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THE INTEGRABLE NATURE OF MODULATIONAL INSTABILITY∗

GINO BIONDINI† AND EMILY FAGERSTROM†

Abstract. We investigate the nonlinear stage of the modulational (or Benjamin–Feir) instability
by characterizing the initial value problem for the focusing nonlinear Schrödinger (NLS) equation
with nonzero boundary conditions (NZBC) at infinity. We do so using the recently formulated inverse
scattering transform (IST) for this problem. While the linearization of the NLS equation ceases to be
valid when the perturbations have grown sufficiently large compared to the background, the results
of the IST remain valid for all times and therefore provide a convenient way to study the nonlinear
stage of the modulational instability. We begin by studying the spectral problem for the Dirac
operator (i.e., the first half of the Lax pair for the NLS equation) with piecewise constant initial
conditions which are a generalization to NZBC of a potential well and a potential barrier. Since
the scattering data uniquely determine the time evolution of the initial condition via the inverse
problem, the study of these kinds of potentials provides a simple means of investigating the growth
of small perturbations of a constant background via IST. We obtain several results. First, we prove
that there are arbitrarily small perturbations of the constant background for which there are discrete
eigenvalues, which shows that no area theorem is possible for the NLS equation with NZBC. Second,
we prove that there is a class of perturbations for which no discrete eigenvalues are present. In
particular, this latter result shows that solitons cannot be the primary vehicle for the manifestation
of the instability, contrary to a recent conjecture. We supplement these results with a numerical
study about the existence, number, and location of discrete eigenvalues in other situations. Finally,
we compute the small-deviation limit of the IST, and we compare it with the direct linearization of
the NLS equation around a constant background, which allows us to precisely identify the nonlinear
analogue of the unstable Fourier modes within the IST. These are the Jost eigenfunctions for values
of the scattering parameter belonging to a finite interval of the imaginary axis around the origin.
Importantly, this last result shows that the IST contains an automatic mechanism for the saturation
of the modulational instability.
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1. Introduction. Modulational instability (MI)—i.e., the instability of a con-
stant background with respect to long wavelength perturbations—is one of the most
ubiquitous types of instability in nature. It arises in deep water waves, where it is
known as the Benjamin–Feir instability [8, 7] (e.g., see [16] and references therein). It
also appears in a variety of other physical settings such as nonlinear optics, plasmas,
and Bose–Einstein condensates (see [6, 29, 34, 40, 41], as well as [50] for an overview
and a historical review of the subject).

In many cases, the dynamics for a system exhibiting MI is governed to leading
order by the focusing [ν = −1] nonlinear Schrödinger (NLS) equation [6, 29, 34],
namely,

(1.1) iqt + qxx − 2ν|q|2q = 0 ,

where ν = 1 denotes the defocusing case, and where the physical meaning of the
coordinates (x, t) depends on the context. For example, in water waves q(x, t) is the
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MODULATIONAL INSTABILITY REVISITED 137

complex envelope of the wave elevation from the undisturbed level, while in optical
fibers q(x, t) is the complex envelope of the electromagnetic field. In both settings, the
NLS equation applies in a reference frame that moves with the group velocity of the
carrier wave. (In optics, however, x represents the retarded time and t the physical
propagation distance.)

Since (1.1) governs the modulations of a quasi-monochromatic wave packet, one
can use it to study the stability properties of a uniform wave train. The solution
qa(x, t) = a e−2iνa2t (where without loss of generality a is taken to be real and positive)
is uniform and stationary in the xt-frame of coordinates, but in those physical contexts
in which the NLS equation is an envelope equation, it describes a plane wave. For
example, in water waves such a solution is the leading-order approximation of the
Stokes wave, whereas in nonlinear optics it describes a continuous wave [29, 34, 47].

A linear stability analysis around the background solution qa(x, t) shows that it
is stable in the defocusing case, but it is unstable to long wavelength perturbations
in the focusing case. In optics, both the focusing and defocusing cases are possible
depending on the material, the waveguide (slab or fiber, design, index profile, etc.),
and the carrier wavelength. In water waves, however, only one case arises. The
linearization ceases to be valid as soon as the perturbations have grown to the point
that they are of comparable size compared to the background. A natural question
is what happens at that point, which is referred to as the nonlinear stage of the
modulational (Benjamin–Feir) instability. This question has remained open for almost
50 years.

Of course the NLS equation is also a completely integrable system. The infi-
nite number of conserved quantities suggests that its solutions cannot blow up, and
therefore that the growth of perturbations must remain bounded. The initial value
problem (IVP) for (1.1) with initial conditions (IC) decaying as x → ±∞ was solved
by Zakharov and Shabat in 1972 [51] by developing an appropriate inverse scattering
transform (IST) (see also [6, 21, 40, 41]). The background solution qa(x, t), however,
satisfies nonzero boundary conditions (NZBC) as x → ±∞ and is therefore outside
the class of IC to which the above IST can be applied. Zakharov and Shabat also
developed the IST for the defocusing NLS with NZBC [52] (see also [13, 21]). How-
ever, the IST for the focusing NLS equation with NZBC remained essentially an open
problem until recently. We suspect that the reason for this oversight is that, since
the constant background is unstable due to MI, one might be led to mistakenly con-
clude that such an IST would not be useful. However, MI is not an obstacle to IST.
In fact, IST provides the only effective means of studying the nonlinear stage of MI!
While a few IST-based studies of MI have been done for periodic boundary conditions
[24, 30, 46], to the best of our knowledge no equivalent studies exist on the infinite
line with NZBC.

The IST for the focusing NLS equation with NZBC was developed in [12]. Its
availability makes it possible to investigate a variety of issues. Here we use it to per-
form an analytical study of the nonlinear stage of MI. Note that the focusing NLS
equation with NZBC possesses a rich family of soliton solutions [44, 49]. Such solu-
tions, all of which are nonstationary, reduce under certain limits to subfamilies found
over the years by Kuznetsov and Ma (see [36, 38]), Peregrine [42], and Akhmediev (see
[33]). In [49], using the dressing method, Zakharov and Gelash constructed a class of
two-soliton solutions corresponding to small initial perturbations of a constant back-
ground, and they conjectured that the nonlinear stage of the MI is mediated by such
soliton pairs. Here we will show that in many cases solitons do contribute to the over-
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138 GINO BIONDINI AND EMILY FAGERSTROM

all solution of the problem. This is because there exists a class of perturbations of
the constant background that generate a nontrivial discrete spectrum. On the other
hand, we will also show that there exists another class of perturbations for which no
discrete spectrum is present. Since all long-wavelength perturbations are linearly un-
stable, solitons cannot be the primary mechanism that describes the nonlinear stage
of the MI.

Instead, we will show that the key to understanding the nonlinear stage of the MI
is the contribution from the continuous spectrum in the IST. Usually, for IVPs that
can be solved via IST, the radiative components of the solution (i.e., the contribu-
tions coming from the reflection coefficient) remain bounded in time, and in fact they
vanish in the L1 norm as t → ∞. For example, this is the case for most nonlinear par-
tial differential equations (PDEs) with zero boundary conditions (ZBC) at infinity, as
well as for the defocusing NLS equation with NZBC [6, 21, 41]. For the focusing NLS
equation with NZBC, in contrast, there exists a portion of the continuous spectrum
(which is the set of values of the spectral parameter for which bounded eigenfunc-
tions exist for the scattering problem) for which the simultaneous eigenfunctions of
the Lax pair grow exponentially in time. Indeed, by taking the limit of the IST when
the solution is a small deviation of the constant background, we will show that the
leading-order term of the solution in this limit coincides exactly with the direct so-
lution of the linearized NLS equation around the constant background. This shows
that the regularization of the MI when the perturbations become sufficiently large is
automatically built into the IST formalism. The situation is similar to what happens
for Maxwell–Bloch systems of equations [1, 25, 26, 27, 31, 48], where the reflection
coefficients can grow exponentially depending on the choice of boundary conditions.
Just like in the Maxwell–Bloch case, however, the IST provides a mechanism that
describes the automatic saturation of the instability.

The outline of this work is the following. In section 2, a brief review of the IST for
the focusing NLS equation with NZBC is given, and the one-soliton solutions are dis-
cussed in section 3. In section 4, a specific class of piecewise-constant IC is considered
which includes small perturbations of the constant background, and the associated
spectral data are explicitly calculated. A characterization of the discrete spectrum for
such piecewise-constant potentials is given in section 5, which will allow us to draw
several general conclusions about the properties of the focusing NLS equation with
NZBC. In section 6 we obtain the small-deviation limit of the IST, and we compare
it to the linearization of the NLS equation around a constant background, which al-
lows us to precisely identify the nonlinear analogue of the unstable Fourier modes.
Section 7 concludes the work with a discussion of the results. Notation, proofs, and
a few other technical results are contained in the appendices.

2. Inverse scattering transform for the focusing NLS equation with
NZBC. Here we summarize the IST for the IVP for the focusing NLS equation (2.1)
with the boundary conditions (2.2). We refer the reader to [12] for all details. We
rewrite the focusing NLS equation as

(2.1) iqt + qxx − 2ν (|q|2 − q2o)q = 0 ,

with the NZBC

(2.2) lim
x→±∞ q(x, t) = q± ,

with |q±| = qo �= 0. The rescaling q̃(x, t) = q(x, t) exp[−2iνq2ot] yields (2.1) from (1.1),
and is done so that the boundary values q± in (2.2) are independent of time. This
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Fig. 1. Left: The first sheet of the Riemann surface of the complex k-plane, showing the branch
cut (segment [−iqo, iqo] of the imaginary axis, in red online) and the region where Imλ > 0 (gray).
Right: The complex plane of the uniformization variable z. Shown in both cases are the regions D±
(respectively in gray and white) where Im λ(z) >< 0. The oriented contours for the Riemann–Hilbert
problem in the complex z-plane (see section 2.2) are also shown (in red online).

simplifies the IST machinery. We dropped tildes for brevity, and hereafter we take
ν = −1.

