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ABSTRACT. Let d > 2 and p a prime coprime to d. For f(z) € (Z, NQ)[z], let
NP;(f mod p) denote the first slope of the Newton polygon of the L-function
Tr]}‘p[ /Ep (F(2))

of the exponential sums erﬂ" , 6p . We prove that there is a
P

Zariski dense open subset U/ in the space A% of degree-d monic polynomials
over Q such that for all f(z) € U we have limp_,oo NP (f mod p) = 5 This
is a “first slope case” of a conjecture of Wan.

Let d > 2 be an integer and p a prime coprime to d. Let A% be the set of all degree-
d monic polynomials over Q. For any f(z) = 2%+ a4_129" 1 +.. . +ag € (Z,NQ)[7]
Tre , /r, (f(2))
and for any integer £ > 1 let Sy(f) :== > g, G ot

f(z) mod p is defined by L(f mod p;T) = exp (ZZI Sg(f)%z) . It is a theorem of

Dwork-Bombieri-Grothendieck that L(f mod p;T) = 1+ byT + ... + by 1T ! €
Z[(p)[T)] for some p-th root of unity ¢, in Q. Define the Newton polygon of f mod p,
denoted by NP(f mod p), as the lower convex hull of the points (¢, ord,b,) in R?
for 0 < ¢ < d— 1 where we set by = 1. It is exactly the p-adic Newton polygon
of the polynomial L(f mod p;T). Let NP;(f mod p) denote its first slope. Define
the Hodge polygon HP(f) as the convex hull in R? of the points (¢, %) for
0 < ¢ < d-—1. It is proved that the Newton polygon is always lying above the
Hodge polygon ( see [3] [6] and [2]). The following conjecture was proposed by
Wan in the Berkeley number theory seminar in the fall of 2000, a general form of
which will appear in [7, Section 2.5].

. The L function of

Conjecture 1 (Wan). There is a Zariski dense open subset U in A% such that for
all f(x) € U we have lim,_,oo NP(f mod p) = HP(f).

The cases d = 3 and 4 are proved in [6] and [4], respectively. It is also known that
if p = 1 mod d then NP(f mod p) = HP(f) for all f € A? (see [1]). In this paper
we use an elementary method to prove the “first slope case” of this conjecture.

For any real number r let [r] denote the least integer greater than or equal to
r. For any integer N and for any Laurent polynomial g(z) in one variable, we use
[g(x)],~ to denote the zV-coefficient of g(x).

Theorem 2. Let d > 2 and p a prime coprime to d. Let f(x) be a degree-d monic
polynomial in (Z, N Q)[x]. Suppose [f(x) [%11} _, #0modp. Ifp> % + 1 then

NP, (f mod p) = [E*] /(p — 1).
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Proof. Suppose p > 2 4+ 1. For k > 0 let ¢, := Zg;é (f(,f)). Then

_ f(x) _n
(1) cp, = Z [( 5 ) Z Z" mod p,
0<n<deg (F7) r zel,

where 0° is defined as 1. Note that if k is an integer such that 0 < k < [%1 then
k< u and consequently deg (f("” )=dk<p—1.

Ifd+1 <p <dthen 2] —landd[ L] <2(p—1). 1fp>dthend[%] <
d%<2( 1). So for all p > § +1wehavedeg([( W)id{ 1<2(p71).

Consider the elementary fact that Zac@, " =0if (p—1)tnorn =0, and
ZEGF,, Z" = —1 otherwise. Combining with the estimates on deg( (x)) above, it
follows from (1) that ¢, = 0 for k < [—1 and

Cre1] 77ﬁ[ (x )[p ]]Ipﬂ # 0 mod p.

We abbreviate NP, for NP1 (f mod p) in this proof. Let m = {, —1, so ord,(7) =
—L-. Then S(f) = >ser, (14 )@ = P72 ¢, 7% mod p, hence

(2) NP; < ord,(S1(f) = [E2]/(p — 1).

Denote the horizontal length of the first-slope-segment of NP(f mod p) by ¢.
From the fact the Newton polygon is above the Hodge polygon it follows that

WZZU < ¢NP;. Combining this with the inequality in (2) yields

(3) (1< 2 et

If 2 +1 <p<d+1then [E2] =1 and (3) implies £ + 1 < 3, hence ¢ = 1.
If 4 41 < p < 2d then [%W = 2 and (3) again implies £ = 1. If 2d < p then

£+1§p2fdl(%l—|§2d((g+f) 2)<3’9 4<3so€—1 Ifd+1<p<2d+1then
{%]:1and€+l§%<4,80€§2. Ifd+1<p§43d—|—1then {%]:2
and€+1§p47d1<4,soagain€§2.

We remark that the y-coordinates of bending points of NP(f mod p) are integral

multiples of p—il because L(f mod p;T) € Z[(p][T]. The Hodge polygon bound
gives NPy > é. So if £ = 1 then (p — 1)NP; is an integer > 2= hence NP; >

[221] /(p — 1). If £ = 2 then 2(p — 1)NP; is an integer > d(pd 1), hence NP; >
[3@%;1)—‘ /(2(p—1)). We have seen that this case only occurs for 4 +1 < p < 2241

ord+1<p< 441, which implies [ 2272 =2, [221] =1 or [3@ bl =4,

d

[221] = 2 respectively, and consequently { (e ”W /2(p—1)) = [ y ] /(p—1).
This proves the theorem. ([l

Theorem 3. Let d > 2. Let U be the set of all monic polynomials f(x) = x% +
ag_1297 4+ -+ ag in A? such that [f(z) ’VPTA]]Ip—l Z 0 mod p for all but finitely
many primes p. Then U is Zariski open and dense in A%. For every f(x) € U we
have

(4) lim NP;(f modp) = é

p—0o0
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Proof. Let r be any integer with 1 < r < d — 1 and ged(r,d) = 1. Let 7’ be the

least non-negative residue of 1 — r mod d. Let h :=[] 1<r<a-1 h,., where
ged(r,d)=1

’

r’ r =1
Ry = Z( d )(Adlx_l .+ Azt € Q[Ao, ..., Ag_1].

£=0 ¢

——

By the hypothesis on r and 7/, we see that —1 < % < 1and T/T;l # 0, and hence
rf—1
[hr] ar = ("27) # 0 for every r. Therefore the polynomial h is not zero.
—1

For every prime p = r mod d we have [2= 1] = %ﬁ = % mod p. So
@], = e
= [1+ad 1z 1+”.+a0x7d)[%1‘| .
= h.(ag,...,a4—1) mod p. o

Thus f(z) € U if and only if h(ag,...,aq—1) Z 0 mod p for all but finitely many p.
The latter is equivalent to h(ag,...,aq—1) # 0. But we already know that & is a
non-zero polynomial, so & must be Zariski dense in A%,

Let f(x) € U. Then there exists an integer N such that for all p > N we have

NP;(f mod p) = ( d ] by Theorem 2. Therefore, for every f(x) € U we have (4)
holds. g
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