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Abstract. Let d ≥ 2 and p a prime coprime to d. For f(x) ∈ (Zp ∩Q)[x], let

NP1(f mod p) denote the first slope of the Newton polygon of the L-function

of the exponential sums
∑

x∈F
p`

ζ
TrF

p` /Fp
(f(x))

p . We prove that there is a

Zariski dense open subset U in the space Ad of degree-d monic polynomials

over Q such that for all f(x) ∈ U we have limp→∞ NP1(f mod p) = 1
d
. This

is a “first slope case” of a conjecture of Wan.

Let d ≥ 2 be an integer and p a prime coprime to d. Let Ad be the set of all degree-
d monic polynomials over Q. For any f(x) = xd +ad−1x

d−1 + . . .+a0 ∈ (Zp∩Q)[x]

and for any integer ` ≥ 1 let S`(f) :=
∑

x∈F
p`

ζ
TrF

p` /Fp (f(x))

p . The L function of

f(x) mod p is defined by L(f mod p;T ) = exp
(∑∞

`=1 S`(f)T `

`

)
. It is a theorem of

Dwork-Bombieri-Grothendieck that L(f mod p;T ) = 1 + b1T + . . . + bd−1T
d−1 ∈

Z[ζp][T ] for some p-th root of unity ζp in Q. Define the Newton polygon of f mod p,
denoted by NP(f mod p), as the lower convex hull of the points (`, ordpb`) in R2

for 0 ≤ ` ≤ d − 1 where we set b0 = 1. It is exactly the p-adic Newton polygon
of the polynomial L(f mod p;T ). Let NP1(f mod p) denote its first slope. Define
the Hodge polygon HP(f) as the convex hull in R2 of the points (`, `(`+1)

2d ) for
0 ≤ ` ≤ d − 1. It is proved that the Newton polygon is always lying above the
Hodge polygon ( see [3] [6] and [2]). The following conjecture was proposed by
Wan in the Berkeley number theory seminar in the fall of 2000, a general form of
which will appear in [7, Section 2.5].

Conjecture 1 (Wan). There is a Zariski dense open subset U in Ad such that for
all f(x) ∈ U we have limp→∞NP(f mod p) = HP(f).

The cases d = 3 and 4 are proved in [6] and [4], respectively. It is also known that
if p ≡ 1 mod d then NP(f mod p) = HP(f) for all f ∈ Ad (see [1]). In this paper
we use an elementary method to prove the “first slope case” of this conjecture.

For any real number r let dre denote the least integer greater than or equal to
r. For any integer N and for any Laurent polynomial g(x) in one variable, we use
[g(x)]xN to denote the xN -coefficient of g(x).

Theorem 2. Let d ≥ 2 and p a prime coprime to d. Let f(x) be a degree-d monic
polynomial in (Zp ∩Q)[x]. Suppose

[
f(x)d

p−1
d e

]
xp−1

6≡ 0 mod p. If p > d
2 + 1 then

NP1(f mod p) =
⌈

p−1
d

⌉
/(p− 1).
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Proof. Suppose p > d
2 + 1. For k ≥ 0 let ck :=

∑p−1
x=0

(
f(x)

k

)
. Then

ck ≡
∑

0≤n≤deg (f(x)
k )

[(
f(x)

k

)]
xn

∑
x̄∈Fp

x̄n mod p,(1)

where 00 is defined as 1. Note that if k is an integer such that 0 ≤ k <
⌈

p−1
d

⌉
then

k < p−1
d , and consequently deg

(
f(x)

k

)
= dk < p− 1.

If d
2 +1 < p < d then

⌈
p−1

d

⌉
= 1 and d

⌈
p−1

d

⌉
< 2(p−1). If p > d then d

⌈
p−1

d

⌉
≤

dp+d−2
d < 2(p− 1). So for all p > d

2 + 1 we have deg
( f(x)

d p−1
d e

)
= d

⌈
p−1

d

⌉
< 2(p− 1).

Consider the elementary fact that
∑

x̄∈Fp
x̄n = 0 if (p − 1) - n or n = 0, and∑

x̄∈Fp
x̄n = −1 otherwise. Combining with the estimates on deg

(
f(x)

k

)
above, it

follows from (1) that ck = 0 for k <
⌈

p−1
d

⌉
and

cd p−1
d e ≡ − 1⌈

p−1
d

⌉
!

[
f(x)d

p−1
d e

]
xp−1

6≡ 0 mod p.