Recall that (2.1) is the compatibility condition of the Lax pair

(2.3) φx = (ikσ3 +Q)φ , φt = (−2ik2σ3 +H)φ ,

where φ(x, t, k) is a 2 × 2 matrix eigenfunction, σ3 is the third Pauli matrix (A.1),
and

Q(x, t) =

(
0 q

−q∗ 0

)
, H(x, t, k) = iσ3(Qx −Q2 − q2o)− 2kQ .

The first equation of (2.3) is the scattering problem, Q(x, t) is the scattering potential,
and k is the scattering parameter.

2.1. Direct problem. As x → ±∞, the solutions of the scattering problem
are approximated by those of the asymptotic scattering problem φx = X± φ, where
X± = ikσ3 +Q± and Q± = limx→±∞ Q(x, t). The eigenvalues of X± are ±iλ, where

(2.4) λ(k) = (q2o + k2)1/2 .

We introduce the two-sheeted Riemann surface defined by λ(k), taking the branch cut
along the segment i[−qo, qo]. We also introduce the uniformization variable z = k+λ,
which maps the two sheets of the complex k-plane, respectively, into the exterior and
interior of the circle Co of radius qo centered at the origin in the complex z-plane.
The inverse transformation is

(2.5) k = (z − q2o/z)/2, λ = (z + q2o/z)/2 .

With some abuse of notation we rewrite the k dependence as dependence on z. Note
that Im(z)λ ≷ 0 in D±, respectively, with D± = {z ∈ C : (Im z)(|z|2 − q2o)

>
< 0} (see

Figure 1).
We write the eigenvector matrix for X± as Y±(z) = I + (i/z)σ3Q±, so that

X±Y± = Y± iλσ3. The continuous spectrum is Σk = R ∪ i[−qo, qo], correspond-
ing to Σz = R ∪ Co in the z-plane. Hereafter we omit the subscript on Σ, as the
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140 GINO BIONDINI AND EMILY FAGERSTROM

intended meaning will be clear from the context. As x → ±∞, the time evolu-
tion of the eigenfunctions is asymptotic to that of the solutions of φt = T± φ, with
T± = −2ik2σ3 − 2kQ±. Note that T± = −2kX±. Thus for all z ∈ Σ, we can define
the Jost eigenfunctions φ±(x, t, z) as the simultaneous solutions of both parts of the
Lax pair satisfying the boundary conditions

φ±(x, t, z) = Y±(z) eiθ(x,t,z)σ3 + o(1) as x → ±∞ ,(2.6)

where θ(x, t, z) = λ(z)(x − 2k(z)t). An analysis of the Neumann series for the linear
Volterra integral equations for the Jost eigenfunctions shows that their columns can
be analytically extended to the following regions: φ+,1 and φ−,2 to z ∈ D+ , and φ−,1

and φ+,2 to z ∈ D− . Hereafter, the additional subscripts 1 and 2 identify the matrix
columns, i.e., φ±(x, z, t) = (φ±,1, φ±,2). Throughout this work, we use the subscripts
± to denote limiting values as x → ±∞, and the superscripts ± to denote analyticity
in the regions D±.

For all k ∈ Σ \ {±iqo} and all (x, t) ∈ R2, one has detφ±(x, t, z) = 1+ q2o/z
2 �= 0.

Hence, we can introduce a scattering matrix S(z) as

(2.7) φ+(x, t, z) = φ−(x, t, z)S(z) , z ∈ Σ .

Note that S(z) = (si,j) is independent of time. Also, s1,1(z) and s2,2(z) are analytic in
D+ and D−, respectively, whereas s1,2(z) and s2,1(z) are nowhere analytic in general.
The reflection coefficients needed in the inverse problem are

ρ(z) = s2,1/s1,1 , ρ̃(z) = s1,2/s2,2 , z ∈ Σ .

The scattering problem admits two symmetries: for all z ∈ Σ,

φ±(x, t, z) = σ2φ
∗
±(x, t, z

∗)σ2 , φ±(x, t, z) = (i/z)φ±(x, t,−q2o/z)σ3Q± .

These imply the following relations between the scattering coefficients:

s2,2(z) = s∗1,1(z
∗) , s1,2(z) = −s∗2,1(z

∗) ,

s1,1(z) = (q∗+/q
∗
−) s2,2(−q2o/z) , s1,2(z) = (q+/q

∗
−) s2,1(−q2o/z) .

In turn, these relations yield the symmetries for the reflection coefficients:

ρ(z) = −ρ̃∗(z∗) = (q−/q∗−) ρ̃(−q2o/z) = −(q∗−/q−) ρ
∗(−q2o/z

∗) ∀z ∈ Σ .

The discrete spectrum of the scattering problem comprises the zeros of s1,1(z)
in D+ and those of s2,2(z) in D−. We ignore the possibility of zeros along Σ. If
s1,1(z) = 0 at z = zn, the eigenfunctions φ+,1 and φ−,2 at z = zn must be proportional:

(2.8) φ+,1(x, t, zn) = bn φ−,2(x, t, zn) .

We assume that s1,1(z) has a finite number N of simple zeros z1, . . . , zN in D+.
The discrete spectrum is then the set {zn, z∗n,−q2o/zn,−q2o/z

∗
n}Nn=1 . Moreover, (2.8)

implies

Resz=zn

[
φ+,1(x, t, z)/s1,1(z)

]
= Cn φ−,2(x, t, zn) , Cn = bn/s

′
1,1(zn) ,

Resz=z∗
n

[
φ+,2(x, t, z)/s2,2(z)

]
= C̃n φ−,1(x, t, z

∗
n) , C̃n = b̃n/s

′
2,2(z

∗
n) .
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From the symmetries, we have C̃n = −C∗
n. Moreover,

Resz=−q2o/z
∗
n

[
φ+,1(x, t, z)/s1,1(z)

]
= CN+n φ−,2(x, t,−q2o/z

∗
n) ,

Resz=−q2o/zn

[
φ+,2(x, t, z)/s2,2(z)

]
= C̃N+n φ−,1(x, t,−q2o/zn) ,

where CN+n = (qo/z
∗
n)

2(q∗−/q−) C̃n and C̃N+n = (qo/zn)
2(q−/q∗−)Cn .

Next we discuss the asymptotic behavior of the eigenfunctions and scattering
coefficients as k → ∞, which corresponds to z → ∞ in CI and to z → 0 in CII.
Considering the appropriate region of the complex plane for each column, one can show
that φ±(x, t, z) = eiθ(x,t,z)σ3(I + O(1/z)) as z → ∞. In particular, the asymptotic
behavior of φ−(x, t, z) will allow us to reconstruct the potential from the solution of
the inverse problem in section 2.2:

(2.9) φ−(x, t, z) eiθ(x,t,z)σ3 = I + (i/z)σ3Q(x, t)

+ (i/z)

∫ x

−∞

(
[σ3Q−,ΔQ−(y, t)] + ΔQ−(y, t)σ3ΔQ−(y, t)

)
dy +O(1/z2)

as z → ∞, where ΔQ±(x, t) = Q(x, t) − Q±. Also, as z → ∞ in the appropriate
regions of the complex z-plane, S(z) = I + O(1/z). Similarly, as z → 0 in the
appropriate regions of the z-plane, we have φ±(x, t, z) = eiθ(x,t,z)σ3(iσ3Q±/z +O(1))
and S(z) = diag(q−/q+, q+/q−) +O(z).

2.2. Inverse problem. The inverse problem is formulated in terms of a matrix
Riemann–Hilbert problem. The starting point is the scattering relation (2.7). We
introduce modified eigenfunctions μ±(x, t, z) = φ±(x, t, z) e−iθ(x,t,z)σ3 , which satisfy
constant boundary conditions: μ±(x, t, z) → I as x → ±∞. The analyticity properties
of their columns are inherited from those of φ±(x, t, z). Further, introducing the
meromorphic matrices

M+(x, t, z) = (μ+,1/s1,1, μ−,2) , M−(x, t, z) = (μ−,1, μ+,2/s2,2) ,

one obtains the jump condition

(2.10) M−(x, t, z) = M+(x, t, z) (I −G(x, t, z)) , z ∈ Σ ,

where the jump matrix is

(2.11) G(x, t, z) =

(
0 −e2iθ(x,t,z)ρ̃(z)

e−2iθ(x,t,z)ρ(z) ρ(z)ρ̃(z)

)
.

The asymptotic behavior of M± is as follows: M± = I + O(1/z) as z → ∞ and
M± = (i/z)σ3Q−+O(1) as z → 0, whereas G(x, t, z) is O(1/z) as z → ±∞ and O(z)
as z → 0 along the real axis. The above Riemann–Hilbert problem can be solved by
subtracting the asymptotic behavior and the pole contributions (including the one
at z = 0). Applying the modified Cauchy projectors yields a matrix singular linear
integral equation for the solution of the Riemann–Hilbert problem:

(2.12) M(x, t, z) = I +R(x, t, z) +
1

2πi

∫
Σ

M+(x, t, ξ)

ξ − z
G(x, t, ξ) dξ ,

where
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R(x, t, z) =
i

z
σ3Q− +

N∑
n=1

(
Reszn M+

z − zn
+

Res−q2o/z
∗
n
M+

z + q2o/z
∗
n

)

+

N∑
n=1

(
Resz∗

n
M−

z − z∗n
+

Res−q2o/zn
M−

z + q2o/zn

)
.

To close the system, we need expressions for the residues. Let ξn = zn and ξn+N =
−q2o/z

∗
n for n = 1, . . . , N . The residue relations give us

Resξn M+ =
(
Cn e

−2iθ(x,t,ξn)μ−,2(x, t, ξn) , 0
)
, n = 1, . . . , 2N ,

Resξ∗n M− =
(
0 , C̃n e

2iθ(x,t,ξ∗n)μ−,1(x, t, ξ
∗
n)
)
, n = 1, . . . , 2N .

