolute with a linearly ordered space iff it is
separable and meirizable.

Proor. (=} D is a dyadic space, if, by definition, D is a dense subset of a
continuous image ¥ of “2, where, by [Jul, 4.9] x = aw(¥) = w(Y). From 2.1 and
the above k = w and 50 Y is a compact metric. O

2.11. CorROLLARY [Po). If a dyadic space is coabsolute with a metric space, it is
metrizable.

2.12. REMARKS, (1) A space 1s non-Archimedean (see [Ny] for a survey) provided it
has a base in which every pair of members are either related by C or disjoint. By
virtue of 1.2(4), these are spaces having inverted trees as bases. Observe that the
space L of 2.1(2) = (3) and ¥(T) of 2.3 are non-Archimedean, while the dense
subspaces in 2.6 and 2.7 are actually s-metrizable, A technical medification of
2.1(2) = (3) shows that “linearly ordered” in 2.1(3} can be replaced by “subspace of
linearly ordered™.

(2) Is there (in ZFC) a compact first countable space not the compactification of a
linearly ordered space? We ohserve that the Pressing Down Lemma shows that if X
is a Souslin line, then X x [0, 1} has no dense lincarly ordered subspace,

(3) In [Ta] methods for recognizing Souslin trees in topolagies are investigated,
and equivalences and implications of SH are given. We observe (from 1.6 and 2.9)
that SH is equivalent to the statement “if X is an w -Baire Cech-complete perfectly
normal space, then #(R(X)) < w”.

(4) Does every compact almost P-space of weight 2¢ contain a dense linearly
ordered subspace? From [C.N.1] the answer is yes if CH is assumed. From 1.12 and
2.3, a compact almost P-space of 7-weight 2¢ contains a dense non-Archimedean
linearly ordered subspace whenever it contains a dense set of points with well-ordered
local bases. The last condition is necessary as every linearly ordered subspace of
(AN ~ N) contains no isolated points.

(5) 2.7 {for k — ) and 2.8 were originally proved independently of White's result
2.4; however, 2.4 motivated 2.3. We observe that “Cech-complete™ in 2.9 can be
replaced by “p-space in the sense of Ar'hangelskii”, and a similar generality works
in27.

3. Coabsolutes of Stone-Cech remainders. If Z is a zero set of a completely regular
space X, then we let Z* = {x € X~ X: Z€x}. So X*=AX~ X It is well
known (see [En]) that X* can be nearly anything for a suitable pseudocompact space,
and if X* is dyadic, then X is pseudocompact. Thus, 2.10 especially encourages us to
restrict our attention to a class of spaces in which every pseudocompact closed
subspace is compact-in this case we consider the class of spaces with a compatible
complete uniformity (which we will call complete spaces).® Further, if X is nowhere

4Shirota’s theorem says that when we assume no measurable cardinals exist, a space is complete iff it is
realeompact. So the reader may wish to replace “complete” with “realcompact”™ throughout this section.
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iocally compact, then X* and X are dense in BX. Therefore, we restrict our attention
to complete locally compact noncompact spaces. With minor changes in proof the
following is [Wo2, 3.2];

3.1. LeMMaA. Jf X is complete, then X* and (5( X)Y* are coabsolute,

3.2, LemMa. If X is a locally compact extremally disconnected noncompact space,
then Ak = 2“ and a family {D(a): a € «} satisfving:

(1) Each D(e) is the union of countably many pairwise-disjoint compact open
subspaces of X.

(2) Either D(a) = N or D(a) has no isolated points.

() B<a=D(B) O\ D(a) = 2.

(4) X = (U {D(a)*: a € x}) and each D(a)* is open in X*.

Proor. Let E(0) = {{x}: {x} is open in X} and choose, by local compactness, a
maximal collection E(1) of pairwise digjoint nonempty open compact members of
R (int( X ~ U E(0))). For each n € {0,1} let {e{a, n): « € k(n)} be a listing of
E{n) with a cardinal «(n).

If k(n) is finite, let J(n) = . If «(n) is infinite, then choose I(n) to be a
{(maximal almost-disjoint) family of countably infinite subsets of k{n) maximal w.r.1.
“every intersection of distinct members is finite”. We may choose | I(n) | 2¢ since
it is well known [Ru] that « contains a maximal almost-disjoint family of cardinal
P

The desired family will be

{D(i,n):i€I(n),ne {0,1}}, whereD(i,n)= U {e(a,n) a €i}.
Its cardinality is at least 2¢ since X is not compact. (1) and (2) are certainly satisfied.
(3) follows since I(#n) is almost-disjoint or empty and (U E@) N (U E(1) = 2. If
C is clopen in X and @ # C*, then 3n € {0,1} and a countably infinite set
j C ktr) such that C N e(a, n) @ for each a € j (otherwise,
U(EO U E(1)} would not be dense in X). As I(») is infinite and a maximal
almost-disjoint family, { M jis infinite for some [ € I(n). (4) follows since

g #=(U{CNela,n):acinj)* cC*D(i,n)*. [

3.3, LemMa [F.G., 3.11. If X is realcompact and locally compact, then X* is an almost
P, -space.

