Math 461/561 Assignment \#4- Due Tuesday October 5, 2010

1. Let L be a Lie algebra, and let I and J be nilpotent ideals. Prove that $I+J$ is nilpotent. Use this to prove that L contains a unique maximal nilpotent ideal which contains all nilpotent ideals.
2. Prove the statement on p. 40 immediately after Exercise 3: "More generally,"
3. Let $T: V \rightarrow V$ be a linear map. Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are eigenvectors of T with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Prove $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a linearly independent set. Hint: It is ok to consult a linear algebra book, just make sure you understand the proof you write down.
4. $5.1,5.2,5.4,5.6$

Math 461/561 Assignment \#4- Due Tuesday October 5, 2010

1. Let L be a Lie algebra, and let I and J be nilpotent ideals. Prove that $I+J$ is nilpotent. Use this to prove that L contains a unique maximal nilpotent ideal which contains all nilpotent ideals.
2. Prove the statement on p. 40 immediately after Exercise 3: "More generally,"
3. Let $T: V \rightarrow V$ be a linear map. Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are eigenvectors of T with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Prove $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a linearly independent set. Hint: It is ok to consult a linear algebra book, just make sure you understand the proof you write down.
4. $5.1,5.2,5.4,5.6$