Evaluating the second column of (2.12) at z = zn and at z = −q2o/z
∗
n and the first

column of (2.12) at z = z∗n and at z = −q2o/zn yields, for n = 1, . . . , 2N ,

μ−,2(x, t, ξn) =

(−iq−/ξn
1

)
+

2N∑
k=1

C̃k e
2iθ(x,t,ξ∗k)

ξn − ξ∗k
μ−,1(x, t, ξ

∗
k)

+
1

2πi

∫
Σ

M+(x, t, ξ)

ξ − ξn
G(x, t, ξ) dξ ,

μ−,1(x, t, ξ
∗
n) =

(
1

iq∗−/ξ
∗
n

)
+

2N∑
j=1

Cj e
−2iθ(x,t,ξj)

ξ∗n − ξj
μ−,2(x, t, ξj)

+
1

2πi

∫
Σ

M+(x, t, ξ)

ξ − ξ∗n
G(x, t, ξ) dξ .

The last task is to write the reconstruction formula, which is done using the
asymptotic behavior of M±(x, t, z) as z → ∞:

M(x, t, z) = I +
1

z

{
iσ3Q− +

2N∑
n=1

(
Resξn M+ +Resξ∗n M−)

− 1

2πi

∫
Σ

M+(x, t, ξ)G(x, t, ξ) dξ

}
+O(1/z2) .

Comparing with (2.9), the reconstruction formula for the potential is obtained:

(2.13) q(x, t) = q− + i

2N∑
n=1

C̃n e
2iθ(x,t,ξ∗n) μ−,1,1(x, t, ξ

∗
n) +

1

2π

∫
Σ

(M+G)1,2(x, t, ξ) dξ .

3. One-soliton solutions. In the case of a reflectionless potential with one
quartet of simple eigenvalues, the inverse problem yields a four-parameter family of
solutions, depending on the location of the discrete eigenvalue. From the scaling
symmetry of the NLS equation, we may set qo = 1.

Consider first the case of a purely imaginary eigenvalue. Let z1 = iZ, with Z > 1,
and C1 = ec0+is0 , with c0, s0 ∈ R. Then

q(x, t) =
coshχ+ 1

2 c+(1 + c2−/c
2
+) sin s− ic− cos s

coshχ+A sin s
,
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with χ(x, t) = c−x+ χ0 and s(x, t) = c+c−t+ s0, and where

c± = Z ± 1/Z , χ0 = arctanh

(
c2+ − 4Z2c2−
c2+ + 4Z2c2−

)
+ c0 , A = 2/c+ < 1 .

This solution was found by Kuznetsov in 1977 [36] and rediscovered by Ma [38] and
others.

Translating the coordinates so the origin of the soliton is located at the origin
and taking the limit Z → 1 (i.e., the eigenvalue approaches the branch cut) yields the
rational solution

q(x, t) =
4x2 − 16it+ 16t2 − 3

4x2 + 16t2 + 1
,

which is referred to as the Peregrine soliton [42]. Note that this solution corresponds
to a zero of s1,1(z) at z = i, i.e., along the continuous spectrum.

If we do not set qo = 1 and take the limit qo → 0, we recover the one-soliton solu-
tion of the focusing NLS equation with ZBC. Explicitly, fixing the discrete eigenvalue
at z1 = iZ and taking qo → 0 yields q(x, t) = −i ei(Z

2t+φ) sech[Zx + log(2Z) + c0] +
O(qo).

A discrete eigenvalue in general position yields the most general one-soliton so-
lution. If we set qo = 1 and write z1 = iZ eiα, with Z > 1 and α ∈ (−π/2, π/2),
then

q(x, t) =

{
cosh(χ+ 2iα) +

1

2
A [c+2 (Z

2 sin(s+ 2α)− sin s)

− ic−2 (Z
2 cos(s+ 2α)− cos s)]

}
/
{
coshχ+A [Z2 sin(s+ 2α)− sin s]

}
,

with χ(x, t) = c−x cosα−c+2t sin(2α)+χ′
0 and s(x, t) = c+x sinα+c−2t cos(2α)+s0,

and where

c+2 = Z2 + 1/Z2 , c−2 = Z2 − 1/Z2 = c+c− , A = 1/(c′+c
′
−) ,

c′+ = |1− Z2 e−2iα| , c′− = (Z + 1/Z)/(2 cosα) , χ′
0 = log(c′+/c

′
−) + c0 ,

with c± as before. This solution was first derived by Tajiri and Watanabe in 1998 [44]
and rediscovered recently by Zakharov and Gelash using the dressing method [49].
An example of such a solution is shown in Figure 2 (left).

Performing a translation of coordinates so that the maximum of the solution is at
the origin and taking the limit Z → 1 yields the so-called Akhmediev breathers [33]

q(x, t) =
cosh[2 sin(2α)t− 2iα]− cosα cos[2 sin(α)x]

cosh[2 sin(2α)t]− cosα cos[2 sin(α)x]
.

Note, however, that a zero of the analytic scattering coefficient on the branch cut is
not a true discrete eigenvalue because the zero is on the continuous spectrum. Thus
the eigenfunctions oscillate as x → ±∞, instead of decaying as in the case of a proper
eigenvalue. The corresponding solutions, which are obtained by taking the limit of
the eigenvalue to the branch cut, are periodic in x and are therefore outside the scope
of the IST presented in section 2. An example of such a solution is shown in Figure 2
(right).
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144 GINO BIONDINI AND EMILY FAGERSTROM

Fig. 2. Left: The modulus |q(x, t)| of a traveling one-soliton solution of the focusing NLS
equation with NZBC as a function of x and t with qo = 1 and a discrete eigenvalue z1 =

√
2 eiπ/4,

resulting in an asymptotic phase difference θ+ − θ− = π. Right: The same for an Akhmediev
breather, obtained for α = π/4.

4. Piecewise-constant potentials. We now consider IVPs for the focusing
NLS equation (2.1) with the following piecewise-constant, box-like IC with nonzero
background:

(4.1) q(x, 0) =

{
1 , |x| > L ,

b eiα , |x| < L .

This will allow us to infer various general results about the case with NZBC in section 5
(similarly in spirit to the work of Satsuma and Yajima [43] for the NLS equation with
ZBC). Due to the scaling and phase symmetries of the NLS equation, we may set
q− = 1 in (4.1). The parameter b > 0 quantifies the height of the potential inside the
box. The case 0 < b < 1 represents a potential well and the case b > 1 a potential
barrier. The parameter α represents the phase difference between the value of the
potential inside the box and its background value.

Since the scattering matrix is time-independent, it suffices to evaluate the Jost
eigenfunctions at t = 0. Owing to the piecewise constant nature of the initial condi-
tion (4.1), the Jost solutions at t = 0 have a simple representation in certain subsets
of the real axis. Namely,

φ−(x, 0, k) =
(
I +

i

k + λ
σ3Q−

)
eiλxσ3 , x < −L ,(4.2a)

φ+(x, 0, k) =

(
I +

i

k + λ
σ3Q+

)
eiλxσ3 , x > L .(4.2b)

In addition, a fundamental matrix solution of the scattering problem in the central
region is

φ0(x, 0, k) =

(
I +

i

k + μ
σ3Q0

)
eiμxσ3 , |x| < L ,(4.2c)

where

(4.3) μ2 = k2 + b2 .

D
ow

nl
oa

de
d 

02
/0

2/
15

 to
 1

28
.2

05
.1

13
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODULATIONAL INSTABILITY REVISITED 145

Note that, in this section and the next, it will be convenient to express the Jost
eigenfunctions and the scattering coefficients in terms of the original scattering pa-
rameter k instead of the uniformization variable z. We will choose the value of λ(k)
corresponding to the first sheet of the Riemann surface. In particular, Reλ(k) and
Imλ(k) will both be positive in the first quadrant of the complex k-plane.

The expressions of the above eigenfunctions beyond the domains in (4.2) are
obtained by requiring continuity at the boundary. Each of the eigenfunctions in (4.2)
is a fundamental matrix solution of the scattering problem for k ∈ C \ {±i,±ib}.
(Since the IC (4.1) have effectively compact support, the eigenfunctions have larger
regions of analyticity than for generic potentials.) Thus, there are matrices S±(k),
independent of x and t, such that

(4.4) S+(k) = φ−1
o (x, t, k)φ+(x, t, k) , S−(k) = φ−1

o (x, t, k)φ−(x, t, k) .

The scattering matrix is then given by S(k) = S−1
− (k)S+(k). We may determine S±(k)

by evaluating (4.4) at x = ±L, respectively, and t = 0. In particular,

(4.5) s1,1(k) = e2iLλ

(
cos(2Lμ)− i(b cosα+ k2)

λμ
sin(2Lμ)

)
.

Note that s1,1(k) is an even function of μ(k), so it is independent of the choice of sign
in (4.3).

In section 5 we will use (4.5) to characterize the discrete spectrum of the potential
well and potential barrier by finding the zeros of s1,1(k) in the upper half-plane—
including the branch cut. Note that s1,1 is singular when λ = 0 or μ = 0 (i.e., for
k = i and k = ib, respectively). Evaluating (4.5) at k = i and at k = ib, we see that
s1,1 has a pole at k = i and a removable singularity at k = ib. Thus, we seek those
values of k ∈ C+ \ {i, ib} such that

(4.6) λμ cos(2μL) = i(b cosα+ k2) sin(2μL)

or, equivalently,

(4.7) e2iLμ(λμ − b cosα− k2) + e−2iLμ(λμ+ b cosα+ k2) = 0 .

