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INVERSE SCATTERING TRANSFORM FOR THE DEFOCUSING
MANAKOV SYSTEM WITH NONZERO BOUNDARY CONDITIONS∗
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Abstract. The inverse scattering transform for the defocusing Manakov system with nonzero
boundary conditions at infinity is rigorously studied. Several new results are obtained: (i) The
analyticity of the Jost eigenfunctions is investigated, and precise conditions on the potential that
guarantee such analyticity are provided. (ii) The analyticity of the scattering coefficients is estab-
lished. (iii) The behavior of the eigenfunctions and scattering coefficients at the branch points is
discussed. (iv) New symmetries are derived for the analytic eigenfunctions (which differ from those in
the scalar case). (v) These symmetries are used to obtain a rigorous characterization of the discrete
spectrum and to rigorously derive the symmetries of the associated norming constants. (vi) The
asymptotic behavior of the Jost eigenfunctions is derived systematically. (vii) A general formulation
of the inverse scattering problem as a Riemann–Hilbert problem is presented. (viii) Precise results
guaranteeing the existence and uniqueness of solutions of the Riemann–Hilbert problem are provided.
(ix) Explicit relations among all reflection coefficients are given, and all entries of the scattering ma-
trix are determined in the case of reflectionless solutions. (x) A compact, closed-form expression
is presented for general soliton solutions, including any combination of dark-dark and dark-bright
solitons. (xi) A consistent framework is formulated for obtaining solutions corresponding to double
zeros of the analytic scattering coefficients, leading to double poles in the Riemann–Hilbert problem,
and such solutions are constructed explicitly.
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1. Introduction. Scalar and vector nonlinear Schrödinger (NLS) equations are
universal models for the evolution of weakly nonlinear dispersive wave trains. As
such, they appear in many physical contexts, such as deep water waves, nonlinear op-
tics, acoustics, and Bose–Einstein condensation (e.g., see [5, 23, 35, 39] and references
therein). Many of these equations are also completely integrable infinite-dimensional
Hamiltonian systems, and as such they possess a remarkably rich mathematical struc-
ture. As a consequence, they have been the object of considerable research over the
last fifty years (e.g., see [3, 5, 8, 19, 21, 30] and references therein). In particular, it is
well known that for the integrable cases, the initial value problem can in principle be
solved by the inverse scattering transform (IST), a nonlinear analogue of the Fourier
transform.

This work is concerned with the Manakov system, namely, the two-component
vector NLS equation

(1.1) iqt + qxx + 2σ(q2o − ‖q‖2)q = 0,

with the following nonzero boundary conditions (NZBC) at infinity:

(1.2) lim
x→±∞q(x, t) = q± = qoe

iθ± .
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 707

Hereafter, q = q(x, t) and qo are two-component vectors, ‖·‖ is the standard Euclidean
norm, θ± are real numbers, qo = ‖qo‖ > 0, and subscripts x and t denote partial
differentiation throughout. The extra term q2o in (1.1) is added so that the asymptotic
values of the potential are independent of time. We discuss (1.1) in the defocusing
case (σ = 1).

The IST for the scalar NLS equation (i.e., the one-component reduction of (1.1))
was developed by Zakharov and Shabat in [41] for the focusing case and in [42] for
the defocusing case (see also [1, 5, 6, 19]). The IST for (1.1) in the case with zero
boundary conditions (ZBC) (i.e., when qo = 0) was derived in [29] and revisited and
generalized to an arbitrary number of components in [3]. On the other hand, the IST
for the Manakov system (1.1) with NZBC remained an open problem for a long time.
A successful approach to the IST for this problem was recently presented in [31], but
several issues were not addressed. (Indeed, several questions remain open even in the
scalar case with NZBC; e.g., see [11, 18].)

The first purpose of this work is to develop the IST for the defocusing Manakov
system with NZBC in a rigorous way. Several new results are obtained: (i) Precise
conditions on the potential that guarantee the analyticity of the Jost eigenfunctions
are provided. (ii) The analyticity of the scattering coefficients is established. (iii) The
behavior of the eigenfunctions and scattering coefficients at the branch points is elu-
cidated. (iv) New symmetries are derived for the analytic eigenfunctions, which differ
from the symmetries of the scalar case. (v) These symmetries are used to obtain a
rigorous characterization of the discrete spectrum and to rigorously derive the sym-
metries of the associated norming constants. (vi) The asymptotic behavior of the
Jost eigenfunctions is derived systematically. (vii) A general formulation of the in-
verse scattering problem as a Riemann–Hilbert problem is presented. (viii) Explicit
relations among all reflection coefficients are given, and all entries of the scattering
matrix are determined in the case of reflectionless solutions. (ix) A compact, closed-
form expression is presented for general soliton solutions, including any combination
of dark-dark and dark-bright solitons.

The second purpose of this work is to use the above results to derive novel solutions
of the defocusing Manakov system. For most integrable nonlinear partial differential
equations (PDEs), solitons are associated with the zeros of the analytic scattering
coefficients. In the development of the IST, it is commonly assumed for simplicity
that such zeros are simple. On the other hand, in some cases, the analytic scattering
coefficients are allowed to have double zeros. Indeed, it is well known that solutions
corresponding to such double zeros exist for the scalar focusing NLS equation [41].
On the contrary, for the scalar defocusing NLS, no such solutions exist since one can
prove that the zeros of the analytic scattering coefficients are always simple [19] (as in
the case of the Korteweg–de Vries equation). On the other hand, the proof does not
generalize to the defocusing vector system. Here, we use the rigorous formulation of
the IST described above to write down a consistent framework for obtaining solutions
corresponding to double zeros of the analytic scattering coefficients, leading to double
poles in the Riemann–Hilbert problem, and we construct such “double-pole solutions”
explicitly. To the best of our knowledge, such solutions are new.

The outline of this work is the following: In section 2, we formulate the direct
problem (taking into account automatically the time evolution). In section 2.5, we
characterize the discrete spectrum. In section 3, we formulate the inverse problem.
In section 3.6, we discuss the soliton solutions, and in section 4, we present novel
double-pole solutions. The proofs of all theorems, lemmas, and corollaries in the text
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708 GINO BIONDINI AND DANIEL KRAUS

are given in the appendix. Throughout, an asterisk denotes complex conjugation, and
superscripts T and † denote, respectively, matrix transpose and matrix adjoint. Also,
we denote, respectively, with Ad, Ao, Abd, and Abo the diagonal, off-diagonal, block
diagonal, and block off-diagonal parts of a 3× 3 matrix A.

2. Direct scattering. As usual, the IST for an integrable nonlinear PDE is
based on its formulation in terms of a Lax pair. The 3 × 3 Lax pair associated with
the Manakov system (1.1) is

φx = Xφ, φt = Tφ,(2.1a)

where

X(x, t, k) = −ikJ+Q , T(x, t, k) = 2ik2J− iJ(Qx −Q2 + q2o)− 2kQ ,(2.1b)

J =

(
1 0T

0 −I

)
, Q(x, t) =

(
0 rT

q 0

)
,(2.1c)

r(x, t) = q∗, and I and 0 are the appropriately sized identity matrix and zero matrix,
respectively. That is, (1.1) is the compatibility condition φxt = φtx (as is easily verified
by direct calculation and noting that JQ = −QJ). As usual, the first half of (2.1a)
is referred to as the scattering problem, k as the scattering parameter, and q(x, t)
as the scattering potential. The direct problem in IST consists of characterizing the
eigenfunctions and scattering data based on the knowledge of the scattering potential.
Unlike the usual approach to IST for the defocusing NLS equation and the Manakov
system with NZBC, here we formulate the IST in a way that allows the reduction
qo → 0 to be taken explicitly throughout. Also, it will be convenient to consider
φ(x, t, k) as a 3×3 matrix. Some basic symmetry properties of the scattering problem
are discussed in Appendix A.1. We should point out that, unlike [31], the direct
problem is done here without assuming that q+ is parallel to q−.

2.1. Riemann surface and uniformization. One can expect that, as x →
±∞, the solutions of the scattering problem are approximated by those of the asymp-
totic scattering problems

(2.2) φx = X± φ,

where X± = −ikJ+Q± = limx→±∞ X. The eigenvalues ofX± are ik and ±iλ, where
(2.3) λ(k) = (k2 − q2o)

1/2.

As in the scalar case [42], these eigenvalues have branching. To deal with this, as in
[19, 31], we introduce the two-sheeted Riemann surface defined by (2.3). The branch
points are the values of k for which λ(k) = 0, i.e., k = ±qo. As in [31], we take the
branch cut on (−∞,−qo] ∪ [qo,∞), and we define λ(k) so that Imλ ≥ 0 on sheet I
and Imλ(k) ≤ 0 on sheet II (see [31] for further details). Next, we introduce the
uniformization variable by defining

(2.4) z = k + λ.

The inverse transformation is

(2.5) k = (z + q2o/z)/2, λ = (z − q2o/z)/2 .

We can then express all k-dependence of eigenfunctions and scattering data (including
the one resulting from λ) in terms of z, thereby eliminating all square roots. The
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 709

branch cuts on the two sheets of the Riemann surface are mapped onto the real z-
axis, CI is mapped onto the upper half plane of the complex z-plane, CII is mapped
onto the lower half plane of the complex z-plane, z(∞I) = ∞ if Im(k) > 0, z(∞I) = 0
if Im(k) < 0, z(∞II) = 0 if Im(k) > 0, z(∞II) = ∞ if Im(k) < 0, z(k, λI)z(k, λII) = q2o ,
|k| → ∞ in the upper half plane of CI corresponds to z → ∞ in the upper half z-
plane, |k| → ∞ in the lower half plane of CII corresponds to z → ∞ in the lower half
z-plane, |k| → ∞ in the lower half plane of CI corresponds to z → 0 in the upper
half z-plane, and |k| → ∞ in the upper half plane of CII corresponds to z → 0 in
the lower half z-plane. Finally, the segments k ∈ [−qo, qo] in each sheet correspond,
respectively, to the upper half and lower half of the circle Co of radius qo centered at
the origin in the complex z-plane. Throughout this work, subscripts ± will denote
normalization as x → −∞ or as x → ∞, respectively, whereas superscripts ± will
denote analyticity (or, more generally, meromorphicity) in the upper or lower half of
the z-plane, respectively.

2.2. Jost solutions and scattering matrix. The continuous spectrum con-
sists of all values of k (in either sheet) such that λ(k) ∈ R; that is, k ∈ R \ (−qo, qo).
In the complex z-plane, the corresponding set is the whole real axis. For any two-
component complex-valued vector v = (v1, v2)

T , we define its orthogonal vector as
v⊥ = (v2,−v1)† so that v†v⊥ = (v⊥)†v = 0. (Note that this definition differs from
that of [31].) We may then write the eigenvalues and the corresponding eigenvector
matrices of the asymptotic scattering problem (2.2) as

(2.6) iΛ(z) = diag(−iλ, ik, iλ), E±(z) =
(

1 0 −iqo/z
iq±/z q⊥

±/qo q±/qo

)
,

respectively, so that

(2.7) X±E± = E±iΛ.

This normalization is a generalization of the one recently used in [11] for the scalar
case. One could employ the invariances of the Manakov system to fix the asymptotic
polarization vectors q±/qo so as to obtain a simpler eigenfactor matrix. (The trans-
formation of the Jost solutions and scattering matrix under each of the invariances of
the Manakov system is discussed in Appendix A.1.) However, it will not be necessary
to do so. It will be useful to note that

(2.8) detE±(z) = 1− q2o/z
2 := γ(z), E−1

± (z) =
1

γ(z)

⎛
⎜⎝

1 iq†
±/z

0 γ(z)(q⊥±)†/qo
−iqo/z q†

±/qo

⎞
⎟⎠ .

Let us now discuss the asymptotic time dependence. As x → ±∞, we expect that
the time evolution of the solutions of the Lax pair will be asymptotic to

(2.9) φt = T±φ,

where T± = 2ik2J+H± and H± = iJQ2
±− iq2oJ− 2kQ±. The eigenvalues of T± are

−i(k2+λ2) and ±2ikλ. Since the boundary conditions are constant, the consistency of
the Lax pair (2.1a) implies [X±,T±] = 0, so X± and T± admit common eigenvectors.
Namely,

(2.10) T±E± = −iE±Ω,
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710 GINO BIONDINI AND DANIEL KRAUS

where Ω(z) = diag(−2kλ, k2 + λ2, 2kλ). Then for all z ∈ R, we can define the
Jost solutions φ±(x, t, z) as the simultaneous solutions of both parts of the Lax pair
satisfying the boundary conditions

(2.11) φ±(x, t, z) = E±(z)eiΘ(x,t,z) + o(1), x→ ±∞,

where Θ(x, t, z) is the 3× 3 diagonal matrix

(2.12) Θ(x, t, z) = Λ(z)x−Ω(z)t = diag(θ1(x, t, z), θ2(x, t, z),−θ1(x, t, z)).

The advantage of introducing simultaneous solutions of both parts of the Lax pair is
that the scattering coefficients will be independent of time. For comparison purposes,
we note that the definition of the Jost solutions in this work differs from that in [31].
More precisely, the matrix φ±(x, t, z) defined by (2.11) equals the matrix Jost eigen-
function in [31] multiplied by diag(1/z, i/qo, i/qo). A similar change applies to the
Jost eigenfunctions of the adjoint problem.

To make the above definitions rigorous, we factorize the asymptotic behavior of
the potential and rewrite the first part of the Lax pair (2.1a) as

(2.13) (φ±)x = X±φ± +ΔQ±φ±,

where ΔQ± = Q − Q±. We remove the asymptotic exponential oscillations and
introduce modified eigenfunctions,

(2.14) μ±(x, t, z) = φ±(x, t, z)e−iΘ(x,t,z),

so that

(2.15) lim
x→±∞μ±(x, t, z) = E±(z).

Introducing the integrating factor ψ±(x, t, z) = e−iΘ(x,t,z)E−1
± (z)μ±(x, t, z)eiΘ(x,t,z),

we can then formally integrate the ODE for μ±(x, t, z) to obtain

μ−(x, t, z) = E−(z) +
∫ x

−∞
E−(z)ei(x−y)Λ(z)E−1

− (z)ΔQ−(y, t)μ−(y, t, z)e−i(x−y)Λ(z)dy,

(2.16a)

μ+(x, t, z) = E+(z)−
∫ ∞

x

E+(z)e
i(x−y)Λ(z)E−1

+ (z)ΔQ+(y, t)μ+(y, t, z)e
−i(x−y)Λ(z)dy.

(2.16b)

One can now rigorously define the Jost eigenfunctions as the solutions of the
integral equations (2.16). In fact, in Appendix A.2, we prove the following.

Theorem 2.1. If Q(·, t)−Q− ∈ L1(−∞, a) or, correspondingly, Q(·, t)−Q+ ∈
L1(a,∞) for any constant a ∈ R, the following columns of μ−(x, t, z) or, correspond-
ingly, μ+(x, t, z) can be analytically extended onto the corresponding regions of the
complex z-plane:
(2.17)

μ−,1(x, t, z), μ+,3(x, t, z) : Im z > 0, μ−,3(x, t, z), μ+,1(x, t, z) : Im z < 0.

Equation (2.14) implies that the same analyticity and boundedness properties
also hold for the columns of φ±(x, t, z).
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 711

We now introduce the scattering matrix. If φ(x, t, z) solves (2.1a), we have
∂x(detφ) = trX detφ and ∂t(detφ) = trTdetφ. Since trX = ik and trT = −i(k2 +
λ2), we have

∂

∂x
det(φ±(x, t, z)e−iΘ(x,t,z)) =

∂

∂t
det(φ±(x, t, z)e−iΘ(x,t,z)) = 0.

Then (2.11) implies

(2.18) detφ±(x, t, z) = γ(z)eiθ2(x,t,z), (x, t) ∈ R
2 , z ∈ R \ {±qo} .

That is, φ− and φ+ are two fundamental matrix solutions of the Lax pair, so there
exists a 3× 3 matrix A(z) such that

(2.19) φ−(x, t, z) = φ+(x, t, z)A(z), z ∈ R \ {±qo} .
As usual, A(z) = (aij(z)) is referred to as the scattering matrix. Note that with our
conventions, A(z) is independent of time. Moreover, (2.18) and (2.19) imply

(2.20) detA(z) = 1 , z ∈ R \ {±qo} .
It is also convenient to introduce B(z) := A−1(z) = (bij(z)). In the scalar case, the
analyticity of the diagonal scattering coefficients follows from their representations as
Wronskians of analytic eigenfunctions. This approach, however, is not applicable to
the vector case [31]. Nonetheless, using an alternative integral representation for the
eigenfunctions in Appendix A.3 (which generalizes the ideas developed in [18] for the
defocusing scalar case), a straightforward application of the Neumann series (as in
Appendix A.3) yields the following.

Lemma 2.2. The analytic modified eigenfunctions μ±,1(x, t, z) and μ±,3(x, t, z)
remain bounded for all x ∈ R and for all z in their corresponding regions of analytic-
ity.

This result will be important to the classification of the discrete spectrum (dis-
cussed in section 2.5), as it will allow one to characterize the appropriate domains for
the discrete eigenvalues. Then, in Appendix A.4 we prove the following.

Theorem 2.3. Under the same hypotheses as in Theorem 2.1, the following
scattering coefficients can be analytically extended off of the real z-axis in the following
regions:

(2.21) a11(z), b33(z) : Im z > 0, a33(z), b11(z) : Im z < 0.

Note how, in contrast to the ZBC case [3], nothing can be proved about the
remaining entries of the scattering matrix. Note that, as in the scalar case, the scat-
tering matrix at the branch points becomes singular. The behavior of eigenfunctions
and scattering matrix at the branch points is discussed in section 2.5.

It is important to note that the results in Lemma 2.2 and Theorem 2.3 were not
present in [31].

2.3. Adjoint problem and auxiliary eigenfunctions. A complete set of an-
alytic eigenfunctions is needed to solve the inverse problem, but φ±,2 are nowhere
analytic in general. To obviate this problem, as in [31], we consider the so-called
adjoint Lax pair (using the terminology of [26]):

(2.22) φ̃x = X̃ φ̃ , φ̃t = T̃ φ̃ ,
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712 GINO BIONDINI AND DANIEL KRAUS

where X̃ = ikJ+Q∗ and T̃ = −2ik2J+ iJQ∗
x − iJ(Q∗)2 + iq2oJ − 2kQ∗. Hereafter,

tildes will denote that a quantity is defined for the adjoint problem (2.22) instead of
the original one (2.1a). Note that X̃ = X∗ and T̃ = T∗ for all z ∈ R.

Proposition 2.4. If ṽ(x, t, z) and w̃(x, t, z) are two arbitrary solutions of the
adjoint problem (2.22), then

(2.23) u(x, t, z) = eiθ2(x,t,z)J[ṽ × w̃](x, t, z) ,

where “×” denotes the usual cross product, is a solution of the Lax pair (2.1a).
The first half of Proposition 2.4 (corresponding to the scattering problem) was

obtained in [31]. We use this result to construct two additional analytic eigenfunctions,
one in each half plane. We do so by constructing Jost eigenfunctions for the adjoint
problem. The eigenvalues of X̃± are −ik and ±iλ. Denoting the corresponding
eigenvalue matrix as −iΛ(z) = diag(iλ,−ik,−iλ), we can choose the eigenvector
matrix as Ẽ±(z) = E∗

±(z). Note that det Ẽ±(z) = γ(z). As x→ ±∞, we expect that

the solutions of the second half of (2.22) will be asymptotic to those of φ̃t = T̃±φ̃.
The eigenvalues of T̃± are i(k2 + λ2) and ±2ikλ, and (2.10) imply T̃±Ẽ± = Ẽ±iΩ.
As before, for all z ∈ R, we then define the Jost solutions of the adjoint problem as
the simultaneous solutions φ̃± of (2.22) such that

(2.24) φ̃±(x, t, z) = Ẽ±(z)e−iΘ(x,t,z) + o(1), x→ ±∞.

Introducing modified eigenfunctions μ̃±(x, t, z) = φ̃±(x, t, z)eiΘ(x,t,z) as before, we
find that the following columns of μ̃±(x, t, z) can be extended into the complex plane:

μ̃−,3(x, t, z), μ̃+,1(x, t, z) : Im z > 0, μ̃−,1(x, t, z), μ̃+,3(x, t, z) : Im z < 0.

But the columns μ̃±,2 cannot be extended in general. As before, φ̃± are both funda-
mental matrix solutions of the same problem, and therefore there exists an invertible
3× 3 matrix Ã(z) such that

(2.25) φ̃−(x, t, z) = φ̃+(x, t, z)Ã(z).

