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GIBBS PHENOMENON FOR DISPERSIVE PDEs ON THE LINE∗

GINO BIONDINI† AND THOMAS TROGDON‡

Abstract. We investigate the Cauchy problem for linear, constant-coefficient evolution PDEs
on the real line with discontinuous initial conditions (ICs) in the small-time limit. The small-
time behavior of the solution near discontinuities is expressed in terms of universal, computable
special functions. We show that the leading-order behavior of the solution of dispersive PDEs near a
discontinuity of the ICs is characterized by Gibbs-type oscillations and gives exactly the Wilbraham–
Gibbs constants.
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1. Introduction. The Gibbs phenomenon is the well-known behavior of the
Fourier series of a piecewise continuously differentiable periodic function at a jump
discontinuity. Namely, the partial sums of the Fourier series have large oscillations
near the jump which typically increase the maximum of the sum above that of the
function itself [5, 19]. The phenomenon is the result of nonuniform convergence: the
partial sums of the Fourier series are analytic but converge to a discontinuous function;
hence, convergence must be nonuniform in any neighborhood of the discontinuity,
which gives rise to highly oscillatory behavior of any finite truncation. In this work we
give a precise characterization of the solution of dispersive PDEs with discontinuous
initial conditions (ICs), displaying the Gibbs phenomenon for short times. Specifically,
we consider a class of initial value problems (IVPs) for dispersive PDEs of the form

(1) iqt − ω(−i∂x)q = 0,

with a real-valued, polynomial dispersion relation ω(k) and with IC

(2) q(x, 0) = qo(x).

The purpose of this work is to give a quantitative description of what the solution
actually looks like as t ↓ 0 when qo has discontinuities. Figure 1 shows a solution of
(1) with ω(k) = k5 for short times that exhibits Gibbs-like oscillations.

It is well known that, for hyperbolic PDEs, the discontinuities of the IC travel
along characteristics [7, 14]. For dispersive and diffusive PDEs, in contrast, even if
the ICs are discontinuous, the solution of the IVP is typically classical for all x ∈ R
as long as t > 0 and the IC has sufficient decay as |x| → ∞. Understanding the
t ↓ 0 limit is useful for many reasons. For example: (i) to evaluate asymptotics for
linear and nonlinear problems [40], (ii) to build/test numerical integrators, and (iii) to
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Fig. 1. The solution of (1) with ω(k) = k5 and IC qo(x) = 1 if |x| ≤ 1 and qo(x) = 0 otherwise.
Left: t = 10−6. Right: t = 10−12. The solution exhibits the Gibbs phenomenon, as discussed in
detail in section 4.

understand the behavior of initial boundary value problems (IBVPs). Surprisingly,
however, while the smoothing effects of diffusion are well known, this perspective on
dispersive regularization is not as well characterized in the literature to the best of
our knowledge. The key point here is that the slow decay of the Fourier transform of
qo as k →∞ affects the short-time asymptotics of the solution q(x, t).

Let us briefly elaborate on item (iii) above. One of the original motivations for this
work was the study of corner singularities in IBVPs [4, 15, 16, 17]. The issue at hand
is the following. Consider (1), with n = 2, posed on the domain D = (0,∞)× (0, T )
so that one has to also specify boundary data at x = 0, say, q(0, t) = g0(t). The
smoothness of q(x, t) in D is restricted not only by the smoothness (and decay) of
qo(x) and g0(t) but also by the compatibility of these two functions at x = t = 0, i.e.,
to first order, qo(0) = g0(0). (Higher-order conditions are found by enforcing the PDE
holds at the corner of the domain.) When compatibility fails at some order, a corner
singularity is present. In order to characterize the effect of such a corner singularity
on the solution of an IBVP, one must first fully understand the behavior of IVPs with
discontinuous ICs.

The outline of this work is the following. In section 2 we summarize our main
results concerning both the smoothness of solutions and their short-time behavior.
In section 3 we perform the asymptotic analysis in the case of a single discontinuity
in the IC qo. There we identify the special functions that describe the Gibbs-like
behavior. Such functions are generalizations of the classical special functions and are
computable with similar numerical methods. In section 4 we display some sample
solutions, we discuss their Gibbs-like behavior, we further study the properties of
the special functions, and we establish a precise connection with the classical Gibbs
phenomenon. In section 5 we treat the case where q′o has one jump discontinuity. In
section 6 we present our general result, which allows for multiple discontinuities in qo
itself or in any of its derivatives. A full asymptotic expansion is derived near, and
away from, the singular (i.e., nonsmooth) points of qo. Section 7 contains additional
details on the analysis and numerical computation of the special functions considered
here. Finally, section 8 concludes this work with a discussion of the results and some
final remarks.

Further details and technical results are relegated to four appendices in the sup-
plementary material. In Appendix SM1 we review some well-known results about
the well-posedness of the IVP. In Appendix SM2 we prove the result (stated in sec-
tion 2.1) concerning the classical smoothness of the solution for t > 0, using the
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method of steepest descent for integrals. Appendix SM3 contains technical results
for determining the order of the error terms in our short-time expansions. Finally, in
Appendix SM4 we study the robustness of the Gibbs phenomenon by analyzing the
behavior of solutions whose ICs are a small perturbation of a discontinuous function.

Note that one can always remove constant and linear terms from ω(k) by per-
forming a phase rotation and a Galilean transformation, respectively. Thus, without
loss of generality throughout this work we take the dispersion relation to be

(3) ω(k) =

n∑
j=2

ωjk
j .

2. Summary of results. This section contains a brief summary of our main
results. Our summarized results concern regularity, the Gibbs phenomenon, and
asymptotics for our special functions. Another one of our main results (Theorem 6) is
not summarized here due to its complexity; it gives the full expansion of the solution
of (1) for short times.

2.1. Regularity results for linear evolution PDEs. We begin this section by
referring to Appendix SM1 for the required definitions and classical results concerning
the well-posedness of (1) for qo ∈ L2(R), where

q(x, t) =
1

2π

∫ ∞
−∞

eiθ(x,t,k)q̂o(k)dk, θ(x, t, k) = kx− ω(k)t,(4)

q̂0(k) =

∫ ∞
−∞

e−ikxqo(x)dx.(5)

Two properties can be readily seen:
1. q(·, t)→ q(·, 0) in L2(R) as t ↓ 0;
2. if qo ∈ H1(R), then q(·, t)→ q(·, 0) uniformly as t ↓ 0.

More delicate questions can be asked about pointwise behavior in the short-time
limit, however. In particular, Sjölin [35] showed that when ω(k) = k2m, m = 1, 2 . . . ,
and qo ∈ Hs(R) with compact support for s ≥ 1/4, limt↓0 q(x, t) = q(x, 0) for a.e.
x ∈ R. This result was generalized in [27] for general ω(k) without the assumption of
compact support. (See also [31, 37, 41].) The results that follow will only demonstrate
a.e. convergence for a subset of H1/4(R). On the other hand, the short-time expansion
that we will provide in the following sections is new.

Interesting questions related to the regularity of the solution can also be asked.
As is noted in [36], when ω(k) = k2, k3 the solutions are easily seen to be continuous
for t > 1 provided q ∈ L2 ∩ L1(R). Furthermore, the L∞(R) norm of q(·, t) decays
in time. A Strichartz-type result was provided in [27], showing, in particular, the
space-time estimate ‖q‖L8(R2) ≤ C‖qo‖L2(R) for ω(k) = k3. In Appendix SM2 we
prove results of a classical nature concerning the regularity of the solution.

Theorem 1 (regularity). Let ω(k) be as in (3) and q(x, t) be as in (4), with
qo ∈ L2(R) ∩ L1(R, (1 + |x|)`dx).