It will be useful to define

F (k) = e2iLμF̃ (k) , F̃ (k) = λμ− b cosα− k2 ,(4.8a)

G(k) = e−2iLμG̃(k) , G̃(k) = λμ+ b cosα+ k2 .(4.8b)

Also note that, since the potential (4.1) is even, the IVP is equivalent to an initial-
boundary value problem on the half-line with homogeneous Neumann boundary con-
ditions. For decaying potentials at infinity, such problems were studied in [5, 10, 11,
9, 22, 32, 45]. In Appendix B we discuss the extension of those results to the case
of potentials with NZBC at infinity. In particular, we show that s1,1(k) obeys the
symmetry

(4.9) s1,1(k) = s∗1,1(−k∗) , k ∈ CI \ i[0, 1] ,

where from now on CI denotes the interior of the first quadrant of the complex k-
plane and CI its closure. As a result, we may restrict our search to k ∈ CI. Of course,

D
ow

nl
oa

de
d 

02
/0

2/
15

 to
 1

28
.2

05
.1

13
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

146 GINO BIONDINI AND EMILY FAGERSTROM

λ(k) has a sign discontinuity across the branch cut k ∈ i[0, 1], and therefore s1,1(k)
is discontinuous there as well. Since we defined λ(k) to be continuous from the right,
s1,1(k) is, too. (So for k ∈ i[0, 1], (4.9) should be intended as a limit.) Finally, it will
be useful to define the quantity

(4.10) bα =

{√
b cosα , cosα ≥ 0 ,

−i
√−b cosα , cosα < 0 .

Note that bα is real when cosα > 0, but it is imaginary when cosα < 0.

5. Discrete spectrum. We now use the expressions derived in section 4 to char-
acterize the spectrum of the scattering problem for the focusing NLS equation with
NZBC. We will study the case of the potential well and potential barrier separately.
Proofs for the theorems in this section can be found in Appendix C. A summary of
the results is provided in section 5.5.

5.1. Potential well, small phase difference. Recall that for the potential
well b < 1. We first consider the case cosα > b, implying bα > b. The case of
cosα < b will be considered in section 5.3. We use Rouché’s theorem on the first
quadrant of the complex k-plane to prove the following.

Theorem 5.1. If 0 < b < 1 and cosα > b (i.e., bα > b), the scattering problem
has no discrete eigenvalues.

Remark. We emphasize that Theorem 5.1 is particularly significant to the efforts
to understand the nonlinear stage of the MI. It was recently conjectured that the
mechanism underlying the MI is the creation of soliton-antisoliton pairs [49]. However,
since there exists a class of perturbations of the constant background that admit no
discrete spectrum, soliton creation cannot be the main mechanism responsible for
the MI, because all perturbations of the constant background are linearly unstable.
However, the IST does provide a key insight into the issue. The vehicle for the MI
within the context of the IST will be discussed in section 6.

5.2. Potential barrier, small phase difference. We now consider the case of
a barrier-type potential, in which b > 1. In this section, we restrict ourselves to the
case cosα > 1/b, implying bα > 1. We first study the existence of discrete eigenvalues
on the imaginary axis.

Theorem 5.2. If b > 1 and cosα > 1/b (i.e., bα > 1), the scattering problem
has at least one discrete eigenvalue in the segment i(1, b) of the imaginary axis.

Remark. The proof of Theorem 5.2 shows that the scattering problem acquires an
additional eigenvalue at L = nπ/(2

√
b2 − 1) for each integer value of n. Thus, these

are the bifurcation points. Moreover, analysis also shows that all these eigenvalues
bifurcate from the point μ =

√
b2 − 1, i.e., from k = ib. Also, a direct consequence of

Theorem 5.2 is the following.
Corollary 5.3. No area theorem is possible for the focusing NLS equation with

NZBC.
Remark. Recall that an area theorem is a condition on the initial condition for

the existence of discrete eigenvalues. In the case of the focusing NLS equation with
ZBC, one can show that if

∫∞
−∞ |q(x, 0)| dx < π/2, the scattering problem has no

discrete eigenvalues [2, 35]. On the other hand, for the Korteweg–deVries equation
no such area theorem is possible, since discrete eigenvalues can exist for arbitrarily
small potentials [28]. For the focusing NLS equation with NZBC, we may think of
the requirement cosα > 1/b as a condition on the distance between the background
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and the box. Pointwise, for all −L < x < L,

d(q(x, 0), 1) =
√
b2 − 2b cosα+ 1 <

√
b2 − 1 .

On the other hand, setting α = 0, Theorem 5.2 implies that discrete eigenvalues exist
for L arbitrarily close to 0 and b arbitrarily close to 1, implying that no area theorem
is possible for the focusing NLS equation with NZBC. This situation is similar to that
of the defocusing NLS equation with NZBC [13].

By using an approach similar to the proof of Theorem 5.1, we will also show that
the eigenvalues in i(1, b) are the only discrete eigenvalues.

Theorem 5.4. If b > 1 and cosα > 1/b (i.e., bα > 1), the scattering problem
has no discrete eigenvalues off the interval i(1, b).

5.3. Potential well, large phase difference. We return to the potential well
to consider the case of a large phase difference between the background and the
potential inside the box. We begin by considering i(1,∞).

Theorem 5.5. If 0 < b < 1 and cosα ≤ b, the scattering problem has no purely
imaginary discrete eigenvalues.

Remark. Theorem 5.5 leaves open the possibility that s1,1(k) admits zeros along
the continuous spectrum or in the interior of the first quadrant. Regarding the former
possibility, we may use the argument from the proof of Theorem 5.1 (along segment 4)
to show that s1,1(k) �= 0 for k ∈ i(b, 1). Thus, any zeros of s1,1(k) on the continuous
spectrum lie either along k ∈ R+ or on the imaginary axis between k = 0 and k = ib.

Lemma 5.6. If 0 < b < 1, cosα < b, and L = [(2n + 1)π]/[4
√
b2 − b2α], the

scattering problem has a single zero on the continuous spectrum at k = ibα.
Remarks. (i) The proof of Lemma 5.6 shows there are no zeros of s1,1(k) along

the continuous spectrum for all other values of L. (ii) When cosα < 0, bα is purely
imaginary, and the zero is along the positive real axis. When cosα > 0, bα is real, and
the zero is on the imaginary axis, corresponding to a so-called Akhmediev breather.
In either of these two cases, such a zero is not a discrete eigenvalue of the scattering
problem, since the corresponding eigenfunctions are not in L2(R).

Remark. Regarding the existence of discrete eigenvalues in the interior of the first
quadrant, unfortunately we were unable to obtain any rigorous conclusions. On the
other hand, numerical evidence shows that such eigenvalues can exist (see Figure 3).
Specifically, we observe that |G| − |F | is a continuous function on CI. In the case of
0 < cosα < b, this function is negative on i(bα, b) and positive on (iR \ i[bα, b]) ∪ R.
In the case of cosα < 0, this function is positive on (iR \ i[0, b])∪ (R \ [0,√−b cosα])
and negative on i[0, b)∪ [0,

√−b cosα). Thus, there is a contour in CI with endpoints
ib and ibα on which |F | = |G|. The eigenvalues bifurcate from k = ibα when L =
(2n+ 1)π/(4

√
b2 − b2α). Numerical evidence suggests that as L further increases, the

discrete eigenvalue travels upwards along the contour given by |G| = |F |, getting
arbitrarily close to k = ib. At the next odd multiple of π/(4

√
b2 − b2α), an additional

eigenvalue appears at k = ibα. The eigenvalues accumulate at k = ib.

5.4. Potential barrier, large phase difference. Finally, we return to the
case of a potential barrier, i.e., b > 1, but now with cosα < 1/b. As in the case
of the well, there are generically no zeros on the continuous spectrum. However, for
L = (2n+1)π/(4

√
b2 − b2α), the scattering problem has a single zero on the continuous

spectrum at k = ibα, where ibα ∈ R if cosα < 0. (The proof of this statement is the
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Fig. 3. Location of discrete eigenvalues in the complex k-plane for a potential well with b = 0.8,
α = π/3, and various values of L. Solid contours (in red online): locus of |F (k)| = |G(k)|. Dashed
contours (in blue online): level curves Re[F (k) + G(k)] = 0. Dotted black contours: level curves
Im[F (k) +G(k)] = 0. The intersection of the latter two yields the discrete eigenvalues. At each odd

multiple of l = π/(4
√

b2 − b2α) = 1.603 a discrete eigenvalue appears at k = ibα = 0.632 i. As L
increases, the discrete eigenvalue travels upwards along the red contour, accumulating near k = ib.
At the next odd multiple of l, an additional eigenvalue appears at k = ibα.

same as that of Lemma 5.6.) Next we look for zeros k = iy, 1 < y < b.
Lemma 5.7. Let

�n(y) =
1

2
√
b2 − y2

[
nπ + arccot

(
b cosα− y2√
b2 − y2

√
y2 − 1

)]
,

where the branch of arccotangent is chosen to have range (0, π). For all 1 < y < b
and n ∈ N0, if L = �n(y), the scattering problem has a discrete eigenvalue at k = iy.

By examining the range of �n(y), we find further conditions on L which guarantee
the existence of an imaginary discrete eigenvalue.

Theorem 5.8. The scattering problem for the potential barrier contains a purely
imaginary discrete eigenvalue if any of the following hold:

(i) cosα > 1/b ,
(ii) cosα = 1/b and L > π/(4

√
b2 − 1),

(iii) cosα < 1/b and L > π/(2
√
b2 − 1).

