Lecture 7

Rank If \(\hat{r}(t) \) is position at time \(t \) then \(\hat{r}'(t) = \hat{v}(t) \) = velocity, \(\|\hat{v}(t)\| = \text{speed} \)
\(\hat{r}''(t) = \hat{a}(t) \) = acceleration

Example Particle has init position \(\hat{r}(0) = (1,2,3) \) and init velocity \((-1,1,2) \).
Suppose \(\hat{a}(t) = (t,2-t^3,t^3) \). Find \(\hat{r}(t) \).

Newton's 2nd Law Force \(\hat{F}(t) \) acts on object of mass \(m \) then
\(\hat{F}(t) = m \hat{a}(t) \)

Example Object moves on circle radius \(a \), angular speed \(\omega \), so
\(\hat{r}(t) = (a \cos \omega t, a \sin \omega t) \)
\(\hat{r}'(t) = (-a \omega \sin \omega t, a \omega \cos \omega t) \)
\(\hat{r}''(t) = (-a \omega^2 \cos \omega t, -a \omega^2 \sin \omega t) \) \(\hat{r}''(t) = -a \omega^2 \hat{r}(t) \)

So \(\hat{F}(t) = m \hat{a}(t) = -m a \omega^2 \hat{r}(t) \)
Centripetal Force - points back toward \(\hat{r} \)

#28 Baseball hit 3 ft above ground toward fence
10 ft high and 400 ft away.
Ball leaves bat at 115 ft/s at \(\Phi 50^\circ \) above horizontal.
Is it a home run?
Put origin at feet so \(\hat{r}(0) = (0, 3), \hat{\gamma}(0) = (115 \cos 50, 115 \sin 50) \approx (73.92, 88.10) \) \(\hat{\gamma}(t) = (0, -32) \) so \(\hat{r}(t) = (73.92, 88.10 - 32t) \) \(r(t) = (73.92t, -16t^2 + 88.10t + 3) \) Gets to wall when \(400 = 73.92t \) so \(t = 5.41 \) \(r(5.41) = (400, 11.33) \) Home run!

13.426 Tank fires 400 m/s. What two angles of elev to hit target 3000 meters away

\(\hat{r}(t) = (0, -9.8^2 \text{ m/s}^2) \) \(\hat{v}(0) = (400 \cos \theta, 400 \sin \theta) \) \(\hat{r}(0) = (0, 0) \) \(\hat{r}(t) = (400 \cos \theta, -9.8t + 400 \sin \theta) \) \(\hat{r}(t) = (400 \cos \theta t, -9.8t^2 + 400 \sin \theta t) \) Hits ground when \(-9.8t^2 + 400 \sin \theta t = 0 \) so \(t = 0 \) or \(t = \frac{400 \sin \theta}{9.8} \)

Want \((400 \cos \theta) \left(\frac{400}{9.8} \sin \theta \right) = 3000 \)

\[\frac{32653}{3} \sin \theta \cos \theta = 3000 \]

\[\sin \theta \cos \theta = 0.18375 \]

\[2\theta = \sin^{-1}(0.18375) \]

\[= 10.58 \text{ or } 169.42 \]

\[\theta = 5.3^0 \text{ or } 84.7^0 \]
Recall \(\vec{T}/r = \frac{\vec{T}'/r}{1/r} \Rightarrow \vec{V}/r = \vec{r} \)

\[
\vec{a} = \vec{V}' = \sqrt{r} \vec{T} + r \vec{T}'
\]

Recall \(r = \frac{lt''}{r} \) so \(\vec{T}' = \vec{r} \vec{v} \)

\[\vec{N} = \vec{T}'/\vec{r}\]

Resolves acceleration into tangential and normal components

\[
\vec{a} = a_T \vec{T} + a_N \vec{N}
\]

Highly Recommend reading 13.4 Kepler's Laws

1. Planet orbits sun on ellipse with sun at focus.
2. Equal areas = times
3. Square of period of revolution proportional to cube of length of major axis.
Now we consider real-valued functions of more than one variable:

\[f(x, y, z) = x^2 \sin z - xy^3 \quad f : \mathbb{R}^3 \rightarrow \mathbb{R} \]

i.e. domain is some subset of \(\mathbb{R}^n \)

\[f(x, y) = \sqrt{x-1} + x \sqrt{y-3} \quad \text{Domain} \]

\[f(x, y) = \sin^{-1}(x+y) \]

\(D: -\pi \leq x+y \leq \pi \)

Graphs: Suppose \(f(x,y) \) has domain \(D \subseteq \mathbb{R}^2 \).

Graph is all points \(\{(x,y, f(x,y)) \mid (x,y) \in D \} \).

\[f(x, y) = x^2 + 2y^2 \]

Traces \(z = \text{constant} \) are ellipses longer in \(x \) direction.
Ex. \(f(x,y) = 10 - x - y \) Graph \(z = 10 - 2x - y \) is a plane.

Level Curves

Def. The level curves of \(f(x,y) \) are curves \(f(x,y) = k \)

Ex. \(f(x,y) = x^2 + 2y^2 \)

Ex. Given \(f(x,y,z) \) you can sketch level surfaces in \(\mathbb{R}^3 \).

Problems

14.1 #32 (visualize), #45
