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10. Clearly A + B is closed under subtraction. For a + b ∈ A + B and r ∈ R then
r(a + b) = ra + rb ∈ A + B since ra ∈ A and rb ∈ B because A and B are ideals. Similarly
(a + b)r ∈ A + B so A + B is an ideal.

34. R/I is commutative iff (r + I)(s + I) = (s + I)(r + I) for all s, r ∈ R. This holds iff
rs + I = sr + I which, by the rule for equality of cosets, is equivalent to rs− sr ∈ I for all
s, r ∈ R.

36. Let x = 2 + 2i. Notice that ix = −2 + 2i so we immediately get that 4 and 4i are in the
ideal. It is easy to check that 2 is not of the form (a+ bi)x for a, b ∈ Z. Since 2 ≡ −2i in the
quotient, we get that a complete set of coset representatives is {0, i, 2i, 3i, 1, 1+i, 1+2i, 1+3i}.
The quotient has eight elements and has characteristic 4.

39. Let I be a nonzero ideal in Z. Notice that a ∈ I iff −a ∈ I so choose n > 0 minimal in
I. Let m ∈ I, m > 0, so m ≥ n. By the division algorithm we can write m = qn + r with
0 ≤ r < n. But m, qn ∈ I so r ∈ I so r must be zero by minimality of n. Thus m = qn so
m ∈ (n). Thus I = (n) is principal.

42. Let r1, r2 ∈ N(A) and r ∈ R. So there exists ni such that rni
i ∈ A. Consider (r1−r2)

n1+n2 .
Expanding this out by the binomial theorem (since R is commutative!) we get a bunch of
terms of the form ±ra

1r
b
2 where a+ b = n1 +n2. Thus either a ≥ n1 or b ≥ n2 so each term is

in A. Thus r1− r2 ∈ N(A). Also (rr1)
n1 = rn1rn1

1 ∈ A by commutativity, and since rn1
1 ∈ A.

Thus rr1 ∈ N(A) and N(A) is an ideal.

45. See back.
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9. See back.

27. Let R be finite commutative ring with unity and P a prime ideal. Then R/P is an
integral domain, necessarily finite. But finite integral domains are fields so R/P is a field.
Thus P is a maximal ideal.

30. No. For example Z is an integral domain, 6Z is a proper ideal and Z/6Z is not an
integral domain.
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7. Suppose f : 2Z → 3Z is an isomorphism and let 0 6= a = f(2). Then f(4) = f(2 + 2) =
f(2) + f(2) = a + a = 2a. But f(4) = f(2 ∗ 2) = f(2)f(2) = a2. Thus a2 = 2a which implies
a = 2 but 2 is not in 3Z so no isomorphism can exist. This proof works for 4Z as well, 2Z
and 4Z are not isomorphic rings. Notice that all three are isomorphic to Z as abelian groups.



2

41. a. See back.

b. Suppose A is maximal in S, so S/A is a field. Consider the composition of ring
homomorphisms below:

R
φ→ S

π→ S/A

where π is the natural projection map. It is clear that π ◦ phi is onto with kernel just
φ−1(A). So by the first isomorphism theorem R/φ−1(A) ∼= S/A which is a field. Thus φ−1(A)
is a maximal ideal.

60.a. Easy check.

b. The kernel is matrices of the form

(
a a
a a

)
.

c.φ is clearly onto so this follows from the first isomorphism theorem.
d. Yes.
e. No, Z is not a field.
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3. See back.

11. See back.

18. Suppose (x) ⊂ I ⊆ Q[x]. Let p(x) ∈ I − (x) so p(x) = a0 + a1x + · · · + anx
n where

a0 6= 0. But a1x + · · ·+ anx
n ∈ (x) ⊂ I so a0 ∈ I. But a0 is a unit so I = Q[x]. Thus (x) is

maximal.

20. Let p(x) = f(x)− g(x). The assumption is that p(a) = 0 for infinitely many a, so p(x)
has infinitely many roots. This is impossible by Cor.3 unless p(x) = 0, i.e. f(x) = g(x).

40. Let I = (x2− 2), so 2 + I = x2 + I. Using this we see that any element of Q[x]/I can be
expressed in the form a + bx + I . However if a + bx + I = c + dx + I then (a− c) + (b− d)x
is a multiple of (x2 − 2) which can’t happen unless a = c and b = d. Thus {a + bx + I} is a
complete list of distinct cosets. Notice that:

(a + bx + I)(c + dx + I) = ac + bdx2 + (ad + bc)x + I = ac + 2bd + (ad + bc)x + I.

But this multiplication is the “same” as multiplying (a + b
√

2)(c + d
√

2 (just replace x by√
2 in the equation above), so the map a + bx + I → a + b

√
2 gives an isomorphism between

the rings. (You need to check it’s an additive homomorphism as well, this is easy).