The three situations are illustrated in Figure 4.
Remark. Note that the conditions in Theorem 5.8 are sufficient but not necessary

for the existence of eigenvalues in i(1, b), as can be seen in Figure 4(a), for which
discrete eigenvalues exist even for values of L smaller than the bound in Theorem 5.8
(depicted by a gray dot-dashed line). To find the bifurcation point (i.e., the value
of L at which eigenvalues appear), one needs to minimize L = �0(y) as a function
of y in the interval (1, b). The function �0(y) is continuously differentiable, so either
the minimum occurs when d�/dy = 0, or there is no local minimum and we consider
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Fig. 4. Bifurcation plots for the discrete spectrum k = iy of the potential barrier with b = 2
and α = 0 (left), α = π/3 (center), and α = 2π/5 (right), as a function of y (horizontal axis) and L
(vertical axis). The dashed line is at L = π/(2

√
3) (right) and L = π/(4

√
3) (center). When bα > 1

(left), there is a discrete eigenvalue for all values of L, as discussed in section 5.2. When bα = 1
(center), there is a discrete eigenvalue if and only if L > π/(4

√
b2 − 1). Finally, when bα < 1, i.e.,

when cosα < 1/b (right), L > π/(2
√
b2 − 1) ensures the existence of at least one discrete eigenvalue,

but the latter is not a necessary condition.

y → 1+. Differentiating �0(y) and setting d�0/dy = 0, we see that the bifurcation
point is given by the solution of the transcendental equation

(5.1)
−p(y)√
r(y)

= cot

(
2r(y) + p(y)(b2 + 1− 2y2)

r(y) + p(y)2

√
b2 − y2

y2 − 1

)
,

where p(y) = b cosα − y2 and r(y) = (b2 − y2)(y2 − 1). One can solve this equation
numerically for y. For example, for b = 1.25 and α = π/3, a solution is yo = 1.021,
corresponding to L = 1.941. Such a case is illustrated in the top center plot of
Figure 5.

Remark. As in the case of a potential well with a large phase difference, we were
unable to obtain rigorous results concerning the number and location of discrete eigen-
values in the interior of the first quadrant. On the other hand, numerical evidence sug-
gests that a discrete eigenvalue appears at k = ibα when L = (2n+1)π/(4

√
b2 − b2α).

As L increases, the eigenvalue travels along the contour given by |G| = |F |. Then at
L(yo)—where yo solves the transcendental equation (5.1)—the eigenvalue bifurcates
into two eigenvalues. Both move along the imaginary axis: one travels down and
disappears at k = i, and the other becomes arbitrarily close to k = ib, as can be
seen in the top center and right plots of Figure 5 (as well as in the right-hand plot of
Figure 4).

5.5. Summary. We summarize the findings for the various IC studied in this
section.

1. For a potential well with cosα > b there are no discrete eigenvalues s1,1(k)
(nor zeros of s1,1(k) along the continuous spectrum). In particular, this shows
that solitons cannot be the primary vehicle for the nonlinear stage for MI.

2. For a potential well with cosα < b, there is a zero of s1,1(k) on the continuous

spectrum at ibα whenever L = (2n + 1)Lα, where Lα = π/(4
√
b2 − b2α).

There are no other zeros on the real or imaginary axes. Numerical evidence
suggests that as L increases, the discrete eigenvalues travel away from ibα
along a contour in the first quadrant, accumulating at ib.

3. For a potential barrier with cosα > 1/b, there is always at least one discrete
eigenvalue in i(1, b). In particular, this shows that no area theorem is possible
for the focusing NLS equation with NZBC. More precisely, for (n − 1)Lo <
L < nLo, where Lo = π/(2

√
b2 − 1), there are exactly n discrete eigenvalues
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150 GINO BIONDINI AND EMILY FAGERSTROM

Fig. 5. Location of discrete eigenvalues in the complex k-plane for a potential barrier with
b = 1.25, α = π/3, and various values of L. Solid contours (in red online): locus of |F (k)| = |G(k)|.
Dashed contours (in blue online): level curves Re[F (k) + G(k)] = 0. Dotted black contours: level

curves Im[F (k)+G(k)] = 0. At each odd multiple of l = π/(4
√

b2 − b2α) = 0.811 a discrete eigenvalue
appears at k = ibα = 0.791 i. As L further increases, the discrete eigenvalue travels upwards along
the red contour. When it reaches iyo, where yo = 1.021 solves (5.1) and L(yo) = 1.941, it bifurcates
into two eigenvalues which travel along the imaginary axis. One eigenvalue travels down from iyo,
disappearing at i, and one eigenvalue travels upwards, getting arbitrarily close to ib. This can be
seen in the left-hand plot of Figure 4, where yo represents the minimum of the first (lowest) curve.

in i(1, b), and these eigenvalues accumulate near ib (on the imaginary axis)
as L increases. Moreover, there are no other discrete eigenvalues.

4. For a potential barrier with cosα ≤ 1/b, if L > π/(2
√
b2 − 1) there is at

least one discrete eigenvalue in i(1, b). If cosα < 1/b, then, as with the
potential well, s1,1(k) has a zero on the continuous spectrum at ibα whenever
L = (2n+1)Lα. Numerical evidence suggests that as L increases, the discrete
eigenvalues travel in the first quadrant of the complex plane, bifurcating at
points in i(1, b). After bifurcating, eigenvalues traveling downwards disappear
at the branch point (i.e., k = i); those traveling upwards accumulate at k = ib.

6. Comparison between the IST and the linearization of the NLS equa-
tion. We now take the limit of the IST when the IC are a small deviation of the con-
stant background, and we show that, modulo the possible contribution of the discrete
eigenvalues, the solution in this limit coincides exactly with that of the direct lin-
earization of the NLS equation around the constant background. We begin by briefly
reviewing the latter.

6.1. Direct linearization of the NLS equation for small-deviation IC.
Given any solution qs(x, t) of the NLS equation (2.1), one can study the evolution of
a small perturbation to it by seeking a solution in the form q(x, t) = qs(x, t) + v(x, t).
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The solution is linearly stable if v(x, 0) = O(ε) implies v(x, t) = O(ε) for all t > 0.
In particular, taking q(x, t) = qo + v(x, t) (with qo > 0), substituting in the NLS
equation, and keeping O(ε) terms, one obtains the linearization of the NLS equation
around the constant background:

ivt + vxx − 2νq2o(v + v∗) = 0 .

It is convenient to define r = v + v∗ and is = v − v∗, which satisfy

rt + sxx = 0 , st − rxx + 4νq2or = 0.

This system may be solved with Fourier transforms. Introducing r̂(ζ, t) = Fζ [r(x, t)]
and ŝ(ζ, t) = Fζ [s(x, t)] (defined in (A.2)), as well as r̂(ζ, t) = (r̂, ŝ)T , yields

(6.1) r̂t =

(
0 ζ2

−ζ2 − 4νq2o 0

)
r̂ .

The eigenvalues of this system are ±iγ(ζ), where γ(ζ) = ζ
√

ζ2 + 4νq2o . The stability
of the background depends on the sign of ν. If ν = 1 (defocusing case), γ(ζ) is real for
all real ζ, so an initially small perturbation remains small. In this case plane waves
are stable. If ν = −1 (focusing case), γ(ζ) becomes imaginary for ζ ∈ (−2qo, 2qo),
so an initially small perturbation will grow exponentially. Thus, in the focusing case,
plane waves are unstable to long wavelength perturbations. One can estimate the
growth rate of the perturbations from the maximum of | Im γ(ζ)|, which occurs at
ζ =

√
2qo, where | Im γ(ζ)| = 2qo.

The solution of (6.1) with ν = −1 is

(6.2) r̂(ζ, t) =

[
cos(γ(ζ)t) +

(
0 ζ2/γ(ζ)

−γ(ζ)/ζ2 0

)
sin(γ(ζ)t)

]
r̂(ζ, 0) .

The expression in brackets is real for all ζ ∈ R, but the trigonometric functions become
hyperbolic for ζ ∈ (−2qo, 2qo). Reconstructing v(x, t) = 1

2 (r(x, t)+ is(x, t)) yields the
solution of the linearized NLS equation:

v(x, t) =
1

2π

∫
R

eiζxv̂(ζ, t) dζ ,(6.3a)

where

v̂(ζ, t) =

[
cos(γ(ζ)t) +

i(2q2o − ζ2)

γ(ζ)
sin(γ(ζ)t)

]
v̂(ζ, 0) +

2iq2o
γ(ζ)

sin(γ(ζ)t)v̂∗(ζ, 0) .

(6.3b)

Performing the change of variables ζ = 2λ and writing k =
√
λ2 − q2o , (6.3) becomes

v(x, t) =
1

2π

∫
R

e2iλx

[
e−4iλkt

[
(λ+ k)2

2λk
v̂(2λ, 0)− q2o

2λk
v̂∗(2λ, 0)

]

+e4iλkt
[
− (λ− k)2

2λk
v̂(2λ, 0) +

q2o
2λk

v̂∗(2λ, 0)
]]

dλ .(6.4)

We next show how, in the small-deviation limit, the results of the IST coincide
with these expressions, apart from the possible contributions of the discrete spectrum.
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6.2. Small-deviation limit of the IST. We now consider q(x, t) → qo as
x → ±∞, that is, q± = qo. In this case Y+ = Y− = I + (iqo/z)σ1 =: Y and
ΔQ+ = ΔQ− =: ΔQ. The integral equations for the modified eigenfunctions become

μ+(x, t, z) = Y (z)−
∫ ∞

x

Y eiλ(z)(x−y)σ3 Y −1 ΔQ(y, t)μ+(y, t, z) e
−iλ(z)(x−y)σ3dy ,

(6.5a)

μ−(x, t, z) = Y (z) +

∫ x

−∞
Y eiλ(z)(x−y)σ3 Y −1 ΔQ(y, t)μ−(y, t, z) e−iλ(z)(x−y)σ3dy .

(6.5b)

Combining (6.5) with(2.7) yields

(6.6) S(z) = I −
∫
R

e−iθ(y,t,z)σ3 Y −1(z)ΔQ(y, t)μ+(y, t, z)e
iθ(y,t,z)σ3dy .

We evaluate the limit of the IST when q(x, t) − qo = O(ε). Note that if ΔQ = O(ε),
then μ±(x, t, z) = Y + O(ε) and S(z) = I + O(ε). (Moreover, we may evaluate the
above expression at t = 0 since S(z) is independent of t.) In particular,

(6.7) s1,2(z) =
1

q2o + z2

∫
R

e−2iλ(z)y
(−z2Δq(y, 0) + q2oΔq∗(y, 0)

)
dy +O(ε2) .