(i) If

` ≥ 2m− n+ 2

2(n− 1)
,

q(x, t) is differentiable m times with respect to x for t > 0 and ∂mx q(x, t) is
continuous as a function of x and t.
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(ii) If

` ≥ 2jn− n+ 2

2(n− 1)
,

q(x, t) is differentiable j times with respect to t for t > 0 and ∂jt q(x, t) is
continuous as a function of x and t.

Corollary 1 (classical solution). Under the same hypotheses as in Theorem 1,
if

` ≥ Cn ,
n+ 2

2(n− 1)
,

the L2 solution of the IVP is classical (all derivatives present in the PDE exist) for
t > 0.

The importance of these results from the perspective of this paper is that if we
can guarantee that the solution is smooth for t > 0 and if the IC is not smooth, then
we can guarantee that the limit t ↓ 0 is a singular one: It forces the breakdown of
smoothness. The last regularity result concerns the integrability of solutions.

Corollary 2 (loss of integrability). Let ω(k) be as in (3) and q(x, t) be as in (4),
with qo ∈ L1 ∩L2(R). Assume qo has at least one jump discontinuity.1 Then q(·, t) /∈
L1(R) for any t > 0.

Proof. Assume q̃o , q(·, t) ∈ L1(R) for some t > 0. Then take this as an initial
condition for the PDE with ω(k) replaced with −ω(k) and find its solution q̃(x, t).
Then q̃(x, t) should be continuous as a function of x by Theorem 1, but this is a
contradiction as uniqueness ensures qo = q̃(·, t) and qo is discontinuous.

2.2. Short-time behavior. To explain two aspects of the short-time behavior
we state some theorems. Define

Iω,0(y, t) ,
1

2π

∫
C

eiky−iω(k)t dk

ik
,

where C is a contour in the closed upper-half plane that runs along the real axis but
avoids k = 0.

Theorem 2 (leading-order universality). Assume qo ∈ L2(R) and there exists
c0 = −∞ < c1 < c2 < · · · < cN < cN+1 = ∞ such that the restriction q|(ci,ci+1) has

one derivative in L2((ci, ci+1)) for each i = 0, 1, . . . , N . Then if [qo(ci)] , qo(c
+
i ) −

qo(c
−
i ) 6= 0, there exists a constant qci such that

lim
t↓0

q(ci + x|ωnt|1/n, t)− qci
[qo(ci)]

= Iωn,0(x, 1), ωn(k) = ei arg(ωn)kn,

uniformly for x in a bounded set.

This is interpreted as a universality theorem because, after proper rescaling, the
solution is the same independent of both the initial condition and the lower terms in
the dispersion relation. It is proved in section 3. Because of the differential equation
(40) satisfied by Iωn,0(x, 1), we have that the leading-order behavior2 of the solution

1To be precise, we assume Re qo(x) = lim supδ↓0 δ
−1

∫
|y−x|<δ Re qo(y)dy and Im qo(x) =

lim supδ↓0 δ
−1

∫
|y−x|<δ Im qo(y)dy.

2One can generalize this with appropriate scaling when any derivative of qo is discontinuous, but
we do no pursue this further here. This gives a universality statement involving Iωn,m.
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near a discontinuity is governed by a similarity solution expressed in terms of classical
special functions.

The nonuniform convergence of q(x, t) to qo(x) as t ↓ 0 when qo(x) is discontinuous
at x = c generically results in a so-called overshoot value—the amount by which
q(x, t) over- (or under-) approximates qo(c

±); see Figure 1. We relate the behavior
of the overshoot near this region of nonuniform convergence as t ↓ 0 to the Gibbs
phenomenon with the following theorems. The first is a restatement of the results of
Wilbraham and Gibbs (see [43] and [19]).

Theorem 3 (Gibbs phenomenon). Consider the Fourier series approximation of

f(x) =

{
1 if |x| ≤ 1,
0 otherwise,

given by Sn[f ](x) =

n∑
k=−n

4 sin kπ
2

kπ
e

ikxπ
2 .

Then for any δ > 0

lim
n→∞

sup
|x±1|≤δ

Sn[f ](x) = 1 + g, lim
n→∞

inf
|x±1|≤δ

Sn[f ](x) = −g,

where

g =
1

π

∫ π

0

sin z

z
dz − 1

2
≈ 0.089490 . . . .

In this context our results give the following theorem.

Theorem 4 (Gibbs phenomenon on the line). Let qn(x, t) be the solution of iqt−
(−i∂x)nq = 0 with

q(x, 0) =

{
1 if |x| ≤ 1,
0 otherwise.

Then for any δ > 0

lim
n→∞

lim
t↓0

sup
|x±1|≤δ

Re qn(x, t) = 1 + g, lim
n→∞

lim
t↓0

inf
|x±1|≤δ

Re qn(x, t) = −g,

lim
n→∞

lim
t↓0

sup
|x±1|≤δ

Im qn(x, t) = 0, lim
n→∞

lim
t↓0

inf
|x±1|≤δ

Im qn(x, t) = 0.

One does not have to take ω(k) = kn in the previous theorem: It follows for
general ω(k) provided the coefficients are appropriately controlled. One such example
is

ω(k) = kn +

n−1∑
j=n−m

cj,nk
j ,

where −C ≤ cj,n ≤ C are real and m is fixed. Furthermore, there is an analogue
of this theorem that holds for general data as in Theorem 2. This phenomenon is
explored in greater depth in section 4.4. We again emphasize that the Gibbs-like
oscillations represent the real behavior of the solution of dispersive PDEs and are not
a numerical artifact. In other words, Figure 4 (as well as Figure 3 and the figures in
section 7) is not a result of truncation error. This fact has important consequences
for the numerical solution of dispersive PDEs, particularly, in finite-volume methods
where a so-called Riemann problem must be solved.
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2.3. Asymptotics of Iω,m. The previous results rely on the asymptotic anal-
ysis of the function Iω,m(x, t) as t ↓ 0 or as |x| → ∞ for fixed t > 0. We also define
the kernel Kt(x) by

q(x, t) =
1

2π

∫ ∞
−∞

eikx−iω(k)tq̂o(k)dk =

∫ ∞
−∞

Kt(x− y)qo(y)dy.

In Appendix SM2 we use the method of steepest descent for integrals to derive precise
asymptotics of Iω,m and Kt(x) = Iω,−1(x, t). First, we rescale the integral

Iω,m(x, t) =
1

2π
σm
(
|x|
t

)−m/(n−1) ∫
C

eX(iz−iωnσnzn−iR|x|/t(z)) dz

(iz)m+1
,

σ = sign(x), k = σ(|x|/t)1/(n−1)z,

R|x|/t(z) ,
n−1∑
j=2

ωj

(
|x|
t

) j−n
n−1

(σz)j , X , |x|
(
|x|
t

)1/(n−1)

,

Φ|x|/t(z) = iz − iωnσnzn − iR|x|/t(z),

(6)

and then we define {zj}N(n)
j=1 to be the the solutions of Φ′|x|/t(z) = 0 in the closed

upper-half plane. Finally, we define θj to be the direction at which the path of
steepest descent leaves zj with increasing real part. The proof of the following can be
found in Appendix SM2.

Theorem 5. As |x/t| → ∞

Iω,m(x, t) = −iResk=0

(
eikx−iω(k)t

(ik)m+1

)
χ(−∞,0)(x)

+
σm|x|−1/2

√
2π

(
|x|
t

)−m+1/2
n−1

×
N(n)∑
j=1

eXΦ|x|/t(zj)+iθj

(izj)m+1

1

|Φ′′|x|/t(zj)|1/2

(
1 +O

(
|x|−1

(
|x|
t

)−1/(n−1)
))

.

