Review

Level curves of \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) are curves \(f(x,y) = k \), \(k \) constant.

If \(f: \mathbb{R}^3 \rightarrow \mathbb{R} \) we get level surfaces \(f(x,y,z) = k \).

- Useful for graphing.

Ex \(\text{fixy} = ye^y \)

\[f(x,y) = x^2y^2 + z^2 \]

Function plots on maple.

Limits Compare \(f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2} \) and \(g(x,y) = \frac{x^3 - y^3}{x^2 + y^2} \)

as \((x,y) \rightarrow (0,0) \)

Recall: \(\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1 \)

Claim \(\lim_{(x,y) \rightarrow (0,0)} f(x,y) = 1 \)

Proof

Define \(\lambda \) a small disc around \((0,0)\), not including \((0,0)\).

Suppose domain \(D \) of \(f \) contains a small disc around \((0,0)\).

Say \(\lim_{(x,y) \rightarrow (a,b)} f(x,y) = L \) if for every \(\epsilon > 0 \) \(\exists \delta > 0 \) such that if \((x,y) \in D \) and \(0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \) then \(|f(x,y) - L| < \epsilon \).

\[y \]

\[(a,b) \]

\[(L-\epsilon, L+\epsilon) \]

Entire \(\delta \) ball around \((a,b)\) maps into \((L-\epsilon, L+\epsilon)\).
In Calc 1, x→a from left or right. In multivariable (x,y) can approach (a,b) along any curve!

\[
\lim_{(x,y) \to (a,b)} \frac{x^3-y^3}{x^2+y^2} \quad \text{DNE}
\]

Pt: On line \(y = ax \),

\[
g_{(x,y)} = \frac{x^3 - a^2 x^3}{x^2 + a^2 x^2} = \frac{(1-a^2)x^3}{(1+a^2)x^2} = \frac{1-a^2}{1+a^2}
\]

or on x axis \(x = 1 \), on y axis \(y = -1 \).

\[
f_{(x,y)} = \frac{xy}{x^2+y^2} \quad \text{on axes } f = 0, \text{ on line } y = x \quad f = \frac{1}{2}.
\]

Limit DNE

\[
f_{(x,y)} = \frac{xy^2}{x^2+y^2}
\]

Does \(\lim_{(x,y) \to (a,b)} f_{(x,y)} \) exist?

* Same limit on any line \(y = mx \)
* Different limits on \(x = y^3 \)

Proving limits exist is difficult!

Recall \(f_{(x,y,z)} \) is continuous at \((a,b,c) \) if

\[
\lim_{(x,y,z) \to (a,b,c)} f_{(x,y,z)} = f(a,b,c)
\]

Exs: polynomials, exponentials, logs, trig, etc.
\[\frac{xy}{1+e^{x-y}} \text{ continuous everywhere} \]

\[\ln(1+x-y) \text{ continuous when } 1+x-y > 0 \]

\[\frac{e^x + e^y}{e^{xy} - 1} \text{ continuous except if } x = 0 \lor y = 0 \]

14.3 Partial Derivatives

Idea \(f(x,y) \) function of \(2 \) variables, hold all but one constant.

Ex

\[f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \]

Similarly \(f_y(a,b) \)

\[f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \]

Notation \(z = f(x,y) \) then

\[f_x(x,y) = f_x = \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} f(x,y) = f_1 = D_x f \]
How to calculate? Hold other variables as constant

Ex \(f(x, y) = x^2 + x\sin y + e^{x^2y^3} \)

\(f_x = 2x + \sin y + 2xe^{x^2y^3} \)

\(f_y = x\cos y + 2ye^{x^2y^3} \)

Ex \(x^3 + y^3 + z^3 + 6xyz = 1 \). Find \(\frac{\partial z}{\partial x} \) w/ implicit diff.

\[3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0 \]

\[\frac{\partial z}{\partial x} = \frac{x^2 + 6yz}{3z^2 + 3xy} \]

Ex \(f(x, y, z) = e^{xyz^2} \) Find partial deriv.

Ex \(f = x^3 + xy + x^3y^2 \) Find \(\frac{\partial^2 f}{\partial x \partial y} \) and \(\frac{\partial^2 f}{\partial y \partial x} \)

\(f_{xy} \quad f_{yx} \)

Thin (Clarivate) Suppose \(f \) defined on a disc \(D \) containing \((a, b) \) and \(f_{xy}, f_{yx} \) continuous on \(D \). Prog

Then \(f_{xy}(a, b) = f_{yx}(a, b) \)

= equality of mixed partials
Problems 14.3

#4 Estimate $f_r(40.15)$ from table.

#55 $Z = \frac{y}{2x+3y}$ Find all 2nd partials.

#5-8 w/ visualize

#77 Verify $u = \frac{1}{\sqrt{x^2+y^2+z^2}}$ is a solution of Laplace Eq $U_{xx} + U_{yy} + U_{zz} = 0$