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Abstract
One- and two-dimensional solitons of a multicompo-
nent nonlocal nonlinear Schrödinger (NLS) system are
constructed. The model finds applications in nonlinear
optics, where it may describe the interaction of opti-
cal beams of different frequencies. We asymptotically
reduce the model, via multiscale analysis, to completely
integrable ones in bothCartesian and cylindrical geome-
tries; we thus derive a Kadomtsev-Petviashvili equation
and its cylindrical counterpart, Johnson’s equation. This
way, we derive approximate soliton solutions of the non-
local NLS system, which have the form of: (a) dark or
antidark soliton stripes and (b) dark lumps in the Carte-
sian geometry, as well as (c) ring dark or antidark soli-
tons in the cylindrical geometry. The type of the soliton,
namely dark or antidark, is determined by the degree
of nonlocality: dark (antidark) soliton states are formed
for weaker (stronger) nonlocality. We perform numeri-
cal simulations and show that the derived soliton solu-
tions do exist and propagate undistorted in the original
nonlocal NLS system.
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1 INTRODUCTION

Many problems in nonlinear waves can be greatly simplified by using asymptotic multiscale
expansion methods that lead to nonlinear evolution equations that are much simpler than a spe-
cific problem at hand.1 The use of such asymptotic methods has led to a number of interesting
findings. For instance, it has been shown thatmodels that are completely integrable by the Inverse
Scattering Transform (IST)2 can be reduced to other integrable models.3 A characteristic exam-
ple is the asymptotic reduction of the defocusing nonlinear Schrödinger (NLS) equation to the
Korteweg-de Vries (KdV) equation, which led to the discovery of dark solitons, and particularly
to the description of shallow NLS dark solitons in terms of KdV solitons.4 Perhaps even more
interestingly, relevant connections have also been proposed for nonintegrable models. This is par-
ticularly important, because exact solutions of the reduced equations can be used for the deriva-
tion of approximate solutions of the original nonintegrable models. Relevant studies continue up
till now (see, e.g., Ref. 5), and have provided insights in studies of solitons in various physical
contexts, such as nonlinear optics6 and Bose-Einstein condensation.7,8
Multiscale expansion methods become particularly relevant and helpful in cases where the

original system does not possess solutions in explicit form. A particularly interesting example is a
class of NLS equations with a spatially nonlocal nonlinearity. Such nonlocal NLSmodels arise, for
example, in the description of optical beam dynamics and solitons in plasmas,9 atomic vapors,10
lead glasses with a thermal nonlinearity,11 as well as in media with long-range interactions, such
as nematic liquid crystals12 and dipolar Bose gases.13 Note that a variant of a nonlocal NLSmodel,
namely the Schrödinger-Poisson equation, appears also in cosmology, where it may describe the
dynamics of coherent dark matter made up of ultralight axions (see, e.g., Ref. 14 and references
therein).
Importantly, nonlocality can dramatically affect the soliton properties. For instance, in higher

dimensional settingswith a nonlocal focusing nonlinear response, collapse can be arrested15,16 and
stable solitons can be formed; see relevant experimental10,11 and theoretical17 results, as well as the
reviews16,18 and references therein. On the other hand, if nonlocal nonlinearity is of the defocusing
type, dark solitons do exist,19–22 and may even feature an attractive interaction19 (note that, in the
case of a local defocusing nonlinearity, dark solitons always repel each other6–8). Furthermore, in
higher dimensional settings, dark solitons that are typically prone to the transverse (or “snaking”)
instability8,23–25 can be stabilized due to nonlocality.26
Motivated by the above, here we study a multicomponent nonlocal NLS system in (2 + 1)-

dimensions, which may describe the interaction of optical beams of different frequencies in
the above-mentioned nonlocal media. We present asymptotic reductions of the model to the
Kadomtsev-Petviashvili (KP) equation in the Cartesian setting (see, e.g., Ref. 27), as well as to
its cylindrical version, known as the Johnson’s equation;28 such KP models arise in many physi-
cal contexts, such as shallow-water waves, ion-acoustic waves in plasmas, and others.27,29–31 These
asymptotic reductions allow us to construct approximate soliton solutions of the original nonlo-
cal system in a two-step process: first, stable plane wave solutions are found, which serve as the
“background” on top of which soliton solutions, obeying the KP equations, are obtained. We thus
derive approximate soliton solutions, in the form of line solitons, as well as lumps and ring soliton
of the nonlocal NLS system.
Our approach resembles the one used for single-component nonlocal NLS equations, where