Hence, the following hold.
• For fixed t > 0 as |x| → ∞

(7) K
(m)
t (x) ≤ c


|x|

2m−n+2
2(n−1) , n is even,

|x|
2m−n+2
2(n−1) , n is odd, ωnx > 0,

|x|−M for all M > 0, n is odd, ωnx < 0,

where c depends on m, t, and n.
• For |x| ≥ δ > 0 and m ≥ 0 as t→ 0+

Iω,m(x, t) = −iResk=0

(
eikx−iω(k)t

(ik)m+1

)
χ(−∞,0)(x) +O

(
t
m+1/2
n−1 |x|−

2m+2n
2(n−1)

)
.

(8)
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3. Short-time asymptotics: Discontinuous ICs. Recall that the above rep-
resentation for the weak solution (4) of the IVP is valid as long as the IC qo(x) belongs
to L2(R). We first consider initial data with a single discontinuity. For now we will
assume that qo satisfies the following properties.

Assumption 1. Let
• qo ∈ L2(R),
• [qo(c)] , qo(c

+)− qo(c−) 6= 0,
• q′o exist on (−∞, c) ∪ (c,∞),
• q′o ∈ Lq(−∞, c) ∩ Lq(c,∞) for some 1 < q <∞, and
• qo be compactly supported.

In later sections we will discuss the effect of discontinuities in the derivatives of the
IC, and we will remove the condition of compact support. The phenomenon we wish
to investigate here is the following. The solution is classical for t > 0 but converges
to a discontinuous function as t → 0. Thus, the limit generally exists in L2(R) but
must fail to be uniform.

To derive an expansion for the solution for short times, it is convenient to integrate
the definition (5) of the Fourier transform by parts:

(9) q̂o(k) =

(∫ c

−∞
+

∫ ∞
c

)
e−ikxqo(x) dx =

1

ik
e−ikc[qo(c)] +

1

ik
F (k),

where

(10) F (k) =

(∫ c

−∞
+

∫ ∞
c

)
e−ikxq′o(x) dx, [qo(c)] = qo(c

+)− qo(c−).

In Appendix SM3 we discuss the properties of F (k). Note that both terms on the
right-hand side (RHS) of (9) are singular at k = 0, but their sum q̂o(k) is not.
Inserting (9) into the reconstruction formula (4) for the solution of the IVP yields

(11) q(x, t) =
1

2π
[qo(c)]−

∫
R

ei(k(x−c)−ω(k)t) dk

ik
+

1

2π
−
∫
R

eiθ(x,t,k)F (k)
dk

ik
,

where −
∫

denotes the principal value (p.v.) integral. The p.v. sign is now needed
because each of the integrands in (11) is separately singular at k = 0. Of course, one
could have chosen other ways to regularize the singularity, and the final result for
q(x, t) is independent of this choice.

We next show that the second term on the RHS of (11) is continuous as a function
of x for all t > 0, while the first term yields the dominant behavior in the neighborhood
of the discontinuity at short times. More precisely, we can write the p.v. integral
in (11) as

(12) −
∫
R
f(k) dk =

∫
C

f(k) dk + πiResk=0[f(k)],

where C is the contour shown in Figure 2. Recall that

(13) Iω,0(y, t) ,
1

2π

∫
C

ei[ky−ω(k)t] dk

ik
.

(The reason for the subscript “0” will become apparent later on when we generalize
these results to discontinuities in the higher derivatives.) Also, define

qc =
1

2
[qo(c)] +

1

2π
−
∫
R

eikcF (k)
dk

ik
, qres(y, t) =

1

2π

∫
R

eikc
eiθ(y,t,k) − 1

ik
F (k) dk.
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k = 0

C

x = c t = 0

Èx- c n = t

Fig. 2. Left: The integration contour C for the evaluation of the principal value integral in
(12). We assume the radius of the semicircle is less than 1. Right: The regularization region (in
gray) around a discontinuity in the IC.

Recalling that Resk=0(eiθ(x−c,t,k)/k) = 1, we then write the decomposition (11) as

(14) q(x, t) = qc + [qo(c)]Iω,0(x− c, t) + qres(x− c, t).

Note that the p.v. is not needed on qres(y, t), because the integrand is continuous
at k = 0. Note also that the above decomposition holds for an arbitrary dispersion
relation ω(k).

Importantly, each of the three terms in (14) are individually a solution of the
PDE (1). However, each of them provides a different type of contribution. Indeed, a
closer look allows the following interpretation of these pieces:

(i) qc represents a constant offset.
(ii) [qo(c)]Iω,0(y, t) characterizes the dominant behavior near the jump disconti-

nuity. The detailed properties of Iω,0(y, t) are discussed in Appendix SM2.
In particular, Theorem 5 implies

(15) lim
y→∞

Iω,0(y, t) = 0, lim
y→−∞

Iω,0(y, t) = −1.

Note also that limt↓0 Iω,0(0, t) 6= 0.
(iii) qres(c, 0) = 0, and qres(x, t) is Hölder continuous and vanishes at (x, t) = (c, 0)

for t ≥ 0.
One can look at the last item essentially as a trivial consequence of the first two,
because the offset value and the jump behavior are all captured by the first and
second contribution, respectively. In practice, however, the proof is done in the re-
verse. Namely, in Appendix SM3 we prove (iii), and we obtain precise estimates for
the behavior of qres(x − c, t) near (x, t) = (c, 0). More precisely, we show that, for
‖F‖Lp(R) <∞,

(16) qres(x− c, t) = O(|x− c|1/p + |t|1/(np)).

The error term in the above short-time expansion is consistent as t → 0 as long as
|x − c|n = O(t). That is, the above expansion is valid in the region |x − c|n 6 Ct
(for some C > 0) in the neighborhood of a discontinuity c. We call such a region the
regularization region. Such a region is illustrated in Figure 2.

One may also wish to understand the behavior of the solution in the short-time
limit away from the singularity. Of course, to leading order, we expect it to be
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unaffected by the singularity and to limit pointwise to the IC. To prove that this is
indeed the case, one must derive an estimate for the error term. The asymptotics of
Iω,m(x − c, t) can be fully characterized; see Theorem 5. The relevant behavior for
the present purposes is

Iω,0(x− c, t) = −χ(−∞,0)(x− c) +O(t1/(2(n−1)))

as t → 0 uniformly in the region |x − c| ≥ δ > 0. Here and below, χR(y) is the
characteristic function of a set R. (Namely, χR(y) = 1 for y ∈ R and χR(y) = 0
otherwise.) We then have

q(x, t) = [qo(c)]

(
1

2
− χ(−∞,0)(x− c)

)
+

1

2π
−
∫
R
eiθ(x,t,k)F (k)

dk

ik
+O(t1/(2(n−1))).

The relevant tool for characterizing the limiting behavior of the rest of the solution is
Lemma SM9. From that result, (9), and the above discussion it follows that

q0(x) = [qo(c)]

(
1

2
− χ(−∞,0)(x− c)

)
+

1

2π
−
∫
R
eikxF (k)

dk

ik
.

Therefore, for |s− c| ≥ δ > 0 and ‖F‖Lp(R) <∞, we have

(17) q(x, t) = q0(s) +O(|x− s|1/p + |t|1/(np) + |t|1/(2(n−1))).

These observations also allow us to prove Theorem 2.

Proof of Theorem 2. Under Assumption 1,

lim
t↓0

q(c+ x|ωn|1/nt1/n, t)− qc
[qo(c)]

= lim
t↓0

Iωn,0(x|ωn|1/nt1/n, t)

follows directly from (16). Then

Iωn,0(x|ωn|1/nt1/n, t) =
1

2π

∫
C

ei(k|ωn|
1/nt1/n)x−i arg(ωn)(|ωn|1/nkt1/n)n−r(k)t dk

ik
,

where r(k) is a polynomial of degree at most n − 1. Using kt1/n|ωn|1/n 7→ k and
redeforming C, we have

Iωn,0(x|ωn|1/nt1/n, t) =
1

2π

∫
C

eikx−i arg(ωn)kn−r(k|ωn|−1/nt−1/n)t dk

ik
.

