Page 268

10. Clearly $A+B$ is closed under subtraction. For $a+b \in A+B$ and $r \in R$ then $r(a+b)=r a+r b \in A+B$ since $r a \in A$ and $r b \in B$ because A and B are ideals. Similarly $(a+b) r \in A+B$ so $A+B$ is an ideal.
11. R / I is commutative iff $(r+I)(s+I)=(s+I)(r+I)$ for all $s, r \in R$. This holds iff $r s+I=s r+I$ which, by the rule for equality of cosets, is equivalent to $r s-s r \in I$ for all $s, r \in R$.
12. Let $x=2+2 i$. Notice that $i x=-2+2 i$ so we immediately get that 4 and $4 i$ are in the ideal. It is easy to check that 2 is not of the form $(a+b i) x$ for $a, b \in Z$. Since $2 \equiv-2 i$ in the quotient, we get that a complete set of coset representatives is $\{0, i, 2 i, 3 i, 1,1+i, 1+2 i, 1+3 i\}$. The quotient has eight elements and has characteristic 4.
13. Let I be a nonzero ideal in Z. Notice that $a \in I$ iff $-a \in I$ so choose $n>0$ minimal in I. Let $m \in I, m>0$, so $m \geq n$. By the division algorithm we can write $m=q n+r$ with $0 \leq r<n$. But $m, q n \in I$ so $r \in I$ so r must be zero by minimality of n. Thus $m=q n$ so $m \in(n)$. Thus $I=(n)$ is principal.
14. Let $r_{1}, r_{2} \in N(A)$ and $r \in R$. So there exists n_{i} such that $r_{i}^{n_{i}} \in A$. Consider $\left(r_{1}-r_{2}\right)^{n_{1}+n_{2}}$. Expanding this out by the binomial theorem (since R is commutative!) we get a bunch of terms of the form $\pm r_{1}^{a} r_{2}^{b}$ where $a+b=n_{1}+n_{2}$. Thus either $a \geq n_{1}$ or $b \geq n_{2}$ so each term is in A. Thus $r_{1}-r_{2} \in N(A)$. Also $\left(r r_{1}\right)^{n_{1}}=r^{n_{1}} r_{1}^{n_{1}} \in A$ by commutativity, and since $r_{1}^{n_{1}} \in A$. Thus $r r_{1} \in N(A)$ and $N(A)$ is an ideal.
15. See back.

Page 275

9. See back.
10. Let R be finite commutative ring with unity and P a prime ideal. Then R / P is an integral domain, necessarily finite. But finite integral domains are fields so R / P is a field. Thus P is a maximal ideal.
11. No. For example Z is an integral domain, $6 Z$ is a proper ideal and $Z / 6 Z$ is not an integral domain.

Page 286

7. Suppose $f: 2 Z \rightarrow 3 Z$ is an isomorphism and let $0 \neq a=f(2)$. Then $f(4)=f(2+2)=$ $f(2)+f(2)=a+a=2 a$. But $f(4)=f(2 * 2)=f(2) f(2)=a^{2}$. Thus $a^{2}=2 a$ which implies $a=2$ but 2 is not in $3 Z$ so no isomorphism can exist. This proof works for $4 Z$ as well, $2 Z$ and $4 Z$ are not isomorphic rings. Notice that all three are isomorphic to Z as abelian groups.
8. a. See back.
b. Suppose A is maximal in S, so S / A is a field. Consider the composition of ring homomorphisms below:

$$
R \xrightarrow{\phi} S \xrightarrow{\pi} S / A
$$

where π is the natural projection map. It is clear that $\pi \circ p h i$ is onto with kernel just $\phi^{-1}(A)$. So by the first isomorphism theorem $R / \phi^{-1}(A) \cong S / A$ which is a field. Thus $\phi^{-1}(A)$ is a maximal ideal.
60.a. Easy check.
b. The kernel is matrices of the form $\left(\begin{array}{cc}a & a \\ a & a\end{array}\right)$.
c. ϕ is clearly onto so this follows from the first isomorphism theorem.
d. Yes.
e. No, Z is not a field.

Page 298

3. See back.
4. See back.
5. Suppose $(x) \subset I \subseteq Q[x]$. Let $p(x) \in I-(x)$ so $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $a_{0} \neq 0$. But $a_{1} x+\cdots+a_{n} x^{n} \in(x) \subset I$ so $a_{0} \in I$. But a_{0} is a unit so $I=Q[x]$. Thus (x) is maximal.
6. Let $p(x)=f(x)-g(x)$. The assumption is that $p(a)=0$ for infinitely many a, so $p(x)$ has infinitely many roots. This is impossible by Cor. 3 unless $p(x)=0$, i.e. $f(x)=g(x)$.
7. Let $I=\left(x^{2}-2\right)$, so $2+I=x^{2}+I$. Using this we see that any element of $Q[x] / I$ can be expressed in the form $a+b x+I$. However if $a+b x+I=c+d x+I$ then $(a-c)+(b-d) x$ is a multiple of $\left(x^{2}-2\right)$ which can't happen unless $a=c$ and $b=d$. Thus $\{a+b x+I\}$ is a complete list of distinct cosets. Notice that:

$$
(a+b x+I)(c+d x+I)=a c+b d x^{2}+(a d+b c) x+I=a c+2 b d+(a d+b c) x+I .
$$

But this multiplication is the "same" as multiplying $(a+b \sqrt{2})(c+d \sqrt{2}$ (just replace x by $\sqrt{2}$ in the equation above), so the map $a+b x+I \rightarrow a+b \sqrt{2}$ gives an isomorphism between the rings. (You need to check it's an additive homomorphism as well, this is easy).