3.4, THEOREM. If X is a complete locally compact noncompact space each of whase
nonemply open Seis coniains @ nonempty open set of w-weight ar most 2°, then X* is
coabsolute with a linearly ordered space having a dense set of P-points.

ProOOF. From 3.1 we may assume X is extremally disconnected, locally compact,
noncompact with the same w-weight condittons. Thus, in 3.2 we may assume
aw(e{a, r)) = 2%, and hence, from extremal disconnectedness 2 < 7w( N a, i)*) <
(2¢)~ = 2“. Since each D(a, i) is o-compact, each D(«, {)* is an almost P, -space.
From 1.3(2) and 1.12, each R(D(e, i)*), and hence, R.(X*) has a cofinal tree T
whose branches fail to have countable cofinality. The desired space is the Dedekind
compietion (with endpoints) of the space Lin 2.1{2) = (3}. O



TREES, GLEASON SPACES AND COABSOLUTES OF ﬁN ~N 97

As each localty compact metric space is the free union of o-compact spaces which
must have 7-weight at most «, and as every locally compact metric space admits a
complete uniformity, we have shown

3.5. COROLLARY. A locally compact noncompact metric space X has X* coabsolute
with a linearly ordered space having a dense set of P-points.

3.6. LEMMa. If X is a locally compact, extremally disconnected, noncompact space
with mw( X ) = w, then X* is homeomorphic to one of N*, (G(R)*, or N* + G(R)*.

Proos. Foliowing the proof of 3.2, ww( X) = w yields X' = E(0) U E(1), where
E(0) is the closure of all of the at most w isolated points of X and E(l) = X ~ E(0).
As X is extremally disconnected X* = E{0)* U E(1)*.

When E(0) 1s not compact, each clopen set free ultrafilter on E(0) traces to an
ultrafilter on t{ E{0)) = N; therefore, E(Q)* = N*, When E(1) is not compact, it is
the disjoint union of @ many (since mw(X) = w) compact spaces of mweight w
without isolated points. From [Si, 9¢] each of the spaces is homeomorphic to
&(Cantor set). Applying the same argument to R, we have E(1) = &(R). O

3.7. LemMa. If K is a compact space and if, for each n € {0, 1}, X(n) is the free
union of a cardinal k(n) many copies of K, where w < x(n) < 2%, then X(0)* and
X(1)* contain homeomorphic dense open subspaces.

ProOF. Write X(n) = Z{K{(a): &« € x(n)}, where K{a) = K for each o. Since
k(n) < 2% wk(n) contains precisely 2¢ countably infinite subsets. Hence, following
the argument in the proof of 3.2, we may choose a maximal almost-disjoint family
I(n) of countably infinite subsets of x{n) such that { I{n) | = 2*. Then

[{x e X(n)*: ((E {K(a):a € 1}) ~K(y)) €Exvy € z’}: i€ I(n)}

is a pairwise-disjoint family of clopen subsets of X(n}* whose union is dense in
X(n)* and whose members are homeomorphic to (Z{K(a): a € w})*. O

3.8. THEOREM. [f X is a complete locally compact noncompact space of w-weight at
most 2¢, and if every nonempty open set of X contains a nonempty open set of couniable
w-weight, then X* is coabsolute with one of N*, R*, or N* + R*,

ProoF. Following the proof of 3.4, we observe that each D{«, i) may also be
assumed here to have countable m-weight, and from their construction in 3.2 there
are precisely 2% of the sets D*(e, i) each of which is homeomorphic to one of the
three spaces above by 3.6. Now apply 3.7 with K = N* and K = R*. 0O

3.9. COROLLARY. Suppose X is a locally compact noncompact metric space of density
at most 2 then X* is coabsolure with

(1) N*, if X has a dense discrere subspace,

(2) R*, if the set of isolated points of X has compact closure,

(3) N* + R*, otherwise.

In [Wol, We2] it is shown that if CH is assumed X* is coabsolute with N*
whenever X is locally compact, noncompact, and either metric of density at most 2%
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or with |R.(X)|= 2% however, this follows from 1.14 which shows CH implies
RAN*) = RAY) whenever Y is an almost P-space with aw(Y) = 2 and no isolated
points. We end this section with an example which shows 2 is essential in 3.4 and
which allows us to remove CH from the hypothesis of Woods results.

3.10. ExaMPLE. Suppose kx > w is a cardinal and D(x} = Z{D(k, n): n € w},
where each (x, n) = “2 given the Tychonov product topology. If K denotes the
linearly ordered space obtained from ordering “'2 lexicographically, then the follow-
ing are equivalent:

(1) x =22,

(2) 8)(x)* and K are coabsolute.