The same techniques used for the original scattering matrix show that for suitable
potentials, the following coefficients can be analytically extended into the following
regions:

(2.26) ã11(z), b̃33(z) : Im z < 0, ã33(z), b̃11(z) : Im z > 0 ,

where B̃(z) = Ã−1(z). In light of these results, we can define two new solutions of
the original Lax pair (2.1a):

χ(x, t, z) = −eiθ2(x,t,z)J[φ̃−,3 × φ̃+,1](x, t, z)/γ(z).(2.27a)

χ(x, t, z) = −eiθ2(x,t,z)J[φ̃−,1 × φ̃+,3](x, t, z)/γ(z),(2.27b)

By construction, we have the following.
Lemma 2.5. Under the same hypotheses as in Theorem 2.1, χ(x, t, z) is analytic

for Im z > 0, while χ(x, t, z) is analytic for Im z < 0.
For comparison purposes, note that the auxiliary eigenfunctions defined in [31]

equal the ones defined in (2.27) times −iqozγ(z).
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Following [31], we now establish a relation between the adjoint Jost eigenfunctions
and the eigenfunctions of the original Lax pair (2.1a) (see proofs in Appendix A.5).

Lemma 2.6. For z ∈ R and for all cyclic indices j, 
, and m,

φ±,j(x, t, z) = −eiθ2(x,t,z)J[φ̃±,� × φ̃±,m](x, t, z)/γj(z),(2.28a)

φ̃±,j(x, t, z) = −e−iθ2(x,t,z)J[φ±,� × φ±,m](x, t, z)/γj(z),(2.28b)

where

γ1(z) = −1, γ2(z) = γ(z), γ3(z) = 1.(2.28c)

Corollary 2.7. The scattering matrices A(z) and Ã(z) are related by

(2.29) Ã(z) = Γ(z)(A−1(z))TΓ−1(z),

where Γ(z) = diag(−1, γ(z), 1).
Corollary 2.8. For all z ∈ R, the nonanalytic Jost eigenfunctions have the

following decompositions:

φ−,2(x, t, z) =
1

a33(z)
[a32(z)φ−,3(z)− χ(z)] =

1

a11(z)
[a12(z)φ−,1(z) + χ(z)] ,

(2.30a)

φ+,2(x, t, z) =
1

b11(z)
[b12(z)φ+,1(z)− χ(z)] =

1

b33(z)
[b32(z)φ+,3(z) + χ(z)] ,

(2.30b)

where the (x, t)-dependence was omitted from the right-hand side for simplicity.
The use of the adjoint eigenfunctions will be instrumental in obtaining many of

the results in the following sections.
In addition, similarly to the Jost eigenfunctions it will be useful to remove the

exponential oscillations of χ̄ and χ and define the modified auxiliary eigenfunctions as

(2.31) m̄(x, t, z) = χ̄(x, t, z)e−iθ2(x,t,z), m(x, t, z) = χ(x, t, z)e−iθ2(x,t,z).

Then, using Lemma 2.2 and (2.27), it is straightforward to characterize the asymptotic
behavior of the auxiliary eigenfunctions as x→ ±∞.

Lemma 2.9. As x→ ±∞, the modified auxiliary eigenfunctions remain bounded
in their corresponding domains of analyticity.

These results will be key to the full characterization of the discrete spectrum (cf.
section 2.5), as we will see that the eigenfunctions behave differently for large |x|
depending on whether a given point z ∈ C is inside or outside of Co.

2.4. Symmetries. For the NLS equation and the Manakov system with ZBC,
the only symmetry of the scattering problem is the mapping k 	→ k∗. For the same
equations with NZBC, however, the symmetries are complicated by the presence of
a Riemann surface with the need to keep track of each sheet. Correspondingly, the
problem admits two symmetries. The symmetries are also complicated by the fact
that, after removing the asymptotic oscillations, the Jost solutions do not tend to the
identity matrix. Recall that λII(k) = −λI(k), z = k+λ, q2o/z = k−λ, λ = (z−q2o/z)/2,
and k = (z + q2o/z)/2.

2.4.1. First symmetry. Consider the transformation z 	→ z∗ (upper/lower half
plane), which implies (k, λ) 	→ (k∗, λ∗).

Proposition 2.10. If φ(x, t, z) is a fundamental matrix solution of the Lax
pair (2.1a), so is w(x, t, z) = J(φ†(x, t, z∗))−1.
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714 GINO BIONDINI AND DANIEL KRAUS

Proposition 2.10 is proved in Appendix A.6. There, we also show that, as a
consequence, we have the following.

Lemma 2.11. For all z ∈ R, the Jost eigenfunctions satisfy the symmetry

(2.32) J(φ†±(x, t, z))
−1C(z) = φ±(x, t, z),

where

(2.33) C(z) = −γ(z)Γ−1(z) = diag(−γ(z), 1, γ(z)) .
It will also be convenient to note also that

(φ−1
± (x, t, z))T =

1

detφ±(x, t, z)
(φ±,2 × φ±,3, φ±,3 × φ±,1, φ±,1 × φ±,2)(x, t, z).

Then substituting (2.30) into (2.32) and using the Schwarz reflection principle yields
the following.

Lemma 2.12. The analytic Jost eigenfunctions obey the following symmetry re-
lations:

φ∗−,1(x, t, z
∗) = − 1

a33(z)
J [χ× φ−,3] (x, t, z)e

−iθ2(x,t,z), Im z ≤ 0,(2.34a)

φ∗+,1(x, t, z
∗) =

1

b33(z)
J [χ× φ+,3] (x, t, z)e

−iθ2(x,t,z), Im z ≥ 0,(2.34b)

φ∗−,3(x, t, z
∗) =

1

a11(z)
J [χ× φ−,1] (x, t, z)e

−iθ2(x,t,z), Im z ≥ 0,(2.34c)

φ∗+,3(x, t, z
∗) = − 1

b11(z)
J [χ× φ+,1] (x, t, z)e

−iθ2(x,t,z), Im z ≤ 0.(2.34d)

Moreover, using (2.32) in the scattering relation (2.19), we conclude as follows.
Lemma 2.13. The scattering matrix and its inverse satisfy the symmetry relation

(2.35) (A(z))† = Γ−1(z)B(z)Γ(z). z ∈ R.

Componentwise, for z ∈ R, (2.35) yields

b11(z) = a∗11(z), b12(z) = − 1

γ(z)
a∗21(z), b13(z) = −a∗31(z),(2.36a)

b21(z) = −γ(z)a∗12(z), b22(z) = a∗22(z), b23(z) = γ(z)a∗32(z),(2.36b)

b31(z) = −a∗13(z), b32(z) =
1

γ(z)
a∗23(z), b33(z) = a∗33(z).(2.36c)

The Schwarz reflection principle then allows us to conclude that

(2.37) b11(z) = a∗11(z
∗), Im z ≤ 0, b33(z) = a∗33(z

∗), Im z ≥ 0.

We can also obtain similar symmetry relations for the auxiliary eigenfunctions.
Corollary 2.14. The auxiliary analytic eigenfunctions satisfy the following

symmetry relations:

χ(x, t, z) = −eiθ2(x,t,z)J[φ∗−,1 × φ∗+,3](x, t, z
∗)/γ(z), Im z < 0,(2.38a)

χ(x, t, z) = −eiθ2(x,t,z)J[φ∗−,3 × φ∗+,1](x, t, z
∗)/γ(z), Im z > 0.(2.38b)

In addition, the proof of Corollary 2.14 and (2.28) yield

(2.39) φ∗±,j(x, t, z) = −e−iθ2(x,t,z)J[φ±,� × φ±,m](x, t, z)/γj(z),

where j, 
, and m are cyclic indices and z ∈ R.
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2.4.2. Second symmetry. Consider the transformation z 	→ q2o/z (outside/
inside the circle of radius qo centered at 0), implying (k, λ) 	→ (k,−λ). We use this
symmetry to relate the values of the eigenfunctions on the two sheets (particularly,
across the cuts), where k is arbitrary but fixed (on either sheet). It is easy to show
the following.

Proposition 2.15. If φ(x, t, z) is a solution of the Lax pair, so is

W(x, t, z) = φ(x, t, q2o/z).

In Appendix A.6 we then show that, as a consequence, we have the following.
Lemma 2.16. The Jost eigenfunctions satisfy the following symmetry relations:

(2.40) φ±(x, t, z) = φ±(x, t, q2o/z)Π(z) , z ∈ R ,

where

(2.41) Π(z) =

⎛
⎝ 0 0 −iqo/z

0 1 0
iqo/z 0 0

⎞
⎠ .

As before, the analyticity properties of the eigenfunctions then allow us to extend
some of the above relations:

φ±,3(x, t, z) = − iqo
z
φ±,1(x, t, q

2
o/z), Im z ≷ 0,(2.42a)

φ±,2(x, t, z) = φ±,2(x, t, q
2
o/z), z ∈ R.(2.42b)

We again use (2.19) to obtain the following lemma.
Lemma 2.17. The scattering matrix satisfies the symmetry relation

(2.43) A(q2o/z) = Π(z)A(z)Π−1(z) , z ∈ R .

Componentwise, we have

a11(z) = a33(q
2
o/z), a12(z) = − iz

qo
a32(q

2
o/z), a13(z) = −a31(q2o/z),(2.44a)

a21(z) =
iqo
z
a23(q

2
o/z), a22(z) = a22(q

2
o/z), a23(z) = − iqo

z
a21(q

2
o/z),(2.44b)

a31(z) = −a13(q2o/z), a32(z) =
iz

qo
a12(q

2
o/z), a33(z) = a11(q

2
o/z).(2.44c)

An identical set of equations holds for the elements ofB(z). The analyticity properties
of the scattering matrix entries then allow us to conclude that

(2.45) a11(z) = a33(q
2
o/z), b33(z) = b11(q

2
o/z), Im z ≥ 0 .

Finally, we combine (2.42) with (2.38) to conclude the following.
Lemma 2.18. The auxiliary eigenfunctions satisfy the symmetry relation

(2.46) χ(x, t, z) = −χ(x, t, q2o/z), Im z ≥ 0.
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716 GINO BIONDINI AND DANIEL KRAUS

2.4.3. Combined symmetry and reflection coefficients. Of course, one can
combine the above two symmetries to obtain relations between eigenfunctions and
scattering coefficients evaluated at z and at q2o/z

∗. We omit these relations for brevity.
The following reflection coefficients will appear in the inverse problem:

(2.47) ρ1(z) =
b13(z)

b11(z)
= −a

∗
31(z)

a∗11(z)
, ρ2(z) =

a21(z)

a11(z)
= −γ(z)b

∗
12(z)

b∗11(z)
.

Using the symmetries of the scattering coefficients, we can also express the reflection
coefficients as

(2.48) ρ1(q
2
o/z) = −b31(z)

b33(z)
=
a∗13(z)
a∗33(z)

, ρ2(q
2
o/z) =

iz

qo

a23(z)

a33(z)
= γ(z)

iz

qo

b∗32(z)
b∗33(z)

.

On the other hand, unlike the scalar case [42, 11, 18], the symmetries of the scattering
coefficients do not result in any symmetry relations among these reflection coefficients.
Once the trace formulae for the analytic scattering coefficients are obtained in sec-
tion 3.3, we will show that one can combine all of the above symmetries to reconstruct
the entire scattering matrix.

2.5. Discrete spectrum. Recall that in the 2 × 2 scattering problem for the
NLS equation with NZBC, there is a one-to-one correspondence between zeros of the
analytic scattering coefficients and discrete eigenvalues, each of which corresponds
to the presence of a bound state. Moreover, the self-adjointness of the scattering
problem implies that such discrete eigenvalues k must be real, and one can show that
no discrete eigenvalues can arise inside the continuous spectrum. Thus, in the z-plane,
the discrete eigenvalues are confined to the circle Co. The scattering problem in (2.1a)
for the Manakov system is also self-adjoint, and a similar constraint as for the scalar
NLS equation exists for the proper eigenvalues of the scattering problem.

Lemma 2.19 (see [31]). Let v(x, t, z) be a nontrivial solution of the scattering
problem in (2.1a). If v(x, t, z) ∈ L2(R), then z ∈ Co.

Nonetheless, it was shown in [31] that in order to fully characterize the inverse
problem, one needs to also consider zeros of the analytic scattering coefficients off the
circle Co. This does not contradict Lemma 2.19 since, as discussed below, the zeros of
the analytic scattering coefficients off Co do not lead to bound states. More precisely,
we will see that zeros of a11(z) inside Co are allowed, and that these zeros lead to
eigenfunctions that do not decay at both space infinities.

In light of the analyticity properties of the eigenfunctions, to characterize the
discrete spectrum it is convenient to introduce the following 3× 3 matrices:

Φ+(x, t, z) = (φ−,1(x, t, z), χ(x, t, z), φ+,3(x, t, z)),(2.49a)

Φ−(x, t, z) = (φ+,1(x, t, z),−χ̄(x, t, z), φ−,3(x, t, z)),(2.49b)

which are analytic for Im z > 0 and Im z < 0, respectively. Using the decomposi-
tions (2.30) we obtain

detΦ+(x, t, z) = a11(z)b33(z)γ(z) e
iθ2(x,t,z), Im z ≥ 0,(2.50a)

detΦ−(x, t, z) = a33(z)b11(z)γ(z) e
iθ2(x,t,z), Im z ≤ 0.(2.50b)

(As customary, (2.50) are first obtained along the real z-axis, where the decompo-
sitions (2.30) hold, and then extended to the respective domains of analyticity by a
continuation principle.) Thus, the columns of Φ+(x, t, z) become linearly dependent
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at the zeros of a11(z) and b33(z) in the upper half plane, and those of Φ−(x, t, z) at
the zeros of a33(z) and b11(z) in the lower half plane. Even though such zeros do not
lead to bound states when z /∈ Co, they nonetheless must be included as part of the
discrete spectrum in the inverse problem.

Lemma 2.20 (see [31]). Suppose a11(z) has a zero zn in the upper half z-plane.
Then

(2.51) a11(zn) = 0 ⇔ b11(z
∗
n) = 0 ⇔ a33(q

2
o/zn) = 0 ⇔ b33(q

2
o/z

∗
n) = 0.

Lemma 2.20 implies that discrete eigenvalues ζn lying on the circle Co appear
in complex conjugate pairs {ζn, ζ∗n}, whereas discrete eigenvalues zn off Co appear in
symmetric quartets

{zn, z∗n, q2o/zn, q2o/z∗n} .
The following lemmas are also instrumental in the characterization of the discrete
spectrum.

Lemma 2.21. If Im zo > 0 and zo /∈ Co, then χ(x, t, zo) �= 0.
Lemma 2.22. Suppose Im zo > 0. Then the following statements are equivalent:
(i) χ(x, t, zo) = 0.
(ii) χ̄(x, t, q2o/zo) = 0.
(iii) χ(x, t, q2o/z

∗
o) = 0.

(iv) χ̄(x, t, z∗o) = 0.
(v) There exists a constant bo such that φ−,3(x, t, z

∗
o) = boφ+,1(x, t, z

∗
o).

(vi) There exists a constant b̃o such that φ−,1(x, t, q
2
o/z

∗
o) = b̃oφ+,3(x, t, q

2
o/z

∗
o).

(vii) There exists a constant b̂o such that φ−,1(x, t, zo) = b̂oφ+,3(x, t, zo).
(viii) There exists a constant b̌o such that φ−,3(x, t, q

2
o/zo) = b̌oφ+,1(x, t, q

2
o/zo).

We are are now finally ready to characterize the behavior of the eigenfunctions
in correspondence of the discrete spectrum. The two theorems that follow are proved
in Appendix A.7 without assuming that the off-diagonal scattering coefficients can be
extended off the real z-axis (as was done in [31] instead).

Theorem 2.23. Let ζn be a zero of a11(z) in the upper half plane with |ζn| = qo.
Then χ(x, t, ζn) = χ̄(x, t, ζ∗n) = 0. As a result, there exist constants cn and cn such
that

(2.52) φ−,1(x, t, ζn) = cnφ+,3(x, t, ζn), φ−,3(x, t, ζ
∗
n) = cnφ+,1(x, t, ζ

∗
n).

Theorem 2.24. Let zn be a zero of a11(z) in the upper half plane with |zn| �= qo.

Then |zn| < qo and b33(zn) �= 0. Moreover, there exist constants dn, ďn, d̂n, and dn
such that

φ−,1(x, t, zn) = dnχ(x, t, zn)/b33(zn), φ−,3(x, t, q
2
o/zn) = ďnχ̄(x, t, q

2
o/zn),

(2.53a)

χ(x, t, q2o/z
∗
n) = d̂nφ+,3(x, t, q

2
o/z

∗
n), χ̄(x, t, z∗n) = dnφ+,1(x, t, z

∗
n).(2.53b)

We should remark on the importance of these results. Recall from Lemma 2.19
that the only points in the discrete spectrum corresponding to bound states arise for
real values of k, corresponding to z ∈ Co. Indeed, the results of Theorem 2.23 imply
that each zero of a11(z) on Co does indeed correspond to a bound state. On the
other hand, it is Lemma 2.19 that leads to the constraint |zn| < qo in Theorem 2.24.
This is because, if |zn| > qo, the first of (2.53a), combined with the asymptotics in
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718 GINO BIONDINI AND DANIEL KRAUS

Lemma 2.2, implies that φ−,1(x, t, zn) vanishes as x→ ±∞. This is, of course, a bound
state, which would contradict Lemma 2.19. Conversely, if |zn| < qo, the eigenfunction
φ−,1(x, t, zn) grows exponentially as x → ∞, which does not contradict Lemma 2.19
(since the eigenfunction is not in L2(R)), and this case is therefore allowed. Indeed,
as we will see in section 3.6, this case leads to dark-bright soliton solutions of the
Manakov system.

Lemma 2.25. Assume that a11(z) has simple zeros {ζn}N1
n=1 on Co. Then the

norming constants in (2.52) obey the following symmetry relations:

(2.54) cn = −cn, c∗n =
b′11(ζ

∗
n)

a′33(ζ∗n)
cn, n = 1, . . . , N1.

Lemma 2.26. Assume that a11(z) has zeros {zn}N2
n=1 off the circle Co. (Note

that now it is not necessary to assume that such zeros are simple.) Then the norming
constants in (2.53) obey the following symmetry relations for n = 1, . . . , N2:

(2.55) ďn =
izn
qo

dn
b33(zn)

, dn = − d∗n
γ(z∗n)

, d̂n =
iqo
z∗n

d∗n
γ(z∗n)

.

2.6. Asymptotic behavior as z → ∞ and z → 0. To normalize the
Riemann–Hilbert problem (RHP), it will be necessary to examine the asymptotic
behavior both as z → ∞ and as z → 0. Consider the following formal expansion for
μ+(x, t, z):

μ+(x, t, z) =

∞∑
n=0

μn(x, t, z),(2.56a)

where

μ0(x, t, z) = E+(z),(2.56b)

μn+1(x, t, z) = −
∫ ∞

x

E+(z)e
i(x−y)Λ(z)E−1

+ (z)ΔQ+(y, t)μn(y, t, z)e
−i(x−y)Λ(z)dy.

(2.56c)

Recall that subscripts “bd” and “bo” denote, respectively, the block diagonal and
block off-diagonal parts of a given matrix. Using (2.56a), in Appendix A.8 we prove
the following.

Lemma 2.27. For all m ≥ 0, (2.56a) provides an asymptotic expansion for the
columns of μ+(x, t, z) as z → ∞ in the appropriate region of the complex z-plane,
with

[μ2m]bd = O(1/zm), [μ2m]bo = O(1/zm+1),(2.57a)

[μ2m+1]bd = O(1/zm+1), [μ2m+1]bo = O(1/zm+1).(2.57b)

Lemma 2.28. For all m ≥ 0, (2.56a) provides an asymptotic expansion for the
columns of μ+(x, t, z) as z → 0 in the appropriate region of the complex z-plane, with

[μ2m]bd = O(zm), [μ2m]bo = O(zm−1),(2.58a)

[μ2m+1]bd = O(zm), [μ2m+1]bo = O(zm).(2.58b)

Then, evaluating explicitly the first few terms in (2.56a), we obtain the following.
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Corollary 2.29. As z → ∞ in the appropriate regions of the complex plane,

μ±,1(x, t, z) =

(
1

(i/z)q(x, t)

)
+O(1/z2),

(2.59)

μ±,3(x, t, z) =

(−iq†(x, t)q±/(qoz)
q±/qo

)
+O(1/z2).