We abbreviate NP1 for NP1(f mod p) in this proof. Let π = ζp−1, so ordp(π) =
1

p−1 . Then S1(f) =
∑

x̄∈Fp
(1 + π)f(x̄) ≡

∑p−2
k=0 ckπk mod p, hence

NP1 ≤ ordp(S1(f)) =
⌈

p−1
d

⌉
/(p− 1).(2)

Denote the horizontal length of the first-slope-segment of NP(f mod p) by `.
From the fact the Newton polygon is above the Hodge polygon it follows that
`(`+1)

2d ≤ `NP1. Combining this with the inequality in (2) yields

` + 1 ≤ 2d
p−1

⌈
p−1

d

⌉
.(3)

If 2d
3 + 1 < p ≤ d + 1 then

⌈
p−1

d

⌉
= 1 and (3) implies ` + 1 < 3, hence ` = 1.

If 4d
3 + 1 < p < 2d then

⌈
p−1

d

⌉
= 2 and (3) again implies ` = 1. If 2d < p then

` + 1 ≤ 2d
p−1

⌈
p−1

d

⌉
≤ 2d(p+d−2)

(p−1)d < 3p−4
p−1 < 3 so ` = 1. If d

2 + 1 < p ≤ 2d
3 + 1 then⌈

p−1
d

⌉
= 1 and ` + 1 ≤ 2d

p−1 < 4, so ` ≤ 2. If d + 1 < p ≤ 4d
3 + 1 then

⌈
p−1

d

⌉
= 2

and ` + 1 ≤ 4d
p−1 < 4, so again ` ≤ 2.

We remark that the y-coordinates of bending points of NP(f mod p) are integral
multiples of 1

p−1 because L(f mod p;T ) ∈ Z[ζp][T ]. The Hodge polygon bound
gives NP1 ≥ 1

d . So if ` = 1 then (p − 1)NP1 is an integer ≥ p−1
d , hence NP1 ≥⌈

p−1
d

⌉
/(p − 1). If ` = 2 then 2(p − 1)NP1 is an integer ≥ 3(p−1)

d , hence NP1 ≥⌈
3(p−1)

d

⌉
/(2(p−1)). We have seen that this case only occurs for d

2 +1 < p ≤ 2d
3 +1

or d + 1 < p ≤ 4d
3 + 1, which implies

⌈
3(p−1)

d

⌉
= 2,

⌈
p−1

d

⌉
= 1 or

⌈
3(p−1)

d

⌉
= 4,⌈

p−1
d

⌉
= 2 respectively, and consequently

⌈
3(p−1)

d

⌉
/(2(p − 1)) =

⌈
(p−1)

d

⌉
/(p − 1).

This proves the theorem. �

Theorem 3. Let d ≥ 2. Let U be the set of all monic polynomials f(x) = xd +
ad−1x

d−1 + · · · + a0 in Ad such that [f(x)d
p−1

d e]xp−1 6≡ 0 mod p for all but finitely
many primes p. Then U is Zariski open and dense in Ad. For every f(x) ∈ U we
have

lim
p→∞

NP1(f mod p) =
1
d
.(4)
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Proof. Let r be any integer with 1 ≤ r ≤ d − 1 and gcd(r, d) = 1. Let r′ be the
least non-negative residue of 1− r mod d. Let h :=

∏
1≤r≤d−1
gcd(r,d)=1

hr, where

hr :=

 r′∑
`=0

( r′−1
d

`

)
(Ad−1x

−1 + . . . + A0x
−d)`


x−r′

∈ Q[A0, . . . , Ad−1].

By the hypothesis on r and r′, we see that −1 < r′−1
d < 1 and r′−1

d 6= 0, and hence

[hr]Ar′
d−1

=
( r′−1

d
r′

)
6= 0 for every r. Therefore the polynomial h is not zero.

For every prime p ≡ r mod d we have dp−1
d e = p−1+r′

d ≡ r′−1
d mod p. So[

f(x)d
p−1

d e
]

xp−1
=

[
(x−df(x))d

p−1
d e

]
x−r′

=
[
(1 + ad−1x

−1 + · · ·+ a0x
−d)d

p−1
d e

]
x−r′

=

 r′∑
`=0

(⌈
p−1

d

⌉
`

)
(ad−1x

−1 + · · ·+ a0x
−d)`


x−r′

≡ hr(a0, . . . , ad−1) mod p.

Thus f(x) ∈ U if and only if h(a0, . . . , ad−1) 6≡ 0 mod p for all but finitely many p.
The latter is equivalent to h(a0, . . . , ad−1) 6= 0. But we already know that h is a
non-zero polynomial, so U must be Zariski dense in Ad.

Let f(x) ∈ U . Then there exists an integer N such that for all p > N we have

NP1(f mod p) = d p−1
d e

p−1 by Theorem 2. Therefore, for every f(x) ∈ U we have (4)
holds. �
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