similar soliton solutionswhere found.32–34 We thus predict the existence of weak antidark solitons
that are supported by the nonlocality. In addition, however, there is a key element in our case,
namely the role of multicomponents. Indeed, we show that the second component in our case
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permits the emergence of antidark solitons in a parametric region that would not be accessible
for the single-component system. Thus, the nonlocal multicomponent NLS system, much like
the local multicomponent one, does permit the emergence of soliton structures that cannot be
supported in the single-component system (see, e.g., Ref. 35 for a recent review). The organization
of the presentation, as well as a brief description of our main results and findings, are as follows.
In Section 2, we introduce the nonlocal NLS system, which is assumed to exhibit a defocusing

nonlinearity, and can describe –as mentioned above– the interaction between two optical beams
of different frequencies in nonlocal media; the model is formulated so that it can directly apply to
the case of doped nematic liquid crystals.21,36,37 After presenting the continuous-wave (cw) solu-
tion and discussing its stability, in Section 3, we use a multiscale analysis to obtain asymptotic
reductions of the model at hand. We thus derive the KP and Johnson’s equations in the Cartesian
and cylindrical geometry, respectively. It is found that both the KP-I and KP-II versions27 of the
KP equation are possible, depending on the degree of nonlocality. Specifically, if the nonlocality
parameter of the system is larger (smaller) than a characteristic critical value –or, in other words,
if nonlocality is relatively strong (weak)–then the KP is of KP-II (KP-I) type. In Section 4, we use
the KP soliton solutions to find approximate solitons of the original nonlocal NLS system, which
turn out to be either of the antidark- or the dark-soliton-type, for a strong or weak nonlocality
(in the sense discussed above), respectively. We thus find antidark and dark stripe solitons, dark
lump solitons, as well as ring dark and antidark solitons. Results of direct numerical simulations
fully support the predictions of our analysis. Indeed, it is found that the predicted approximate
soliton solutions of the nonlocal NLS evolve without any distortion following the dynamics of
the effective KP models; furthermore, analytically predicted and numerically computed soliton
velocities and decay rates (in the cylindrical case) are found to be in very good agreement. Finally,
in Section 5, we present our conclusions and discuss possibilities for future work.

2 MODEL AND LINEAR REGIME

As mentioned above, the nonlocal NLS model under consideration is motivated by the field of
nonlinear optics. In this context, consider two polarized, coherent light beams of two different
frequencies that evolve, along the 𝑧-direction, in a planar nonlinear cell, filled, for example, with
a nematic liquid crystal.38 Then, if 𝑢 and 𝑣 are the complex electric field envelopes of the two light
beams, and 𝜑 is the perturbation of the nematic director angle from its static value, the dynamics
of the system is described by the following nondimensional equations:38,39

𝑖𝑢𝑡 +
𝑑1
2
Δ𝑢 − 2𝑔1𝜑𝑢 = 0, (1)

𝑖𝑣𝑡 +
𝑑2
2
Δ𝑣 − 2𝑔2𝜑𝑢 = 0, (2)

𝜈Δ𝜑 − 2𝑞𝜑 + 2(𝑔1|𝑢|2 + 𝑔2|𝑣|2) = 0, (3)

where subscripts denote partial derivatives, 𝑡 plays the role of the propagation coordinate, while

Δ ≡ 𝜕2𝑥 + 𝜕2𝑦, or Δ ≡ 1

𝑟
𝜕𝑟(𝑟𝜕𝑟) +

1

𝑟2
𝜕2
𝜃
,
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is the transverse Laplacian in Cartesian or cylindrical coordinates, respectively. Here, the coeffi-
cients 𝑑1,2 and 𝑔1,2 characterize, respectively, the diffraction and nonlinearity for the two frequen-
cies. The relative sign between the diffraction coefficients 𝑑1,2 and nonlinearity coefficients 𝑔1,2
in Equations (1) and (2) determines the nature of the equation, namely focusing or defocusing,
much like the case of the relative NLS. Note that, typically, nematics feature a focusing nonlinear-
ity, but they can become defocusing upon inclusion of doping.21 Finally, the parameter 𝑞 relates to
the energy of the static field that pretilts the nematic dielectric, while the nonlocality parameter
𝜈 measures the elasticity of the nematic liquid crystal. Note that large 𝜈 corresponds to a highly
nonlocal response, while in the limit 𝜈 → 0, one obtains the local variant of the system, namely:

𝑖𝑢𝑡 +
𝑑1
2
Δ𝑢 −

2𝑔1
𝑞

(
𝑔1|𝑢|2 + 𝑔2|𝑣|2)𝑢 = 0, (4)

𝑖𝑣𝑡 +
𝑑2
2
Δ𝑣 −

2𝑔2
𝑞

(
𝑔1|𝑢|2 + 𝑔2|𝑣|2)𝑣 = 0. (5)

Below, we will focus on the case of the defocusing nonlinearity, and we will thus assume that all
parameters involved in Equations (1)-(3) are positive. In addition, as we are interested in find-
ing solutions of the above system in the form of dark or antidark solitons, we supplement the
system (1)-(3) with the following nontrivial boundary conditions:

|𝑢|→ 𝜌0, |𝑣|→ 𝜎0, 𝜑 → 𝜑0, as 𝑥, 𝑦 → ±∞, (6)

where 𝜌0, 𝜎0 and 𝜑0 are real constants.
To proceed with our analysis, we introduce the Madelung transformation for the fields 𝑢 and

𝑣, namely,

𝑢 = 𝜌1∕2 exp(𝑖𝜙), 𝑣 = 𝜎1∕2 exp(𝑖𝜓),

where real functions 𝜌 = 𝜌(𝒓, 𝑡), 𝜙 = 𝜙(𝒓, 𝑡) and 𝜎 = 𝜎(𝒓, 𝑡), 𝜓 = 𝜓(𝒓, 𝑡) denote amplitudes and
phases, respectively; here, 𝒓 = (𝑥, 𝑦) or 𝒓 = (𝑟, 𝜃) for the Cartesian or the cylindrical setting. Then,
Equations (1)-(3) reduce to the following hydrodynamic form:

𝜌𝑡 + 𝑑1∇ ⋅ (𝜌∇𝜙) = 0, (7)

𝜙𝑡 + 2𝑔1𝜑 +
𝑑1
2

(|∇𝜙|2 − 𝜌−1∕2Δ𝜌1∕2) = 0, (8)

𝜎𝑡 + 𝑑2∇ ⋅ (𝜎∇𝜓) = 0, (9)

𝜓𝑡 + 2𝑔2𝜑 +
𝑑2
2

(|∇𝜓|2 − 𝜎−1∕2Δ𝜎1∕2) = 0, (10)

𝜈Δ𝜑 − 2𝑞𝜑 + 2(𝑔1𝜌 + 𝑔2𝜎) = 0, (11)
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where∇ = (𝜕𝑥, 𝜕𝑦) or∇ = (𝜕𝑟,
1

𝑟
𝜕𝜃) is the gradient operator in Cartesian and cylindrical geometry,

respectively. It is now observed that the simplest nontrivial solution of the above system, satisfying
the boundary conditions (6), is

𝜌 = 𝜌0, 𝜙 = −2𝑔1𝜑0𝑡, (12)

𝜎 = 𝜎0, 𝜓 = −2𝑔2𝜑0𝑡, (13)

𝜑 = 𝜑0 ≡ 1

𝑞
(𝑔1𝜌0 + 𝑔2𝜎0), (14)

where 𝜌0 and 𝜎0 are real constants, as before. The above solution is, in fact, a continuous-wave
(cw) for the fields 𝑢 and 𝑣 which, together with the constant function 𝜑 = 𝜑0, constitute what we
call the background solution of Equations (1)-(3).
The stability analysis of the above background solution—which will serve as a “pedestal” of

the soliton solutions—can be performed upon introducing in Equations (7)-(10) the perturbation
ansatz:

𝜌 = 𝜌0 + 𝜀𝜌̃, 𝜙 = −2𝑔1𝜑0𝑡 + 𝜀𝜙̃,

𝜎 = 𝜎0 + 𝜀𝜎̃, 𝜓 = −2𝑔2𝜑0𝑡 + 𝜀𝜓̃,

𝜑 = 𝜑0 + 𝜀𝜑̃, (15)

where 𝜀 is a small parameter (0 < 𝜀 ≪ 1). Substituting Equations (15) into Equations (7)-(11), and
keeping only the leading-order terms in 𝜀, we obtain the following linear system:

𝜌̃𝑡 + 𝑑1𝜌0Δ𝜙̃ = 0, (16)

𝜙̃𝑡 + 2𝑔1𝜑̃ −
𝑑1
4𝜌0

Δ𝜌̃ = 0, (17)

𝜎̃𝑡 + 𝑑2𝜎0Δ𝜓̃ = 0, (18)

𝜓̃𝑡 + 2𝑔2𝜑̃ −
𝑑2
4𝜎0

Δ𝜎̃ = 0, (19)

𝜈Δ𝜑̃ − 2𝑞𝜑̃ + 2(𝑔1𝜌̃ + 𝑔2𝜎̃) = 0. (20)

Next, we assume that the perturbations 𝜌̃, 𝜙̃, 𝑣, 𝜑̃ are ∼ exp[𝑖(𝒌 ⋅ 𝒓 − 𝜔𝑡)]; here, 𝒌 ≡ (𝑘𝑥, 𝑘𝑦)
and 𝜔 are the wave vector and frequency of the perturbation, respectively, and 𝒓 ≡ (𝑥, 𝑦). Then,
Equations (16)-(20) lead to the dispersion relation:

𝑝1(𝑘)𝜔
4 + 𝑝2(𝑘)𝜔

2 + 𝑝3(𝑘) = 0, (21)
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where the polynomials 𝑝𝑗(𝑘) (𝑗 = 1, 2, 3) are given by

𝑝1(𝑘) = 16(𝜈𝑘
2 + 2𝑞), (22)

𝑝2(𝑘) = −4𝜈
(
𝑑21 + 𝑑

2
2

)
𝑘6 − 8𝑞

(
𝑑21 + 𝑑

2
2

)
𝑘4 − 64

(
𝑑1𝑔

2
1𝜌0 + 𝑑2𝑔

2
2𝜎0

)
𝑘2, (23)

𝑝3(𝑘) = 𝑑
2
1𝑑
2
2𝜈𝑘

10 + 2𝑑21𝑑
2
2𝑞𝑘

8 + 16𝑑1𝑑2
(
𝑑2𝑔

2
1𝜌0 + 𝑑1𝑔

2
2𝜎0

)
. (24)

and 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 . It can be shown40 that the system is modulationally stable, that is, the disper-
sion relation (21) has real roots, as long as the signs of the diffraction and nonlinearity coefficients
are the same (in the context of our notation); this obviously corresponds to the defocusing case
that we consider herein. Note that, clearly, this result does not depend on the coordinate system
(Cartesian or cylindrical).

3 NONLINEAR REGIME: KP AND JOHNSON’S EQUATIONS

Next, we proceed by analyzing Equations (7)-(11) via amultiscale expansionmethod in bothCarte-
sian and cylindrical coordinates. This will lead to the derivation of an effective KP equation (for
each geometry), the solutions of which will be exploited for the derivation of soliton solutions of
the original nonlocal NLS system.
We seek solutions on top of the background solution (14) in the formof the following asymptotic

expansions in 𝜀:

𝜌 = 𝜌0 + 𝜀𝜌1 + 𝜀
2𝜌2 +⋯ , (25)

𝜙 = −2𝑔1𝜑0𝑡 + 𝜀
1∕2𝜙1 + 𝜀

3∕2𝜙2 +⋯ , (26)

𝜎 = 𝜎0 + 𝜀𝜎1 + 𝜀
2𝜎2 +⋯ , (27)

𝜓 = −2𝑔2𝜑0𝑡 + 𝜀
1∕2𝜓1 + 𝜀

3∕2𝜓2 +⋯ , (28)

𝜑 = 𝜑0 + 𝜀𝜑1 + 𝜀
2𝜑2 +⋯ , (29)

where the unknown fields 𝜌𝑗 , 𝜙𝑗 , 𝜑𝑗 , 𝜎𝑗 and 𝜓𝑗 (with 𝑗 = 1, 2, …) depend on the slow variables:

𝑋 = 𝜀1∕2(𝑥 − 𝑐𝑡), 𝑌 = 𝜀𝑦, 𝑇 = 𝜀3∕2𝑡, (30)
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or

𝑅 = 𝜀1∕2(𝑟 − 𝑐𝑡), Θ = 𝜀−1∕2𝜃, 𝑇 = 𝜀3∕2𝑡, (31)

for the Cartesian and cylindrical coordinates, respectively; here, 𝑐 is the velocity of linear
plane waves propagating on top of the background solution (so-called “speed of sound”).
Note that, according to the original boundary conditions (6), the unknown fields must satisfy
𝜌𝑗, 𝜙𝑗, 𝜑𝑗, 𝜎𝑗, 𝜓𝑗 → 0 as 𝑋,𝑌 → ∞. Substituting Equations (25)-(29) into Equations (7)-(11), and
using the variables (30) or (31), we obtain the following hierarchy of equations.