Similarly, as z → 0 in the appropriate regions of the complex plane,

μ±,1(x, t, z) =

(
q†(x, t)q±/q2o

(i/z)q±

)
+O(z),

(2.60)

μ±,3(x, t, z) =

( −iqo/z
q(x, t)/qo

)
+O(z).

We now compute the asymptotic behavior of the auxiliary eigenfunctions χ(x, t, z)
and χ̄(x, t, z). We recall the definition of the modified auxiliary eigenfunctions (2.31)
and combine the above asymptotics with (2.38) to obtain the following.

Lemma 2.30. As z → ∞ in the appropriate regions of the complex plane,

m(x, t, z) =

(−iq†(x, t)q⊥
−/(qoz)

q⊥−/qo

)
+O(1/z2),

m̄(x, t, z) =

(
iq†(x, t)q⊥

+/(qoz)
−q⊥

+/qo

)
+O(1/z2).

Similarly, as z → 0 in the appropriate regions of the complex plane,

m(x, t, z) =

(
0

q⊥
+/qo

)
+O(z), m̄(x, t, z) =

(
0

−q⊥
−/qo

)
+O(z).

Next, we find the asymptotic behavior of the scattering matrix entries.
Corollary 2.31. As z → ∞ in the appropriate regions of the complex plane,

a11(z) = 1 +O(1/z), b33(z) =
1

q2o
q†
−q+ +O(1/z),(2.61a)

a33(z) =
1

q2o
q†
+q− +O(1/z), b11(z) = 1 +O(1/z).(2.61b)

Similarly, as z → 0 in the appropriate regions of the complex plane,

a11(z) =
1

q2o
q†
+q− +O(z), b33(z) = 1 +O(z),(2.62a)

a33(z) = 1 +O(z), b11(z) =
1

q2o
q†
−q+ +O(z).(2.62b)

Finally, we find the asymptotic behavior of the off-diagonal scattering matrix
entries.

Corollary 2.32. As z → ∞ on the real z-axis,

(2.63) [A±1(z)]o =
1

q2o

⎛
⎝0 0 0
0 0 −(q⊥

∓)
†q±

0 q†
±q⊥∓ 0

⎞
⎠+O(1/z) ,D
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(2.64) a22(z) =
1

q2o
q†
−q+ +O(1/z), b22(z) =

1

q2o
q†
+q− +O(1/z).

Similarly, as z → 0 on the real z-axis,

(2.65) [A±1(z)]o =
iqo
z

⎛
⎝ 0 0 0
(q⊥

∓)
†q± 0 0
0 0 0

⎞
⎠+O(1),

(2.66) a22(z) =
1

q2o
q†
−q+ +O(z), b22(z) =

1

q2o
q†
+q− +O(z).

Note that, unlike what happens in the scalar case and in the case with ZBC,
not all off-diagonal entries of the scattering matrix vanish as z → ∞. As we will
see, however, this does not complicate the inverse problem since all the reflection
coefficients will still vanish as z → ∞.

2.7. Behavior at the branch points. We now discuss the behavior of the
Jost eigenfunctions and the scattering matrix at the branch points k = ±qo. The
complication there is due to the fact that λ(±qo) = 0, and therefore, at z = ±qo,
the two exponentials e±iλx reduce to the identity. Correspondingly, at z = ±qo,
the matrices E±(z) are degenerate. Nonetheless, the term E±(z) ei(x−y)Λ(z)E−1

± (z)
appearing in the integral equations for the Jost eigenfunctions remains finite as z →
±qo:

(2.67) lim
z→±qo

E±(z)eiξΛ(z)E−1
± (z) =

(
1∓ iqoξ ξq†

±
ξq± 1

q2o
U±(ξ)

)
,

where ξ = x − y and U±(ξ) = (1 ± iqoξ)q±q
†
± + e±iqoξq⊥

±(q
⊥
±)

†. Thus, if q → q±
sufficiently fast as x → ±∞, the integrals in (2.16) are also convergent at z = ±qo,
and the Jost solutions admit a well-defined limit at the branch points. Nonetheless,
detφ±(x, t,±qo) = 0 for all (x, t) ∈ R2. Thus, the columns of φ±(x, t, qo) (as well as
those of φ±(x, t,−qo)) are linearly dependent. Comparing the asymptotic behavior of
the columns of φ±(x, t,±qo) as x→ ±∞, we obtain

(2.68) φ±,1(x, t, qo) = iφ±,3(x, t, qo), φ±,1(x, t,−qo) = −iφ±,3(x, t,−qo).
Next, we characterize the limiting behavior of the scattering matrix near the branch
points. It is easy to express all entries of the scattering matrix A(z) as Wronskians:

aj�(z) =
z2

z2 − q2o
Wj�(x, t, z)e

−iθ2(x,t,z),(2.69a)

where

Wj�(x, t, z) = det(φ−,�(x, t, z), φ+,j+1(x, t, z), φ+,j+2(x, t, z)) ,(2.69b)

and j + 1 and j + 2 are calculated modulo 3. We then have the following Laurent
series expansions about z = ±qo:

(2.70) aij(z) =
aij,±
z ∓ qo

+ a
(o)
ij,± +O(z ∓ qo), z ∈ R \ {±qo} ,

where, for example,

a11,± = ±qo
2
W11(x, t,±qo) e∓iqo(x∓qot),(2.71a)
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a
(o)
11,± = ±qo

2

d

dz
W11(x, t, z)|z=±qoe

∓iqo(x∓qot) +W11(x, t,±qo) e∓iqo(x∓qot) .(2.71b)

Summarizing, the asymptotic expansion of A(z) in a neighborhood of the branch
point is

(2.72) A(z) =
1

z ∓ qo
A± +A

(o)
± +O(z ∓ qo),

where A
(o)
± = (a

(o)
ij,±),

(2.73) A± = a11,±

⎛
⎝ 1 0 ∓i

0 0 0
∓i 0 −1

⎞
⎠+ a12,±

⎛
⎝0 1 0
0 0 0
0 ∓i 0

⎞
⎠ ,

and a12,± = ±(qo/2)W12(x, t,±qo)e∓iqo(x∓qot). Note that the second row of A± is
identically zero because a2j,± = ±(qo/2)W2j(x, t,±qo)e∓iqo(x∓qot), which is zero by
virtue of (2.68). Finally, it is straightforward to see from (2.73) and the symmetry
(2.35) that

(2.74) lim
z→±qo

ρ1(z) = ∓i, lim
z→±qo

ρ2(z) = 0,

where the reflection coefficients ρ1(z) and ρ2(z) are as defined in (2.47).

3. Inverse problem. As usual, the inverse scattering problem is formulated in
terms of an appropriate RHP. To this end, one needs a suitable jump condition that re-
lates eigenfunctions that are meromorphic in the upper half z-plane to eigenfunctions
that are meromorphic in the lower half z-plane. For simplicity, in the development of
the inverse problem in this section and the next one we will restrict ourselves to the
class of potentials such that q+ is parallel to q−.

3.1. Riemann–Hilbert problem. The starting point for the formulation of
the inverse problem is the scattering relation (2.19), which will lead to a jump condi-
tion for the RHP. The derivation, however, is considerably more involved than in the
scalar case. The reason is that some of the Jost eigenfunctions are not analytic, and
therefore (2.19) must be reformulated in terms of the fundamental analytic eigenfunc-
tions Φ±(x, t, z) defined in (2.49). Proceeding in this way, in Appendix A.9 we prove
the following lemma.

Lemma 3.1. The meromorphic matrices M±(x, t, z) = (m±
1 ,m

±
2 ,m

±
3 ), defined

as

M+(x, t, z) = Φ+ e−iΘ diag

(
1

a11
,
1

b33
, 1

)
=

(
μ−,1

a11
,
m

b33
, μ+,3

)
, Im z > 0,

(3.1a)

M−(x, t, z) = Φ− e−iΘ diag

(
1,

1

b11
,
1

a33

)
=

(
μ+,1,− m̄

b11
,
μ−,3

a33

)
, Im z < 0,

(3.1b)

satisfy the jump condition

(3.2) M+(x, t, z) = M−(x, t, z)(I− e−iKΘ(x,t,z)L(z)eiKΘ(x,t,z)), z ∈ R ,
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where K = diag(−1, 1,−1) as before and

L(z) =

⎛
⎜⎜⎝

|ρ2|2
γ − ρ∗1

[
ρ̂∗1 +

iqo
zγ ρ

∗
2ρ̂2

]
ρ∗
2

γ +
q2o

z2γ2ρ
∗
2|ρ̂2|2 − iqo

zγ ρ̂
∗
1ρ̂

∗
2

iqo
zγ ρ

∗
2ρ̂2 + ρ̂∗1

−ρ2 + iqo
z ρ

∗
1ρ̂2 − q2o

z2γ |ρ̂2|2 − iqo
z ρ̂2

ρ∗1
iqo
zγ ρ̂

∗
2 0

⎞
⎟⎟⎠ ,

where for brevity we denoted ρj = ρj(z) and ρ̂j = ρj(q
2
o/z) for j = 1, 2.

Note the appearance of the matrix K in the jump condition, which can be traced
to the use of (2.30) to eliminate the nonanalytic eigenfunctions. In order for the
above RHP to admit a unique solution, one must also specify a suitable normalization
condition. In this case, this condition is provided by the leading-order asymptotic
behavior of M± as z → ∞ and the pole contribution at 0 to help regularize the
RHP (3.2). Using the information from section 2.6, we have the following.

Lemma 3.2. The matrices M±(x, t, z) defined in (3.1) have the following asymp-
totic behavior:

M±(x, t, z) = M∞ +O(1/z) , z → ∞ , Im z ≷ 0 ,(3.3a)

M±(x, t, z) = (i/z)M0 +O(1) , z → 0 , Im z ≷ 0 ,(3.3b)

where

M∞ =

(
1 0 0
0 q⊥

+/qo q+/qo

)
, M0 =

(
0 0 −qo
q+ 0 0

)
.(3.3c)

Note that both behaviors are expressed in terms of the value of the potential as
x → ∞ (instead of that as x → −∞). This is because (2.19) breaks the symmetry
between μ− and μ+.

In addition to the asymptotics in Lemma 3.2, to fully specify the RHP (3.2) one
must also specify residue conditions. This is done using the characterization of the
discrete spectrum obtained in section 2.5. For the remainder of this section, we assume
that the zeros {ζn}N1

n=1 and {zn}N2
n=1 of a11(z) of the analytic scattering coefficients

are all simple. Then in Appendix A.9 we prove the following.
Lemma 3.3. The meromorphic matrices defined in Lemma 3.1 satisfy the follow-

ing residue conditions:

[Resz=ζn M+](x, t) = Cn(m
+
3 (ζn),0,0), [Resz=ζ∗

n
M−](x, t) = Cn(0,0,m

−
1 (ζ

∗
n)),

(3.4a)

[Resz=zn M+](x, t)=Dn(m
+
2 (zn),0,0), [Resz=q2o/zn

M−](x, t)=−Ďn(0,0,m
−
2 (q

2
o/zn)),

(3.4b)

[Resz=z∗
n
M−](x, t)=−Dn(0,m

−
1 (z

∗
n),0), [Resz=q2o/z

∗
n
M+](x, t)=D̂n(0,m

+
3 (q

2
o/z

∗
n),0),

(3.4c)

with

Cn(x, t) =
cn

a′11(ζn)
e−2iθ1(ζn), Cn(x, t) =

cn
a′33(ζ∗n)

e−2iθ1(ζn),

Dn(x, t) =
dn

a′11(zn)
e−i(θ1−θ2)(zn), Ďn(x, t) =

ďnb33(zn)

a′33(q2o/zn)
e−i(θ1−θ2)(zn),

D̂n(x, t) =
d̂n

b′33(q2o/z∗n)
ei(θ1−θ2)(z

∗
n), Dn(x, t) =

dn
b′11(z∗n)

ei(θ1−θ2)(z
∗
n),
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 723

n = 1, . . . , N1 for equations involving ζn, and n = 1, . . . , N2 for equations involving
zn.

As usual, the formulation of the RHP involves “continuous spectral data” (namely,
the reflection coefficients, which determine the matrix L(z) for all z ∈ R) “discrete
spectral data” (namely, the discrete eigenvalues and norming constants, which deter-
mine the residue conditions), and the normalization as z → ∞ (the normalization
as z → 0 is then determined via the symmetries). Moreover, the norming constants
appearing in Lemma 3.3 are related by the following equations.

Lemma 3.4 (symmetries of the residues). The functions Cn, C̄n, Dn, Ďn, D̂n,
and D̄n defined in Theorem 3.7 obey the following symmetry relations:

Cn(x, t) = e−2iarg(ζn)Cn(x, t) = C∗
n(x, t),(3.5a)

Ďn(x, t) = − iqo
zn
Dn(x, t), Dn(x, t) = −D

∗
n(x, t)

γ(z∗n)
, D̂n(x, t) = − iq3o

(z∗n)3
D∗

n(x, t)

γ(z∗n)
.

(3.5b)

Correspondingly, the minimal set of spectral data is composed of the contin-
uous reflection coefficients ρ1(z) and ρ2(z), the boundary condition q+, the dis-
crete eigenvalues {ζn}N1

n=1 and {zn}N2
n=1, and the norming constants {Cn(x, t)}N1

n=1

and {Dn(x, t)}N2
n=1. Moreover, note that (3.5a) in Lemma 3.4 immediately implies the

following.
Corollary 3.5. The norming constants Cn for the discrete eigenvalues on the

circle satisfy the constraint arg(Cn) = arg(ζn) for n = 1, . . . , N1.
This result is not surprising, since it is the same as in the scalar case [19]. On

the other hand, no such constraint exists for the eigenvalues off the circle. As we will
see later, this difference will translate into the number of degrees of freedom of the
corresponding soliton solutions generated by each eigenvalue (cf. section 3.5).

Remark 3.6. Summarizing, the RHP for the inverse problem is formulated as
follows. Given

(i) the boundary condition q+;
(ii) the reflection coefficients ρ1(z) and ρ2(z) for z ∈ (−∞,−qo) ∪ (qo,∞);
(iii) the discrete eigenvalues {ζn}N1

n=1 and {zn}N2
n=1 on and off the circle, respectively,

and the corresponding norming constants {Cn(x, t)}N1
n=1 and {Dn(x, t)}N2

n=1;
(iv) the symmetries (2.48) and (3.5),

find a sectionally meromorphic function M(x, t, z) satisfying the jump condition (3.2),
the normalization conditions (3.3), and the residue conditions (3.4).

Recall that the symmetries (2.48) yield the reflection coefficients for z ∈ (−qo, qo).
Also, limz→∞ ρj(z) = 0 for j = 1, 2 (cf. (2.63)), while limz→±qo ρ1(z) = ∓i and
limz→±qo ρ2(z) = 0 (cf. (2.74)).

3.2. Formal solution of the RHP and reconstruction formula. The RHP
defined in the previous section consists of finding a sectionally meromorphic matrix
M(x, t, z) which equals M±(x, t, z) for Im z ≷ 0 and satisfies the jump condition (3.2)
as well as the asymptotics and residue conditions in Lemmas 3.2 and 3.3. The solu-
tion of this RHP can be expressed in terms of a mixed system of algebraic-integral
equations, which are obtained by subtracting the asymptotic behavior at infinity,
by regularizing (i.e., subtracting any pole contributions from the discrete spectrum)
and then applying Cauchy projectors. Specifically, in Appendix A.9, we prove the
following.
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Theorem 3.7. The solution of the RHP defined by Lemmas 3.1, 3.2, and 3.3 is
given by

(3.6) M(x, t, z) = M∞ + (i/z)M0 − 1

2πi

∫
R

M−(ζ)
ζ − z

e−iKΘ(ζ)L(ζ)eiKΘ(ζ)dζ

+

N1∑
i=1

(
Resz=ζi M

+

z − ζi
+

Resz=ζ∗
i
M−

z − ζ∗i

)
+

N2∑
j=1

(
Resz=z∗

j
M−

z − z∗j
+

Resz=zj M
+

z − zj

)

+

N2∑
j=1

(
Resz=q2o/zj

M−

z − q2o/zj
+

Resz=q2o/z
∗
j
M+

z − q2o/z
∗
j

)
,

where M(x, t, z) = M±(x, t, z) for Im z ≷ 0, respectively.
Moreover, the eigenfunctions in the residue conditions in Lemma 3.3 are given by

(3.7a) m−
1 (x, t, w) =

(
1

(i/w)q+

)
− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)1(ζ)

ζ − w
dζ

+

N1∑
i=1

[
Ci

w − ζi
m+

3 (ζi)

]
+

N2∑
j=1

[
Dj

w − zj
m+

2 (zj)

]
, w = ζ∗n, z

∗
n,

(3.7b) m+
3 (x, t, w) =

(−iqo/w
q+/qo

)
− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)3(ζ)

ζ − w
dζ

+

N1∑
i=1

[
Ci

w − ζ∗i
m−

1 (ζ
∗
i )

]
−

N2∑
j=1

[
Ďj

w − q2o/zj
m−

2 (q
2
o/zj)

]
, w = ζn, q

2
o/z

∗
n,

(3.7c) m−
2 (x, t, q

2
o/zj′) =

(
0

q⊥
+/qo

)
− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)2(ζ)

ζ − q2o/zj′
dζ

−
N2∑
j=1

[
Dj

q2o/zj′ − z∗j
m−

1 (z
∗
j )

]
+

N2∑
j=1

[
D̂j

q2o/zj′ − q2o/z
∗
j

m+
3 (q

2
o/z

∗
j )

]
,

(3.7d) m+
2 (x, t, zj′) =

(
0

q⊥
+/qo

)
− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)2(ζ)

ζ − zj′
dζ

−
N2∑
j=1

[
Dj

zj′ − z∗j
m−

1 (z
∗
j )

]
+

N2∑
j=1

[
D̂j

zj′ − q2o/z
∗
j

m+
3 (q

2
o/z

∗
j )

]
.

Throughout, the (x, t)-dependence was omitted from the right-hand side of all equations
for simplicity.

As usual, once the solution of the RHP has been obtained, one can reconstruct
the potential in terms of the norming constants and scattering coefficients by compar-
ing the resulting asymptotics of the eigenfunctions to that obtained from the direct
scattering problem. In this way, in Appendix A.9 we prove the following.

Theorem 3.8 (reconstruction formula). Let M(x, t, z) be the solution of the
RHP in Theorem 3.7. The corresponding solution q(x, t) = (q1(x, t), q2(x, t))

T of the
defocusing Manakov system with NZBC (1.2) is reconstructed as
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(3.8) qk(x, t) = q+,k − 1

2π

∫
R

(M−e−iKΘLeiKΘ)(k+1)1(x, t, ζ)dζ

− i

N1∑
i=1

Ci(x, t)m
+
(k+1)3(x, t, ζi)− i

N2∑
j=1

Dj(x, t)m
+
(k+1)2(x, t, zj).

3.3. Trace formula and asymptotic phase difference. The last task of the
inverse problem is that of reconstructing the analytic scattering coefficients from the
scattering data (i.e., the discrete eigenvalues and the reflection coefficients). In Ap-
pendix A.9, we prove the following.

Lemma 3.9 (trace formula). The analytic scattering coefficient a11(z) defined
in (2.19) is given by

(3.9) a11(z) =

N1∏
n=1

z − ζn
z − ζ∗n

N2∏
n=1

z − zn
z − z∗n

× exp

[
− 1

2πi

∫
R

log

(
1− |ρ1(ζ)|2 − ζ2

ζ2 − q2o
|ρ2(ζ)|2

)
dζ

ζ − z

]
.

Expressions for the other analytic coefficients follow immediately from the sym-
metries (2.35) and (2.43). Explicitly, b11(z) = b33(q

2
o/z) = a∗11(z

∗) = a∗33(q
2
o/z

∗).
Comparing (3.9) with the asymptotic behavior of a11(z) as z → 0 in (2.62a) yields
the following.

Corollary 3.10. The asymptotic phase difference Δθ = θ+ − θ− between the
limiting values of the potential is given by the expression
(3.10)

Δθ = −2

N1∑
n=1

arg ζn − 2

N2∑
n=1

arg zn − 1

2π

∫
R

log

(
1− |ρ1(ζ)|2 − ζ2

ζ2 − q2o
|ρ2(ζ)|2

)
dζ

ζ
.

Equation (3.10) is the generalization of the so-called theta condition that was
obtained in [19] for the scalar case (i.e., for the NLS equation). Note, however,
that (3.10) does not imply that there exists an additional constraint on the spectral
data. Rather, (3.10) simply means that the asymptotic phase shift is determined
uniquely by the spectral data as part of the inverse problem, and therefore one cannot
prescribe it independently.

