24 Nilpotent groups

24.1. Recall that if G is a group then

$$Z(G) = \{ a \in G \mid ab = ba \text{ for all } b \in G \}$$

Note that $Z(G) \triangleleft G$. Take the canonical epimorphism $\pi: G \to G/Z(G)$. Since $Z(G/Z(G)) \triangleleft G/Z(G)$ we have:

$$\pi^{-1}(Z(G/Z(G))) \triangleleft G$$

Define:

$$Z_1(G) := Z(G)$$
$$Z_i(G) := \pi_{i-1}^{-1}(Z(G/Z_{i-1}(G))) \quad \text{for } i > 1$$

where $\pi_i: G \to G/Z_{i-1}(G)$. We have $Z_i(G) \triangleleft G$ for all i.

24.2 Definition. The upper central series of a group G is a sequence of normal subgroups of G:

$$\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \ldots$$

24.3 Definition. A group G is nilpotent if $Z_i(G) = G$ for some i.

If G is a nilpotent group then the nilpotency class of G is the smallest $n \geq 0$ such that $Z_n(G) = G$.

24.4 Proposition. Every nilpotent group is solvable.

Proof. If G is nilpotent group then the upper central series of G

$$\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq \ldots \subseteq Z_n(G) = G$$

is a normal series.
Moreover, for every i we have

$$Z_i(G)/Z_{i-1}(G) = Z(G/Z_{i-1}(G))$$

so all quotients of the upper central series are abelian.

\[\square\]

24.5 Note. Not every solvable group is nilpotent. Take e.g. G_T. We have $Z(G_T) = \{I\}$, and so

$$Z_i(G_T) = \{I\}$$

for all i. Thus G_T is not nilpotent. On the other hand G_T is solvable with a composition series

$$\{I\} \subseteq \{I, R_1, R_2\} \subseteq G_T$$

24.6 Proposition.

1) Every abelian group is nilpotent.
2) Every finite p-group is nilpotent.

Proof.

1) If G is abelian then $Z_1(G) = G$.

2) If G is a p-group then so is $G/Z_i(G)$ for every i. By Theorem 16.4 if $G/Z_i(G)$ is non-trivial then its center $Z(G/Z_i(G))$ a non-trivial group. This means that if $Z_i(G) \neq G$ then $Z_i(G) \subseteq Z_{i+1}(G)$ and $Z_i(G) \neq Z_{i+1}(G)$. Since G is finite we must have $Z_n(G) = G$ for some G. \[\square\]

24.7 Definition. A central series of a group G is a normal series

$$\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$$

such $G_i \triangleleft G$ and $G_{i+1}/G_i \subseteq Z(G/G_i)$ for all i.

97
24.8 Proposition. If \(\{e\} = G_0 \subseteq \ldots \subseteq G_k = G \) is a central series of \(G \) then
\[
G_i \subseteq Z_i(G)
\]

Proof. Exercise. \(\square \)

24.9 Corollary. A group \(G \) is nilpotent iff it has a central series.

Proof. If \(G \) is nilpotent then
\[
\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq \ldots \subseteq Z_n(G) = G
\]
is a central series of \(G \).

Conversely, if
\[
\{e\} = G_0 \subseteq \ldots \subseteq G_k = G
\]
is a central series of \(G \) then by (24.9) we have \(G = G_k \subseteq Z_k(G) \), so \(G = Z_k(G) \), and so \(G \) is nilpotent. \(\square \)

24.10 Note. Given a group \(G \) define
\[
\Gamma_0(G) := G \\
\Gamma_i(G) := [G, \Gamma_{i-1}(G)] \quad \text{for} \ i > 0.
\]

We have
\[
\ldots \subseteq \Gamma_1(G) \subseteq \Gamma_0(G) = G
\]

24.11 Proposition. If \(G \) is a group then

1) \(\Gamma_i(G) \lhd G \) for all \(i \)
2) \(\Gamma_{i+1}(G)/\Gamma_i(G) \subseteq Z(G/\Gamma_i(G)) \) for all \(i \)

Proof. Exercise.

24.12 Definition. If \(\Gamma_n(G) = \{e\} \) then
\[
\{e\} = \Gamma_n(G) \subseteq \ldots \subseteq \Gamma_0(G) = G
\]
is a central series of \(G \). It is called the lower central series of \(G \).

24.13 Proposition. A group \(G \) is nilpotent iff \(\Gamma_n(G) = \{e\} \)

Proof. Exercise.

