Review

Chain Rule: \[\frac{d}{dx} (f(g(x))) = f'(g(x)) \cdot g'(x) \]

a.k.a. \[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]

Example

\[y = \cos \left(\sqrt{\sin(\tan(\pi x))} \right) \]

\[\frac{dy}{dx} = -\sin \left(\sqrt{\sin(\tan(\pi x))} \right) \cdot \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \cdot \cos(\tan(\pi x)) \cdot \sec^2(\pi x) \cdot \pi \]

We used:

\[\frac{d}{dx} \cos x = -\sin x \]

\[\frac{d}{dx} \sin x = \cos x \]

\[\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}} \]

\[\frac{d}{dx} \tan x = \sec^2 x \]

Ex.

\[h(\theta) = (\theta^2 + 1)^{3}(\theta + 5)^9 \]

\[h'(\theta) = 3(\theta^2 + 1)^2 \cdot 2\theta (2\theta + 5)^8 + (\theta^2 + 1)^3 \cdot 10(2\theta + 5)^9 \cdot 2 \]

\[= 6(\theta^2 + 1)^2 (2\theta + 5)^8 + 20(\theta^2 + 1)^3 (2\theta + 5)^9 \]

Ex.

\[y = \sin(kx) \]

\[\frac{dy}{dx} = (3 \sin(kx)) \cdot \cos(kx) - k \]
Problem: Suppose \(y \) and \(x \) are related by
\[
y^2 + x^2 = 4.
\]

Find instantaneous rate of change of \(y \) with respect to \(x \) at point \(x = 1 \), \(y = \sqrt{3} \).

* Not given \(y \) as a function of \(x \)
Near \(x = 1 \), \(y \) is a function of \(x \).

\[
y = \sqrt{4 - x^2}
\]

\[
\frac{dy}{dx} = \frac{1}{2} (4 - x^2)^{-\frac{1}{2}} \cdot (-2x) = \frac{-x}{\sqrt{4 - x^2}}
\]

\[
\left. \frac{dy}{dx} \right|_{x=1} = \frac{-1}{\sqrt{3}}
\]

Implicit Differentiation

1. Given relation involving (for example) \(x \) and \(y \),
 want \(\frac{dy}{dx} \).

2. Assume \(y \) is a function of \(x \), \(y = y(x) \), even if we can't solve for it.

3. Take derivative of both sides with respect to \(x \).

4. Solve for \(\frac{dy}{dx} \).
Removal: The y was not relevant.

This proves that the line is perpendicular to this.

\[
\text{Slope} = -\frac{1}{x}
\]

\[
\text{Slope} = y
\]

\[
\frac{y}{x} = \frac{k}{x}
\]

\[
x^2 + y^2 = 0 \quad \text{Think: } x + y(x) = h
\]

Example: x + y = h
Example

Find \(\frac{dy}{dx} \)

\[
\cos(xy) + x + y = 5
\]

\[
-\sin(xy) \cdot (y + x \frac{dy}{dx}) + 1 + \frac{dy}{dx} = 0
\]

\[
-y \sin(xy) - \frac{dy}{dx} x \sin(xy) + 1 + \frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx} = \frac{-1 + y \sin(xy)}{-x \sin(xy) + 1}
\]

"OK that \(y \)'s are in the answer, we can't solve for \(y \) anymore.

Example

Find eq of tangent line to the cardioid

\[
x^2 + y^2 = (2x^2 + y^2 - x)^2 \text{ at } (0, \frac{1}{2})
\]

\[
2x + 2y \frac{dy}{dx} = 2(2x^2 + 2y^2 - x)(4xy + 4yy' - 1) \quad (y' = \frac{dy}{dx})
\]

"Easier to plug in before solving for \(y \)"

\[
0 + y' = 2(0 + \frac{1}{2})(0 + 2y' - 1)
\]

\[
y' = 2y' - 1
\]

\[
y' = 1
\]

\[
y - \frac{1}{2} = x
\]
\[
\frac{x - y \sqrt{1 - \sin^2 x}}{y} = \frac{\sin \frac{x}{p}}{1 - \sin^2 x}
\]

\[
\frac{x}{y} = \frac{\cos \frac{x}{p}}{1 - \sin^2 x}
\]

\[
1 = \frac{\cos \frac{x}{p}}{1 - \sin^2 x}
\]

\[
\sin y = x
\]

\[
x_1 = y
\]

Ex. Let \(y = \sin x \) Find:

\[
\frac{\partial y}{\partial x} = \frac{\cos \frac{x}{p}}{1 - \sin^2 x} - \frac{\frac{\sin \frac{x}{p}}{p}}{y}
\]

\[
0 = \frac{\partial y}{\partial x} (f(x) - y) + x - \frac{\cos \frac{x}{p}}{p} - \frac{\sin \frac{x}{p}}{y}
\]

\[
0 = \frac{\partial y}{\partial x} (f(x) + x) + x - \cos \frac{x}{p} + \frac{\sin \frac{x}{p}}{y}
\]

\[
\frac{\partial y}{\partial x} = 1
\]

\[
\text{Final:} \quad x + \cos \frac{x}{p} = 1
\]