Finally, we note that one can reconstruct the entire scattering matrix in terms of
the trace formulae and reflection coefficients. Explicitly, combining (2.47) and (2.48)
with the definition B(z) = A−1(z) yields the following for z ∈ R:

a12(z) = a∗11(z)a
∗
11(q

2
o/z)[(iqo/z)ρ1(z)ρ

∗
2(q

2
o/z) + ρ∗2(z)]/γ(z),(3.11a)

a22(z) = a∗11(z)a
∗
11(q

2
o/z)[1 + ρ1(z)ρ1(q

2
o/z)],(3.11b)

a32(z) = a∗11(z)a
∗
11(q

2
o/z)[ρ1(q

2
o/z)ρ

∗
2(z)− (iqo/z)ρ

∗
2(q

2
o/z)]/γ(z).(3.11c)

(Recall that a13(z) and a23(z) can be obtained directly in terms of the reflection
coefficients and the analytic scattering coefficients via (2.48).)

3.4. Existence and uniqueness of the solution of the RHP. The represen-
tation (3.6) of the solution of the RHP was derived under the assumption of existence.
An obvious and important issue is whether rigorous results can be obtained about ex-
istence and uniqueness of solutions. In Appendix A.10 we show that (restricting
ourselves for simplicity to the case in which no discrete spectrum is present) the issue
of uniqueness can be answered in a straightforward way.
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726 GINO BIONDINI AND DANIEL KRAUS

Theorem 3.11. Suppose that no discrete spectrum is present. If the RHP defined
by Lemmas 3.1, 3.2, and 3.3 admits a solution, this solution is unique.

On the other hand, the issue of existence is much more subtle. One can reduce the
question of existence of a solution of the RHP to one of the existence of a solution of an
appropriately formulated integral equation, which we introduce next. Let us denote
by I the identity operator on L2(R) and define the Cauchy projection operators as

(P±f)(s) =
1

2πi
lim
ε→0+

∫
R

f(ζ)

ζ − (s± iε)
dζ ,(3.12a)

which are also well defined in L2(R), and recall that (P±f)(s) = limz→s(Pf)(z),
where P denotes the Cauchy-type integral

(Pf)(z) =
1

2πi

∫
R

f(ζ)

ζ − z
dζ , z /∈ R ,(3.12b)

and the limit is taken from the upper or lower half plane, respectively. We begin by
rewriting the jump condition (3.2) as

M+(x, t, s) = M−(x, t, s)V(x, t, s) , s ∈ R ,

where the jump matrix V(x, t, s) is

V(x, t, s) = I− e−iKΘ(x,t,s)L(x, t, s)eiKΘ(x,t,s) , s ∈ R .

Hereafter, for simplicity we omit the dependence on x and t for the remainder of this
section. Without loss of generality we may decompose the jump matrix as

(3.13) V(s) = V−1
+ (s)V−(s), s ∈ R,

where V±(s) are, respectively, upper/lower triangular matrices. (Note that here the
subscripts ± do not indicate normalization as x → ±∞ as in the rest of this work.)
Next we define

(3.14) W± = ±(I−V±), W = W+ +W−,

where, for brevity, we have omitted the s dependence. Finally, we use these quantities
to define a new operator Pw in L2(R) by (3.15):

(3.15) Pwf = P+(fW+) + P−(fW−).

In Appendix A.10 we then follow the approach of [6, 7, 14] to prove the following.
Theorem 3.12. Suppose that no discrete spectrum is present. If L(·) ∈ L2(R) ∩

L∞(R) and I − Pw has Fredholm index zero, the RHP defined by Lemmas 3.1, 3.2,
and 3.3 admits a unique solution.

Note that stronger results could be obtained. For example, using techniques sim-
ilar to those in [6, 7, 15], one can show that if q(x, t)−q± decay sufficiently rapidly as
x → ±∞, the scattering coefficients are infinitely differentiable functions, and there-
fore the condition L(·) ∈ L∞(R) can be removed, since it is automatically satisfied.
Similarly, one can show that the asymptotic behavior in Corollaries 2.31 and 2.32
implies L(·) ∈ L2(R). Similarly, the possible presence of a discrete spectrum can be
taken into account without much difficulty. Essentially, in this case the inverse prob-
lem can be reduced to the inversion of a linear operator of the form T = I + T1 + T2,
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 727

where T1 has small norm and T2 is compact [7]. For brevity, however, we omit a proof
of these results.

A more subtle issue is the requirement in Theorem 3.12 that the Fredholm index
of the operator I − Pw be zero. One can again use the methods of [6, 7, 14] to show
that this is a consequence of the properties of the scattering data. A detailed proof of
this result, however, is nontrivial, and it is therefore omitted for simplicity. We refer
the reader to [6, 7, 14] for a discussion of this issue in related contexts.

3.5. Reflectionless potentials and pure soliton solutions. We now look at
potentials q(x, t) for which there is no jump from M+ to M− across the continuous
spectrum. In this case, the reflection coefficients from (2.47) vanish identically, and
the inverse problem reduces to an algebraic system whose solution yields the soliton
solutions of the integrable nonlinear equation. Note first that the scattering matrices
contain off-diagonal elements that do not appear in the definition of the reflection
coefficients. Nonetheless, the first and second symmetries combined with the fact
that B(z) = A−1(z) allow us to conclude the following.

Lemma 3.13. The scattering matrices A(z) and B(z) are diagonal in the reflec-
tionless case.

By virtue of Corollary 3.5, we can parametrize the functions Cn(x, t) in Theo-
rem 3.7 as follows:

Cn(x, t)e
2iθ1(x,t,ζn) = 2|λ(ζn)|e2|λ(ζn)|ξn+iϕn , n = 1, . . . , N1,

where ξn and ϕn are real parameters and where ϕn = arg(ζn) +mπ (m = 0, 1) were
found by comparing the first and second equations of (3.5a). We will see thatm = 0, 1
for singular and for regular soliton solutions, respectively.

Theorem 3.14. In the reflectionless case, the solution (3.8) of the defocusing
Manakov system with NZBC may be written

(3.16) q(x, t) =
1

detG

(
detGaug

1

detGaug
2

)
, Gaug

n =

(
q+,n YT

Bn G

)
, n = 1, 2,

where

Bn = (Bn1, . . . , Bn(N1+N2))
T , G = I+ F, Y = (Y1, . . . , YN1+N2)

T
,

Bni′ =

⎧⎪⎪⎨
⎪⎪⎩
q+,n/qo, i′ = 1, . . . , N1,

(−1)n+1 r+,n

qo
−

N2∑
j=1

iq+,n

z∗j
dji′ , i′ = N1 + 1, . . . , N1 +N2,

Fjk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− iζk
qo
d
(2)
k (ζj), j, k = 1, . . . , N1,

d
(4)
k−N1

(ζj), j = 1, . . . , N1, k = N1 + 1, . . . , N1 +N2,

N2∑
�=1

d�jd
(1)
k (z∗� ), j = N1 + 1, . . . , N1 +N2, k = 1, . . . , N1,

N2∑
�=1

d�jd
(3)
k−N1

(z∗� ), j, k = N1 + 1, . . . , N1 +N2,

djk = d
(5)
j (zk−N1) +

iz∗j
qo
d
(6)
j (zk−N1), Yn=

{
iCn(x, t), n = 1, . . . , N1,

iDn−N1(x, t), n = N1 + 1, . . . , N1 +N2,

and n = n+ (−1)n+1.
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728 GINO BIONDINI AND DANIEL KRAUS

Recall that the norming constants Cn associated with discrete eigenvalues on the
circle satisfy the constraint in Corollary 3.5, whereas no such constraint exists for
the norming constants Dn associated with discrete eigenvalues off the circle. (Also
recall that discrete eigenvalues on the circle are parametrized by one real constant,
while those off the circle are parametrized by two real constants.) Correspondingly,
discrete eigenvalues on the circle generate the usual dark soliton solutions, which have
two real degrees of freedom: the soliton depth (governed by the discrete eigenvalue)
and the soliton position offset (governed by the norming constant). In contrast,
discrete eigenvalues off the circle generate dark-bright soliton solutions, which have
two additional degrees of freedom in addition to those of dark solitons: the amplitude
of the bright component (also governed by the discrete eigenvalue) and its phase (also
governed by the norming constant).

3.6. Explicit solutions. In the case of just one discrete eigenvalue in each fun-
damental domain (circle or disk), the resulting soliton solutions assume a particularly
simple form.

For example, considering a single pair of eigenvalues on the circle (N1 = 1 and
N2 = 0) and parametrizing the discrete eigenvalue and norming constant as

ζ1 = qoe
iα, c1 = eξ+i(α+π/2+(m−1)π), 0 < α < π, ξ ∈ R, m = 0, 1 ,

from (3.16) one obtains the following singular/regular dark soliton solution of the
Manakov system (corresponding to m = 0 and m = 1, respectively):

q(x, t) = eiα
[
cosα− i sinα

[
tanh[qo sinα(x − 2qot cosα)− ξ/2]

](−1)m+1]
q+.

Similarly, considering a single quartet of eigenvalues off the circle (N1 = 0 and
N2 = 1) and introducing the parametrizations

z1 = Z eiα, d1 = eξ+iφ, 0 < Z < qo, 0 < α < π, ξ, φ ∈ R ,

from (3.16) one obtains the following dark-bright soliton solution of the Manakov
system:

q(x, t) = eiα
[
cosα− i sinα tanhU(x, t)

]
q+ + Voe

i[Z x cosα−Z2t cos(2α)] sechU(x, t)q⊥
+,

where

U(x, t) = Z sinα (x− 2Zt cosα) − ξ − 1
2 log

(
Z2(q2o − Z2)

q4o + Z4 − 2Z2q2o cos(2α)

)
,

Vo =
i
√
q2o − Z2(q2oe

2iα − Z2)(1− e2iα)

2qo
√
q4o + Z4 − 2Z2q2o cos(2α)

ei[φ−3α].

Note how the bright soliton part (which is aligned with q⊥
+) is always along an or-

thogonal polarization to that of the dark soliton part (which is aligned with q+).
Of course, (3.16) allow one to produce multisoliton solutions just as easily (but

the resulting expressions will be more complicated). For example, Figure 1 shows a
two-dark soliton solution (N1 = 2, N2 = 0), Figure 2 shows a two-dark-bright soliton
solution (N1 = 0, N2 = 2), and Figure 3 shows a two-dark, two-dark-bright soliton
solution (N1 = N2 = 2).
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 729

Fig. 1. A two-dark soliton solution of the defocusing Manakov system obtained by taking
N1 = 2, N2 = 0, q+ = (1, 0)T , ζ1 = eiπ/2, ζ2 = eiπ/4, ξ1 = ξ2 = 0.

Fig. 2. A two-dark-bright soliton solution of the defocusing Manakov system obtained by taking
N1 = 0, N2 = 2, q+ = (1, 0)T , z1 = 0.5eiπ/2, z2 = 0.75eiπ/4.

Fig. 3. A two-dark, two-dark-bright soliton solution of the defocusing Manakov system obtained
by taking N1 = 2, N2 = 2, q+ = (1, 0)T , ζ1 = eiπ/2, ζ2 = eiπ/5, ξ1 = ξ2 = 0, z1 = 0.5eiπ/2,
z2 = 0.75eiπ/4.D
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4. Double-pole solutions. In this section, we present novel solutions of the
Manakov system obtained when the analytic scattering coefficients have a double
zero. Recall that such a situation is allowed in the focusing NLS equation, even with
ZBC [41], but is not possible in the defocusing NLS equation [19]. For brevity, we refer
to the corresponding solutions as “double-pole” solutions of the Manakov system, but
it should be clear that it is only the meromorphic matrices in the RHP that possess
double poles, while the solutions of the Manakov system are regular in the whole
xt-plane.

Suppose that a11(zo) = a′11(zo) = 0 and a′′11(zo) �= 0, with |zo| < qo. As before,
in order to regularize the RHP (3.2), one must subtract the residue contributions.
As we will see, however, the principal part of the Laurent series expansion of the
meromorphic matrices contains additional terms, which must also be subtracted. As a
result, the derivatives of the eigenfunctions with respect to z will appear as additional
unknowns in the RHP. In turn, this will result in the presence of additional norming
constants, whose symmetries must also be properly characterized. The proofs of all
the results presented in this section are collected in Appendix A.12.

4.1. Behavior of the eigenfunctions at a double pole. For brevity, we sup-
press the (x, t)-dependence of the eigenfunctions on the right-hand sides of equations
throughout this and the following section when doing so introduces no confusion.

Lemma 4.1. Suppose that a11(zo) = a′11(zo) = 0 and a′′11(zo) �= 0, with |zo| < qo.

There exist constants do, d̂o, ďo, d̄o, fo, f̂o, f̌o, f̄o, go, ĝo, ǧo, and ḡo such that

φ′−,1(x, t, zo) = doχ
′(zo) + foχ(zo) + goφ+,3(zo),(4.1a)

χ′(x, t, q2o/z
∗
o) = d̂oφ

′
+,3(q

2
o/z

∗
o) + f̂oφ+,3(q

2
o/z

∗
o) + ĝoφ−,1(q

2
o/z

∗
o),(4.1b)

φ′−,3(x, t, q
2
o/zo) = ďoχ̄

′(q2o/zo) + f̌oχ̄(q
2
o/zo) + ǧoφ+,1(q

2
o/zo),(4.1c)

χ̄′(x, t, z∗o) = doφ
′
+,1(z

∗
o) + foφ+,1(z

∗
o) + goφ−,3(z

∗
o).(4.1d)

Note that do, . . . , d̄o are the same constants appearing in the relations (2.53) for
a single eigenvalue, whereas fo, . . . , f̄o and go, . . . , ḡo appear as a result of the double
multiplicity. It will be useful to express (4.1) in terms of the modified eigenfunctions:

μ′
−,1(x, t, zo) = −iθ′1(zo)μ−,1(zo) + (idoθ

′
2(zo) + fo)m(zo) e

i(θ2−θ1)(zo)

(4.2a)

+ dom
′(zo)ei(θ2−θ1)(zo) + goμ+,3(zo)e

−2iθ1(zo),

m′(x, t, q2o/z
∗
o) = −iθ′2(q2o/z∗o)m(q2o/z

∗
o) + ĝoμ−,1(q

2
o/z

∗
o)e

i(θ1−θ2)(q
2
o/z

∗
o )

(4.2b)

+
[(

−id̂oθ′1(q2o/z∗o) + f̂o

)
μ+,3(q

2
o/z

∗
o) + d̂oμ

′
+,3(q

2
o/z

∗
o)
]
e−i(θ1+θ2)(q

2
o/z

∗
o),

μ′
−,3(x, t, q

2
o/zo) = iθ′1(q

2
o/zo)μ−,3(q

2
o/zo) + ǧoμ+,1(q

2
o/zo)e

2iθ1(q
2
o/zo)

(4.2c)

+
[(
iďoθ

′
2(q

2
o/zo) + f̌o

)
m̄(q2o/zo) + ďom̄

′(q2o/zo)
]
ei(θ1+θ2)(q

2
o/zo),

m̄′(x, t, z∗o) =
[(
idoθ

′
1(z

∗
o) + fo

)
μ+,1(z

∗
o) + doμ

′
+,1(z

∗
o)
]
ei(θ1−θ2)(z

∗
o )

(4.2d)

− iθ′2(z
∗
o)m̄(z∗o) + goμ−,3(z

∗
o)e

−i(θ1+θ2)(z
∗
o ).

These expressions will allow us to obtain the generalization of the residue relations.
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Let P−2[F ]|z=zo denote the coefficient of 1/(z − zo)
2 in the Laurent series expansion

of a meromorphic function F (z) near z = zo. The following result is trivial.
Proposition 4.2. Suppose that f(z) and a(z) are analytic functions of z in a

neighborhood of z = zo. Also, suppose a(z) has a double zero at z = zo and f(zo) �= 0.
Then

(4.3) Resz=zo

(
f

a

)
=

2f ′(zo)
a′′(zo)

− 2

3

f(zo)a
′′′(zo)

(a′′(zo))2
, P−2

z=zo

(
f

a

)
=

2f(zo)

a′′(zo)
.

Corollary 4.3. Under the hypotheses of Lemma 4.1, we have

P−2
z=zo

(
μ−,1

a11

)
(x, t) = Kom(zo), P−2

z=q2o/zo

(
μ−,3

a33

)
(x, t) = Ǩom̄(q2o/zo),

P−2
z=z∗

o

(
− m̄

b11

)
(x, t) = −Koμ+,1(z

∗
o), P−2

z=q2o/z
∗
o

(
m

b33

)
(x, t) = K̂oμ+,3(q

2
o/z

∗
o),

Resz=zo

(
μ−,1

a11

)
(x, t) = Kom

′(zo) +Ko

[
Fo + i(x− 2zot)

]
m(zo) +Goμ+,3(zo),

Resz=q2o/zo

(
μ−,3

a33

)
(x, t) = Ǩom̄

′(q2o/zo) + Ǩo

[
F̌o − iz2o

q2o
(x− 2zot)

]
m̄(q2o/zo)

+ Ǧoμ+,1(q
2
o/zo),

Resz=z∗
o

(
− m̄

b11

)
(x, t)= −Koμ

′
+,1(z

∗
o)−Ko

[
F o − i(x− 2z∗ot)

]
μ+,1(z

∗
o)−Goμ−,3(z

∗
o),

Resz=q2o/z
∗
o

(
m

b33

)
(x, t) = K̂oμ

′
+,3(q

2
o/z

∗
o) + K̂o

[
F̂o +

i(z∗o)
2

q2o
(x− 2z∗ot)

]
μ+,3(q

2
o/z

∗
o)

+ Ĝoμ−,1(q
2
o/z

∗
o),

where

Ko(x, t) =
2do

a′′11(zo)
e−i(θ1−θ2)(zo), Ǩo(x, t) =

2ďo
a′′33(q2o/zo)

e−i(θ1−θ2)(zo),

Ko(x, t) =
2do

b′′11(z∗o)
ei(θ1−θ2)(z

∗
o ), K̂o(x, t) =

2d̂o
b′′33(q2o/z∗o)

ei(θ1−θ2)(z
∗
o ),

Fo =
fo
do

− a′′′11(zo)
3a′′11(zo)

, Go(x, t) =
2go

a′′11(zo)
e−2iθ1(zo),

F̌o =
f̌o

ďo
− a′′′33(q

2
o/zo)

3a′′33(q2o/zo)
, Ǧo(x, t) =

2ǧo
a′′33(q2o/zo)

e−2iθ1(zo),

F o =
fo
do

− b′′′11(z
∗
o)

3b′′11(z∗o)
, Go(x, t) =

2go
b′′11(z∗o)

e−i(θ1+θ2)(z
∗
o ),

F̂o =
f̂o

d̂o
− b′′′33(q

2
o/z

∗
o)

3b′′33(q2o/z∗o)
, Ĝo(x, t) =

2ĝo
b′′33(q2o/z∗o)

e−i(θ1+θ2)(z
∗
o).

4.2. Symmetries with double poles. The symmetries of the eigenfunctions
and scattering coefficients are also more involved than in the case of simple zeros.

Lemma 4.4. Suppose that a11(zo) = a′11(zo) = 0 and a′′11(zo) �= 0, with |zo| < qo.
The analytic scattering coefficients obey the following symmetry relations:

a
(n)
11 (zo) = (b

(n)
11 (z))∗|z=z∗

o
, b

(n)
33 (zo) = (a

(n)
33 (z))∗|z=z∗

o
, n = 2, 3,
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732 GINO BIONDINI AND DANIEL KRAUS

b′′33(q
2
o/z

∗
o) =

(z∗o)
4

q4o
b′′11(z)

∣∣
z=z∗

o
, a′′11(zo) =

q4o
z4o

(a′′33(z))
∣∣
z=q2o/zo

,

b′′′33(q
2
o/z

∗
o) = − (z∗o)

5

q6o
(6b′′11(z) + z∗ob

′′′
11(z))

∣∣
z=z∗

o
,

a′′′11(zo) = − q
4
o

z5o

(
6a′′33(z) +

q2o
zo
a′′′33(z)

) ∣∣∣∣∣
z=q2o/zo

.