But r(k|ωn|−1/nt−1/n)t→ 0 as t→ 0. To see that the limit can be passed inside the
integral, deform C so that it passes along the steepest descent paths of e−iωnk; then
pass the limit inside using the dominated convergence theorem, and deform back to C.
From this the result follows for the case of one discontinuity, with compact support.
The general case follows from Theorem 6 below.

4. Gibbs phenomenon for dispersive PDEs. We now discuss the implica-
tions of decomposition (14) regarding the behavior of the solution of the IVP in the
short-time limit. We have seen that, apart from a constant offset, the dominant be-
havior of the solution in the regularization region near a discontinuity of the IC is
provided by the function Iω,0(y, t). In this section we therefore examine more closely
the properties of such functions. We start by discussing a simple example.
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Fig. 3. Left: The integral I0(x, t) + 1 (vertical axis) as a function of x (horizontal axis) for the
heat equation (see (18)) at various values of time: t = 0.01, 0.05, 0.1, 0.2, 1, 2, and 4. Right: The
same quantity for the Stokes equation (see (20)).

4.1. Example: Heat equation. Consider the PDE

(18) qt = qxx,

corresponding to ω(k) = −ik2. Let s = y/t1/2 and λ = kt1/2. Then

Iheat,0(y, t) =
1

2π

∫
C

eiλs−λ
2 dλ

iλ
=

1

2
(erf(s/2)− 1),

where with some abuse of notation we write Iheat,0(y(s), t) = Iheat,0(s). Note that an
easy way to compute the above integral is by using the relation

d

ds
Iheat,0(s) =

1

2π

∫
C

eiλs−λ
2

dλ =
1

2
√
π

e−s
2/4.

We will see a generalization of this later.
Figure 3 shows the value of I0(x, t) as a function of x at different times. The

resulting effect is that of a diffusion-induced smoothing of the initial discontinuity.
This behavior is well known and is discussed in most classical PDE books [14]. What
is perhaps less known, however, is the counterpart of this behavior for dispersive
PDEs, which we turn to next.

4.2. Example: Schrödinger equation. Consider now the free-particle, one-
dimensional linear Schrödinger equation, namely,

(19) iqt + qxx = 0,

corresponding to ω(k) = k2. In this case,

Ischr,0(s) =
1

2πi

∫
C

eiλs−iλ
2 dλ

λ
=

1

2
(erf(e−iπ/4s/2)− 1).

The corresponding behavior is shown in Figure 4. For both PDEs, the domi-
nant behavior near the discontinuity is expressed in terms of a similarity solution,
depending on x and t only through the similarity variable s = (x − c)/t1/2, as seen
in Theorem 2. The solution behavior, however, is very different: While for the heat
equation the integral Iω,0(x, t) captures the smoothing effect of the PDE, for the
Schrödinger equation, Iω,0(x, t) results in oscillations.
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Fig. 4. Left: Absolute value |I0(x, t) + 1| as a function of x for the Schrödinger equation (see
(19)) at the same values of t as in Figure 3. Right: Same for |I0(x, t) + 5

4
|. Note in this last case

the presence of oscillations to the left of the jump.

4.3. Example: Stokes equation. Consider now the Stokes equations

(20) qt + qxxx = 0,

corresponding to ω(k) = −k3. Letting s = y/t1/3 and λ = kt1/3, one has, using
similar methods as before,

Istokes,0(y, t) =
1

2πi

∫
C

eiλs−iλ
3 dλ

λ
=

∫ ∞
s/ 3√3

Ai(z) dz,

where Ai(z) is the classical Airy function (see, e.g., [30, 33]), which admits the in-

tegral representation Ai(z) =
∫
R eiλz−iλ

3

dλ/(2π) [2]. The corresponding behavior is
illustrated in Figure 3.

Note that, since all the PDEs considered in this work are linear, the behavior
arising from a negative jump is simply the reflection with respect to the horizontal
axis of that for a positive jump. On the other hand, unlike the heat and Schrödinger
equation, the Stokes equation does not possess left-right symmetry. So the values of
Iω,0(y, t) to the left of the discontinuity are not symmetric to those to the right (as
is evident from Figure 3). Note also that the results for the Stokes equation with the
opposite sign of dispersion (i.e., qt − qxxx = 0) are obtained by simply exchanging
x− c with c− x (i.e., y with −y) in the above discussion.

4.4. Gibbs-like oscillations of dispersive PDEs. The solution of the Schrö-
dinger equation described above shares the three defining features of the Gibbs phe-
nomenon, namely (i) nonuniform convergence of the solution of the PDE to the IC as
t ↓ 0 in a neighborhood of the discontinuity; (ii) spatial oscillations with increasing
(in fact, unbounded) frequency as t ↓ 0 (because they are governed by the similarity
variable); (iii) constant overshoot in a neighborhood of the discontinuity as t ↓ 0. (We
will elaborate on this last issue later in this section.) Thus, the limit t ↓ 0 for the
solution of the PDE is perfectly analogous to the limit n → ∞ in the truncation of
the Fourier series.

Recall that, while qc contributes a constant offset to the solution, the value of
q(x, t) at (c, 0) (as obtained from the reconstruction formula (14)) will differ from qc,
because, even though qres(0, 0) = 0, in general, limt↓0 Iω,0(0, t) 6= 0. For monomial
dispersion relations, i.e., ωn(k) = ωnk

n, it easy to see that Iωn,0(0, t) is actually
independent of time. In fact, the value of Iωn,0(0, t) can be easily obtained explicitly.
From (37) we have

Iωn,0(0, t) =
1

2π
−
∫
R

e±iλ
n dλ

iλ
− 1

2
,
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Table 1
Numerically computed values for the maximum and minimum of the real part, imaginary part,

and modulus of Gn(y, t) = 1 + In,0(y, t) as a function of n. The overshoot converges to the
Wilbraham–Gibbs constant g (cf. (22)). Sample integration contours are displayed in section 7.1.

n Max real Min real Max imag Min imag Max modulus
2 1.1702461 -0.17024605 0.24379748 -0.24379748 1.1706586
3 1.2743521 0.00000000 0.00000000 0.00000000 1.2743521
4 1.1150083 -0.11500827 0.12160263 -0.12160263 1.1060347
5 1.1982367 -0.01598413 0.00000000 0.00000000 1.1982367
6 1.1014610 -0.10146105 0.08196187 -0.08196187 1.1010280
7 1.1661061 -0.03086757 0.00000000 0.00000000 1.1661061
8 1.0962954 -0.09629541 0.06183236 -0.06183236 1.0962451
9 1.1484886 -0.04132209 0.00000000 0.00000000 1.1484886
10 1.0938431 -0.09384306 0.04962857 -0.04962857 1.0938338
11 1.1373989 -0.04878940 0.00000000 0.00000000 1.1373989
60 1.0896059 -0.08960586 0.00833110 -0.00833110 1.0896059
120 1.0895187 -0.08951866 0.00416638 -0.00416638 1.0895187
180 1.0895026 -0.08950263 0.00277769 -0.00277769 1.0895026
240 1.0894970 -0.08949704 0.00208330 -0.00208330 1.0894970
300 1.0894945 -0.08949446 0.00166665 -0.00166665 1.0894945

since Resλ=0[e±iλ
n

/(iλ)] = 1. Now note that −
∫
R e±iλ

n

dλ/(iλ) = 0 for n even, while
the same integral equals ±

∫
R sin(λn) dλ/λ = ±π/n for n odd. Hence we have simply

(21) Iωn,0(0, t) =

{
− 1

2 , n even,

− 1
2 (1± 1/n) , n odd.

