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10. Clearly A + B is closed under subtraction. For a + b € A+ B and r € R then
r(a+b) =ra+rbe A+ B since ra € A and rb € B because A and B are ideals. Similarly
(a+b)r € A+ B so A+ B is an ideal.

34. R/I is commutative iff (r + I)(s+ 1) = (s + I)(r + I) for all s, € R. This holds iff
rs + I = sr + I which, by the rule for equality of cosets, is equivalent to rs — sr € I for all
s, 7 € R.

36. Let x = 24 2. Notice that ix = —2 4 2¢ so we immediately get that 4 and 4i are in the
ideal. It is easy to check that 2 is not of the form (a+ bi)x for a,b € Z. Since 2 = —2i in the
quotient, we get that a complete set of coset representatives is {0, ¢, 24,37, 1, 144, 1424, 1+3i}.
The quotient has eight elements and has characteristic 4.

39. Let I be a nonzero ideal in Z. Notice that a € I iff —a € I so choose n > 0 minimal in
I. Let m € I, m > 0, so m > n. By the division algorithm we can write m = gn + r with
0<r<n. But myqn € I sor € I sor must be zero by minimality of n. Thus m = ¢n so
m € (n). Thus I = (n) is principal.

42. Let ri,r9 € N(A)and r € R. So there exists n; such that r;"* € A. Consider (r;—ry)™ "2,
Expanding this out by the binomial theorem (since R is commutative!) we get a bunch of
terms of the form j:rjlrg where a + b = ny +nsy. Thus either a > ny or b > ny so each term is
in A. Thus r; —ry € N(A). Also (rry)™ = r™r]* € A by commutativity, and since 7" € A.
Thus 7 € N(A) and N(A) is an ideal.

45. See back.
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9. See back.
27. Let R be finite commutative ring with unity and P a prime ideal. Then R/P is an
integral domain, necessarily finite. But finite integral domains are fields so R/P is a field.

Thus P is a maximal ideal.

30. No. For example Z is an integral domain, 67 is a proper ideal and Z/6Z is not an
integral domain.
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7. Suppose f :2Z — 3Z is an isomorphism and let 0 # a = f(2). Then f(4) = f(2+2) =
f(2)+ f(2) =a+a=2a. But f(4) = f(2x2) = f(2)f(2) = a*. Thus a* = 2a which implies
a = 2 but 2 is not in 3Z so no isomorphism can exist. This proof works for 47 as well, 27
and 47 are not isomorphic rings. Notice that all three are isomorphic to Z as abelian groups.



41. a. See back.

b. Suppose A is maximal in S, so S/A is a field. Consider the composition of ring
homomorphisms below:

R% S5 S/A
where 7 is the natural projection map. It is clear that 7 o phi is onto with kernel just
¢~ (A). So by the first isomorphism theorem R/¢~'(A) = S/A which is a field. Thus ¢~!(A)

is a maximal ideal.

60.a. Easy check.

a

a

c.¢ is clearly onto so this follows from the first isomorphism theorem.
d. Yes.

e. No, Z is not a field.

b. The kernel is matrices of the form
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3. See back.
11. See back.

18. Suppose (z) C I C Q[z]. Let p(xz) € I — () so p(z) = ag + ez + - -+ + a,x" where
ap #0. But a1z + - -+ a,2™ € (x) C I so ag € 1. But g is a unit so I = Q[z]. Thus (z) is
maximal.

20. Let p(z) = f(z) — g(x). The assumption is that p(a) = 0 for infinitely many a, so p(z)
has infinitely many roots. This is impossible by Cor.3 unless p(z) =0, i.e. f(z) = g(z).

40. Let I = (2? —2), s0 2+ I = z* + I. Using this we see that any element of Q[x]/I can be
expressed in the form a + bz + I . However if a+bx + [ = ¢+ dx + I then (a —c¢) + (b—d)x
is a multiple of (2 — 2) which can’t happen unless a = ¢ and b = d. Thus {a +bx + I} is a
complete list of distinct cosets. Notice that:

(a+bx+1I)(c+dr+I) = ac+ bdz* + (ad + be)x + I = ac + 2bd + (ad + be)x + 1.

But this multiplication is the “same” as multiplying (a +bv/2)(c +dv/2 (just replace x by
v/2 in the equation above), so the map a + bz + I — a + by/2 gives an isomorphism between
the rings. (You need to check it’s an additive homomorphism as well, this is easy).