Lemma 4.5. Suppose that a11(zo) = a′11(zo) = 0 and a′′11(zo) �= 0, with |zo| < qo.
The eigenfunctions obey the following symmetry relations:

φ′+,1(x, t, z
∗
o) = − iqo

(z∗o)2

(
φ+,3(x, t, q

2
o/z

∗
o) +

q2o
z∗o
φ′+,3(x, t, q

2
o/z

∗
o)

)
,(4.4a)

φ′−,1(x, t, zo) = − iqo
z2o

(
φ−,3(x, t, q

2
o/zo) +

q2o
zo
φ′−,3(x, t, q

2
o/zo)

)
,(4.4b)

φ′+,3(x, t, zo) =
iqo
z2o

(
φ+,1(x, t, q

2
o/zo) +

q2o
zo
φ′+,1(x, t, q

2
o/zo)

)
,(4.4c)

φ′−,3(x, t, z
∗
o) =

iqo
(z∗o)2

(
φ−,1(x, t, q

2
o/z

∗
o) +

q2o
z∗o
φ′−,1(x, t, q

2
o/z

∗
o)

)
,(4.4d)

χ′(x, t, zo) =
q2o
z2o
χ̄′(x, t, q2o/zo), χ̄′(x, t, z∗o) =

q2o
(z∗o)2

χ′(x, t, q2o/z
∗
o).(4.4e)

Lemma 4.6. Under the hypotheses of Lemma 4.5, the norming constants in
Lemma 4.1 obey the following symmetry relations:

ďo =
izo
qo
do, do = − [b33(zo)]

∗

γ(z∗o)
d∗o, d̂o =

iqo
z∗o

[b33(zo)]
∗

γ(z∗o)
d∗o,(4.5a)

fo = − γ(zo)

b33(zo)
f
∗
o − d

∗
o

(
γ(z)

b33(z)

)′ ∣∣∣∣∣
z=zo

, fo =
iqo
zo

[
ďo
zo

+
q2o
z2o
f̌o

]
,(4.5b)

fo =
iz∗o
qo

[
d̂o
z∗o

− q2o
(z∗o)2

f̂o

]
, go = ǧo = ḡo = ĝo = 0.(4.5c)

In turn, the symmetries in Lemma 4.6 yield

Ǩo(x, t) =
iq3o
z3o
Ko(x, t), Ko(x, t) = − [b33(zo)]

∗

γ(z∗o)
K∗

o (x, t),

K̂o(x, t) =
iq5o
(z∗o)5

[b33(zo)]
∗

γ(z∗o)
K∗

o (x, t), F̂o = − (z∗o)
2

q2o
F o +

3z∗o
q2o

,

Fo = F
∗
o +

b33(zo)

γ(zo)

(
γ(z)

b33(z)

)′ ∣∣∣∣∣
z=zo

,

F̌o = −z
2
o

q2o
F

∗
o +

zo
q2o

− z2o
q2o

b33(zo)

γ(zo)

(
γ(z)

b33(z)

)′ ∣∣∣∣∣
z=zo

,

Go(x, t) = Ǧo(x, t) = Ḡo(x, t) = Ĝo(x, t) = 0.

It is then straightforward to combine the notation of this section with the definition
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 733

of the meromorphic matrices (3.1) to obtain the residue conditions:

M+
−2,zo

(x, t) =

(
P−2
z=zo

(
μ−,1

a11

)
,0,0

)
, M−

−2,q2o/zo
(x, t) =

(
0,0, P−2

z=q2o/zo

(
μ−,3

a33

))
,

(4.6a)

M−
−2,z∗

o
(x, t) =

(
0, P−2

z=zo

(
− m̄

b11

)
,0

)
, M+

−2,q2o/z
∗
o
(x, t) =

(
0, P−2

z=q2o/z
∗
o

(
m

b33

)
,0

)
,

(4.6b)

M+
−1,zo

(x, t)=

(
Resz=zo

(
μ−,1

a11

)
,0,0

)
, M−

−1,q2o/zo
(x, t)=

(
0,0,Resz=q2o/zo

(
μ−,3

a33

))
,

(4.6c)

M−
−1,z∗

o
(x, t)=

(
0,Resz=z∗

o

(
− m̄

b11

)
,0

)
, M+

−1,q2o/z
∗
o
(x, t)=

(
0,Resz=q2o/z

∗
o

(
m

b33

)
,0

)
,

(4.6d)

where the individual columns are given in Corollary 4.3.

4.3. Inverse problem and reflectionless solutions with double poles.
Both the RHP and the reconstruction formula are affected by the appearance of the
derivatives of the eigenfunctions. For simplicity, from now on we restrict our attention
to situations in which a11(z) has just one double zero and is nonzero everywhere else.
The methodology, however, is easily extended to include any combination of single
and double zeros, as well as to zeros of higher order.

Like in the case of simple zeros, the RHP consists of finding a sectionally mero-
morphic matrixM(x, t, z) which equalsM±(x, t, z) for Im z ≷ 0 and satisfies the jump
condition (3.2) as well as the asymptotics (3.3). On the other hand, the residue con-
ditions are now different and are given by (4.6). As in section 3.2, the solution of this
RHP can be expressed in terms of a mixed system of algebraic-integral equations,
which are obtained by subtracting the asymptotic behavior at infinity, regularizing
(i.e., subtracting any pole contributions from the discrete spectrum), and then apply-
ing Cauchy projectors. Specifically, in Appendix A.12 we prove the following.

Theorem 4.7. Suppose that a11(zo) = a′11(zo) = 0 and a′′11(zo) �= 0, with
|zo| < qo, and a11(z) �= 0 for z �= zo. The solution of the RHP defined by Lem-
mas 3.1 and 3.2 with residue conditions (4.6) is given by

(4.7) M(x, t, z) = M∞ + (i/z)M0 − 1

2πi

∫
R

M−(ζ)
ζ − z

e−iKΘ(ζ)L(ζ)eiKΘ(ζ) dζ

+

2∑
n=1

(
M+

−n,zo

(z − zo)n
+

M+
−n,q2o/z

∗
o

(z − q2o/z
∗
o)

n
+

M−
−n,z∗

o

(z − z∗o)n
+

M−
−n,q2o/zo

(z − q2o/zo)
n

)
.

Moreover, the eigenfunctions in the residue conditions in (4.6) are given by

μ+,1(x, t, z
∗
o) =

(
1

(i/z∗o)q+

)
+

Ko

z∗o − zo
m′(zo)(4.8a)

− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)1(ζ)

ζ − z∗o
dζ

+

[
Ko

(z∗o − zo)2
+

Ko

z∗o − zo
(Fo + i(x− 2zot))

]
m(zo),

D
ow

nl
oa

de
d 

02
/1

0/
15

 to
 1

28
.2

05
.1

13
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

734 GINO BIONDINI AND DANIEL KRAUS

m(x, t, zo)

b33(zo)
=

(
0

q⊥
+/qo

)
+

[
− Ko

zo − z∗o
+
i(z∗o)

3

q3o

K̂o

zo − q2o/z
∗
o

]
μ′
+,1(z

∗
o)

(4.8b)

+

{
− iz∗o

qo

K̂o

(zo − q2o/z
∗
o)

2

[
1 + (zo − q2o/z

∗
o)

(
F̂o +

i(z∗o)
2

q2o
(x− 2z∗ot)−

z∗o
q2o

)]

− Ko

(zo − z∗o)2
[
1 + (zo − z∗o)(F o − i(x− 2z∗ot))

]}
μ+,1(z

∗
o)

− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)2(ζ)

ζ − zo
dζ,

m′(x, t, zo)
b33(zo)

=

{
Ko

(zo − z∗o)3
[
2 + (zo − z∗o)(F o − i(x− 2z∗ot))

]
(4.8c)

− iz
∗
o

qo

K̂o

(zo − q2o/z
∗
o)

2

[
− 2

zo − q2o/z
∗
o

+
z∗o
q2o

− F̂o − i(z∗o)
2

q2o
(x− 2z∗ot)

]}
μ+,1(z

∗
o)

+

[
Ko

(zo − z∗o)2
− i(z∗o)

3

q3o

K̂o

(zo − q2o/z
∗
o)

2

]
μ′
+,1(z

∗
o) +

b′33(zo)
(b33(zo))2

m(zo)

− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)2(ζ)

(ζ − zo)2
dζ,

μ′
+,1(x, t, z

∗
o) = −

(
0

iq+/(z
∗
o)

2

)
− Ko

(z∗o − zo)2
m′(zo)(4.8d)

− 1

2πi

∫
R

(M−e−iKΘLeiKΘ)1(ζ)

(ζ − z∗o)2
dζ

− Ko

(z∗o − zo)3
[2 + (z∗o − zo)(Fo + i(x− 2zot))]m(zo).

Throughout, the (x, t)-dependence was omitted from the right-hand side of all equations
for simplicity.

Similarly to the case of simple zeros, the norming constants can be appropriately
redefined in such a way that the above residue conditions are formulated only in terms
of the columns of the meromorphic matrix M(x, t, z)—plus its derivatives in this case.
For simplicity, however, we omit the relevant calculations. Also, similarly to the case
of simple zeros, from the asymptotic behavior of the solution of the RHP we can
reconstruct the solution of the Manakov system.

Theorem 4.8. Under the same hypotheses as those of Theorem 4.7, the solution
of the defocusing Manakov system with NZBC (1.2) is reconstructed as

(4.9) qk(x, t) = q+,k − iKo(x, t)
{
m′

k+1(x, t, zo) +
[
Fo + i(x− 2zot)

]
mk+1(x, t, zo)

}
− 1

2π

∫
R

(M−e−iKΘLeiKΘ)(k+1)1(x, t, ζ)dζ, k = 1, 2.

The trace formula is also different in the presence of double poles. Indeed, one
can use an approach analogous to that used in deriving (3.9) to prove

a11(z) =

(
z − zo
z − z∗o

)2

exp

⎧⎨
⎩− 1

2πi

∫
R

log
(
1− |ρ1(ζ)|2 − ζ2

ζ2−q2o
|ρ2(ζ)|2

)
ζ − z

dζ

⎫⎬
⎭ .
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 735

As before, the trace formula for b33(z) is obtained from the above using the symme-
tries (2.35) and (2.43).

Similarly to before, we now restrict our attention to the reflectionless case.
Lemma 4.9. Under the same hypotheses as those in Theorem 4.7, the defocusing

Manakov system with NZBC (1.2) is given by following system of linear equations:

μ+,1(x, t, z
∗
o) =

(
1

(i/z∗o)q+

)
+

Ko

z∗o − zo
m′(zo)

(4.10a)

+

[
Ko

(z∗o − zo)2
+

Ko

z∗o − zo
(Fo + i(x− 2zot))

]
m(zo),

m(x, t, zo)

b33(zo)
=

(
0

q⊥
+/qo

)
+

[
− Ko

zo − z∗o
+
i(z∗o)3

q3o

K̂o

zo − q2o/z
∗
o

]
μ′
+,1(z

∗
o)

(4.10b)

+

{
− iz∗o

qo

K̂o

(zo − q2o/z
∗
o)

2

[
1 + (zo − q2o/z

∗
o)

(
F̂o +

i(z∗o)
2

q2o
(x− 2z∗ot)−

z∗o
q2o

)]

− Ko

(zo − z∗o)2
[
1 + (zo − z∗o)(F o − i(x− 2z∗ot))

]}
μ+,1(z

∗
o),

m′(x, t, zo)
b33(zo)

=

{
Ko

(zo − z∗o)3
[
2 + (zo − z∗o)(F o − i(x− 2z∗ot))

](4.10c)

− iz
∗
o

qo

K̂o

(zo − q2o/z
∗
o)

2

[
− 2

zo − q2o/z
∗
o

+
z∗o
q2o

− F̂o − i(z∗o)2

q2o
(x− 2z∗ot))

]}
μ+,1(z

∗
o)

+

[
Ko

(zo − z∗o)2
− i(z∗o)

3

q3o

K̂o

(zo − q2o/z
∗
o)

2

]
μ′
+,1(z

∗
o) +

b′33(zo)
(b33(zo))2

m(zo),

μ′
+,1(x, t, z

∗
o) = −

(
0

iq+/(z
∗
o)

2

)
− Ko

(z∗o − zo)2
m′(zo)(4.10d)

− Ko

(z∗o − zo)3
[2 + (z∗o − zo)(Fo + i(x− 2zot))]m(zo),

where, as above, the (x, t)-dependence was omitted from the right-hand side of each
equation for simplicity.

Note that the scattering coefficient b33(z) appearing in the above system is known
in closed form in the reflectionless case thanks to the trace formulae.

4.4. Double-pole dark-bright solitons of the Manakov system. We now
present an explicit solution of the defocusing Manakov system with NZBC correspond-
ing to double zeros of the analytic scattering coefficients. Consider, for simplicity, the
case of a discrete eigenvalue along the imaginary axis. Without loss of generality,
we can parametrize the background state, the discrete eigenvalue, and the norming
constants as

q+ = (1, 0)T , zo = iZ, do =
κ3/2

Zν
eZξ+iφ, fo = κ6νn eZξ+i(f−φ),

where
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736 GINO BIONDINI AND DANIEL KRAUS

Fig. 4. A solution of the defocusing Manakov system obtained when the analytic scattering
coefficient a11(z) has a double zero at zo, with q+ = (1, 0)T , zo = .5eiπ/2, do = i, fo = 1.

ν = 1− Z2, κ = 1 + Z2,

and with ξ, φ, n, and f arbitrary real constants and 0 < Z < 1. Solving the linear
system of equations (4.8) and inserting these expressions into (4.9), we obtain the
double-pole dark-bright soliton solution

(4.11) q(x, t) =
1

qd(x, t)

(
q1n(x, t)
q2n(x, t)

)
,

with

q1n(x, t) = κ2 cosh[2Ξ(x)] + p1Z(x, t) + p1f (x, t),

q2n(x, t) = 4ei(φ+Z2t){(Zκ3/2ν x+ so) cosh[Ξ(x)]− (2iZ2κ3/2ν t− s1) sinh[Ξ(x)]},
qd(x, t) = κ2 cosh[2Ξ(x)] + p2Z(x, t) + p2f (x, t)

and

Ξ(x) = Z(x− ξ) , p1Z(x, t) = −p2Z(x, t) + 8iZ2κν t+ (2− 4Z4 + 2Z8)/κν ,

p2Z(x, t) = 2Z2κν x2 + 4Z(1− 3Z2)x+ 8Z4κν t2

+ [3− Z2(10− 20Z2 − 2Z4 − Z6)]/κν ,

p1f (x, t) = −p2f(x, t) − 4iκ1/2νn cos f ,

p2f (x, t) = 4κ−1/2n[−2Z2κν t cos f + (1 − 3Z2 + Zκν x) sin f ] + 2νn2,

so = κνn sin f + (1− 3Z2)κ1/2 , s1 = iκνn cos f + Z2κ3/2 .

Figure 4 shows a typical profile of this solution. The center of mass of the solution is
localized at x = ξ. The solution appears to be similar to a superposition of two dark-
bright solitons with the same velocity (which is zero in this case since the eigenvalue is
along the imaginary axis). On the other hand, the two solitons attract each other and
diverge logarithmically, as is evident from the figure. This behavior is very similar to
that of double-pole solutions of the scalar focusing NLS with ZBC, although in that
case the corresponding solutions are just bright solitons.

An especially simple expression is obtained when n = 0 (i.e., by setting f̄o = 0),
in which case (4.11) reduces to

q1n(x, t) = κ2 cosh[2Ξ(x)] + p1Z(x, t) ,
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 737

Fig. 5. A solution of the defocusing Manakov system obtained when the analytic scattering
coefficient a11(z) has a double zero at zo, with q+ = (1, 0)T , zo = .5e2πi/5, do = 2 + i, fo = 3i.

q2n(x, t) = 4κ1/2ei(φ+Z2t){(1− 3Z2 + Zκν x) cosh[Ξ(x)] + Z2κ(1− 2iν t) sinh[Ξ(x)]},
qd(x, t) = κ2 cosh[2Ξ(x)] + p2Z(x, t) ,

with p1Z(x, t), p2Z(x, t), and Ξ(x) as above. Note, however, that no choice of norming
constants exists for which the two solitons are stationary with respect to each other.
This situation is similar to the double-pole solutions of the scalar focusing NLS with
ZBC. Also, in the limit Z → 1−, (4.11) reduces to the constant background solution.

Of course, double-pole solutions with discrete eigenvalues off the imaginary axis
can also be easily obtained. An example of such a solution is shown in Figure 5.
Modulo the nonzero velocity, the behavior of this solution is similar to that of the
stationary solution. We emphasize, however, that while in the case of ZBC the moving
solutions can be obtained from the stationary ones simply by applying a Galilean
transformation, this is not the case with NZBC. This difference can be understood
both from a physical and a spectral point of view. For the former, note that both the
stationary and the moving solutions satisfy the same constant boundary conditions
q(x, t) → q± as x→ ±∞, whereas Galilean-boosted stationary solutions would have
an oscillating phase with respect to x as x → ±∞. From a spectral point of view,
note that for the Galilean-boosted stationary solution, the real part of the discrete
eigenvalue is along the imaginary axis, i.e., above the midpoint of the branch cut. In
contrast, for the traveling solution, the discrete eigenvalue does not lie directly above
the branch cut. The same difference applies to soliton solutions obtained from simple
zeros of the scattering coefficients.

5. Conclusions. As we have seen in the previous sections, unlike the case of
ZBC, the IST for the Manakov system with NZBC presents significant differences
from the IST for the scalar case (i.e., the NLS equation). The most obvious of these
are (i) the need to introduce the adjoint problem to obtain auxiliary eigenfunctions and
complete the eigenfunction bases; (ii) the more complicated symmetries among the
eigenfunctions involving said auxiliary eigenfunctions; (iii) the existence of eigenvalues
off of Co and the corresponding dark-bright soliton solutions; (iv) the existence of
double-pole solutions.

Another important difference between the scalar case and the Manakov system
is that for the latter, one cannot exclude the possibility of zeros along the continuous
spectrum. Indeed, a direct expansion of the determinant of the scattering matrix

D
ow

nl
oa

de
d 

02
/1

0/
15

 to
 1

28
.2

05
.1

13
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

738 GINO BIONDINI AND DANIEL KRAUS

yields, for all z ∈ R \ {±qo},
detA(z) = b11(z)a11(z) + b12(z)a21(z) + b13(z)a31(z),

which, applying (2.35), yields

(5.1) |a11(z)|2 = 1 + |a21(z)|2/γ(z) + |a31(z)|2.
Since γ(z) < 0 for z ∈ (−qo, qo), we cannot exclude possible zeros of a11(z) in the
interval (−qo, qo). Similar results follow for a33(z), b11(z), and b33(z). Thus, this
situation is more similar to that of the focusing NLS equation with ZBC, which is
known to admit zeros of the analytic scattering coefficients along the real k-axis [5, 43].

It should be mentioned that in the scalar case, no area theorem is possible with
NZBC [9, 11]. That is, a class of potentials can be produced for which discrete
eigenvalues exist for arbitrarily small deviations from the uniform background. Since
every solution of the scalar NLS equation can be trivially extended to a solution of the
Manakov system, these results imply that no area theorem is possible for the latter
as well. (This is in contrast to the scalar case with ZBC, where a precise lower bound
can be found for the L1 norm of the potential for the existence of discrete eigenvalues
[5, 28].) Similarly, (3.10) indicates that the continuous spectrum can provide a non-
zero contribution to the asymptotic phase difference. Specific examples illustrating
such situations were provided in [10, 11] for the scalar case, and of course extend
trivially to the Manakov system.

From an applied point of view, we expect the results of this paper to be useful in
characterizing recent experiments in nonlinear optics [12, 20, 36] and Bose–Einstein
condensation [22, 40]. Conversely, from a theoretical point of view, the results in this
paper pave the way for studying several open problems: (i) an investigation of the
possible existence of double zeros on Co (see [19] for a proof of the nonexistence of such
zeros in the scalar case); (ii) an investigation of the possible existence of real spectral
singularities (known to exist in the scalar focusing case [4, 25, 43] and known not to
exist in the scalar defocusing case [19]); (iii) a study of the long-time asymptotics
using the Deift–Zhou method [16, 17] (see [24, 37, 38] for the scalar case); (iv) the
development of an appropriate perturbation theory (see [2, 27] for the scalar case);
(v) the extension of the present approach to theN -component case. (In this regard, we
remark that the N -component case was recently studied in [32] using the approach of
[7], but the results of [32] were incomplete due to the lack of a proper characterization
of the symmetries of the analytic eigenfunctions. We believe that the novel approach
to the symmetries presented in this work will provide the missing link to resolve this
difficulty and allow the construction of nontrivial explicit multicomponent solutions.)

