7. Assume $Q(\sqrt{a}) = Q(\sqrt{b})$. If \sqrt{a} and \sqrt{b} are both rational then choose $c = \sqrt[2]{b}$. If exactly one is rational the two fields are clearly not equal, one is Q, the other is strictly larger. Thus assume both \sqrt{a} and \sqrt{b} are irrational. We have:

$$\sqrt{a} = m + n\sqrt{b}$$

for $m, n \in Q$ where $n \neq 0$ since \sqrt{a} is irrational. Squaring this gives

$$a = m^2 + 2mn\sqrt{b} + n^2b.$$

If $m \neq 0$ then we can solve this equation for \sqrt{b} and conclude \sqrt{b} is rational, a contradiction. Conversely if $a = bc^2$ then $\sqrt{a} = c\sqrt{b}$ and it is clear that $Q(\sqrt{a}) = Q(\sqrt{b})$.

9. We have $F \subseteq F(a) \subseteq E$. If both containments are proper then Thm 21.5 implies $[E : F]$ is not prime. So either $F = F(a)$ or $F(a) = E$.

19. See back.

Page 387

3. K is a finite field so K^* is cyclic by Thm 22.2. Suppose $K^* = \langle a \rangle$. Then clearly $K = F(a)$.

7. Notice that $\phi(ab) = (ab)^p = a^pb^p = \phi(a)\phi(b)$ and $\phi(a+b) = (a+b)^p = a^p + b^p = \phi(a) + \phi(b)$ by the freshman binomial theorem. Thus ϕ is a ring homomorphism. Since we are over a field, the kernel is clearly 0, and thus ϕ is 1-1. However the field is finite, so ϕ is also onto, thus a field automorphism. By Thm 22.2 we know $GF(p^n)^*$ is a cyclic group of order $p^n - 1$, say it is generated by α. For any a we have $a^{p^n-1} = 1$, i.e. $a^{p^n} = a$, i.e. $\phi^n(a) = a$. (because we have raised an element of a group to the order of the group power) Thus ϕ^n is the identity map. Now we must show no smaller power of ϕ is the identity map. However since α generates the cyclic group, the smallest power of α which is 1 is $p^n - 1$. Thus for $m < n$ we have $\phi^m(\alpha) \neq \alpha$, so ϕ has order n.

22. These lattices should be identical to the subgroup lattices for cyclic groups of order 18 and 30 respectively.

29. We know $\alpha^{124} = 1$. There are at most two roots to the polynomial $x^2 - 1 = 0$, thus these are ± 1. (Notice $1 \neq -1$ since the characteristic is not 2) But α^{62} is a root. It can’t equal 1 since α generates the cyclic group of order 124. Thus $\alpha^{62} = -1$.

Page 395

2. One can easily draw the triangle with sides 1 and a and then extend the base to length b. Then use the fact that given a point and a line we can draw a parallel line through the point to complete the diagram. Finally using similar triangles notice that the longest side of the big triangle has length ab.
4. One can construct the triangle shown in the same way as in 2. Then use similar triangles to observe that the base of the smaller triangle has length a/b.

6. This was discussed in class. One only needs to know that we can construct perpendicular lines.

Page 560

5. Suppose $a, b \in E_H$ so $\phi(a) = a, \phi(b) = b$ for all $\phi \in H$. Choose $\phi \in H$. Then $\phi(a + b) = \phi(a) + \phi(b) = a + b$ so $a + b \in E_H$. Similarly for a/b and ab, so E_H is a subfield.

7. See back.