(3) 8¢k )* is coabsolute with a linearly ordered space.

PrOOF. For each ordinal & << @, we set

Ala) = [(Z(f): dom([f) = a}, where Z(f) = {g€"2igla=f},

and L{a) = {int{(U{Z(f, n): n EwP)*) ¥n € w Z(f, n) € A(a) and Z(f, n) C
D(x, n)}. Then T = {L(a): @ € «,} is a tree in R(D(x)}*) whose ath level is L{a).
We claim that T is an unbounded tree.

First we observe that )(«)* has a 7-base P(x) of sets of the ferm int( Z*) such
that for each n € w3k, € *2 and a countable set C, C « such that g € Z N Dk, n)
iff gr G, = h,. So if @ < w, is the first ordinal with o, N (U {C,: n € w}} C a, then
int{ Z*) intersects two elements of L{a + 1). From 1.2(1), T is unbounded.

(1) =(2). From 1.9 and 1.12 R(“D(x)*) has a cofinal tree of height w, since
Tw(D(k)y*) = 2*. From 3.3 it has a cofinal tree order isomorphic to the union of the
limit ordinal levels of TREE(w,). If L is constructed as in 2.1(2) = (3}, then L is
homeomorphic to a dense subspace of XK.

(2) = (3). Obwvious.

(3) = (1). As @(x) has caliber «,, it follows that every pairwise-disjoint family of
P(x) has cardinality at most 2%. On the other hand, #w{D(k)*) is at least 2° + x. So
if S(k)* is coabsolute with a linearly ordered space, then R.(%D(x)*) has a cofinal
tree S of height w,. Since | §|= 2% - w, = 2% and § is a 7-base of D(k)*, x < 2.
O

3.11. LEMMA. If X is a locally compact complete noncompact space, then #(R.( X*}))
< #(HN).

ProOOE. From 3.1 and 3.2 X = Z{X(#n): n € )}, where each X(n) is compact and
extremally disconnected, can be assumed. One readily observes that the map
X(n) — n induces a fupction from R.(N*) to 4.( X*} which takes unbounded trees to
unbounded trees isomorphic to their pre-images. [l

3.12. THEOREM. The following are egquivalent statements in ZFC:

(1) N* and D(w )* are coabsolute.

(2) #(R(N") = ;.

3 If X is a locally compact complete noncompacr space and if mw( X)) < 2“, then
X* and N* are coabsolute.
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PROOF. Since #{R (M w)*) = w,, (1} =(2). From LIl #(R(X*) = w, s0
(2) = (3) is similar to 3.10 (3) = (1). (3) = (1) is obvious. O

As we have ohserved before CH implies # (R.(N*)) = w,. However, as remarked
in [B.P.S.] there are numerous models of ZFC + —CH in which #(R(N*)) = w,,
for example in any model 9. for which 9ME“w to have an w,-scale [He| and
M.k w, < 2%. On the other hand, MA + —CH implies A.(N*) is cofinally «-closed
¥k << 2“ [Ru], and hence, #(R.(N*)} = 2¢ > «,. Therefore, we have

3.13. CoroLLARY. The following statement is implied hy CH, and is consistent with
and independent of —CH: If X is a locally compact complete noncompact space with
aw( X) =< 2, then X* and N* are coabsolute.

3.14. REMARKS. (1) 3.7 was communicated verbally to the author by S. Broverman
for the case | K|= 1. The proof he gave is similar. R. G. Woods has informed us that
3.9(2) can also be proved using a recent result of E. K. van Douwen on remote
points and a theorem in [Wo3)].

(2) Are N* and R* coabsolure? As N* is an almost P, -space iff R* is an almost
P-space [vD1], we observe that a proof similar to that of 3.12 (2) = (3) shows N*
and R* are coabsolute whenever N* is an almost P-space ¥k < #(R{(N*)). The
latter 15 true in a variety of situations (including MA). However, we do not know
whether a negative answer is consistent.

(3) 3.10 was motivated by an example in [vD.vM.] called here 5D(2+).

{4} In the first draft of this paper we used a result in [vD2] to show 3.11. Originally
we obtained 3.13 prior to 112 (and independently of [B.P.S.]); however, our proof
was longer while a key lemma to our short proof in the first draft of this paper was
false.

The author owes an appreciation. to a large number of people for their comments,
suggestions, and answers to queries. We acknowledge especially F. D. Tall, who
communicated [B.P.8.] and adwvised us of relevant works in the Soviet Union; E. K.
van Douwen, whose comments on [Wi] and whose preprints were timely; and the
referees who waded through numerous terse arguments and frequent typographical
and grammatical ercors.

ADDED IN PROOF. The answer to the questions in 2.12(2} is “yes™ (Todoréévic); in
2.12¢4) is “not M{w,)" (myself) and it is consistent that X* has no dense linearly
ordered subspace for every non-pseudo-compact space X.
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