Finally, we reiterate that here the direct problem was developed without requiring
that the asymptotic polarizations q+ and q− be collinear. The advantage of imposing
the condition |q†

+q−| = qo is that it ensures that the limits of the analytic scattering
coefficients as z → 0,∞ are at most a phase (cf. Corollary 2.31). In turn, this simplifies
the asymptotic behavior of the meromorphic matrices M±(x, t, z) appearing in the
RHP, as defined in (3.1) (cf. Lemma 3.2). On the other hand, there are no obstacles to
formulating the inverse problem with general q±, as long as these asymptotic vectors
are not orthogonal (i.e., as long as q†

+q− �= 0). Doing so might be important as it
might lead to new and possibly physically relevant exact solutions. Conversely, the
case q†

+q− = 0 requires some additional care, as in this case the matrices M±(x, t, z)
acquire additional poles as z → ∞ and/or z → 0, which then need to be subtracted
in order to regularize the resulting RHP.

We plan to study some of the above problems in the near future.
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 739

Appendix. The following sections contain the proofs of all the results presented
in the main text.

A.1. IST and the invariances of the Manakov system. Recall that if q(x, t)
is any solution of the scalar defocusing NLS equation, qnls(x, t) = (0, q(x, t))T is a
solution of the Manakov system. Also, if q(x, t) is any solution of the Manakov
system and α, v, xo, and to are any real constants, q̄(x, t) = eiαq(x, t) and q̂(x, t) =
q(x−xo, t− to) are solutions of the Manakov system as well. Finally, for any constant
unitary 2 × 2 matrix U (i.e., UU† = U†U = I), q̌(x, t) = Uq(x, t) is also a solution.
We next show how each transformation affects the IST.

Lemma A.1. Let φ±,nls(x, t, z) and Anls(z) = (aij,nls(z)) denote the 2 × 2 Jost
solutions and scattering matrix of the IST for the scalar case, respectively. We have

φ±(x, t, z) =

⎛
⎝φ±,11,nls 0 eiθ±φ±,12,nls

0 e−iθ±eiθ2(x,t,z) 0
φ±,21,nls 0 eiθ±φ±,22,nls

⎞
⎠ ,

A(z) =

⎛
⎝ a11,nls(z) 0 eiθ−a12,nls(z)

0 ei(θ+−θ−) 0
e−iθ+a21,nls(z) 0 e−i(θ+−θ−)a22,nls(z)

⎞
⎠ ,

where the normalization in [11] for the IST in the scalar case was used.
Lemma A.2. Let φ̄±(x, t, z) and Ā(z) be the Jost solutions and scattering matrix

corresponding to q̄(x, t). We have

φ±(x, t, z) = ei(α/2)Jφ̄±(x, t, z) diag(e−iα/2, e3iα/2, e−iα/2),(A.2a)

A(z) = diag(e−iα/2, e3iα/2, e−iα/2)Ā(z) diag(eiα/2, e−3iα/2, eiα/2).(A.2b)

Proof. Since ei(α/2)Jφ̄±(x, t, z) solves the asymptotic scattering problem (2.2), we
may choose Ē±(z) = e−i(α/2)JE±(z) diag(eiα/2, e−3iα/2, eiα/2). Then since ei(α/2)Jφ̄±
and φ± are both fundamental matrix solutions of the asymptotic scattering problem,
there exists an invertible 3×3 matrix C̄(z) such that φ±(x, t, z) = ei(α/2)Jφ̄±(x, t, z)C̄(z).
Comparing the asymptotics as x → ±∞ of φ± with those of ei(α/2)Jφ̄±C̄ yields
C̄(z) = diag(e−iα/2, e3iα/2, e−iα/2). Combining (A.2a) with the fact that φ̄− = φ̄+Ā
yields (A.2b).

The proofs of the remaining lemmas in this section are omitted since they are
similar to the proof of Lemma A.2.

Lemma A.3. Let φ̂±(x, t, z) and Â(z) be the Jost solutions and scattering matrix
corresponding to q̂(x, t). We have

φ±(x, t, z) = φ̂±(x, t, z)eiΘ(xo,to,z), A(z) = e−iΘ(xo,to,z)Â(z)eiΘ(xo,to,z).

Lemma A.4. Let φ̌±(x, t, z) and Ǎ(z) be the Jost solutions and scattering matrix
corresponding to q̌(x, t). We have

φ±(x, t, z) = diag(1,U†)φ̌±(x, t, z) diag(1, eiu, 1),

A(z) = diag(1, e−iu, 1)Ǎ(z) diag(1, eiu, 1),

where detU = eiu, with u ∈ R.
Finally, note that the Manakov system also possesses a Galilean invariance; i.e., if

q(x, t) is a solution, so is q̆(x, t) = eiv(x−vt)q(x−2vt, t). Note, however, that if q(x, t)
does not vanish as x → ±∞, q̆(x, t) is outside the class of potentials for which the
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740 GINO BIONDINI AND DANIEL KRAUS

IST can be applied. Therefore, no simple correspondence between the Jost solutions
and scattering matrices can be established.

Definition A.5. We say that q(x, t) is a reducible solution of the Manakov sys-
tem if there exists a constant unitary 2×2 matrix U such that q(x, t) = U(0, qs(x, t))

T ,
where qs(x, t) is a solution of the scalar defocusing NLS.

Note that there is no loss in generality in assuming that the zero in the above
vector is in the first entry. We can then combine Lemma A.1 with Lemma A.4 to
obtain the following.

Lemma A.6. If q(x, t) is reducible,

A(z)=diag(1, e−iu, 1)

⎛
⎝ a11,nls(z) 0 eiθ−a12,nls(z)

0 ei(θ+−θ−) 0

e−iθ+a21,nls(z) 0 e−i(θ+−θ−)a22,nls(z)

⎞
⎠ diag(1, eiu, 1),

where detU = eiu, with u ∈ R, and the aij,nls(z) are defined as in Lemma A.1.
A comparison with solutions of the scalar defocusing NLS [11] immediately yields

the following.
Corollary A.7. If q(x, t) is reducible, the analytic scattering coefficients can

only have zeros on Co.
The converse of Corollary A.7 is, however, not true due to the presence of radia-

tion. Also, an immediate consequence of Definition A.5 is the following.
Corollary A.8. If the analytic scattering coefficients have double zeros on Co,

then the corresponding solution of the defocusing Manakov system is not reducible.

A.2. Analyticity of the eigenfunctions.
Proof of Theorem 2.1. We start by rewriting the first of the integral equa-

tions (2.16) that define the Jost eigenfunctions:
(A.3)

μ−(x, t, z) = E−(z)
[
I+

∫ x

−∞
ei(x−y)Λ(z)E−1

− (z)ΔQ−(y, t)μ−(y, t, z)e−i(x−y)Λ(z) dy

]
.

The limits of integration imply that x − y is always positive for μ− (and always
negative for μ+). Also, note that the matrix products in the right-hand side of (A.3)
operate columnwise. In particular, letting W (x, z) = E−1

− μ−, for the first column w
of W , one has

(A.4) w(x, t, z) =

⎛
⎝1
0
0

⎞
⎠+

∫ x

−∞
G(x− y, z)ΔQ−(y, t)E−(z)w(y, t, z) dy ,

where

(A.5) G(ξ, z) = diag
(
1, ei(k(z)+λ(z))ξ, e2iλ(z)ξ

)
E−1

− (z) .

Now, we introduce a Neumann series representation for w:

w(x, z) =
∞∑
n=0

w(n) ,(A.6a)

with

w(0) =

⎛
⎝1
0
0

⎞
⎠ , w(n+1)(x, t, z) =

∫ x

−∞
C(x, y, t, z)w(n)(y, t, z) dy ,(A.6b)
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 741

and where C(x, y, t, z) = G(x− y, z)ΔQ(y, t)E−(z). Introducing the L1 vector norm
‖w‖ = |w1| + |w2| + |w3| and the corresponding subordinate matrix norm ‖C‖, we
then have

(A.7) ‖w(n+1)(x, t, z)‖ ≤
∫ x

−∞
‖C(x, y, t, z)‖‖w(n)(y, t, z)‖ dy .

Note that ‖E±‖ ≤ 1 + qo/|z| and ‖E−1
± ‖ ≤ (1 + qo/|z|)/|γ(z)|. The properties of the

matrix norm imply

(A.8)

‖C(x, y, t, z)‖ ≤ ‖ diag(1, ei(k+λ)(x−y), e2iλ(x−y))‖‖E−(z)‖‖ΔQ(y, t)‖‖E−1
− (z)‖

≤ c(z) (1 + e−(kim(z)+λim(z))(x−y) + e−2λim(z)(x−y)) ‖q(y, t)− q−‖ ,
where λim(z) = Im λ(z), kim(z) = Im k(z), and c(z) = (1 + qo/|z|)2/|γ(z)|. Now,
recall that Im λ(z) > 0 for z in CI . On the other hand, c(z) → ∞ as z → ±qo. Thus,
given ε > 0, we restrict our attention to the domain (CI)ε = CI \ (Bε(qo)∪Bε(−qo)),
where Bε(zo) = {z ∈ C : |z − zo| < εqo}. It is straightforward to show that cε =
maxz∈(CI)ε c(z) = 2 + 2/ε. Next, we prove that for all z ∈ (CI)ε and for all n ∈ N,

‖w(n)(x, t, z)‖ ≤ Mn(x, t)

n!
,(A.9a)

where

M(x, t) = 2cε

∫ x

−∞
‖q(y, t)− q−‖ dy .(A.9b)

We will prove the result by induction, following [3]. The claim is trivially true for n =
0. Also, note that for all z ∈ CI and for all y ≤ x, one has 1+ e−(kim(z)+λim(z))(x−y)+
e−2λim(x−y) ≤ 3. Then, if (A.9a) holds for n = j, (A.7) implies
(A.10)

‖w(j+1)(x, t, z)‖ ≤ 3cε
j!

∫ x

−∞
‖q(y, t)− q−‖M j(y, t) dy =

1

j!(j + 1)
M j+1(x, t) ,

proving the induction step (namely, that the validity of (A.9a) for n = j implies
its validity for n = j + 1). Thus, if q(x, t) − q− ∈ L1(−∞, a] for all finite a ∈ R

and for all ε > 0, then the Neumann series converges absolutely and uniformly with
respect to x ∈ (−∞, a) and to z ∈ (CI)ε. Similar results hold for μ+(x, t, z). Since a
uniformly convergent series of analytic functions converges to an analytic function, this
demonstrates the validity of (2.17). Note that since q+ �= q− in general, q(x, t)−q− /∈
L1(R), and therefore one cannot take a = ∞. This problem can be resolved using an
approach similar to that of [32] or alternatively by deriving a different set of integral
equations for the Jost eigenfunctions, as discussed in the following section. Note also
that, as in the scalar case, additional conditions need to be imposed on the potential
to establish convergence of the Neumann series at the branch points [18].

A.3. Alternative integral representation for the Jost eigenfunctions. In
order to derive the analyticity properties of the scattering coefficients, we found it nec-
essary to introduce an alternative integral representation for the Jost eigenfunctions.
While the resulting equations are slightly more complicated than the standard inte-
gral equations (2.16), this representation has the advantage of allowing one to prove
explicitly that μ±(x, t, z) remain bounded for all x ∈ R in their regions of analyticity.
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742 GINO BIONDINI AND DANIEL KRAUS

We follow an approach similar to that used in [18] for the scalar case. Since the
scattering matrix is time-independent, it is sufficient to do the calculations at t = 0.
With this understanding, we omit the time dependence from the potential and the
eigenfunctions throughout this subsection.

We first note that the scattering problem (2.13) is equivalent to the problem

(A.11) φx = X̄(x, z)φ+ (Q(x) −Qf(x))φ,

where

(A.12) X̄(x, z) = H(x)X+(z) +H(−x)X−(z), Qf (x) = H(x)Q+ +H(−x)Q−,

and H(x) denotes the Heaviside function (namely, H(x) = 1 if x ≥ 0 and H(x) = 0
otherwise). The advantage of using (A.11) instead of (2.13) is that the “forcing” term
Q−Qf vanishes both as x → −∞ and as x → ∞, which leads to integral equations
that are better behaved. (Correspondingly, the factorized problem (A.11) is now the
same for both φ− and φ+.) For z ∈ R, we introduce fundamental eigenfunctions
φ̄±(x, z) as square matrix solutions of (A.11) satisfying

(A.13) φ̄±(x, z) = exX±(z)[I+ o(1)], x→ ±∞.

By solving (A.11) in a way similar to that of (2.16), we obtain

φ̄−(x, z) = Gf (x, 0, z) +

∫ x

−∞
Gf (x, y, z)[Q(y)−Qf (y)]φ̄−(y, z) dy,(A.14a)

φ̄+(x, z) = Gf (x, 0, z)−
∫ ∞

x

Gf (x, y, z)[Q(y)−Qf (y)]φ̄+(y, z) dy,(A.14b)

whereGf (x, y, z) is the special solution of the homogeneous problem, i.e.,Gx(x, y, z) =
X̄(x, z)G(x, y, z), satisfying the “initial conditions” G(x, x, z) = I. Namely,

(A.15) Gf (x, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e(x−y)X+(z), x, y ≥ 0,

e(x−y)X−(z), x, y ≤ 0,

exX+(z)e−yX−(z), x,−y ≥ 0,

exX−(z)e−yX+(z), x,−y ≤ 0.

Using (A.14), we conclude that

(A.16) φ̄±(x, z) = Gf (x, 0, z) [A∓(z) + o(1)] , x→ ∓∞, z ∈ R,

where

(A.17) A∓(z) = I∓
∫
R

Gf (0, y, z) [Q(y)−Qf(y)] φ̄±(y, z) dy.

Since exX±(z) are bounded for x ∈ R when z ∈ R, assuming thatQ(x)−Qf (x) ∈ L1(R)
and applying Gronwall’s inequality implies φ̄±(x, z) are bounded as x → ∓∞. In
addition, comparing (A.15) with the solutions of the asymptotic scattering problem
(2.2) yields φ̄±(x, z)E±(z) = φ±(x, z), so (A.14) imply

φ−(x, z) = Gf (x, 0, z)E−(z) +
∫ x

−∞
Gf (x, y, z)[Q(y)−Qf (y)]φ−(y, z) dy,(A.18a)
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DEFOCUSING MANAKOV SYSTEM WITH NZBC 743

φ+(x, z) = Gf (x, 0, z)E+(z)−
∫ ∞

x

Gf (x, y, z)[Q(y)−Qf(y)]φ+(y, z) dy.(A.18b)

Note that (A.18a) coincides with (2.16a) for all x ≤ 0, and (A.18b) coincides with
(2.16b) for all x ≥ 0. Additionally, assuming q(x) − q+ ∈ L1(0,∞) and q(x) − q− ∈
L1(−∞, 0) implies Q(x)−Qf (x) ∈ L1(R), so we can use this information and (A.18)
to prove Theorem 2.1 as well as to establish that μ±(x, z) = φ±(x, z)e−ixΛ(z) remain
bounded as x → ∓∞. This result will be instrumental in proving the analyticity of
the entries of the scattering matrix (see Theorem 2.3 and the following section).

A.4. Analyticity of the scattering matrix.
Proof of Theorem 2.3. We compare the asymptotics as x → ∞ of φ−(x, z) from

(A.16) with those of φ+(x, z)A(z) from (2.11) to obtain

(A.19) A(z) = E−1
+ (z)A+(z)E−(z).

The expression in (A.19) simplifies to the following integral representation for the
scattering matrix:

(A.20) A(z) =

∫ ∞

0

e−iyΛ(z)E−1
+ (z)[Q(y)−Q+]φ−(y, z) dy

+E−1
+ (z)E−(z)

[
I+

∫ 0

−∞
e−iyΛ(z)E−1

− (z)[Q(y)−Q−]φ−(y, z) dy
]
.

A similar expression can be found forB(z). We can now examine the individual entries
of (A.20). In particular, the 1, 1 entry of (A.20) yields an integral representation for
a11(z), and the corresponding two integrands from (A.20) are, respectively,

1

γ(z)
eiλy

[
i

z
q†
+Δq(y)φ−,11(y, z) + Δr1(y)φ−,21(y, z) + Δr2(y)φ−,31(y, z)

]
,(A.21a)

3∑
j=1

[
c11(z)T1j(y, z) + c12(z)T2j(y, z)e

−i(k+λ)y(A.21b)

+ c13(z)T3j(y, z)e
−2iλy

]
φ−,j1(y, z)e

iλy ,

where Δq(x) = q(x) − qf (x) (similarly for Δr(x)) and

E−1
+ (z)E−(z) = (cij(z)), E−1

− (z)[Q(y)−Q−] = (Tij(y, z)).

Recall that φ−,1(y, z)e
iλ(z)y is analytic for Im z > 0 and bounded over y ∈ R, so each

term in (A.21a) is analytic for Im z > 0 and bounded when y > 0. Thus, the first
integral in the representation (A.20) for a11(z) defines an analytic function for all
Im z > 0. Further, recalling that Imλ(z) and Im(k(z) + λ(z)) have the same sign,
we conclude that each term in (A.21b) is analytic for Im z > 0 and bounded when
y < 0, so the second integral also defines an analytic function for all Im z > 0. Thus,
the integral representation (A.20) for a11(z) can be analytically extended off the real
z-axis onto the upper half of the z-plane. The remainder of Theorem 2.3 is proved
similarly.
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A.5. Adjoint problem.
Proof of Proposition 2.4. The result follows by noting that, in the defocusing case,

QT = Q∗, implying Q† = Q, and by using the fact that for any vectors u,v ∈ C3

one has

[(Ju)× v] + [u× (Jv)] + [u× v] + [(Ju) × (Jv)] = 0,

J[u× v] = (Ju) × (Jv),

Q[u× v] + [(QTu)× v] + [u× (QTv)] = 0,

JQ2[u× v] + [(J(QT )2u)× v] + [u× (J(QT )2v)] = 0.

Proof of Lemma 2.6. We verify (2.28a) with j = 3. Equations (2.24) and (2.23)
yield

v±(x, t, z) = −e−iθ1(x,t,z)E±,3(z) + o(1), x→ ±∞.

However, v± must be a linear combination of the columns of φ±, so there exist
scalar functions a±(z), b±(z), and c±(z) such that v±(x, t, z) = a±(z)φ±,1(x, t, z) +
b±(z)φ±,2(x, t, z) + c±(z)φ±,3(x, t, z). Comparing the asymptotics as x → ±∞ in
(2.11) with those of v± yields a±(z) = b±(z) = 0 and c±(z) = −1. The rest of
Lemma 2.6 is proved similarly.

Proof of Corollary 2.7. We suppress the x-, t-, and z-dependence for brevity. Com-
bining (2.28) and (2.19) yields φ̃+,1 = (b22b33− b32b23)φ̃−,1 + γ(b32b13− b12b33)φ̃−,2+

(b22b13 − b12b23)φ̃−,3. Combining this with (2.25) yields

b̃11 = b22b33 − b32b23, b̃21 = γ(b12b33 − b32b13), b̃31 = b22b13 − b12b23.

Using a similar process, we find that

b̃12 =
1

γ
(b33b21 − b23b31), b̃22 = b33b11 − b13b31, b̃32 =

1

γ
(b13b21 − b23b11),

b̃13 = b31b22 − b21b32, b̃23 = γ(b31b12 − b11b32), b̃33 = b11b22 − b21b12.

Next, note that

AT =

⎛
⎝b22b33 − b23b32 b23b31 − b21b33 b21b32 − b22b31
b13b32 − b12b33 b11b33 − b13b31 b12b31 − b11b32
b12b23 − b13b22 b13b21 − b11b23 b11b22 − b12b21

⎞
⎠ .

Combining all this information, we finally obtain (2.29).
Proof of Corollary 2.8. Substituting (2.25) into (2.27) yields the following for

z ∈ R:

γ(z) χ̄(x, t, z) = eiθ2(x,t,z)J
[
[b̃23(z)φ̃−,2(x, t, z) + b̃33(z)φ̃−,3(x, t, z)]× φ̃−,1(x, t, z)]

]
,

(A.22a)

γ(z)χ(x, t, z) = eiθ2(x,t,z)J
[
[b̃11(z)φ̃−,1(x, t, z) + b̃21(z)φ̃−,2(x, t, z)]× φ̃−,3(x, t, z)

]
.

