9. If \(p \mid H \), so is any multiple of \(p \). So \(pG \to p \in H \) and \(p^a \in H \), which is \(e \).

27. \(axb=c \) \(\Rightarrow \) \(b^{-1}ca \in H \)

Thus \(x^{-1}x a = c \) \(\Rightarrow \) \(x^{-1} = aca^{-1} \)

29. a. Suppose \(x^3 = e \), and assume \(x \neq e \). If \(x^2 = e \) then \(x^2 = e \) so \(x^3 = e = e = e \).

This \(x^3 = e \) means \(x^{-1} \neq x \). Hence any \(x \) with \(x^3 = e \) means \((x^{-1})^3 = e \) and \(x^{-1} \neq x \).

Thus elements which have \(x^3 = e \) are \(x = e \) and \(p \) pairs \(x \neq x^{-1} \). This there is an odd \#.

b. Similar to a, if \(x^2 = e \) then \((x^{-1})^2 = e \) and \(x \neq x^{-1} \) so there is an even \# of such elements.
34. Matrix Multi is associative.

The identity \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) is in \(H \).

It is closed under multiplication.

Finally observe that \(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \) \(\forall \) \(h \in H \).

Thus \(H \) is a group.

37. \(G = \{ \begin{pmatrix} a & b \\ a & a \end{pmatrix} | a \in \mathbb{R}, a \neq 0 \} \)

1. Notice \(\begin{pmatrix} a & b \\ a & a \end{pmatrix} \begin{pmatrix} c & d \\ c & c \end{pmatrix} = \begin{pmatrix} ac + ad & bc + bd \\ ac + ad & ac + ad \end{pmatrix} \in G. \)

So \(G \) is closed under matrix multiplication.

2. \(\begin{pmatrix} a & b \\ a & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a \end{pmatrix} \)

\(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ a \end{pmatrix} = \begin{pmatrix} a \end{pmatrix} \) so \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) is the identity.

3. \(\begin{pmatrix} a & b \\ a & a \end{pmatrix} \begin{pmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{pmatrix} = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix} \)

\(\begin{pmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{pmatrix} \begin{pmatrix} a \\ a \end{pmatrix} = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix} \)

So the inverse of \(\begin{pmatrix} a & b \\ a & a \end{pmatrix} \) is \(\begin{pmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{pmatrix} \) in this group.
#32

This is a Forest.
also \(r^{-1} \) so

\[
fr = r^{-1} \Rightarrow \begin{cases}
fr = r^{-1}f \\
fr^{-1} = rf
\end{cases}
\]

a. \(D_4 \)

\[fr^2fr^5 = frfrfr = r^{-1}frfr = r^{-1}r^{-1}frfr = r^{-1}r^{-1}frfr = r^{-1} = r^3\]

b. \(D_5 \)

\[r^3fr^{-3}fr^{-3} = rrfr^{-1}fr^{-1} = rtr^{-1}fr^{-1} = rtfr^{-1}fr^{-1} = r^4 = r\]

c. \(D_6 \)

\[fr^5fr^{-3} = fr^{-1}fr^{-1}fr^{-1}x = rtr^{-1}fr^{-1}fr^{-1}x = r^5f = r^5\]
1. \[\begin{align*}
11 & = 11 \quad 101 = 1 \\
111 & = 181 = 171 = 1111 = 12 \\
121 & = 110 = 4 \quad 6 \\
131 & = 191 = 4 \\
141 & = 181 = 3 \\
161 & = 2
\end{align*} \]

\[\begin{align*}
11(10) & = \{1, 3, 7, 9, 3\} \\
11(100) & = 4 \\
11 & = 1 \\
131 & = 4 \\
171 & = 4 \\
181 & = 2 \\
1111 & = 2
\end{align*} \]

\[\begin{align*}
11 & \quad 131 = 4 \\
171 & = 4 \\
181 & = 2
\end{align*} \]

\[\begin{align*}
12(10) & = \{1, 3, 7, 9, 11, 13, 17, 19, 3\} \\
14(60) & = 3 \\
111 & = 1 \\
131 & = 4 \\
171 & = 4 \\
181 & = 2 \\
1111 & = 2
\end{align*} \]

\[\begin{align*}
12(12) & = 8 \\
161 & = 1 \\
11 & = 4 = 1r^3 \\
1r & = 6 \\
1r^2 & = 15r & = 15r^2 = 15r^3 = 2
\end{align*} \]

Other divide out of C!

2. \[\begin{align*}
\langle \frac{1}{3} \rangle & = \{\ldots, -3, -\frac{7}{3}, -2, -\frac{10}{3}, -1 - \frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \ldots \} \text{ in } \mathbb{Q} \\
\langle \frac{1}{4} \rangle & = \{\ldots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \ldots \} \text{ in } \mathbb{Q}^*
\end{align*} \]
4. Done in class

6. Suppose \(x^4 = e \) and \(x^2 = e \). If \(x^4 = e \) then \(x^{-4} = e \) so \(x^{4-2} x = e \).

Thus \(x^2 = e \).

If \(x^2 = e \) and \(x^5 = e \) then \(x^{\frac{9}{5}} = e \) so \(x^5 = e \).

Thus \(x^5 = e \).

The order of \(x \) must be \(\boxed{3} \) or \(6 \).

7. Let \(|a| = n \). Then \(\{e, a, a^2, \ldots, a^{n-1}\} \) are all distinct, otherwise \(a^i = a^j \), \(i > j \Rightarrow a^{j-i} = e \), contradicting \(|a| = n \).

Thus we have \(n \) distinct elements of \(G \), so \(|a| = n \leq |G| \).

10. Let \(A \) be abelian, \(x, y \in A \) of order 2. Thus

\[x^2 = e = y^2 \] so \(x = x^{-1}, y = y^{-1} \). Notice \(xy = x, xy = y \) by cancellation.

Thus \(\{e, x, y, xy\} \) is a subgroup of order 4.

With Cayley Table

\[
\begin{array}{c|cccc}
 & e & x & y & xy \\
\hline
e & e & x & y & xy \\
x & x & e & y & xy \\
y & y & x & e & x \\
xy & xy & y & e & x \\
\end{array}
\]