24.14 Theorem.

1) Every subgroup of a nilpotent group is nilpotent.
2) Every quotient group of a nilpotent group is nilpotent.
3) If \(H \triangleleft G \), and both \(H \) and \(G/H \) are nilpotent groups then \(G \) is also nilpotent.

Proof. Similar to the proof of Theorem 23.6.

24.15 Corollary. If \(G_1, \ldots, G_k \) are nilpotent groups then the direct product \(G_1 \times \cdots \times G_k \) is also nilpotent.

Proof. Follows from part 3) of Theorem 24.14.
24.16 Corollary. If \(p_1, \ldots, p_k\) are primes and \(P_i\) is a \(p_i\)-group then \(P_1 \times \ldots \times P_k\) is a nilpotent group.

Proof. Follows from (24.6) and (24.15).

24.17 Theorem. Let \(G\) be a finite group. The following conditions are equivalent.

1) \(G\) is nilpotent.
2) Every Sylow subgroup of \(G\) is a normal subgroup.
3) \(G\) isomorphic to the direct product of its Sylow subgroups.

24.18 Lemma. If \(G\) is a finite group and \(P\) is a Sylow \(p\)-subgroup of \(G\) then

\[N_G(N_G(P)) = N_G(P)\]

Proof. Since \(P \subseteq N_G(P) \subseteq G\) and \(P\) is a Sylow \(p\)-subgroup of \(G\) therefore \(P\) is a Sylow \(p\)-subgroup of \(N_G(P)\). Moreover, \(P \triangleleft N_G(P)\), so \(P\) is the only Sylow \(p\)-subgroup of \(G\).

Take \(a \in N_G(N_G(P))\). We will show that \(a \in N_G(P)\). We have

\[aPa^{-1} \subseteq aN_G(P)a^{-1} = N_G(P)\]

As a consequence \(aPa^{-1}\) is a Sylow \(p\)-subgroup of \(N_G(P)\), and thus \(aPa^{-1} = P\). By the definitions of normalizer this gives \(a \in N_G(P)\).

24.19 Lemma. If \(H\) is a proper subgroup of a nilpotent group \(G\) (i.e. \(H \subseteq G\), and \(H \neq G\)), then \(H\) is a proper subgroup of \(N_G(H)\).
Proof. Let $k \geq 0$ be the biggest integer such that $Z_k(G) \subseteq H$. Take $a \in Z_{k+1}(G)$ such that $a \not\in H$. We will show that $a \in N_G(H)$.

We have

$$H/Z_k(G) \subseteq G/Z_k(G) \quad \text{and} \quad Z_{k+1}(G)/Z_k(G) = Z(G/Z_k(G))$$

If follows that for every $h \in H$ we have

$$ahZ_k(G) = (aZ_k(G))(hZ_k(G)) = (hZ_k(G))(aZ_k(G)) = haZ_k(G)$$

Therefore $ha = ah'h'$ for some $h' \in Z_k(G) \subseteq H$, and so $a^{-1}ha = hh' \in H$. As a consequence $a^{-1}Ha = H$, so $a^{-1} \in N_G(H)$, and so also $a \in N_G(H)$.

\[\square \]

Proof of Theorem 24.17.

1) \Rightarrow 2) Let P be a Sylow p-subgroup of G. It suffices to show that $N_G(P) = G$.

Assume that this is not true. Then $N_G(P)$ is a proper subgroup G, and so by Lemma 24.19 it is also a proper subgroup of $N_G(N_G(P))$. On the other hand by Lemma 24.18 we have $N_G(N_G(P)) = N_G(P)$, so we obtain a contradiction.

2) \Rightarrow 3) Exercise.

3) \Rightarrow 1) Follows from Corollary 24.16.

\[\square \]
25 Rings

25.1 Definition. A ring is a set R together with two binary operations: addition (+) and multiplication (\cdot) satisfying the following conditions:

1) R with addition is an abelian group.
2) multiplication is associative: $(ab)c = a(bc)$
3) addition is distributive with respect to multiplication:

$$a(b + c) = ab + ac$$
$$a + bc = ac + bc$$

The ring R is commutative if $ab = ba$ for all $a, b \in R$.

The ring R is a ring with identity if there is an element $1 \in R$ such that $a1 = 1a = a$ for all $a \in R$. (Note: if such identity element exists then it is unique)

25.2 Examples.

1) \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} are commutative rings with identity.

2) $\mathbb{Z}/n\mathbb{Z}$ is a ring with multiplication given by

$$k(n\mathbb{Z}) \cdot l(n\mathbb{Z}) := kl(n\mathbb{Z})$$

3) If R is a ring then

$$R[x] = \{a_0 + a_1 x + \ldots + a_n x^n \mid a_i \in R, n \geq 0\}$$

is the ring of polynomials with coefficients in R and

$$R[[x]] = \{a_0 + a_1 x + \ldots \mid a_i \in R\}$$

is the ring of formal power series with coefficients in R.

