MY FAVORITE FUNCTIONS
OR
Continuous from *what* to WHAT?!?
Section 1. Accordions

\[y = \sin x \]
$y = \sin x$

$y = \sin \frac{1}{x}$

not continuous at 0
\[f(x) = x \sin \frac{1}{x} \]

\[y = \sin \frac{1}{x} \]

\[f \text{ is continuous at } 0 \text{ even though there are nearly vertical slopes as you approach } 0. \]
\[g(x) = x^2 \sin \frac{1}{x} \]

Here \(\lim_{h \to 0} \frac{g(h)}{h} = 0 \)
\[g(x) = x^2 \sin \frac{1}{x} \]

So \(g \) has a derivative at 0,

\[g'(0) = \lim_{h \to 0} \frac{g(h)}{h} = 0 \]
\[g(x) = x^2 \sin \frac{1}{x} \]

\[g'(0) = 0. \]

Still we have nearly vertical tangents.
\[g(x) = x^2 \sin \frac{1}{x} \]

\[g'(0) = 0. \]

We have nearly vertical tangents.

Further, there are sequences \(<a_n>\) and \(<b_n>\) such that

\[\lim_{n \to \infty} b_n - a_n = 0, \text{ but } \lim_{n \to \infty} \frac{g(b_n) - g(a_n)}{b_n - a_n} = \infty. \]
Section 2. **Le Blancmange function**

Fix a non-negative integer \(n \). Given a real number \(x \), let \(k \) be the greatest non-negative integer such that

\[
a_{(x,n)} = 2^{-n}k \leq x \text{ and let } b_{(x,n)} = 2^{-n}(k+1).
\]

So \(x < b_{(x,n)} \).

Define \(f_n : \mathbb{R} \to [0,1] \) by \(f_n(x) = \min\{x-a_{(x,n)}, b_{(x,n)}-x\} \).
Fix a non-negative integer n. Given a real number x, let k be the greatest non-negative integer such that

$$a_{(x,n)} = 2^{-n}k \leq x$$

and let $b_{(x,n)} = 2^{-n}(k+1)$. So $x < b_{(x,n)}$.

Define $f_n : \mathbb{R} \rightarrow [0,1]$ by

$$f_n(x) = \min\{x - a_{(x,n)}, b_{(x,n)} - x\}.$$
\[f_0 + f_1 \]

\[f_0 + f_1 + f_2 \]

\[f_0 + f_1 + f_2 + f_3 \]

\[f_0 + f_1 + f_2 + f_3 + f_4 \]
THEOREM 2. There is a function continuous at each real x but differentiable at no real x.

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

Example:

$$f_0\left(\frac{7}{16}\right) = \frac{7}{16}; \quad f_1\left(\frac{7}{16}\right) = \frac{7}{16}; \quad f_2\left(\frac{7}{16}\right) = \frac{1}{16}; \quad f\left(\frac{7}{16}\right) = \frac{1}{16}.$$
\[f(x) = \sum_{n=1}^{\infty} f_n(x) \leq \sum_{n=1}^{\infty} 2^{-n} \]
Lemma 2: Suppose a function $h : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x. If a_n and b_n are such that $\forall n, \ a_n \leq x \leq b_n$, then

$$h'(x) = \lim_{n \to \infty} \frac{h(b_n) - h(a_n)}{b_n - a_n}$$
Section 3. Stretching zero to one.

Cantor's Middle Third Set C is a subset of $[0,1]$ formed inductively by deleting middle third open intervals. Say $(1/3, 2/3)$ in step one.
In step two, remove the middle-thirds of the remaining two intervals of step one, they are \((\frac{1}{9}, \frac{2}{9}) \) and \((\frac{7}{9}, \frac{8}{9}) \).

In step three, remove the middle thirds of the remaining four intervals.

and so on for infinitely many steps.
What we get is **C, Cantor’s Middle Thirds Set.**

C is very “thin” and a “spread out” set whose measure is 0 (since the sum of the lengths of intervals removed from [0,1] is 1.

![Cantor's Middle Thirds set](image-url)
As $[0,1]$ is thick and as C is a thin subset of $[0,1]$, the following is surprising:

THEOREM 3.

There is a continuous function from C onto $[0,1]$.

Cantor's Middle Thirds set
THEOREM 3. There is a continuous function from C onto $[0,1]$.

The points of C are the points equal to the sums of infinite series of form

$$\sum_{n=1}^{\infty} 2s(n)3^{-n}$$

where $s(n) \in \{0,1\}$.
\[
F(\sum_{n=1}^{\infty} 2s(n)3^{-n}) = \sum_{n=1}^{\infty} s(n)2^{-n}
\]
defines a continuous surjective function whose domain is \(\mathbb{C}\) and whose range is \([0,1]\).

Example. The two geometric series show \(F(1/3) = F(2/3) = 1/2\).
Picturing the proof.