(A.22b)

Applying (2.28) to (A.22) yields the following for z ∈ R:

γ(z)χ̄(x, t, z) = b̃23(z)φ−,3(x, t, z)− b̃33(z)γ(z)φ−,2(x, t, z),(A.23a)
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γ(z)χ(x, t, z) = b̃11(z)γ(z)φ−,2(x, t, z) + b̃21(z)φ−,1(x, t, z).(A.23b)

We apply (2.29) to (A.23) to obtain (2.30a). Similarly, we obtain

γ(z)χ̄(x, t, z) = −ã11(z)γ(z)φ+,2(x, t, z)− ã21(z)φ+,1(x, t, z),(A.24a)

γ(z)χ(x, t, z) = −ã23(z)φ+,3(x, t, z) + ã33(z)γ(z)φ+,2(x, t, z).(A.24b)

We then combine (A.24) with (2.29) to obtain (2.30b).

A.6. Symmetries.
Proof of Proposition 2.10. Let φ(x, t, z) be a nonsingular solution of the Lax pair

(2.1a). Then φ†x = φ†X† and φ†t = φ†T†. Indeed, since Q† = Q and z ∈ R,

wx = −J(φ†)−1φ†x(φ
†)−1 = −J(ikJ+Q)Jw = Xw,

wt = −J(φ†)−1φ†t (φ
†)−1 = −J(−2ik2J+ iJ(−Qx −Q2 + q2o)− 2kQ)Jw = Tw.

Thus, w is a solution of the Lax pair.
Proof of Lemma 2.11. Define

(A.25) w±(x, t, z) = J(φ†±(x, t, z))
−1, z ∈ R.

Also, note that for all z ∈ C,

(A.26) (eiΘ(x,t,z∗))† = e−iΘ(x,t,z).

It is easy to see that

(A.27) w±(x, t, z) = J(E†
±(z))

−1eiΘ(x,t,z) + o(1), x→ ±∞.

Since both w± and φ± are fundamental matrix solutions of the Lax pair (2.1a), there
must exist an invertible 3 × 3 matrix C(z) such that (2.41) holds. Comparing the
asymptotics from (A.27) to those from (2.11), we then obtain the desired result.

Proof of Lemma 2.12. Using (2.32), we obtain the following for z ∈ R:

φ∗± = J ([φ±,2 × φ±,3], [φ±,3 × φ±,1], [φ±,1 × φ±,2])C/ detφ±,

where we have suppressed the x-, t-, and z-dependence for brevity. We can then apply
(2.30a) and (2.30b) to obtain

φ∗−,1(x, t, z) = − 1

a33(z)
J [χ̄× φ−,3] (x, t, z)e

−iθ2(x,t,z),(A.28a)

φ∗+,1(x, t, z) =
1

b33(z)
J [χ× φ+,3] (x, t, z)e

−iθ2(x,t,z).(A.28b)

Recalling the analyticity properties of each function in (A.28) allows us to apply
the Schwarz reflection principle to obtain (2.34a) and (2.34b). The rest of (2.34) is
obtained in a similar manner.

Proof of Corollary 2.14. Taking into consideration the boundary conditions (2.11)
and the corresponding boundary conditions for the adjoint eigenfunctions, we obtain
φ∗±(x, t, z) = φ̃±(x, t, z) (for z ∈ R), and thus, by the Schwarz reflection principle,

φ∗±,1(x, t, z
∗) = φ̃±,1(x, t, z), Im z ≷ 0,(A.29a)
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746 GINO BIONDINI AND DANIEL KRAUS

φ∗±,3(x, t, z
∗) = φ̃±,3(x, t, z), Im z ≶ 0.(A.29b)

We can then combine (A.29) and (2.27) to obtain (2.38).
Proof of Lemma 2.16. For z ∈ R, define W±(x, t, z) = φ±(x, t, q2o/z). Since W±

and φ± both solve the Lax pair (2.1a), there must exist an invertible 3 × 3 matrix
Π(z) satisfying (2.40). Note that

(A.30) Θ(x, t, q2o/z) = KΘ(x, t, z),

where K = diag(−1, 1,−1). Comparing the asymptotics of (2.40) with the asymp-
totics from (2.11), we have

E±(q2o/z)e
iKΘ(x,t,z)Π(z) = E±(z)eiΘ(x,t,z) ,

which yields (2.41).

A.7. Discrete eigenvalues and bound states.
Proof of Lemma 2.19. It is easy to show that if v(x, t, k) = (v1, v2, v3)

T is any
nontrivial solution of the scattering problem,

(A.31) −i(k−k∗)
3∑

n=1

|vn(x, t, k)|2 =
∂

∂x

[|v1(x, t, k)|2 − |v2(x, t, k)|2 − |v3(x, t, k)|2
]
.

Now, integrate (A.31) from −∞ to ∞. If v(x, t, k) ∈ L2(R), the right-hand side is
zero, but since

∫
R
‖v(x, t, k)‖2 dx �= 0, this implies k∗ = k, i.e., z ∈ R or z ∈ Co. But

for z ∈ R, the eigenfunctions do not decay as x→ ±∞, and therefore v(x, t, k) cannot
belong to L2(R). Thus, the only possibility left is z ∈ Co.

Proof of Lemma 2.20. Suppose a11(zn) = 0, where Im zn > 0. The results follow
from a combination of (2.35) and (2.43).

Proof of Lemma 2.21. If χ(x, t, zo) = 0, then by (2.27), there exists a constant
bo such that φ−,3(x, t, z

∗
o) = boφ+,1(x, t, z

∗
o). However, this corresponds to a bound

state, which would contradict Lemma 2.19. Therefore, χ(x, t, zo) �= 0.
Proof of Lemma 2.22. [(i) ⇔ (ii) and (iii) ⇔ (iv)] The results follow trivially

from (2.46).
[(i) ⇔ (iii)] Assume χ(x, t, zo) = 0. By Lemma 2.21, |zo| = qo. Then zo = q2o/z

∗
o ,

implying χ(x, t, q2o/z
∗
n) = 0. The converse follows by using the exact same argument.

[(i) ⇔ (v)] Assume χ(x, t, zo) = 0. Then (2.27) implies

[φ̃−,3 × φ̃+,1](x, t, zo) = 0,

so there exists a constant b∗o such that φ̃−,3(x, t, zo) = b∗oφ̃+,1(x, t, zo). Using the
symmetry (A.29) and then taking the complex conjugate yields the desired result.
Conversely, assume there exists a constant bo such that φ−,3(x, t, z

∗
o) = boφ+,1(x, t, z

∗
o).

Then [φ∗−,3 × φ∗+,1](x, t, z
∗
o) = 0, which, together with (A.29) and (2.27), implies

χ(x, t, zo) = 0.
[(v) ⇔ (vi)] Assume such a constant bo exists. Applying the symmetry (2.42)

yields −(iqo/z
∗
o)φ−,1(x, t, q

2
o/z

∗
o) = (iqo/z

∗
o)boφ+,3(x, t, q

2
o/z

∗
o). Taking b̃o = −bo gives

the desired result. The converse is proved similarly using (2.42) again.
[(vii) ⇔ (viii)] Using (2.42) as in the proof that (v) ⇔ (vi) will give the result.
[(iv) ⇔ (vii)] This is proved by using (A.29) and (2.27), as in the proof that (i)

⇔ (v).
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Proof of Theorem 2.23. Since a11(ζo) = 0, (2.34c) seems to imply that φ−,3(x, t, z)
has a pole at z = ζ∗o , but this is impossible since φ−,3(x, t, z) is analytic in the lower
half plane. Hence, one of the eigenfunctions on the right-hand side of (2.34c) must be
zero or the two eigenfunctions must be linearly dependent. Now, suppose χ(x, t, ζo) �=
0. Equation (2.50) implies detΦ+(x, t, ζo) = 0, so there must exist constants c1
and c2 such that χ(x, t, ζo) = c1φ−,1(x, t, ζo) + c2φ+,3(x, t, ζo). But Lemma 2.22
implies that φ−,1(x, t, ζo) and φ+,3(x, t, ζo) are linearly independent. Thus, in order
for (2.34c) to be finite at z = ζo, one needs c2 = 0. Repeating with (2.34b), one obtains
c1 = 0. Therefore, χ(x, t, ζo) = 0. Lemma 2.22 then tells us that χ̄(x, t, ζ∗o ) = 0.
Equation (2.52) then follows immediately by Lemma 2.22.

Proof of Theorem 2.24. Since zn /∈ Co, Lemma 2.21 implies that χ(x, t, zn),
χ̄(x, t, z∗n), χ(x, t, q2o/z∗n), and χ̄(x, t, q2o/zn) are all nonzero. As in the proof of Theo-
rem 2.23, since a11(zn) = 0, (2.34c) implies [χ × φ−,1](x, t, zn) = 0. This proves the
existence of the constant dn. The rest of (2.53) is proved by using (2.34) and the
results from (2.51).

Note that we may write zn = αn+ iνn, where νn > 0. Equations (2.5) then yield

k(zn) =
1
2

[
αn

(
1 +

q2o
|zn|2

)
+ iνn

(
1− q2o

|zn|2
)]

,(A.32a)

λ(zn) =
1
2

[
αn

(
1− q2o

|zn|2
)
+ iνn

(
1 +

q2o
|zn|2

)]
.(A.32b)

We wish to show that a bound state arises from the first of (2.53a) unless |zn| < qo.
We start by rewriting that expression as

φ−,1(x, t, zn) = dnm(x, t, zn)e
iθ2(x,t,zn).

Suppose |zn| > qo. We use the asymptotics from Lemma 2.9 and (A.32) to see that the
left-hand side of this equation is bounded as x→ ±∞. This results in a bound state,
which contradicts Lemma 2.19. When |zo| < qo, we arrive at no such contradiction,
so we cannot exclude this case.

Finally, suppose b33(zn) = 0. Then since φ+,1(x, t, z) is analytic at z = z∗n, (2.34b)
implies the existence of a constant co such that χ(x, t, zn) = coφ+,3(x, t, zn). How-
ever, (2.53) implies φ−,1(x, t, zn) = dnχ(x, t, zn). Combining these yields φ−,1(zn) =
dncoφ+,3(x, t, zn). This corresponds to a bound state, which contradicts Lemma 2.19.
Therefore, b33(zn) �= 0.

Proof of Lemma 2.25. The symmetry (2.42) yields the first of (2.54), while dif-
ferentiating (2.34a) with respect to z, applying (2.52), and comparing the result with
the derivative of (2.34d) yields the second of (2.54).

Proof of Lemma 2.26. Combining (2.53) with the symmetries (2.42) and (2.46)

yields the first of (2.55) and the relation dn = (iz∗n/qo)d̂n. Then, evaluating (2.34a)
at z = z∗n, applying the second of (2.53b), and recalling the definition of χ(x, t, z)
from (2.27) yields the rest of (2.55).

A.8. Asymptotics. Throughout this section, we will use the shorthand notation

eiΛ̂(M) = eiΛM e−iΛ =

⎛
⎝ m11 e−i(k+λ)m12 e−2iλm13

ei(k+λ)m21 m22 ei(k−λ)m23

e2iλm31 e−i(k−λ)m32 m33

⎞
⎠ ,

where M is any 3 × 3 matrix. In order to prove Lemmas 2.27 and 2.28, it will be
convenient to decompose (2.56c) into block-diagonal and block-off-diagonal terms.
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For example, the block diagonal and block off-diagonal terms of the scattering matrix
A(z) are, respectively,

[A(z)]bd =

⎛
⎝a11(z) 0 0

0 a22(z) a23(z)
0 a32(z) a33(z)

⎞
⎠ , [A(z)]bo =

⎛
⎝ 0 a12(z) a13(z)
a21(z) 0 0
a31(z) 0 0

⎞
⎠ .

First, note that for any 3× 3 matrices A and B,

[AB]bd = AbdBbd +AboBbo, [AB]bo = AbdBbo +AboBbd,(A.33a) [
AbdBbd

]
d
= AdBd +

[
Abd

]
o

[
Bbd

]
o
,(A.33b) [

AbdBbd

]
o
= Ad

[
Bbd

]
o
+

[
Abd

]
o
Bd.(A.33c)

We denote the integrand of (2.56c) as

M+(x, y, t, z) = E+(z)e
i(x−y)Λ̂(z)

(
E−1

+ (z)ΔQ+(y, t)μn(y, t, z)
)
.

We suppress x-, y-, t-, and z-dependence for simplicity in the following calculations
when doing so introduces no confusion. Since ei(x−y)Λ(z) is a diagonal matrix, and
since ΔQ+ is a block off-diagonal matrix,

[M+]bd = [E+]bde
i(x−y)Λ̂

(
[E−1

+ ]boΔQ+[μn]bd + [E−1
+ ]bdΔQ+[μn]bo

)
+ [E+]boe

i(x−y)Λ̂
(
[E−1

+ ]bdΔQ+[μn]bd + [E−1
+ ]boΔQ+[μn]bo

)
.

Equation (2.8) implies

[E−1
± ]bd =

1

γ(z)
D(z)[E†

±]bd, [E−1
± ]bo = − 1

γ(z)
[E†

±]bo,

where D(z) = diag(1, γ(z), 1). We then obtain

[M+]bd =
[E+]bd
γ

ei(x−y)Λ̂
(
−[E†

±]boΔQ+[μn]bd +D[E†
±]bdΔQ+[μn]bo

)

+
[E+]bo
γ

ei(x−y)Λ̂
(
D[E†

±]bdΔQ+[μn]bd − [E†
±]boΔQ+[μn]bo

)
.

We now discuss [M+]bo. It follows that

[M+]bo =
[E+]bd
γ

ei(x−y)Λ̂
(
−[E†

±]boΔQ+[μn]bo +D[E†
±]bdΔQ+[μn]bd

)

+
[E+]bo
γ

ei(x−y)Λ̂
(
D[E†

±]bdΔQ+[μn]bo − [E†
±]boΔQ+[μn]bd

)
.

We combine (A.33) with (2.56c) to find the following for n ≥ 0:

(A.34a)

−γ[μn+1]bd = [E+]bd

∫ ∞

x

[
−[E†

±]boΔQ+[μn]d − ei(x−y)Λ̂
(
[E†

±]boΔQ+

[
[μn]bd

]
o

)]
dy

+ [E+]bdD

∫ ∞

x

[
[E†

±]d
[
ΔQ+[μn]bo

]
d
+ [[E†

±]bd]o
[
ΔQ+[μn]bo

]
o

]
dy

D
ow

nl
oa

de
d 

02
/1

0/
15

 to
 1

28
.2

05
.1

13
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFOCUSING MANAKOV SYSTEM WITH NZBC 749

+ [E+]bd

∫ ∞

x

ei(x−y)Λ̂
(
D[E†

±]d
[
ΔQ+[μn]bo

]
o
+D[[E†

±]bd]o
[
ΔQ+[μn]bo

]
d

)
dy

+ [E+]bo

∫ ∞

x

ei(x−y)Λ̂
(
D[E†

±]bdΔQ+[μn]bd − [E†
±]boΔQ+[μn]bo

)
dy,

(A.34b)

−γ[μn+1]bo = [E+]bd

∫ ∞

x

ei(x−y)Λ̂
(
−[E†

±]boΔQ+[μn]bo +D[E†
±]bdΔQ+[μn]bd

)
dy

+ [E+]bo

∫ ∞

x

[
D[[E†

±]bd]o
[
ΔQ+[μn]bo

]
o
+ ei(x−y)Λ̂

(
D[E†

±]d
[
ΔQ+[μn]bo

]
o

)]
dy

+ [E+]bo

∫ ∞

x

[
ei(x−y)Λ̂

(
D[[E†

±]bd]o
[
ΔQ+[μn]bo

]
d

)
−

[
[E†

±]boΔQ+

]
d
[μn]d

]
dy

− [E+]bo

∫ ∞

x

[[
[E†

±]boΔQ+

]
o

[
[μn]bd

]
o
+ ei(x−y)Λ̂

([
[E†

±]boΔQ+

]
o
[μn]d

)]
dy

− [E+]bo

∫ ∞

x

ei(x−y)Λ̂
([

[E†
±]boΔQ+

]
d

[
[μn]bd

]
o

)
dy.

Equations (A.34a) and (A.34b) will allow us to easily use induction to prove Lem-
mas 2.27 and 2.28.

Proof of Lemma 2.27. The claims in (2.57a) are trivially true for μ0. Suppose the
claims in (2.57) are true for some n ≥ 0. We then use integration by parts and the
facts that k = z/2+O(1/z) and λ = z/2+O(1/z) as z → ∞ to see that the terms in
(A.34a) are O([μn]bd/z), O([μn]bd/z

2), O([μn]bo), O([μn]bo), O([μn]bo/z), O([μn]bo/z),
O([μn]bd/z

2), and O([μn]bo/z
3), respectively, as z → ∞.

When n = 2m for some m ∈ N, the first, third, and fourth terms on the right-
hand side of (A.34a) are O(1/zm+1), the second, fifth, sixth, and seventh terms are
O(1/zm+2), and the eighth term is O(1/zm+4) (all as z → ∞). Then [μn+1]bd =
O(1/zm+1) as z → ∞.

When n = 2m+ 1 for some m ∈ N, the third and fourth terms on the right-hand
side of (A.34a) are O(1/zm+1), the first, fifth, and sixth terms are O(1/zm+2), the
second and seventh terms are O(1/zm+3), and the eighth term is O(1/zm+4) (all as
z → ∞). Then [μn+1]bd = O(1/zm+1) as z → ∞.

Similar results hold for the terms in (A.34b) using the same analysis. Also, the
same results hold for μ−(x, t, z) when it is expanded as a series similar to (2.56a).

Proof of Lemma 2.28. The claims in (2.58a) are trivially true for μ0. Suppose the
claims in (2.58) are true for some n ≥ 0. We use integration by parts and the facts
that k = O(1/z) and λ = O(1/z) as z → 0 to see that the terms on the right-hand
side of (A.34a) are, respectively, O(z[μn]bd), O(z

2[μn]bd), O(z
2[μn]bo), O(z

2[μn]bo),
O(z3[μn]bo), O(z

3[μn]bo), O(z
2[μn]bd), and O(z[μn]bo) as z → 0.

When n = 2m for some m ∈ N, the eighth term on the right-hand side of (A.34a)
is O(zm), the first, third, and fourth terms are O(zm+1), and the rest are O(zm+2).
Then [μn+1]bd = O(zm) as z → 0.

When n = 2m + 1 for some m ∈ N, the first and eighth terms on the right-
hand side of (A.34a) are O(zm+1), the second, third, fourth, and seventh terms are
O(zm+2), and the rest are O(zm+3). Then [μn+1]bd = O(zm+1) as z → 0.

Similar results hold for the terms in (A.34b) using the same analysis. Also, the
same results hold for μ−(x, t, z) when it is expanded as a series similar to (2.56a).

Proof of Corollary 2.29. One obtains the results after explicitly calculating the
columns of (2.56a).
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750 GINO BIONDINI AND DANIEL KRAUS

Proof of Lemma 2.30. The results follow by combining (2.27) with (2.59) and
(2.60).

Proof of Corollary 2.31. One obtains the results by combining the results in
Corollary 2.29 with (2.19).

Proof of Corollary 2.32. Equations (2.63) and (2.65) are obtained by combining
the results in Corollary 2.29 with (2.19) and the results in Lemma 2.6. The asymp-
totic behavior of a22(z) and b22(z) as z → ∞ and z → 0 in (2.64) and (2.66) is
simply a consequence of (2.63) and (2.65), Corollary 2.31, and the fact that a22(z) =
b11(z)b33(z)− b13(z)b31(z) and b22(z) = a11(z)a33(z)− a13(z)a31(z).

A.9. Inverse problem.
Proof of Lemma 3.1. We start by eliminating the nonanalytic eigenfunctions φ±,2

from (2.19) using (2.30a) and (2.30b):

φ+,3(x, t, z) = −
[
a23(z)

a33(z)

b12(z)

b11(z)
+

a13(z)

a33(z)

]
φ+,1(x, t, z)− a23(z)

a33(z)

[
− χ̄(x, t, z)

b11(z)

]
+

φ−,3(x, t, z)

a33(z)
,

φ−,1(x, t, z)

a11(z)
=

[
1 +

a21(z)

a11(z)

b12(z)

b11(z)

]
φ+,1(x, t, z) +

a21(z)

a11(z)

[
− χ̄(x, t, z)

b11(z)

]
+

a31(z)

a11(z)
φ+,3(x, t, z),

χ(x, t, z)

b33(z)
=

b12(z)

b11(z)
φ+,1(x, t, z)− χ̄(x, t, z)

b11(z)
− b32(z)

b33(z)
φ+,3(x, t, z).

The jump conditions (3.2) are obtained by combining the above expression for φ+,3(x, t, z)
with the other two equations, recalling (2.47), and applying the symmetries of the
scattering coefficients.

Proof of Lemma 3.2. One obtains the asymptotics of the columns of M±(x, t, z)
by using the asymptotics of the eigenfunctions and the scattering coefficients found
in section 2.6.