One can expect that, as ε → 0, at most one discrete eigenvalue is present. Ne-
glecting this possible contribution from the discrete spectrum, the reconstruction for-
mula (2.13) is

(6.8) q(x, t) = qo − 1

2π

∫
Σ

e2iθ(x,t,z) s1,2(z) dz +O(ε2) .

In order to compare this expression with that obtained from the linearization it is
necessary to perform a few changes of variable using (2.5). Different portions of
the integration contour (see Figure 1 (left)) will correspond to different changes of
variable. We observe, for example, that z ∈ (qo,∞) and z ∈ (0, qo) both correspond
to λ ∈ (qo,∞), but k changes sign. In the same way, both the upper and lower halves
of Co correspond to λ ∈ [−qo, qo], but again, they represent different signs for k. Thus
we must consider the change of variable z = λ +

√
λ2 − q2o or z = λ − √λ2 − q2o

depending on the portion of the integration contour. After doing so, and with some
abuse of notation, (6.8) becomes

(6.9) q(x, t) = qo − 1

2π

∫
R

e2iλ(x−2kt) s1,2(λ, k)
λ+ k

k
dλ

+
1

2π

∫
R

e2iλ(x+2kt) s1,2(λ,−k)
λ− k

k
dλ+O(ε2) .

From (6.7) we have

(6.10) s1,2(λ, k) = −k + λ

2λ
v̂(2λ, 0) +

1

2λ(k + λ)
v̂∗(2λ, 0) +O(ε2) .

Combining (6.9) with (6.10), we see that q(x, t) = qo + v(x, t) + O(ε2) as ε → 0,
where v(x, t) is precisely as in (6.4). In other words, modulo the contribution from
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the discrete eigenvalues, the small-deviation limit of IST coincides exactly with the
linearization of the NLS equation around a constant background.

At this point it is crucial to realize that, even though the branch cut lies in
the imaginary axis, the corresponding Jost eigenfunctions of the scattering problem
are still bounded with respect to x. This is because their asymptotic spatial oscil-
lations are determined by λ(k), which is also real-valued on the branch cut. (Re-
call that the boundary conditions for the Jost eigenfunctions are given in terms of
θ(x, t, k) = λ(k)x − ω(k)t; see (2.6).) Thus, just like in the case of ZBC, even these
Jost eigenfunctions are the nonlinearization via IST of genuine Fourier modes. On the
other hand, the temporal dependence of the asymptotic boundary conditions for the
Jost eigenfunctions is governed by 2ω(k) = 4kλ(k). On the branch cut, ω(k) is purely
imaginary. Indeed, modulo trivial rescalings, Imω(k) is precisely the growth rate of
the unstable Fourier modes in the linearized NLS equation! Moreover, the above com-
parison between the small-deviation limit of IST and the linearization shows that, in
this limit, the contribution from the Jost eigenfunctions along the branch cut coincides
exactly with that of the unstable Fourier modes in the linearization.

7. Discussion. The results of this work show how the IST provides a natural
mechanism for the saturation of the MI. To illustrate this point, it is useful to briefly
look at how the results fit within the broader context of the IST.

It is well known that, for integrable nonlinear PDEs with suitably localized IC,
the IST is the nonlinear analogue of the Fourier transform method. In the latter, the
IC are decomposed into a linear superposition of frequency components, each with its
own amplitude and phase, which then evolve independently as plane waves with their
own phase velocity. In the IST, the role of these plane waves is played by the Jost
eigenfunctions, which indeed reduce to plane waves in the appropriate asymptotic limit
(i.e., x → −∞ or x → ∞) for all values of the spectral parameter on the continuous
spectrum. On the other hand, when a discrete spectrum is present, the solution
of the nonlinear PDE contains contributions from the Jost eigenfunctions evaluated
at values of the spectral parameter off the continuous spectrum. The asymptotic
behavior of such eigenfunctions contains real exponentials in x, which by themselves
would be unbounded in the opposite limit (i.e., x → −∞ versus x → ∞ and vice
versa). Moreover, these exponential contributions are also growing in time, since their
time dependence is given by the linear dispersion relation (modulo the usual rescaling
k �→ 2k between the linear and the nonlinear PDEs [6]). The IST, however, provides
a built-in mechanism to regularize these terms and produce a bounded solution. The
most familiar result of such a balance between growing exponentials is, of course, the
sech-shaped one-soliton solution of the Korteweg–deVries (KdV) equation, or that of
the focusing NLS equation, but the mechanism is, of course, more general and applies
with any IC.

The situation is similar for the focusing NLS with NZBC, except that in this case
the above picture is only part of the story. This is because the continuous spectrum
includes a portion of the imaginary axis of the spectral parameter. As we saw in
section 6, in the small-deviation limit, the contribution from the Jost eigenfunctions
on the branch cut coincides exactly with that of the unstable Fourier modes.

Thus, the machinery of the IST encompasses both the linear and the nonlinear
stage of the MI. In the linear stage, when the deviations from the constant background
are small, the IST reproduces the results of the linearized NLS equation (modulo the
contributions of the discrete eigenvalues if any are present), namely, exponentially
growing Fourier modes. Unlike the linearization, however, the IST has a natural
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mechanism for the saturation of such growing modes (via the combination of expo-
nential terms in the solution of the inverse problem), in a manner similar to that of
the automatic saturation and stabilization of the growing exponentials in the soliton
solutions.

It should be noted that the exponential growth/decay of the Jost eigenfunctions
in our formulation of the IST is just a choice of normalizations (made here as in [23]
so that the Jost eigenfunctions are simultaneous solutions of both parts of the Lax
pair), which is in direct correspondence with the fact that the scattering coefficients
are constant in time in this framework. Alternatively, in the standard approach to
IST [6, 40, 41] one imposes fixed boundary conditions for the Jost eigenfunctions,
but then the Jost eigenfunctions are not solutions of the second half of the Lax pair,
and the reflection coefficients become dependent on time. In particular, for the fo-
cusing NLS equation with NZBC, the reflection coefficients evaluated in the branch
cut will grow/decay exponentially in the standard approach. The two approaches
are obviously equivalent since they yield exactly the same expression for the recon-
struction formula. Moreover, with either approach the simultaneous eigenfunctions of
both parts of the Lax pair corresponding to values of k in the branch cut grow/decay
exponentially in time. (Again, this is similar to what happens for Maxwell–Bloch
systems [1, 25, 26, 27, 31, 48].) And, of course, the instability of the Fourier modes
corresponding to eigenfunctions evaluated on the branch cut is not an artifact, but is
instead a real feature of the PDE.

Of course, if one or more discrete eigenvalues are present, their contribution to the
solution has no counterpart in the linearization. Therefore, even for small-deviation
IC, in general the IST provides a more accurate description of the dynamics than the
linearization of the NLS equation. In any case, however, we reiterate that the solitons
cannot be the main vehicle for the MI, since there exists a class of perturbations of the
constant background for which no discrete spectrum is present (e.g., potential wells
with small phase difference; see section 5).

The results of this work suggest a number of questions. Regarding the discrete
spectrum of the scattering problem, an interesting question is whether the character-
ization in section 5 regarding the number and location of discrete eigenvalues can be
generalized to a broader class of IC. For box-like IC, there is at most one discrete
eigenvalue as ε → 0. One question is whether this remains true for generic potentials.
Another interesting question is whether one can formulate upper bounds on the num-
ber of discrete eigenvalues in terms of appropriate moments of the potential. (These
kinds of bounds are known for the KdV equation [6, 17], but no such results are
possible for the NLS equation with ZBC [19].) Generally speaking, one could expect
that potentials which are “close” (in some appropriate functional space) to the class
considered here would have a correspondingly similar spectrum. On the other hand,
for the focusing NLS equation this might not always be the case [19].

With regard to MI, a precise characterization of its nonlinear stage remains a key
open question—even for the simple IC considered in this work. More specifically, an
important task will be to obtain precise estimates for the maximum (i.e., saturated)
amplitude of the Fourier coefficients associated with the linearly unstable modes.
The IST makes it possible to do so for the first time in more than 40 years. Indeed,
we expect that it will be possible to perform such a calculation by evaluating the
long-time asymptotic behavior of the solutions using the Deift–Zhou method [18, 20].
Another important issue will also be to compare the instability mechanism for the
case of NZBC to that for the case of periodic boundary conditions, to see whether they
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are the same or different. It is well known that, for the focusing NLS equation with
periodic boundary conditions, nontrivial homoclinic solutions exist which can lead to
effective chaos [3, 4, 14, 39]. But MI is a different phenomenon. On one hand, it is
unclear what is the analogue of the homoclinic solutions in the problem on the infinite
line. If the homoclinic solutions are the analogue of the solitons of the infinite line, then
either they are not the primary mechanism responsible for the MI, or the mechanism
is different in the periodic case versus the infinite line case, since we have seen that,
generically speaking, in the latter case MI is mediated by a portion of the continuous
spectrum. Note also that with periodic boundary conditions, a threshold exists for
MI: constant backgrounds with amplitudes below such a threshold are linearly stable.
On the other hand, no threshold for instability exists for the NLS on the infinite line
with NZBC. The difficulty in establishing a precise comparison between the periodic
case and the infinite line is compounded by the fact that, to this day, there is no
formulation of the IST with periodic boundary conditions that allows one to take the
limit of the period to infinity in a convenient way. It is hoped that these and other
open questions can be addressed in the future.

