Math 419 Midterm Exam #1 - October 5, 2007

1. (20 points) Complete the following:

a. The alternating group is …
 \[S_n \]
 \[\text{The set of even permutations in } S_n \]

b. Let \(g \in G \). The centralizer of \(g \) …
 \[C_G(g) = \{ x \in G | xg = gx \} \]

c. Lagrange’s Theorem states that …
 \[\text{Let } H \leq G, \ |H| < \infty. \text{ Then} \]
 \[|H| \mid |G| \]

d. The order of an element \(g \) in a group \(G \) is …
 \[\text{The smallest } n \in \mathbb{N}^+ \text{ such that } g^n = e. \]
 \[\text{If none exists, } g \text{ has infinite order.} \]

2. (10 points) Give a subgroup of \(D_4 \) of order 4 which is not cyclic.

\[\{ e, s, r^2, sr^2 \} \]

3. (10 points) Write down an element of \(S_{12} \) of order 60. Is it in \(A_{12} \)? Explain.

\[o = (1 2 3)(1 4 5 6 7)(1 8 9 10 11 12) \]

\[\text{Not in } A_{12} \]

\[(1 2 3) \text{ and } (1 8 9 10 11 12) \text{ are even} \]

\[(4 5 6 7) \text{ is odd} \]

\[\text{So } o \text{ is odd} \]
4. (15 points) True or false:

- a. All cyclic groups are finite. \[\mathbb{Z} \]

- b. Matrix multiplication is commutative. \[\text{False} \]

- c. Every finite group is isomorphic to a subgroup of some symmetric group. \[\text{Cayley} \]

- d. All nonabelian groups of order 14 are isomorphic. \[\text{All } \cong \text{ } \mathbb{Z}_7 \times \mathbb{Z}_2 \]

- e. The intersection of two subgroups of a group is always a subgroup. \[\text{True} \]

- f. The union of two subgroups of a group is always a subgroup. \[\text{False} \]

- g. A group of order 12 must contain an element of order 6. \[\text{e.g. } A_4 \]

- h. The group \(\mathbb{Z}/12\mathbb{Z} \) has four generators. \[1, 5, 7, 11 \]

- i. The set of odd permutations in \(S_n \) form a single left coset of \(A_n \) in \(S_n \). \[\text{True} \]

- j. 12 and 42 generate the same cyclic subgroup of \(\mathbb{Z}/90\mathbb{Z} \).

Both have gcd of 6 with 90.
5. **(10 points)** Draw the subgroup lattice for the group \(\mathbb{Z}/18\mathbb{Z}\). Each subgroup should be accompanied by a list of its elements.

\[
\mathbb{Z}/18\mathbb{Z} = \langle 0, 1, 2, 3, 4, \ldots, 17 \rangle
\]

\[
\langle 2 \rangle = \langle 0, 2, 4, 6, 8, 10, 12, 14, 16 \rangle
\]

\[
\langle 3 \rangle = \langle 0, 3, 6, 9, 12, 15 \rangle
\]

\[
\langle 6 \rangle = \langle 0, 6, 12 \rangle
\]

\[
\langle 9 \rangle = \langle 0, 9 \rangle
\]

\[
\{ 0 \}
\]

6. **(15 points)** Let \(\sigma = (1, 2, 3)(2, 3, 5)(4, 6, 7)(1, 3, 2)(6, 7)\)

a. Write \(\sigma\) and \(\sigma^{-1}\) in disjoint cycle notation.

\[
\sigma = (1 \ 5 \ 3)(2 \ 4 \ 6)
\]

\[
\sigma^{-1} = (1 \ 3 \ 5)(4 \ 6)
\]

b. Find the order of \(\sigma\).

\[6\]

c. Is \(\sigma\) even or odd?

\[\text{odd}\]

d. Write down \(\sigma^{35}\) in disjoint cycle notation.

\[
\sigma^{-6} = e \Rightarrow \sigma^{-33} = \sigma^{-3} = (1 \ 5 \ 3)(4 \ 6)
\]

\[
= (4 \ 6)
\]
7. (20 points) A subgroup \(H \leq G \) is said to be characteristic if \(\phi(H) = H \) for all automorphisms \(\phi \) of \(G \).

a. Define the center \(Z(G) \) of a group and prove it is a subgroup.

b. Prove that the center is characteristic.

\[Z(G) = \{ z \in G | zg = gz, \forall g \in G \} = Z \]

(Prove \(e \in Z(G) \). Let \(z, z' \in Z \). \(z, z'g = zg, z'g \) since \(g \in Z \).

So \(zg = z'g \).

Let \(g \in G \). \(g^{-1}zg = g^{-1}g \) since \(z \in Z \).

\(z'g = zg \) by taking inverses, so \(z' \in Z \).

Thus \(Z \leq G \).

b. Let \(\phi \in \text{Aut}(G) \). Let \(g \in G \). Then \(g = \phi(g) \) since \(\phi \) is an \(\text{Aut} \).

Let \(z \in Z(G) \). \(\phi(z)g = \phi(z) \phi(g) \)

\(= \phi(zg) \)

\(= \phi(gz) \) since \(z \in Z \)

\(= \phi(g) \phi(z) = g \phi(z) \) so \(\phi(z) \in Z(G) \).

Thus \(\phi(Z) \leq Z \).

Now let \(z \in Z(G) \). \(z = \phi(z) \) since \(\phi \) is onto. Let \(g \in G \).

\(\phi(gz) = \phi(g \phi(z)) = \phi(g) \phi(z) = z \phi(g) \) since \(z \in Z(G) \)

\(= z \phi(g) \) since \(\phi(z) \in Z(G) \).

But \(\phi \) is 1-1 so \(gz = zg \) so \(z \in Z(G) \).

Thus \(\phi \) maps \(Z(G) \) onto \(Z(G) \).

Thus \(Z(G) \) is characteristic.