Proof of Lemma 3.3. The residue conditions are easily found by combining the
definitions of the meromorphic matrices (3.1) with the relations in Theorems 2.23 and
2.24.

Proof of Lemma 3.4. The symmetry (2.43) implies a′11(z)|z=ζn = − ζ∗
n

ζn
a′33(z)|z=ζ∗

n
.

Combining this information with (2.54) and (3.9) yields (3.5a). Next, combining
(2.55) with the symmetries (found using (2.35) and (2.43))

a′11(z)|z=zn = [b′11(z)|z=z∗
n
]∗, a′33(z)|z=q2o/zn

= [b′33(z)|z=q2o/z
∗
n
]∗,

a′11(z)|z=zn = − q2o
z2n
a′33(z)|z=q2o/zn

yields (3.5b).
Proof of Theorem 3.7. For brevity, we suppress x- and t-dependence when doing

so introduces no confusion. To solve (3.2), we subtract from both sides of (3.2) the
quantities defined in (3.3) as well as the residue contributions from the poles inside
and on the circle of radius qo. Namely, we subtract

M∞ + (i/z)M0 +

N1∑
i=1

(
Resz=ζi M

+

z − ζi
+

Resz=ζ∗
i
M−

z − ζ∗i

)

+

N2∑
j=1

(
Resz=z∗

j
M−

z − z∗j
+

Resz=zj M
+

z − zj

)
+

N2∑
j=1

(
Resz=q2o/zj

M−

z − q2o/zj
+

Resz=q2o/z
∗
j
M+

z − q2o/z
∗
j

)
.

The left-hand side of the resulting, regularized RHP is analytic in the upper half z-
plane and is O(1/z) as z → ∞ there. Also, the right-hand side is analytic in the lower
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half z-plane and is O(1/z) as z → ∞ there. Now, recall that the definition (3.12a) of
the Cauchy projectors, as well as Plemelj’s formulae: If f± is analytic in the upper
(resp., lower) half of the z-plane and f± = O(1/z) as z → ∞ in the appropriate
half plane, then P±f± = ±f± and P+f− = P−f+ = 0. Applying (3.12a) to the
regularized RHP yields (3.6).

Evaluating the first column of (3.6) at w = ζ∗i′ (i′ = 1, . . . , N1) or w = z∗j′
(j′ = 1, . . . , N2) yields (3.7a), evaluating the third column of (3.6) at w = ζi′ (i′ =
1, . . . , N1) or w = q2o/z

∗
j′ (j′ = 1, . . . , N2) yields (3.7b), and examining the second

column of (3.6) and using the symmetry (2.43) yields (3.7c) and (3.7d). From this,
we will be able to explicitly find the residues in the reflectionless case.

Proof of Theorem 3.8. The asymptotics from (2.59) imply

(A.35) qk(x, t) = −i lim
z→∞

(
z μ+,(k+1)1(x, t, z)

)
, k = 1, 2.

We takeM = M− in (3.6) and compare its 2, 1 and 3, 1 elements in the limit as z → ∞
with the corresponding elements found in the first of (2.59) to obtain (3.8).

Proof of Lemma 3.9. Recall that a11(z) is analytic in the upper half z-plane and
that it has simple zeros at the points {ζn}N1

n=1 on the circle Co and the points {zn}N2
n=1

inside the circle Co. Define
(A.36)

β1(z) = a11(z)

N1∏
n=1

z − ζ∗n
z − ζn

N2∏
n=1

z − z∗n
z − zn

, β2(z) = b11(z)

N1∏
n=1

z − ζn
z − ζ∗n

N2∏
n=1

z − zn
z − z∗n

.

By construction, β1(z) is analytic in the upper half z-plane, it has no zeros, and
β(z) → 1 as z → ∞ in the upper half z-plane. The same results hold for β2(z) in the
lower half z-plane. We use (2.47) and the symmetry (2.35) to write (5.1) as

(A.37) log a11(z)− log(1/b11(z)) = log

[
1− |ρ1(z)|2 − z2

z2 − q2o
|ρ2(z)|2

]
, z ∈ R.

Combining (A.37) with (A.36) yields

(A.38) log β1(z)− log(1/β2(z)) = log

[
1− |ρ1(z)|2 − z2

z2 − q2o
|ρ2(z)|2

]
, z ∈ R.

Equation (A.38) is an RHP. Applying P+ from (3.12a) to (A.38) yields the desired
result.

Proof of Corollary 3.10. One obtains the result by comparing (3.9) with the
asymptotic behavior of a11(z) as z → 0 in (2.62a).

A.10. Existence and uniqueness of the solution of the RHP. Since the
spatial and temporal variables x and t only appear as parameters in the formulation
of the RHP, and since their value does not affect the arguments that follow, in this
section we omit the (x, t)-dependence for brevity.

Proof of Theorem 3.11. The proof uses a standard argument (e.g., cf. [14]). In the
absence of a discrete spectrum, M(z) is a sectionally analytic function on C\R which
satisfies the jump condition (3.2) and has the asymptotic behavior in Lemma 3.2.
Letting g(z) = detM(z) and taking the determinant of the jump condition (3.2)
yields

(A.39) g+(z) = g−(z), z ∈ R .
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752 GINO BIONDINI AND DANIEL KRAUS

Moreover, Lemma 3.2, implies g(z) = 1+O(1/z) as z → ∞ and g(z) = O(1) as z → 0.
Equation (A.39) then implies that g(z) is an entire function (as there is no singularity
at z = 0) which is also bounded at infinity. Liouville’s theorem then implies g(z) = 1
for all z ∈ C. Thus, M(z) is invertible, and M−1(z) is also analytic for C \ R.

Now, suppose M̃(z) is another sectionally analytic function which satisfies the
jump condition (3.2) and has the asymptotic behavior in Lemma 3.2. Introducing the
matrix Y(z) = M̃(z)M−1(z) and using again the jump condition (3.2), we have

(A.40) Y+(z) = Y−(z), z ∈ R.

Lemma 3.2 implies Y(z) = I+O(1/z) as z → ∞ and Y(z) = I+O(z) as z → 0. Thus,
Y(z) is an entire function that is also bounded at infinity, and Liouville’s theorem
again allows us to conclude Y(z) = I for all z ∈ C, implying M̃(z) = M(z).

Proof of Theorem 3.12. Again, recall that we consider the case of no discrete
spectrum. Note first that, when taking the limit to z ∈ R from the appropriate direc-
tions in the complex plane, the limiting values of the Cauchy projectors P± in (3.12a)
are bounded operators on L2(R) [34]. Indeed, for f ∈ L2(R), straightforward algebra
yields ∫

R

f(ζ)

ζ − (z ± iε)
dζ =

∫
R

(ζ − z)f(ζ)

(ζ − z)2 + ε2
dζ ± i

∫
R

ε f(ζ)

(ζ − z)2 + ε2
dζ.

As ε→ 0+, the first integral converges to −π (Hf)(z), whereH is a Hilbert transform:

(A.41) (Hf)(z) = lim
δ→0+

1

π

∫
|ζ−z|≥δ

f(ζ)

z − ζ
dζ.

Also, the second integral converges to ±iπ f(z), since its integrand contains a repre-
sentation of the Dirac delta. Thus,

(A.42) (P±f)(z) = ±1

2
f(z)− 1

2i
(Hf)(z), z ∈ R.

Since H is known to be a bounded operator on L2(R) [34], we conclude from (A.42)
that the limiting values of P± as z → R are indeed bounded operators on L2(R).
Moreover, using again the properties of the Hilbert transform H , we find

(A.43) P+ − P− = I.

We now use the methods of [14] to prove the existence of the solution of the RHP.
We begin by recalling the decomposition V(z) = V−1

+ (z)V−(z) (3.13) of the jump
condition (3.2) M+(z) = M−(z)V(z), where V±(z) are, respectively, upper/lower
triangular matrices. (Note that here the subscripts ± do not indicate normalization
as x→ ±∞ as in the rest of this work.) Thanks to the boundedness and invertibility
of V(z), each triangular matrix on the right-hand side of (3.13) is bounded in L∞(R)
and invertible. Also, L(z) ∈ L∞(R) implies that V+(·) and V−(·) are both in L∞(R).
Next, recalling from (3.14) that W± = ±(I−V±) and W = W+ +W−, as well the
definition (3.15) of Pw, it follows from the above discussion that Pw is a bounded
operator in L2(R).

In Lemma A.9 below we prove that, under the conditions of Theorem 3.12, I−Pw

is an invertible operator in L2(R). Then let N be the unique solution of the following
integral equation:

(A.44) ((I − Pw)N)(s) = E+(s), s ∈ R .
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Note that I−N ∈ L2(R). Then define the matrix function

(A.45) M#(z) = E+(z) + (P (NW))(z), z /∈ R ,

where the Cauchy operator was defined in (3.12b). We next show that M#(z) is a
solution of the RHP defined by Lemmas 3.1, 3.2, and 3.3. Note first that M#(z)
is analytic for all z ∈ C \ R. Next we prove that M# satisfies the jump condition.
Combining the properties of N with the identity (A.43) and (3.14), we obtain, for all
s ∈ R,

(A.46) M+
# = E+ + P+(NW) = E+ + P+(NW+) + P+(NW−)

= E+ + P+(NW+) + P−(NW−) +NW−
= E+ + PwN+NW− = N(I+W−) = NV−.

Similarly, we find M−
# = NV+. Hence, M+

# = M−
#V, which is the jump condi-

tion (3.2). Finally, it is easy to see from the definition that M#(z) satisfies the
asymptotic behavior from Lemma 3.2 as z → ∞ and z → 0. Thus, M#(z) solves the
RHP defined by Lemmas 3.1, 3.2, and 3.3.

It remains to show that I − Pw is invertible.
Lemma A.9. Under the same hypotheses as Theorem 3.12, the operator I − Pw

is invertible on L2(R).
Proof. Since I−Pw has Fredholm index zero, it is invertible if and only if I −Pw

is injective [13, 33]. So, suppose (I − Pw)G = 0 for some G(·) ∈ L2(R), and define

(A.47) Mo(z) =
1

2πi

∫
R

G(ζ)W(ζ)

ζ − z
dζ, z /∈ R .

We then have that Mo(z) is analytic for z ∈ C \ R, M+
o (z) = M−

o (z)V(z) for z ∈ R,
Mo(z) = O(1/z) as z → ∞, and Mo(z) = O(1) as z → 0. Then for all α ∈ C, the
matrix M + αMo is a solution of the RHP defined by Lemmas 3.1, 3.2, and 3.3. By
the above uniqueness results, however, it must then be Mo(z) = 0 for all z ∈ C, which
in turn implies P±(GW) ≡ 0 for all z ∈ R and

(A.48) G(z)W(z) = ([P+ − P−](GW))(z) = 0 , z ∈ R .

Then, following the same steps as in (A.46), we obtain 0 = GV−. But since V− is
invertible, this implies G ≡ 0. Hence I − Pw is invertible.

A.11. Reflectionless solutions.
Proof of Lemma 3.13. In the reflectionless case, the reflection coefficients in (2.47)

are all identically zero. This, combined with the first and second symmetries of the
scattering matrix, which express all off-diagonal entries of the scattering matrix in
terms of the reflection coefficients, yields the result.

Proof of Theorem 3.14. For i = 1, . . . , N1 and j = 1, . . . , N2, define

d
(1)
i (x, t, z) =

Ci(x, t)

z − ζi
, d

(2)
i (x, t, z) =

Ci(x, t)

z − ζ∗i
, d

(3)
j (x, t, z) =

Dj(x, t)

z − zj
,

d
(4)
j (x, t, z) =

Ďj(x, t)

z − q2o/zj
, d

(5)
j (x, t, z) =

Dj(x, t)

z − z∗j
, d

(6)
j (x, t, z) =

D̂j(x, t)

z − q2o/z
∗
j

.
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Then in the reflectionless case, we obtain the following for i′ = 1, . . . , N1 and j′ =
1, . . . , N2:

m−
21(x, t, ζ

∗
i′ ) =

iq+,1

ζ∗i′
+

N1∑
i=1

d
(1)
i (ζ∗i′ )m

+
23(ζi) +

N2∑
j=1

d
(3)
j (ζ∗i′)m

+
22(zj),

m+
23(x, t, ζi′ ) =

q+,1

qo
+

N1∑
i=1

d
(2)
i (ζi′ )m

−
21(ζ

∗
i )−

N2∑
j=1

d
(4)
j (ζi′ )m

−
22(q

2
o/zj),

m−
23(x, t, z

∗
j′) =

iq+,1

z∗j′
+

N1∑
i=1

d
(1)
i (z∗j′ )m

+
23(ζi) +

N2∑
j=1

d
(3)
j (z∗j′ )m

+
22(zj),

m+
23(x, t, q

2
o/z

∗
j′) =

q+,1

qo
+

N1∑
i=1

d
(2)
i (q2o/z

∗
j′)m

−
21(ζ

∗
i )−

N2∑
j=1

d
(4)
j (q2o/z

∗
j′)m

−
22(q

2
o/zj),

m−
22(x, t, q

2
o/zj′) =

r+,2

qo
−

N2∑
j=1

d
(5)
j

(
q2o
zj′

)
m−

21(z
∗
j ) +

N2∑
j=1

d
(6)
j

(
q2o
zj′

)
m+

23(q
2
o/z

∗
j ),

m+
22(x, t, zj′) =

r+,2

qo
−

N2∑
j=1

d
(5)
j (zj′ )m

−
21(z

∗
j ) +

N2∑
j=1

d
(6)
j (zj′)m

+
23(q

2
o/z

∗
j ).

However, this system of equations reduces considerably if we take into account the
symmetries from (2.40) and (2.46). The reduced system is

m+
23(x, t, ζi′ ) =

q+,1

qo
+ i

N1∑
i=1

ζi
qo
d
(2)
i (x, t, ζi′ )m

+
23(x, t, ζi)−

N2∑
j=1

d
(4)
j (x, t, ζi′ )m

+
22(x, t, zj),

m+
22(x, t, zj′ ) =

r+,2

qo
−

N2∑
j=1

[
d
(5)
j (x, t, zj′ ) +

iz∗j
qo
d
(6)
j (x, t, zj′ )

]
m−

21(x, t, z
∗
j ),

m−
21(x, t, z

∗
j′ ) =

iq+,1

z∗j′
+

N1∑
i=1

d
(1)
i (x, t, z∗j′ )m

+
23(x, t, ζi) +

N2∑
j=1

d
(3)
j (x, t, z∗j′ )m

+
22(x, t, zj).

Substituting the third equation into the second in the reduced system yields

m+
22(x, t, zj′ ) =

r+,2

qo
−

N2∑
j=1

iq+,1

z∗j

[
d
(5)
j (x, t, zj′) +

iz∗j
qo
d
(6)
j (x, t, zj′ )

]

−
N2∑
j=1

N1∑
i=1

[
d
(5)
j (x, t, zj′ ) +

iz∗j
qo
d
(6)
j (x, t, zj′)

]
d
(1)
i (x, t, z∗j )m

+
23(x, t, ζi)

−
N2∑
j=1

N2∑
j′′=1

[
d
(5)
j (x, t, zj′) +

iz∗j
qo
d
(6)
j (x, t, zj′ )

]
d
(3)
j′′ (x, t, z

∗
j )m

+
22(x, t, zj′′ ).

The equations for m+
23(x, t, ζi′ ) and m+

22(x, t, zj′ ) form a closed system of N1 + N2

equations with N1 +N2 unknowns. We can find a similar system involving the third
elements of m+

2 (x, t, zj′ ) and m
+
3 (x, t, ζi′ ). These systems may be written GXn = Bn
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(n = 1, 2), where Xn = (Xn1, . . . , Xn(N1+N2))
T and

Xni′ =

{
m+

(n+1)3(ζi′ ), i′ = 1, . . . , N1,

m+
(n+1)2(zi′−N1), i′ = N1 + 1, . . . , N1 +N2.

Using Cramer’s rule, the components of the solutions of said systems are

(A.49) Xni =
detGaug

ni

detG
, i = 1, . . . , N1 +N2, n = 1, 2,

where Gaug
ni = (G1, . . . ,Gi−1,Bn,Gi+1, . . . ,GN1+N2). Substituting the determinant

form of the solution (A.49) into (3.8) yields (3.16).

A.12. Double poles.
Proof of Lemma 4.1. Differentiating (2.50a) with respect to z, evaluating the

result at z = zo, and using (2.53) yields

(A.50) det
(
φ′−,1(x, t, zo)− doχ

′(x, t, zo)/b33(zo), χ(x, t, zo), φ+,3(x, t, zo)
)
= 0.

Then a linear combination of the eigenfunctions in (A.50) must be zero. In other
words, there exist appropriate constants (not all zero) such that

po[φ
′
−,1(x, t, zo)− doχ

′(x, t, zo)/b33(zo)] + p1χ(x, t, zo) + p2φ+,3(x, t, zo) = 0.

Note that the possibility p1 = p2 = 0 does not lead to any contradictions, but we
ignore this possibility for now since it will be a special case of more general results.
Suppose po = 0. Then χ(x, t, zo) is proportional to φ+,3(x, t, zo). This result, however,
implies that φ+,3(x, t, zo) is proportional to φ−,1(x, t, zo), due to Theorem 2.24. As a
result, we have a bound state, which contradicts Lemma 2.19. Therefore, po �= 0, and
we can rescale the constants to obtain the first of (4.1). The rest of (4.1) is obtained
similarly.

Proof of Corollary 4.3. The results are trivially obtained after combining the
results of Lemma 4.1 with Proposition 4.2.

Proof of Lemma 4.4. One simply differentiates the relations for the analytic
scattering coefficients in (2.35) and (2.43) with respect to z to obtain the desired
results.

Proof of Lemma 4.5. One obtains the results by differentiating (2.42) and (2.46)
with respect to z.

Proof of Lemma 4.6. The symmetries (4.5a) follow trivially from Lemma 2.26.
Applying (4.4) to (4.1a) and (4.1) yields go = (q2o/z

2
o)ǧo, ḡo = (iqo/z

∗
o)ĝo, the second

of (4.5b), and the first of (4.5c). The first of (4.5b) and the identity go = 0 are
obtained by differentiating (2.34a) with respect to z, evaluating the result at z = z∗o ,
applying Theorem 2.24 and (4.1d), using (2.27), and finally comparing with (4.1a).
A similar process is used to show that ḡo = 0. The above symmetries then imply
ǧo = ĝo = 0.

Proof of Theorem 4.7. We set up the RHP in the same way that we did in (3.2).
However, as mentioned earlier, in order to normalize the RHP, we must subtract the
rest of the principal parts of the Laurent series corresponding to the entries of M±.
In a neighborhood of z = zo, we write

M+(x, t, z) =
M+

−2,zo

(z − zo)2
+

M+
−1,zo

z − zo
+M+

0,zo
,
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where M+
0,zo

(x, t, z) is analytic in a neighborhood of z = zo, and similarly at the
symmetric points of the discrete spectrum. We then subtract the necessary terms
from (3.2) and apply the Cauchy projector from (3.12a) to obtain (4.7).

Equation (4.8a) is obtained by taking M = M− in (4.7) and evaluating its first
column at z = z∗o , while (4.8b) is obtained by taking M = M+ in (4.7), evaluating its
second column at z = zo, and applying the symmetries (2.42) and (4.4). To obtain
(4.8c) and (4.8d), we differentiate (4.7) with respect to z to obtain

M′(x, t, z) = −(i/z2)M0 −
M+

−1,zo

(z − zo)2
−

M+
−1,q2o/z

∗
o

(z − q2o/z
∗
o)

2
− M−

−1,z∗
o

(z − z∗o)2
−

M−
−1,q2o/zo

(z − q2o/zo)
2

− 2M+
−2,zo

(z − zo)3
−

2M+
−2,q2o/z

∗
o

(z − q2o/z
∗
o)

3
− 2M−

−2,z∗
o

(z − z∗o)3
−

2M−
−2,q2o/zo

(z − q2o/zo)
3
,

and we evaluate the columns of M′ at the appropriate points.
Proof of Theorem 4.8. The result is obtained easily by examining the first column

of M− from (4.7) and comparing this with (A.35).
Proof of Lemma 4.9. Simply considering the system of equations (4.8) in the reflec-

tionless case and combining the resulting closed set of linear equations with (4.9) yields
the corresponding solutions of the defocusing Manakov system with NZBC.

Acknowledgments. We thank Mark Ablowitz, Gregor Kovacic, and Barbara
Prinari for many insightful discussions.
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