If R is a commutative ring then so are $R[x]$, $R[[x]]$. If R has identity then $R[x]$, $R[[x]]$ also have identity.
4) If \(R \) is a ring then \(M_n(R) \) is the ring of \(n \times n \) matrices with coefficients in \(R \).

5) The set \(2\mathbb{Z} \) of even integers with the usual addition and multiplication is a commutative ring without identity.

6) If \(G \) is an abelian group then the set \(\text{Hom}(G,G) \) of all homomorphisms \(f: G \to G \) is a ring with multiplication given by composition of homomorphisms and addition defined by

\[
(f + g)(a) := f(a) + g(a)
\]

7) If \(R \) is a ring and \(G \) is a group then define

\[
R[G] := \{ \sum_{g \in G} a_g g \mid a_g \in R, a_g \neq 0 \text{ for finitely many } g \text{ only} \}
\]

addition in \(R[G] \):

\[
\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g
\]

multiplication in \(R[G] \):

\[
\left(\sum_{g \in G} a_g g \right) \left(\sum_{g \in G} b_g g \right) = \sum_{g \in G} \left(\sum_{hG=g} a_h b_h' \right) g
\]

The ring \(R[G] \) is called the \textit{group ring} of \(G \) with coefficients in \(R \).

25.3 \textbf{Definition.} Let \(R \) be a ring. An element \(0 \neq a \in R \) is a \textit{left (resp. right) zero divisor in} \(R \) if there exists \(0 \neq b \in R \) such that \(ab = 0 \) (resp. \(ba = 0 \)).

An element \(0 \neq a \in R \) is a \textit{zero divisor} if it is both left and right zero divisor.

25.4 \textbf{Example.} In \(\mathbb{Z}/6\mathbb{Z} \) we have \(2 \cdot 3 = 0 \), so 2 and 3 are zero divisors.
25.5 Definition. An integral domain is a commutative ring with identity $1 \neq 0$ that has no zero divisors.

25.6 Proposition. Let R be an integral domain. If $a, b, c \in R$ are non-zero elements such that

$$ac = bc$$

then $a = b$.

Proof. We have $(a - b)c = 0$. Since $c \neq 0$ and R has no zero divisors this gives $a - b = 0$, and so $a = b$. \qed

25.7 Definition. Let R be a ring with identity. An element a has a left (resp. right) inverse if there exists $b \in R$ such that $ba = 1$ (resp. there exists $c \in R$ such that $cb = 1$).

An element $a \in R$ is a unit if it has both a left and a right inverse.

25.8 Proposition. If a is a unit of R then the left inverse and the right inverse of a coincide.

Proof. If $ba = 1 = ac$ then

$$b = b \cdot 1 = b(ac) = (ba)c = 1 \cdot c = c$$

\qed

25.9 Note. The set of all units of a ring R forms a group R^* (with multiplication). E.g.:

$\mathbb{Z}^* = \{-1, 1\} \cong \mathbb{Z}/2\mathbb{Z}$

$\mathbb{R}^* = \mathbb{R} - \{0\}$

$(\mathbb{Z}/14\mathbb{Z})^* = \{1, 3, 5, 9, 11, 13\} \cong \mathbb{Z}/6\mathbb{Z}$
25.10 Definition. A division ring is a ring R with identity $1 \neq 0$ such that every non-zero element of R is a unit.

A field is a commutative division ring.

25.11 Examples.

1) \mathbb{R}, \mathbb{Q}, \mathbb{C} are fields.

2) \mathbb{Z} is an integral domain but it is not a field.

3) The ring of real quaternions is defined by

$$\mathbb{H} := \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$$

Addition in \mathbb{H} is coordinatewise. Multiplication is defined by the identities:

$$i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j$$

The ring \mathbb{H} is a (non-commutative) division ring with the identity

$$1 = 0 + 0i + 0j + 0k$$

The inverse of an element $z = a + bi + cj + dk$ is given by

$$z^{-1} = \left(\frac{a}{\|z\|} - \frac{b}{\|z\|}i - \frac{c}{\|z\|}j - \frac{d}{\|z\|}k\right)$$

where $\|z\| = \sqrt{a^2 + b^2 + c^2 + d^2}$

25.12 Proposition. The following conditions are equivalent.

1) $\mathbb{Z}/n\mathbb{Z}$ is a field.