Stretch the two halves of step 1 until they join at 1/2.
Now stretch the two halves of each pair of step 2
Until they join at 1/4 and 3/4…
Each point is moved to the sum of an infinite series.
Section 4. Advancing Dimension

\[\mathbb{N} \leftrightarrow \mathbb{N}^2 \]

\[2^{n-1}(2m-1) \leftrightarrow \langle m,n \rangle \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>14</td>
<td>28</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><1,1></td>
<td><1,2></td>
<td><1,3></td>
<td><1,4></td>
</tr>
<tr>
<td>2</td>
<td><2,1></td>
<td><2,2></td>
<td><2,3></td>
<td><2,4></td>
</tr>
<tr>
<td>3</td>
<td><3,1></td>
<td><3,2></td>
<td><3,3></td>
<td><3,4></td>
</tr>
<tr>
<td>4</td>
<td><4,1></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem 4. There is a continuous function from \([0,1]\) onto the square.

We’ll cheat and do it with the triangle.
An java animated version of a different Space Filling Curve can be found at http://www.geom.uiuc.edu/~dpvc/CVM/1998/01/vsfcf/article/sect2/brief_history.html
Section 5. An addition for the irrationals

By an addition for those objects $X \in [0, \infty)$ we mean a continuous function $s : X \times X \rightarrow X$ (write $x+y$ instead of $s(<x,y>)$) such that for $x+y$ the following three rules hold:

1. $x+y = y+x$ (the commutative law) and
2. $(x+y)+z = x+(y+z)$ (the associative law).

With sets like \mathbb{Q}, the set of positive rationals, the addition inherited from the reals \mathbb{R} works, but with the set \mathbb{P} of positive irrationals it does not work: $(3+\sqrt{2})+(3-\sqrt{2}) = 6$.
THEOREM 5.

The set P of positive irrationals has an addition.

Our aim is to consider another object which has an addition And also "looks like" P.

Continued fraction
Given an irrational \(x \), the sequence \(\langle a_n \rangle \) is computed as follows:

Let \(G(x) \) denote the greatest integer \(\leq x \). Let \(a_0 = G(x) \).

If \(a_0, \ldots, a_n \) have been found as below, let \(a_{n+1} = G(1/r) \).

\[
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n + r}}}}
\]
Continuing in this fashion we get a sequence which converges to \(x\). Often the result is denoted by

\[
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}.
\]

However, here we denote it by \(\text{CF}(x) = <a_0, a_1, a_2, a_3, \ldots>\).
We let \(\langle 2 \rangle \) denote the constant \(\langle 2, 2, 2, 2, \ldots \rangle \). Note \(\langle 2 \rangle = \text{CF}(1+\sqrt{2}) \) since

\[
2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ldots}}}} = 1 + \sqrt{2}
\]

Hint: A quick way to prove the above is to solve for \(x \) in \(x = 2 + \frac{1}{x} \) or \(x^2 - 2x - 1 = 0 \).
Prove $<1> = \text{CF}(\frac{1+\sqrt{5}}{2})$ and $<1,2> = \text{CF}(\frac{2+\sqrt{3}}{2})$

We add two continued fractions “pointwise,” so $<1> + <1,2> = <2,3>$ or $<2,3,2,3,2,3,2,3,\ldots>$.

Here are the first few terms for π, $<3,7,15,1,\ldots>$. No wonder your grade school teacher told you $\pi = 3 + \frac{1}{7}$. The first four terms of $\text{CF}(\pi)$, $<3,7,15,1>$ approximate π to 5 decimals.

Here are Euler’s first few terms for e, $<2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,\ldots>$.

Lemma. Two irrationals \(x \) and \(y \) are "close" as real numbers iff the "first few" partial continued fractions of \(\text{CF}(x) \) and \(\text{CF}(y) \) are identical.

For example \(<2,2,2,2,2,1,1,1,...>\) and \(<2>\) are close, but \(<2,2,2,2,2,2,2,2,2,2,91,5,5,...>\) and \(<2>\) are closer.

Here is the “addition:” We define \(x \oplus y = z \) if \(\text{CF}(z) = \text{CF}(x) + \text{CF}(y) \).
Then the lemma shows \(\oplus \) is continuous.
However, strange things happen:

\[
\frac{1 + \sqrt{5}}{2} \oplus \frac{1 + \sqrt{5}}{2} = 1 + \sqrt{2}
\]
Problems

1. How many derivatives has

\[g(x) = x^2 \sin \frac{1}{x} \]

2. Prove that each number in [0,2] is the sum of two members of the Cantor set.
Problems

3. Prove there is no distance non-increasing function whose domain is a closed interval in \(\mathbb{N} \) and whose range is the unit square \([0,1] \times [0,1]\) .

4. Determine \(\sqrt{2} + \frac{\sqrt{2} + \sqrt{3}}{2}\) .
Buffalo
Spaceport of the Future
BUFFALO
Spaceport of the Future
Buffalo Spaceport of the Future
Buffalo
Spaceport of the Future