One can carry the analogy with the classical Gibbs phenomenon even further and
compute the “overshoot” of these special functions—namely, the ratio of the maximum
difference between the value of the special function and the jump, compared to the
jump size. Recall that the overshoot for the Gibbs phenomenon is given by the
Wilbraham–Gibbs constant [19, 43] (see also [22]),

(22) g =
1

π

∫ π

0

sin z

z
dz − 1

2
≈ 0.089490 . . . .

For example, the maximum value of the partial sum of the Fourier series for χ[−1,1](y)
on [−2, 2] will converge to 1 + g, and its minimum to −g.

To examine the overshoot of the special functions, we look at Gn(y, t) = Iωn,0(y, t)
+ 1, which converges pointwise to χ(0,∞)(y) for all y 6= 0 as t ↓ 0. Specifically, we
compute numerically the maximum and minimum of the real part, imaginary part,
and modulus of Gn(y, t). Note that, for all t 6= 0, all such values are independent of
t. Table 1 shows these values as a function of n. Surprisingly, the table shows that
these values converge to exactly the same constants as for the Gibbs phenomenon as
n→∞!

Indeed, a simple calculation shows why this is true. Integration by parts or a
simple change of variable can be used to show that, as n→∞,

Iωn,0(y, 1) =
1

2πi

∫
C′
eiky−ik

n dk

k
+O(1/n),

where C ′ = C ∩ {k ∈ C : |Re k| ≤ 1}, and where without loss of generality the
semicircle component of C was taken to have radius less than one. Then, by the
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dominated convergence theorem we have

lim
n→∞

1

2πi

∫
C′
eiky−ik

n dk

k
=

1

2πi

∫
C′
eiky

dk

k
,

where convergence is uniform in y. Moreover, the integral on the RHS is easily shown
to be

1

2πi

∫
C′
eiky

dk

k
=

1

2π

∫ 1

−1

sin ky

k
dk − 1

2
,

where the contour in the RHS was deformed back to the real axis since there is a
removable singularity at k = 0. After a simple rescaling we then have

lim
n→∞

Iωn,0(y, 1) =
1

π

∫ π

0

sin(πyz)

z
dz − 1

2
,

uniformly in y. This integral is maximized and minimized at y = ±1, respectively,
yielding

lim
n→∞

sup
y∈R

ReGn(y, 1) = 1 + g, lim
n→∞

sup
y∈R

ImGn(y, 1) = 0,

lim
n→∞

inf
y∈R

ReGn(y, 1) = −g, lim
n→∞

inf
y∈R

ImGn(y, 1) = 0.

Note that for a fixed value of n such maxima and minima can occur on either side of
the jump (e.g., cf. Figures 4 and 3).

Proof of Theorem 4. The solution q(x, t) is given by

q(x, t) = Iω,0(x+ c, t)− Iω,0(x− c, t), ω(k) = kn.

Near x = −c we have

q(y − c, t) = Gn(y, t)− (Iω,0(y − 2c, t) + 1), y ∈ (−δ, δ), 0 < δ < 2c.

It follows from Theorem 5 that

|Iω,0(y − 2c, t) + 1| ≤ Cδt1/(2n−2), Cδ > 0,

uniformly for all y ∈ (−∞, δ). So,

lim
t↓0

(
sup
|y|≤δ

ReGn(y, t)− Cδt1/(2n−2)

)
≤ lim

t↓0
sup
|y|≤δ

Re q(y − c, t)

≤ lim
t↓0

(
sup
|y|≤δ

ReGn(y, t) + Cδt
1/(2n−2)

)
,

and limt↓0 sup|y|≤δ Re q(y − c, t) = supy∈R ReGn(y, 1). From this the first claim in
the theorem follows for δ < 2c. To allow δ to be larger, just break the analysis into
an interval contained in (−∞, 0] and another interval contained in [0,∞). The other
claims follow from similar calculations.
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5. Short-time asymptotics: ICs with discontinuous derivatives. We now
treat the case where one of the derivatives of qo is discontinuous. We begin by as-
suming a discontinuity in the first derivative; then we treat the general case. We will
further generalize the results in section 6.

Assumption 2. Let
• qo ∈ H1(R),
• [q′o(c)] = q′o(c

+)− q′o(c−) 6= 0,
• q′′o exist on (−∞, c) ∪ (c,∞),
• q′′o ∈ Lq(−∞, c) ∩ Lq(c,∞) for some 1 < q <∞, and
• qo be compactly supported.

Assuming compact support avoids possible complications arising from the non-
existence of some p.v. integrals (this assumption will be removed in section 6), we will
show that the asymptotic behavior in the regularization region is given by integrals
of the special functions considered in the previous section.

Note first that, if F (k) is analytic in a neighborhood of the origin, (11) can be
written as

q(x, t) = [q0(c)]Iω,0(x− c, t) +
1

2π

∫
C

eiθ(x,t,k)F (k)
dk

ik
,

with Iω,0(y, t) and F (k) given by (13) and (10), respectively, and with C as in Figure 2.
Analyticity of F is always guaranteed if qo has compact support. In the case that qo
is continuous but q′o is discontinuous, we perform one more integration by parts and
write

(23) q(x, t) = [q′o(c)]Iω,1(x− c, t) +
1

2π

∫
C

eiθ(x,t,k)F1(k)
dk

(ik)2
,

where

F1(k) =

(∫ c

−∞
+

∫ ∞
c

)
e−iksq′′o (s)ds,

and where we have introduced the generalization of Iω,0(y, t) as

(24) Iω,m(y, t) =
1

2π

∫
C

eiky−iω(k)t

(ik)m+1
dk.

As before, we now expand (23) both near and away from the singularity c. In a
neighborhood of (c, 0), we leave Iω,1(y, t) alone, and we expand F1(k). As k → 0,

eikceiθ(x−c,t,k) = eikc(1 + ik(x− c) +O(k2)).

We then have

q(x, t) = [q′o(c)]Iω,1(x− c, t) +
1

2π

∫
C

eikc
(

1 + ik(x− c)
(ik)2

)
F1(k) dk + qres,1(x− c, t),

where

qres,1(x− c, t) =
1

2π

∫
R
eikc

(
eiθ(x−c,t,k) − 1− ik(x− c)

(ik)2

)
F1(k) dk.

We expect qres,1(y, t) to give a lower-order contribution as (x, t) → (c, 0). We thus
examine this expression in the regularization region |x − c| ≤ Ctn. Lemma SM9
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indicates that qres,1(x, t) = O(t1/n+1/(np)) because F ∈ Lp(R) (where 1/p+ 1/q = 1).
Therefore, qres,1(y, t) can indeed be seen as the error term.

We now examine (23) for |x− c| > δ > 0 and |s− x| 6 δ/2. We have

q(x, t)− qo(s) = [q′o(c)](Iω,1(x− c, t)− Iω,1(s− c, 0))

+
1

2π

∫
C

eiks(eiθ(x−s,t,k) − 1)F1(k)
dk

(ik)2

= [q′o(c)](Iω,1(x− c, t)− Iω,1(s− c, 0))

+
(x− s)

2π

∫
C

eiksF1(k)
dk

ik
+ qres,1(x− s, t).

Applying Theorem 5 and Lemma SM9, in the regularization region |x− s|n 6 Ct we
have

q(x, t) = qo(s) + [q′o(c)]((s− c)χ(−∞,c)(s)− (x− c)χ(−∞,c)(x))

+
(x− s)

2π

∫
C

eiksF1(k)
dk

ik
+O

(
t3/(2(n−1)) + t1/n+1/(np)

)
.