2) $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.

3) n is a prime number.

Proof. Exercise. □
26 Ring homomorphisms and ideals

26.1 Definition. Let R, S be rings. A ring homomorphism is a map

$$f : R \to S$$

such that

1) $f(a + b) = f(a) + f(b)$

2) $f(ab) = f(a)f(b)$

26.2 Note. If R, S are rings with identity then these conditions do not guarantee that $f(1_R) = 1_S$.

Take e.g. rings with identity R_1, R_2 and define

$$R_1 \oplus R_2 = \{(r_1, r_2) \mid r_1 \in R_1, r_2 \in R_2\}$$

with addition and multiplication defined coordinatewise. Then $R_1 \oplus R_2$ is a ring with identity $(1_{R_1}, 1_{R_2})$. The map

$$f : R_1 \to R_1 \oplus R_2, \quad f(r_1) = (r_1, 0)$$

is a ring homomorphism, but $f(1_{R_1}) \neq (1_{R_1}, 1_{R_2})$.

26.3 Note. Rings and ring homomorphisms form a category \mathcal{Ring}.

26.4 Proposition. A ring homomorphism $f : R \to S$ is an isomorphism of rings iff f is a bijection.

Proof. Exercise. \qed
26.5 Definition. If \(f : R \rightarrow S \) is a ring homomorphism then
\[
\text{Ker}(f) = \{ a \in R \mid f(a) = 0 \}
\]

26.6 Proposition. A ring homomorphism is 1-1 iff \(\text{Ker}(f) = \{0\} \)

Proof. The same as for groups (4.4).

26.7 Definition. A subring of a ring \(R \) is a subset \(S \subseteq R \) such that \(S \) is an additive subgroup of \(R \) and it is closed under the multiplication.

A left ideal of \(R \) is a subring \(I \subseteq R \) such that for every \(a \in I \) and \(b \in R \) we have \(ab \in I \). A right ideal of \(R \) is defined analogously.

A ideal of \(R \) is a subring \(I \subseteq R \) such that \(I \) is both left and right ideal.

26.8 Notation. If \(I \) is an ideal of \(R \) then we write \(I \triangleleft R \).

26.9 Proposition. If \(f : R \rightarrow S \) is a ring homomorphism then \(\text{Ker}(f) \) is an ideal of \(R \).

Proof. Exercise.

26.10 Definition. If \(I \) is an ideal of a ring \(R \) then the quotient ring \(R/I \) is defined as follows.
\[
R/I := \text{the set of left cosets of } I \text{ in } R
\]
Addition: \((a + I) + (b + I) = (a + b) + I\), multiplication: \((a + I)(b + I) = ab + I\).
26.11 Note. If $I \triangleleft R$ then the map
\[\pi: R \to R/I, \quad \pi(a) = a + I\]
is a ring homomorphism. It is called the \textit{canonical epimorphism} of R onto R/I.

26.12 Theorem. If $f: R \to S$ is a homomorphism of rings then there is a unique homomorphism
\[\bar{f}: R/\text{Ker}(f) \to S\]
such that the following diagram commutes:

\[
\begin{array}{ccc}
R & \xrightarrow{f} & S \\
\downarrow{\pi} & & \downarrow{\bar{f}} \\
R/\text{Ker}(f) & & \\
\end{array}
\]

Moreover, \bar{f} is a monomorphism and $\text{Im}(\bar{f}) = \text{Im}(f)$.

\textit{Proof.} Similar to the proof of Theorem 6.1 for groups.

26.13 First Isomorphism Theorem. If $f: R \to S$ is a homomorphism of rings that is an epimorphism then
\[R/\text{Ker}(f) \cong S\]

\textit{Proof.} Take the map $\bar{f}: R/\text{Ker}(f) \to S$. Then $\text{Im}(\bar{f}) = \text{Im}(f) = S$, so \bar{f} is an epimorphism. Also, \bar{f} is 1-1. Therefore \bar{f} is a bijective homomorphism and thus it is an isomorphism.

26.14 Note. Let $I, J \triangleleft R$. Check:
1) $I \cap J \triangleleft R$

2) $I + J \triangleleft R$ where $I + J = \{a + b \mid a \in I, b \in J\}$

26.15 Second Isomorphism Theorem. If I, J are ideals of R then

$$I/(I \cap J) \cong (I + J)/J$$

Proof. Exercise. □

26.16 Third Isomorphism Theorem. If I, J are ideals of R and $J \subseteq I$ then I/J is a ideal of R/J and

$$(R/J)/(I/J) \cong R/I$$

Proof. Exercise. □