Appendix A. Notation and symmetries. Throughout this work, complex
conjugation is denoted by an asterisk, and matrix transpose by the superscript T .
The set of nonnegative integers is N0 = {0, 1, 2, . . .}. The Pauli matrices,

(A.1) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

satisfy the relation σjσk = δjkI + iεjklσl, where δjk is the Kronecker delta, I is the
2 × 2 identity matrix, and εjkl is the totally antisymmetric Levi–Civita tensor. The
direct and inverse Fourier transform pair is defined as

(A.2) f̂(ζ) = Fζ[f ] =

∫
R

e−iζxf(x) dx , f(x) = F−1
x [f̂ ] =

1

2π

∫
R

eiζxf̂(ζ) dζ .

The proofs of Theorems 5.1 and 5.4 use the following formulation of Rouché’s
theorem (e.g., see [15, 37]), which does not require analyticity on the boundary of the
domain.

Theorem (Rouché’s theorem). If the two functions f(z) and g(z) are analytic in
an open, connected set D and if |f(ξ)| < |g(ξ)| holds at every point ξ of the boundary
of D, the two functions g(z) and f(z) + g(z) have the same number of zeros in D.

Next we obtain various symmetries of the eigenfunctions and scattering data.
These are well known in the case of ZBC, but their analogues in the case of NZBC are
not, since the IST for that case is more recent. Recall that if q(x, t) is any solution
of the NLS equation and α, xo, and to are any real constants, q̄(x, t) = eiαq(x, t) and
q̌(x, t) = q(x − xo, t− to) are also solutions of the NLS equation. We next show how
each of these transformations affects the IST.

Lemma A.1. Let φ̄±(x, t, z) and S̄(z) be the Jost solutions and scattering matrix
corresponding to q̄(x, t). We have

(A.3) φ̄±(x, t, z) = ei(α/2)σ3φ±(x, t, z)e−i(α/2)σ3 , S̄(z) = ei(α/2)σ3S(z)e−i(α/2)σ3 .

Proof. We have Q̄(x, t) = ei(α/2)σ3Q(x, t)e−i(α/2)σ3 , which implies that Ē±(z) =
ei(α/2)σ3E±(z)e−i(α/2)σ3 . Then ei(α/2)σ3φ±(x, t, z) and φ̄±(x, t, z) are both fundamen-
tal matrix solutions of the asymptotic scattering problem, and as a result there exists
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an invertible 2×2 matrix C(z) such that φ̄±(x, t, z) = e−i(α/2)σ3φ±(x, t, z)C(z). Com-
paring the asymptotics as x → ±∞ yields the first equation of (A.3). Then, recalling
that φ̄+(x, t, z) = φ̄−(x, t, z)S̄(z) yields the second equation of (A.3).

Lemma A.2. Let φ̌±(x, t, z) and Š(z) be the Jost solutions and scattering matrix
corresponding to q̌(x, t). We have
(A.4)

φ̌±(x, t, z) = φ±(x, t, z)eiθ(xo,to,z)σ3 , Š(z) = e−iθ(xo,to,z)σ3S(z)eiθ(xo,to,z)σ3 .

The proof of Lemma A.2 is omitted since it is similar to that of Lemma A.1.
Finally, we note that the NLS equation also possesses a Galilean invariance; i.e.,

if q(x, t) is a solution, so is qv(x, t) = eiv(x−vt)q(x − 2vt, t). Note, however, that if
q(x, t) does not vanish as x → ±∞, then qv(x, t) is outside the class of potentials
for which the IST formalism developed in [12] can be applied. Therefore, no simple
correspondence between the Jost solutions and scattering matrices can be established.

Appendix B. Even potentials with NZBC. Next we obtain the symmetries
possessed by the scattering data when the potential is an even function of x. First
recall that the NLS equation possesses the following phase and scaling invariances: if
q(x, t) satisfies the NLS equation, then so do eiαq(x, t) and aq(ax, a2t) for arbitrary
real α and a. Thus, we may assume without loss of generality that q− = qo = 1.

Also recall that the NLS equation is invariant under space reflections: if q(x, t)
satisfies the NLS equation, so does q(−x, t). Let Q̃(x, t) = Q(−x, t), and suppose
that φ±(x, t, k) satisfy both the Lax pair (2.3) and the asymptotic conditions (2.6).
Let us derive the symmetries of the eigenfunctions and scattering data under the
transformation Q(x, t) �→ Q̃(x, t). Since the scattering coefficients are independent of
time, we derive their relations at t = 0. Since Q̃± = Q∓ and λ(−k) = −λ(k), we
have that w(x, t, k) = σ3φ∓(−x, t,−k)σ3 solves the Lax pair with Q(x, t) replaced by
Q̃(x, t) and satisfies the asymptotic condition (2.6) with Q± replaced by Q̃±. Thus,
w(x, t, k) = φ̃±(x, t, k), implying

(B.1) φ̃±(x, t, k) = σ3φ∓(−x, t,−k)σ3 .

As a consequence, the new scattering matrix is given by

S̃(k) = σ3S
−1(−k)σ3 .

In particular, s̃1,1(k) = s2,2(−k). In the case of an even potential (i.e., Q̃(x, t) =

Q(x, t)) we have φ̃±(x, t, k) = φ±(x, t, k) and S̃(k) = S(k), so s1,1(k) = s2,2(−k) =
s∗1,1(−k∗). Thus, discrete eigenvalues appear in symmetric quartets, i.e., ±kn,±k∗n,
or, when formulated in the uniformization variable, in symmetric octets, as in the
boundary value problem with ZBC [10, 11]. This allows us to confine our search for
discrete eigenvalues to CI in Theorems 5.1 and 5.4.

Symmetry relations also exist between the norming constants associated to sym-
metric eigenvalues. To derive them, it is convenient to use the uniformization variable
z = k+λ(k). Denote by zn′ = −z∗n the eigenvalue symmetric to zn in the upper half-
plane, and by Cn′ the associated norming constant, as in section 2. Substituting the
symmetries (B.1) for the Jost eigenfunctions in (2.8), and using the generic symmetry
b̃n = −b∗n, the norming constants satisfy the constraint

(B.2) bnb
∗
n′ = 1 , CnC

∗
n′ = − 1(

s′1,1(zn)
)2 ,
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1

23

4

5

6

R

ib

i

iR

1. k = x, 0 ≤ x ≤ R.
2. k = R eiθ, 0 < θ < π/2.
3. k = iy, 1 < y ≤ R.
4. k = iy, b < y ≤ 1.
5. k = ib+εeiθ,−π/2 < θ < π/2.
6. k = iy, 0 < y < b.

Fig. 6. The contour C for Rouché’s theorem for the potential well and the parametrizations
for the corresponding six segments.

where the relation s′1,1(zn′) = −(s′1,1(zn))∗ was used. These relations are formally
identical to those for the norming constants of symmetric eigenvalues for even po-
tentials with ZBC [11], except that in (B.2) the derivative of the analytic scattering
coefficient is taken with respect to z instead of k.

Appendix C. Proofs. Here we prove the theorems and lemmas stated in sec-
tion 5.

Proof of Theorem 5.1. Consider the region D bounded by the contour C ⊂ CI

composed of the six segments illustrated in Figure 6. With our choice of square root
signs, λ(k) is analytic on CI and continuous up to the boundary, including the limit to
the branch cut from the right. We chose Imμ(k) ≥ 0 on CI (but s1,1(k) is independent
of the choice). Using the F (k), G(k) defined in (4.8), we will show |F (k)| < |G(k)|
on C. Thus, F (k) +G(k) and G(k) have the same number of zeros in D. But we will
also show G(k) �= 0 in D. Thus, s1,1(k) has no zeros, i.e., no discrete eigenvalues in
CI. The symmetries of the scattering coefficients allow us to conclude that there are
no eigenvalues in the upper half-plane.

We first show that G(k) �= 0 in D. A zero k of G(k) must satisfy the equation
λ2μ2 = (b cosα+ k2)2, which in turn implies

−k2 =
b2(1− cos2 α)

(1− b)2 + 2b(1− cosα)
.

Both the numerator and denominator in the above expression are always nonnegative.
Thus any solution must be purely imaginary and therefore does not lie in the interior
of D.

We now turn to the comparison of F (k) and G(k) along C.
On segment 1, k, λ(k), and μ(k) are real and nonnegative. Comparing the signs

in (4.8) yields |F̃ (k)| < |G̃(k)| for k in segment 1. Since |e±2iLμ| ≡ 1 there, |F (k)| <
|G(k)|.

On segment 2, as R → ∞ we have |e−2iLμ| → ∞, |e2iLμ| → 0, and λμ = k2(1 +
o(1)), respectively. Thus, for large enough R we have |F (k)| < |G(k)| for all k on
segment 2.

On segment 3, k = iy with 1 < y ≤ R, so k, λ(k), and μ(k) are all purely
imaginary, but F̃ (k) and G̃(k) are real. Also, b cosα − y2 < 0 and λμ < 0, so
|F̃ (k)| < |G̃(k)|. Moreover, e2iLμ < e−2iLμ on segment 3. Therefore |F (k)| < |G(k)|
there.

On segment 4, k and μ(k) are purely imaginary, and λ(k) is real. As a result, we
have |F̃ (k)| ≡ |G̃(k)| there. But e2iLμ < e−2iLμ, so again |F (k)| < |G(k)|.
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Regarding segment 5, the hypotheses of Rouché’s theorem do not hold at k = ib,
where F (k)+G(k) = 0. As a consequence, we deform the contour away from k = ib to
an arbitrarily small neighborhood to the right of the branch point. For k = ib+ εeiθ,
with −π/2 < θ < π/2, we have the following for λ(k) and μ(k):

λ(k) =
√
1− b2 +

ibeiθ√
1− b2

ε+O(ε2) ,

μ(k) =
√
2b ei(θ/2+π/4)√ε+

ei(3θ/2−π/4)

2
√
2b

ε3/2 +O(ε5/2) .

Since |e2iLμ| < 1 < |e−2iLμ|, we need only show |F̃ (k)| ≤ |G̃(k)|. We may write

F̃ (k) = fo + f1
√
ε+O(ε) , G̃(k) = go + g1

√
ε+O(ε) ,

where

fo = −go = b(b− cosα) , f1 = g1 = (1 + i)
√
b(1− b2)eiθ/2 .