This expression is simplified using χ(−∞,c)(s) = χ(−∞,c)(x) and the relation

(x− s)
2π

∫
C

eiksF1(k)
dk

ik
= −1

2
[q′o(c)](x− s) +

(x− s)
2π

−
∫
C

eiksF1(k)
dk

ik

to obtain

q(x, t) = qo(s) + [q′o(c)](s− x)(−1/2 + χ(−∞,c)(s))

+
(x− s)

2π
−
∫
C

eiksF1(k)
dk

ik
+O

(
t3/(2(n−1)) + t1/n+1/(np)

)
.

Next we generalize the above result to a discontinuity in a derivative of arbitrary
order.

Assumption 3. Let
• qo ∈ Hm(R),

• [q
(m)
o (c)] 6= 0,

• q(m+1)
o exist on (−∞, c) ∪ (c,∞), separately,

• q(m+1)
o ∈ Lq(−∞, c) ∩ Lq(c,∞) for some 1 < q <∞, and

• qo be compactly supported.

Let a`(y, t) be the Taylor coefficients of eiθ(y,t,k) at k = 0. Then for s ∈ R
(possibly equal to c) we find the expansion

q(x, t) = [q(m)
o (c)]Iω,m(x− c, t) +

1

2π

∫
C

eiks

(
m∑
`=0

a`(x− s, t)k`
)
Fm(k)

dk

(ik)m+1

(25)

+ qres,m(x− s, t),

where

qres,m(x− s, t) =
1

2π

∫
R
eiks

(
eiθ(x−s,t,k) −

m∑
`=0

a`(x− s, t)k`
)
Fm(k)

dk

(ik)m+1
,

Fm(k) =

(∫ c

−∞
+

∫ ∞
c

)
e−ikxq(m+1)

o (x)dx.
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Invoking Lemma SM9, this expression provides the asymptotic expansion in the regu-
larization region |x−s|n ≤ Ct. Indeed, qres,m(x, t) = O(tm/n+1/(pn)) for 1/p+1/q = 1.
This expansion can be understood more thoroughly as follows. Formally, for s ∈ R

(−i∂x)jqo(s)

= [q(m)
o (c)] Resk=0

(
eik(s−c)

i(ik)m−j+1

)
χ(−∞,0)(s− c) +

1

2π

∫
C

eiksFm(k)
dk

(ik)m−j+1
.

(26)

We next show that

(27)

M∑
j=0

(−it)j

j!
ω(k)j =

nM∑
`=0

a`(0, t)k
` +O(tM+1knM ),

as |k| → ∞ and t ↓ 0. To see this, it follows from Lemma SM9 that a`(0, t) = O(t`/n),
and then

e−iω(k)t −
nM∑
`=0

a`(0, t)k
` = O(tM+1)

as t ↓ 0, because only integer powers of t appear. Then

e−iω(k)t −
M∑
j=0

(−it)j

j!
ω(−i∂x)j = O(tM+1),

implying
M∑
j=0

(−it)j

j!
ω(−i∂x)j =

nM∑
`=0

a`(0, t)k
` +O(tM+1).

Then (27) follows by noting that both sides have no powers of k larger than knM . In
turn, (27) implies

M∑
j=0

(−it)j

j!
ω(−i∂x)jqo(s) = [q(m)

o (c)] Resk=0

(
eik(s−c)

i(ik)m+1

nM∑
`=0

a`(0, t)k
`

)
χ(−∞,0)(s− c)

(28)

+
1

2π

∫
C

eiks

(
nM∑
`=0

a`(0, t)k
`

)
Fm(k)

dk

(ik)m+1
+O(tM+1).

If s 6= c, then this expression is well defined and continuous for nM ≤ m. If s = c,

there are issues concerning the definition of the value of q
(nM)
o (c) on the left-hand side

of the equation, and we must restrict to nM < m.
Near the singularity. Let M = b(m − 1)/nc. For |x − c|n ≤ Ct we combine (28)

and (25) to find

q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jqo(c) + [q(m)

o (c)]Iω,m(x− c, t)

+
1

2π

∫
C

eikc

(
m∑
`=0

(a`(x− c, t)− a`(0, t))k`
)
Fm(k)

dk

(ik)m+1
+O

(
t
m
n + 1

np

)
.

(29)
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Here, the residue term in (26) vanishes at s = c because Mn < m and no k−1 term
is present. It also follows (see Lemma SM9) that a`(x− c, t) = O(t`/n) so that this is
indeed a consistent expansion.

Away from the singularity. Let M = bm/nc. We examine the expansion for near
x = s for |s−c| ≥ δ > 0. We use the short-time asymptotics for Iω,m (see Theorem 5)
to find for |x− s|n ≤ C|t|

q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jqo(s)

+
1

2π

∫
C

eiks

(
m∑
`=0

(a`(x− s, t)− a`(0, t))k`
)
Fm(k)

dk

(ik)m+1

− i[q(m)
o (c)] Resk=0

eik(x−c)−iω(k)t

(ik)m+1
− eik(s−c)

(ik)m+1

M∑
j=0

(−iω(k)t)j

j!

χ(−∞,0)(s− c)

+O
(
t
m
n

(
t

1
np + t

n+2m
2n(n−1)

))
.

(30)

If we set x = s, then the residue term is O(tM+1) (m/n + 1/n ≤ M + 1), and the
short-time Taylor expansion

(31) q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jq0(x) +O

(
t
m
n

(
t

1
np + t

n+2m
2n(n−1)

))
follows. Here the error term is uniform in x as x varies in the region |x−c| ≥ δ. Thus,
in particular, if qo vanishes identically in a neighborhood of s, then for |x− s|n ≤ Ct

(32) q(x, t) = O
(
t
m
n

(
t

1
np + t

n+2m
2n(n−1)

))
.

A unified formula. We now introduce some convenient and unifying notation that
will be useful to combine the above results. Define

RM,m,c(qo;x, s) = −i[q(m)
o (c)] Resk=0

×

eik(x−c)−iω(k)t

(ik)m+1
− eik(s−c)

(ik)m+1

M∑
j=0

(−iω(k)t)j

j!

χ(−∞,0)(s− c),

Am(qo;x, s) =
1

2π

∫
C

eiks

(
m∑
`=0

(a`(x− s, t)− a`(0, t))k`
)
Fm(k)

dk

(ik)m+1
.

Note Am(q;x, s) can only be applied to functions whose Fourier transform is analytic
in a neighborhood of the origin. Therefore, we have for M = 0, . . . , bm−1

n c and s ∈ R

q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)qo(s) +Am(qo;x, s)

+


RM,m,c(qo;x, s), s 6= c,

[q
(m)
o (c)]Iω,m(x− c, t), s = c,

+O
(
t
m
n

(
t

1
np + t

n+2m
2n(n−1)

))
.
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While the formula for s 6= c is also valid for M = bm/nc, this is a convenient form.
Furthermore, when no singularity is present locally, (31) provides a cleaner formula in
terms of quantities that are easier to compute. We note that Am and RM,m,c (s 6= c)
contain terms that are analytic in x and t while Iω,m encodes the dominant behavior
near the singularity; i.e., it has a discontinuous derivative at some order.

6. Short-time asymptotics: ICs with multiple singular points and non-
compact support. We now discuss the case of ICs with multiple points of discon-
tinuity. The results in this section are the most general of this work regarding the
short-time behavior of the solution of dispersive PDEs.

Assumption 4. For c0 = −∞ < c1 < · · · < cN < cN+1 = +∞, let
• qo ∈ Hm(R) ∩ L1((1 + |x|)`dx), with ` ≥ Cn,

• [q
(m)
o (ci)] 6= 0 for i = 1, . . . , N ,

• q(m+1)
o (x) exist on (ci−1, ci) for i = 1, . . . , N + 1, and

• q(m+1)
o ∈ L2(ci−1, ci) for i = 1, . . . , N + 1.

