veme: SOLVTION S

Math 461/561 Midterm Exam - QOctober 21, 2010
1. (20 points) Complete the following:

a. Let L; and Ly be Lie algebras over F'. A linear map ¢ : Ly — Ly is a Lie algebra homomor-
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b. Let L be a Lie algebra and A a subalgebra. The normalizer of A in L, denoted Np(A) is - --
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c. Let A be a Lie subalgebra of gi{V). A weight for A is ---
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d. A Lie algebra L is solvable if - - - L {ﬁ):_..& %ﬂ/ SHP }ﬁ
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2. (20 points) True or false. If false, give a counterexample.

7— a. Every irreducible representation of a Lie algebra is indecomposable.

F b. Suppose L is a nilpotent Lie subalgebra of QI(V). Then everyl element of L is nilpotent.
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¢. The kernel of a Lie algebra homomorphism is an ideal.

,E4 d. Every solvable Lie algebra is nilpotent.
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__* _ e, Every irreducible representation of a solvable Lie algebra over € is one-dimensional.

_E f. The adjoint representation of s{(2, F) is faithful for any field.
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3. (20 points) Let L be a Lie algebra over a field /. Define what a representation of L is and
what an L-module is, and explain how one goes back and forth between representations of L and
L-modules.
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4. (20 points) Recall that a derivation of a Lie algebra L is a linear map D : L — L (ie.
D € gl(L)) such that:

D([z,y]) = [Dz,y] + [z, Dy] Vz,y € L.

i. For x € L prove ad x is a derivation. Derivations of this form are called inner.

ii. For derivations Dq, D2 of L, prove [D, Ds| - DyoDy — Dyo Dy is also a derivation of L, i.e.
the set of derivations, denoted DerL, is a Lie subalgebra of gf(L).

iii. Prove the set of inner derivations is an ideal of Der L. You may assume it is a subspace.
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5. (20 points) Let L = sI(2,C) and let V be a finite-dimensional #*module. Consider the subalge-
bra spanned by {e, h}, denoted B. (You should not assume the results proved in class on Tuesday
from Chapter 8!)

i. Show that B is a solvable subalgebra of L.

ii. Use Lie’s theorem to prove there exists 0 # w € V such that w is an eigenvector for h and
e-w = 0. Hint: V is an L-module so by restriction it is also a B-module with corresponding
representation ¢y : B — gl(V').
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