Thus we have

|G̃(k)|2 − |F̃ (k)|2 = (|go|2 − |fo|2) + 2(Re(gog
∗
1)− Re(fof

∗
1 ))

√
ε+ O(ε)

= 4Re(gog
∗
1)
√
ε+O(ε)

= 4b(b− cosα)
√

2b(1− b2) cos
(θ
2
+

π

4

)√
ε+O(ε) .

The O(
√
ε) term is positive for −π/2 < θ < π/2. Thus, for all sufficiently small ε, we

have the strict inequality |F (k)| < |G(k)| on k = ib+ εeiθ.
On segment 6, k = iy with 0 < y < b, and λ(k) and μ(k) are real and nonnegative.

Here we use the fact that cosα > b, so b cosα− y2 > 0, and again, |F (k)| < |G(k)|.
Taking R arbitrarily large and ε arbitrarily small, we conclude that G(k) and

F (k)+G(k) have the same number of zeros in the first quadrant. We already showed
that G(k) �= 0 in the first quadrant, so F (k) +G(k) �= 0 there. Thus, there can be no
discrete eigenvalues in CI and, by the symmetries of the scattering coefficient, in the
closure of the upper half-plane.

Remarks. A few comments are in order. (i) As part of the proof, we have shown
there are no purely imaginary discrete eigenvalues. (ii) If we had chosen the opposite
sign for μ(k), the moduli of F (k) and G(k) would be switched, but we could have
applied Rouché’s theorem by switching their roles. (iii) Rouché’s theorem cannot be
applied when cosα ≤ b with the same choice of F (k) and G(k), because the hypotheses
are not satisfied along segment 6.

Proof of Theorem 5.2. We use the parametrization k = iy, with 1 < y < b. Here,
μ(k) =

√
b2 − y2 is a positive, strictly decreasing function of y from

√
b2 − 1 to 0.

Rewriting (4.6) and expressing k and λ in terms of μ, we obtain

(C.1) cot(2Lμ) =
μ2 + b2α − b2

μ
√
b2 − 1− μ2

.

The denominator of the right-hand side of (C.1) is positive in (0,
√
b2 − 1), but

vanishes at the endpoints. The numerator is strictly increasing as a function of μ, and
is negative at μ = 0 and positive at μ =

√
b2 − 1. Thus, the right-hand side of (C.1)
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Fig. 7. The left-hand side (thick solid curve, blue online) and right-hand side (thick dashed
curve, purple online) of (C.1) as a function of μ for 0 < μ <

√
b2 − 1. Left: b = 1.1, α = 0, and

L = 1. Right: b = 3, α = π/8, and L = 1. In both cases, bα > 1. The discrete eigenvalues are given
by the intersections of the two curves.

tends to −∞ as μ → 0 from the right; it tends to ∞ as μ → √
b2 − 1 from the left. By

continuity it takes on all real values between these two limits. Moreover, one can show
that its derivative is always positive. On the other hand, for each fixed L, the left-
hand side of (C.1) tends to ∞ as μ → 0+, and is locally a strictly decreasing function
of μ wherever it is defined. If L < π/(2

√
b2 − 1), there is exactly one intersection (see

Figure 7 (left)). More generally, if (n − 1)π/(2
√
b2 − 1) < L < nπ/(2

√
b2 − 1), the

graph of the left-hand side is composed of n strictly decreasing sections, so there are
exactly n intersections (see Figure 7 (right)).

Proof of Theorem 5.4. We again look for the zeros of (4.5) by looking for values
k /∈ i(1, b) such that (4.7) holds. We will use the decomposition (4.8) and Rouché’s
theorem, as in the proof of Theorem 5.1. However, we must now modify the contour,
because for k = iy with 1 ≤ y ≤ b, we have |F (k)| = |G(k)|, so the hypotheses of
Rouché’s theorem are not satisfied there. Instead, we use the modified contour shown
in Figure 8.

On segments 1–3 and 7, the arguments are analogous to those of Theorem 5.1.
On segments 4, 5, and 6 we have |e2iLμ| < 1 < |e−2iLμ|, so it suffices to show
|F̃ (k)| ≤ |G̃(k)|.

On segment 4, k(ε) = ib+ εeiθ, with 0 ≤ θ < π/2, implying

λ(k) = i
√
b2 − 1 +

beiθ√
b2 − 1

ε+O(ε2) ,

μ(k) =
√
2b ei(θ/2+π/4)

√
ε+

ei(3θ/2−π/4)

2
√
2b

ε3/2 +O(ε5/2) .

1

23

4

5

6
7

R

ib

i

iR

1. k = x, 0 ≤ x ≤ R.
2. k = Reiθ, 0 < θ < π/2.
3. k = iy, b < y ≤ R.
4. k = ib+ εeiθ, 0 ≤ θ < π/2.
5. k = ε+ iy, 1 < y < b.
6. k = i+ εeiθ, −π/2 < θ ≤ 0.
7. k = iy, 0 < y < 1.

Fig. 8. The contour C for Rouché’s theorem for the potential barrier and the corresponding
segments.
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We may therefore expand F̃ (k) and G̃(k) as

F̃ (k) = fo + f1
√
ε+O(ε) , G̃(k) = go + g1

√
ε+O(ε) ,

fo = −go = b(b− cosα) , f1 = g1 = (−1 + i)eiθ/2
√
b(b2 − 1) .

Observing that fo, go are real, we have

|G̃(k)|2 − |F̃ (k)|2 = 4goRe g1
√
ε+O(ε)

= 4b(b− cosα)
√

2b(b2 − 1) sin

(
θ

2
+

π

4

)√
ε+O(ε) .

For θ ∈ [0, π/2) the O(
√
ε) term is positive. So for small enough ε, |G̃(k)|2 > |F̃ (k)|2.

On segment 5, k(ε) = ε+ iy, with 1 < y < b, implying

λ(k) = i
√
y2 − 1 +

y√
y2 − 1

ε+O(ε2) ,

μ(k) =
√
b2 − y2 +

iy√
b2 − y2

ε+O(ε2) .

We then have

F̃ (k) = fo + f1ε+O(ε2) , G̃(k) = go + g1ε+O(ε2) ,

where

fo = −g∗o = y2 − b cosα+ i
√
(b2 − y2)(y2 − 1) ,

f1 = g∗1 =
y(b2 − 2y2 + 1)√
(b2 − y2)(y2 − 1)

− 2iy .

Thus

|G̃(k)|2 − |F̃ (k)|2 = 4Re(gog
∗
1)ε+O(ε2)

=
4y
(
b(b− cosα)(y2 − 1) + (b cosα− 1)(b2 − y2)

)
√
(b2 − 1)(y2 − 1)

ε+O(ε2) .

The coefficient of the O(ε) term is positive. Thus for small enough ε, |G̃(k)|2 >
|F̃ (k)|2.

On segment 6, k(ε) = i + εeiθ, with −π/2 < θ ≤ 0, implying

λ(k) =
√
2ei(θ/2+π/4)

√
ε− iei(3θ/2+π/4)

2
√
2

ε3/2 +O(ε5/2) ,

μ(k) =
√
b2 − 1 +

ieiθ√
b2 − 1

ε+O(ε2) .

We have

F̃ (k) = fo + f1
√
ε+O(ε) , G̃(k) = go + g1

√
ε+O(ε) ,

fo = −go = 1− b cosα , f1 = g1 = eiθ/2(1 + i)
√
b2 − 1 ,
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so that

|G̃(k)|2 − |F̃ (k)|2 = 4goRe g1
√
ε+O(ε)

= 4(b cosα− 1)
√
2(b2 − 1) sin

(θ
2
+

π

4

)√
ε+O(ε) .

For θ ∈ (−π/2, 0] the O(
√
ε) term is positive. Thus for small enough ε, |G̃(k)|2 >

|F̃ (k)|2.
Combining the above estimates and letting R → ∞ and ε → 0 as before, we

conclude that there are no discrete eigenvalues off the segment i(1, b) of the imaginary
axis.

Proof of Theorem 5.5. The inequality |F (k)| < |G(k)| remains true on segment 3
even when cosα ≤ b. Thus there can be no zeros of s1,1(k) for k ∈ i(1,∞).

Proof of Lemma 5.6. On the continuous spectrum, k2, λ(k), and μ(k) are real, so
the left-hand side of (4.6) is real, while the right is purely imaginary. Thus, in order to
have a zero, both sides must be zero. Thus, we must have b cosα+k2 = 0. If cosα > 0,
this occurs at k = i

√
b cosα = ibα. If cosα < 0, this occurs at k =

√−b cosα. In
both cases, μ =

√
b2 − b2α, so L = (2n+ 1)π/(4

√
b2 − b2α).

Proof of Lemma 5.7. Evaluate (4.6) at k = iy and solve for L.
Proof of Theorem 5.8. For fixed n, �(y, n) is continuous on (1, b). As y → b−,

�(y, 0) → ∞. As y → 1+, we have the following possibilities:
1. If cosα < 1/b, then �(y, 0) → π/(2

√
b2 − 1) as y → 1+.

2. If cosα = 1/b, then �(y, 0) → π/(4
√
b2 − 1) as y → 1+.

3. If cosα > 1/b, then �(y, 0) → 0 as y → 1+.
Thus, if cosα < 1/b, the range of �(y, 0) contains (π/(2

√
b2 − 1),∞), so for L >

π/(2
√
b2 − 1) the scattering problem has a discrete eigenvalue in i(1, b). If cosα = 1/b,

the range of �(y, 0) contains (π/(4
√
b2 − 1),∞) so for L > π/(4

√
b2 − 1) the scattering

problem has a discrete eigenvalue in i(1, b). Finally (as we saw before), if cosα > 1/b,
the range of �(y, 0) is (0,∞), so there is a discrete eigenvalue for every L > 0.
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