Note that we have removed the assumption of compact support. The key in doing
so is to use a Van der Corput neutralizer (or “bump” function) (see, e.g., [2]), namely
a function that interpolates infinitely smoothly between 0 and 1. More precisely, for
our purposes a neutralizer is a function ηδ(y) with the following properties:

(i) it possesses continuous derivatives of all orders;
(ii) ηδ(y) = 1 for y < δ/2 and ηδ(y) = 0 for y > δ;
(iii) the derivatives of ηδ(y) of all orders vanish at y = δ/2 and y = δ.

A suitable definition is given by

ηδ(y) = n(δ − x)/[n(y − δ/2) + n(δ − x)],

where

n(y) =

{
1, y < 0,

e−1/y, y > 0,

but the actual form of the neutralizer is irrelevant for what follows. Then, to study the
behavior near each discontinuity (x, t) = (cj , 0) for j = 1, . . . , N , one can decompose
the IC as

(33) qo(x) =

m∑
j=1

qo,j(x) + qo,reg(x),

where

(34) qo,j(x) = qo(x) ηδ(|x− cj |)

and

(35) qo,reg(x) = qo(x)

(
1−

m∑
j=1

ηδ(|x− cj |)
)
,

with δ < minj=1,...,m−1(cj+1 − cj)/2. Correspondingly, the solution of the PDE is
decomposed as

q(x, t) =

m∑
j=1

qj(x, t) + qreg(x, t).
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Note that each q
(m)
o,j (x) is discontinuous but compactly supported, while q

(m)
o,reg(x) is

noncompactly supported but continuous. Moreover, qo,j(cj′) = 0 for all j′ 6= j, and
qo,reg(cj) = 0 for j = 1, . . . ,m. Importantly, it follows that qo,reg ∈ Hm+1(R). Noting

that [q
(m)
o,reg(c)] = 0, with nM 6 m < n(M + 1), by (31) we have

qreg(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jqo,reg(x) +O(tm/n+1/(2n)).

In the regularization region |x− cj |n ≤ Ct, all derivatives of qo,reg vanish identically
so that qreg(x, t) = O(tm/n+1/(2n)) = qj′(x, t) for j′ 6= j; see (32).

We state our main asymptotic result as a theorem.

Theorem 6. Suppose Assumption 4 holds.
• If |x− cj |n ≤ C|t|, then for M = bm−1

n c

q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jq0(cj) + [q(m)

o (cj)]Iω,m(x− cj , t)

+Am(qo,j ;x, cj) +O
(
t
m
n

(
t

1
2n + t

n+2m
2n(n−1)

))
.

(36)

• If |cj − x| ≥ δ > 0 for all j, then for M = bmn c

q(x, t) =

M∑
j=0

(−it)j

j!
ω(−i∂x)jq0(x) +O

(
t
m
n

(
t

1
2n + t

n+2m
2n(n−1)

))
.

Proof. We use linearity. As discussed, we apply (31) and (32) so that qreg(x, t) =
O(tm/n+1/(2n)). The first claim follows from (29) and (30). The final claim follows
from (31).

From (36) we conclude that near a singularity q(x, t) can be written as Iω,m plus
lower-order and analytic terms. We have not only an asymptotic expansion but also
an expansion that separates regularity properly. Furthermore, the expansion about
cj depends only on local properties of qo through qo,j .

7. Further analysis and computation of the special functions. It should
be abundantly clear from sections 3–6 that the integrals Iω,m(y, t) (defined in (24))
play a crucial role in the analysis. The detailed properties of these integrals are
discussed in Appendix SM2. Here we mention some further properties of these objects,
and we outline an efficient computational approach for their numerical evaluation.

Monomial dispersion relations. Recall the definition (13) of Iω,0(y, t), and let
ω(k) = ωn k

n. Performing the change of variable

s = y/(|ωn|t)1/n, λ = (|ωn|t)1/nk,

with some abuse of notation we have that Iω,0(y, t) = Iσn,0(y, t) is given by

(37) Iσn,0(y, t) = Eσn,1(s),

with σ = ei arg(ωn), and where we have defined

(38) Eσn,m(s) =
1

2π

∫
C

eiλs−σiλ
n dλ

(iλ)m
.
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Like their simpler counterparts Iω,0(y, t), the integrals Iω,n(y, t) take on a particularly
simple form in the case of a monomial dispersion relation. Taking again ωn ∈ R, we
have

In,m(y, t) = (|ωn|t)m/nEσn,m(s).

Now,

E∓n,m(s) =
1

2π

∫
C

eiλs∓iλ
n dλ

(iλ)m+1
.

We then have

(39)
d

ds
Eσn,m(s) = Eσn,m−1(s).

So in principle one could obtain Eσn,m(s) by integrating the RHS of (39) and by fixing
the integration constant appropriately. In practice, however, it is more convenient to
evaluate the integral for Eσn,m(s) directly, using the methods discussed below.

General dispersion relations. Following arguments from Lemma SM7, for t > 0,
Iω,m(y, t) may be deformed to a contour that is asymptotically on the path of steepest
descent for e−iω(k). Let C be this contour. From this deformation, differentiability
follows, and

∂jyIω,m(y, t) = Iω,m−j(y, t).

Yet more structure is present. A straightforward calculation using integration by
parts shows

−itω′(−i∂y)Iω,m(y, t) =
1

π

∫
C

−itω′(k)
eiky−iω(k)t

(ik)m+1
dk = yIω,m(y, t).

We thus have obtained the (n− 1)th-order differential equation

(40) ω′(−i∂y)Iω,m(y, t) =
iy

t
Iω,m(y, t),

satisfied by Iω,m(y, t).
Dissipative PDEs. The results in section 4 are easily modified when ωn is not

real, i.e., when one is dealing with a dissipative PDE. Recall that, for well-posedness,
this can only happen when n is even, in which case ωn = −i|ωn|.

7.1. Numerical computation of the special functions. Next, we discuss
the numerical evaluation of Iω,m(y, t) for all y and t. First, introduce ωt(k) =
ω(kt−1/n)t = ωnk

n +O(t1/nkn−1). Then

Iω,m(y, t) = t(m−1)/nIωt,m(yt−1/n, 1).

It is important that ωt(k) ≈ ωnk
n for t small. We consider the computation of

Iωt,m(s, 1) accurately for all s ∈ R. The numerical method for accomplishing this
follows the proof of Theorem 5. Specifically, we use quadrature along the contours Γj
given in Appendix SM2. Since the precise paths of steepest descent do not need to
be followed, we use piecewise-affine contours such that the angle of the contour that
passes through each κj agrees with the local path of steepest descent. The routines in
[34] provide a robust framework for visualizing and computing such contour integrals.
In general, Clenshaw–Curtis quadrature is used on each affine component. To ensure
accuracy for arbitrarily large s, the contour that passes through κj is chosen to be of
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Fig. 5. Plots of Iω,m(y, t) with ω(k) = k3 versus y for t = 1, 0.1, 0.01, 0.001. Left: The scaled
Airy function (m = 0). Right: The first derivative of the scaled Airy function (m = 1).
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Fig. 6. Plots of Iω,m(y, t) with ω(k) = k4 + 2k3 versus y for t = 0.1, 0.01, 0.001 (solid: real
part; dashed: imaginary part). Left: m = 1. Right: m = −1.

length proportional to 1/
√
|sω′′t (κj)|. This ensures that the Gaussian behavior near

the stationary point is captured accurately in the large s limit. If all deformations
are performed correctly, with this scaling behavior, a fixed number of sample points
for Clenshaw–Curtis quadrature can be used for all s. A more in-depth discussion of
this idea is given in [38] and [39].

For reference purposes, the above method should be compared to a more restricted
approach for the computation of generalized Airy functions presented in [6]. The
authors of this paper compute special functions which correspond to ω(k) = kp/p −
ikq/q for m = −1, 0; i.e., they introduce dissipation into their special functions, which
corresponds to adding artificial viscosity into a finite-difference scheme for a hyperbolic
system. With this artificial dissipation they are able to characterize the asymptotic
behavior of finite-difference schemes in terms of these special functions.

Example: Airy function. When ω(k) = k3, the functions Iω,m(y, t) are scaled
derivatives and primitives of the Airy function. This function is displayed in Figure 5
for various values of t. See also Figure 3, where a primitive of the scaled Airy function
(m = −1) is shown. (But note that in Figure 3 the dispersion relation was ω(k) = −k3,
which results in a switch y 7→ −y.) It is clear that while the Airy function is bounded,
its derivative grows in x. This is in agreement with Theorem 5.

Example: A higher-order solution. When the dispersion relation is nonmonomial,
the situation is more complicated. Consider, for example, ω(k) = k4 + 2k3. In this
case Iω,m(y, t) is no longer a similarity solution. Furthermore, it has nonzero real and
imaginary parts. This function is displayed in Figure 6 for various values of t.

Example: The high-order limit. Consider the dispersion relation used to demon-
strate the Gibbs phenomenon in Table 1, ω(k) = kn. To produce this table, a numer-
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Fig. 7. The contour in the complex-k plane along which numerical integration is performed to
approximate Iω,0(1, 1) when ω(k) = k50. The path of steepest descent at each stationary phase point
is approximated by an affine contour.

ical scheme must be reliable for n large. In Figure 7 we display the contours along
which quadrature is used to compute Iω,0 when n = 50.

8. Concluding remarks. We have obtained an asymptotic expansion for the
short-time asymptotics of the solution of linear evolution PDEs with discontinuous
ICs, including precise error estimates. The results apply to generic ICs (i.e., non-
piecewise constant, noncompact support). Moreover, the results extend to arbitrary
dispersion relations, multiple discontinuities, and discontinuous derivatives of the IC.
In a forthcoming publication we will show that these results are also instrumental in
characterizing discontinuous BCs and corner singularities in IBVPs using the unified
approach presented in [18]. We end this work with a further discussion.

1. We have shown that the short-time asymptotic behavior of the solution of
an evolution PDE with singular ICs is governed by similarity solutions and classical
special functions. This is analogous to what happens in the long-time asymptotic
behavior. In that case, however, it is the discontinuities of the Fourier transform that
provide the singular points for the analysis (in addition, of course, to the stationary
points or saddle points characteristic of the PDE). In turn, these are related to the
slow decay of the ICs at infinity. In this sense, the short-time and long-time behaviors
[42] are dual expressions of the characteristic behavior of a linear PDE.

2. We have also shown that the solutions of dispersive linear PDEs exhibit Gibbs-
like behavior in the short-time limit. This Gibbs-like behavior is robust, meaning that
it persists under perturbation. To explain this point, one should consider the obvious
question of what happens with ICs which are a “smoothed out” discontinuity, namely,
a sharp but continuous transition from one value to a different one. Such an IC can be
considered to be a small perturbation of a step discontinuity in L2(R)∩L1((1+ |x|)`).
Thus, as long as the IVP is well-posed, the continuous dependence of the solution of
the IVP on the ICs implies that a small change in the ICs will only produce a small
change in the solution.

Let us briefly elaborate on this point. Obviously if the perturbed IC is continuous,
the solution of the PDE will converge uniformly to it as t ↓ 0. Therefore, the Gibbs
phenomenon that is present for the unperturbed solution will eventually disappear in
the perturbed solution in this limit. On the other hand, in Appendix SM4 we show
that, if the perturbation is sufficiently small, one can still expect to observe a similar
Gibbs-like effect at finite times.
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3. The Gibbs-like behavior has been noticed in a couple of cases for nonlinear
PDEs. In particular, DiFranco and McLaughlin [10] studied the behavior of the
defocusing nonlinear Schrödinger (NLS) equation with box-type IC. The semiclassical
focusing NLS equation was considered in [24] by Jenkins and McLaughlin. Kotlyarov
and Minakov [29] studied the behavior of the Korteweg–de Vries (KdV) and modified
KdV equations with Heaviside ICs. In both cases, these authors showed that the
behavior of the nonlinear PDE for short times is given to leading order by the behavior
of the linear PDE. And in both cases, in order to characterize the phenomenon, it was
necessary to use complete integrability of the nonlinear PDEs, as well as Deift and
Zhou’s nonlinear analogue of the steepest descent method for oscillatory Riemann–
Hilbert problems [8, 9]. But the results of this work make it clear that this behavior
(i) is not a nonlinear phenomenon, and it also applies to linear PDEs; (ii) is a general
phenomenon not limited to a few special PDEs.

4. At the same time it is true that for many nonlinear PDEs the nonlinear terms
require O(1) times in order to produce an appreciable effect on the solution. Therefore,
it is reasonable to expect that the results of this work will also provide the leading-
order behavior of the solution of many nonlinear PDEs for short times. Indeed,
Taylor [40] studied a generalized NLS equation (which is not completely integrable),
and again characterized the behavior of the solutions for short times in terms of those
of the linearized PDE. It is hoped that such results can be generalized to other kinds
of nonlinear PDEs.

5. Of course, for larger times the solutions of linear and nonlinear PDEs with
discontinuous ICs are very different from each other: While for linear PDEs the
oscillations spread out thanks to the similarity variable, for nonlinear PDEs the dis-
continuity gives rise to dispersive shock waves (DSWs), namely, an expanding train
of modulated elliptic oscillations with a fixed spatial period, whose envelope interpo-
lates between the values of the solution at either side of the jump. Such a nonlinear
phenomenon has been known since the 1960s [21], and a large body of work has
been devoted to its study (see, e.g., [3, 11, 12, 13, 20, 23, 25, 26, 28] and references
therein). To the best of our knowledge, however, such behavior was never compared
to the corresponding behavior for linear PDEs, unlike what was done for the long-time
asymptotics (see, e.g., [1, 32]).

6. We reiterate that this Gibbs-like behavior of dispersive PDEs is not a numeri-
cal artifact of a numerical approximation to the solution of the PDE but is instead a
genuine feature of the solution itself. Thus, when performing numerical simulations
of dispersive PDEs, one must be careful to distinguish among spurious Gibbs features
induced by the truncation of a Fourier series representation, spurious Gibbs oscilla-
tions generated by numerical dispersion (introduced by the numerical scheme used to
solve the PDE), and actual Gibbs-like behavior generated by the PDE itself.

7. From a philosophical point of view, one may ask why we consider PDEs with
discontinuous ICs at all. In this respect we note on one hand that, apart from any
physical considerations, studying these kinds of ICs is important from a mathematical
point of view to understand the properties of the PDE and its solutions. Also, on the
other hand, such a study makes perfect sense physically. For example, one only need
think about hyperbolic systems, for which considerable effort is devoted to the study
of shock propagation. These shocks are discontinuities in the solution and describe
actual physical behavior. Even though such discontinuities are only approximations of
a thin boundary layer, the fact remains nonetheless that representing such situations
with discontinuous solutions is a convenient mathematical representation of the actual
physical behavior. More generally, while the PDE holds in the interior of the domain
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(x, t) ∈ R× R+, the IC is posed on the boundary of this domain. In this sense t = 0
is always a singular limit. Indeed, the results of section 2.1 show that, generally
speaking, the solution on the interior of the domain is smooth even when the IC is
singular.
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