3.1 Cartesian case

First, Equation (7) yields

𝑂(𝜀3∕2) ∶ −𝑐𝜌1𝑋 + 𝑑1𝜌0𝜙1𝑋𝑋 = 0, (32)

𝑂(𝜀5∕2) ∶ 𝜌1𝑇 − 𝑐𝜌2𝑋 + 𝑑1
[
(𝜌1𝜙1𝑋)𝑋 + 𝜌0𝜙1𝑌𝑌 + 𝜌0𝜙2𝑋𝑋

]
= 0. (33)

From Equation (8), we obtain

𝑂(𝜀) ∶ −𝑐𝜙1𝑋 + 2𝑔1𝜑1 = 0, (34)

𝑂(𝜀2) ∶ 𝜙1𝑇 − 𝑐𝜙2𝑋 + 2𝑔1𝜑2 +
𝑑1
2

(
𝜙21𝑋 −

1

2𝜌0
𝜌1𝑋𝑋

)
= 0. (35)

Equation (9) yields

𝑂(𝜀3∕2) ∶ −𝑐𝜎1𝑋 + 𝑑2𝜎0𝜓1𝑋𝑋 = 0, (36)

𝑂(𝜀5∕2) ∶ 𝜎1𝑇 − 𝑐𝜎2𝑋 + 𝑑2
[
(𝜎1𝜓1𝑋)𝑋 + 𝜎0𝜙1𝑌𝑌 + 𝜎0𝜓2𝑋𝑋

]
= 0. (37)

From Equation (10), we obtain

𝑂(𝜀) ∶ −𝑐𝜓1𝑋 + 2𝑔2𝜑1 = 0, (38)

𝑂(𝜀2) ∶ 𝜓1𝑇 − 𝑐𝜓2𝑋 + 2𝑔2𝜑2 +
𝑑2
2

(
𝜓21𝑋 −

1

2𝜎0
𝜎1𝑋𝑋

)
= 0, (39)

and, finally, Equation (11) leads to

𝑂(𝜀) ∶ −𝑞𝜑1 + 𝑔1𝜌1 + 𝑔2𝜎1 = 0, (40)
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𝑂(𝜀2) ∶ 𝜈𝜑1𝑋𝑋 − 2𝑞𝜑2 + 2(𝑔1𝜌2 + 𝑔2𝜎2) = 0. (41)

Having set up the system of the above equations we now proceed by solving it consistently.
First, consider the linear Equations (32), (34), (36), (38), and (40). This system can be simplified
as follows: differentiate Equations (34) and (38) with respect to 𝑋, and substitute 𝜑1 from Equa-
tion (40), 𝜙1𝑋𝑋 from Equation (32), and 𝜓1𝑋𝑋 from Equation (36). This yields the following two
equations: (

−
𝑐2

𝑑1𝜌0
+
2𝑔21
𝑞

)
𝜌1𝑋 +

2𝑔1𝑔2
𝑞

𝜎1𝑋 = 0, (42)

(
−
𝑐2

𝑑2𝜎0
+
2𝑔22
𝑞

)
𝜎1𝑋 +

2𝑔1𝑔2
𝑞

𝜌1𝑋 = 0. (43)

The compatibility condition of Equations (42) and (43) is found by requiring the determinant of
the coefficients to be zero. This leads to the determination of the speed of sound:

𝑐2 =
2

𝑞

(
𝑑1𝑔

2
1𝜌0 + 𝑑2𝑔

2
2𝜎0

)
, (44)

as well as to the following equation connecting the fields 𝜌1 and 𝜎1:

𝜌1𝑋 =
𝑑1𝑔1𝜌0
𝑑2𝑔2𝜎0

𝜎1𝑋. (45)

Next, we proceed with the equations at the next order of approximation, namely with Equa-
tions (33), (35), (37), (39), and (41). First, multiply (35) by 𝑑1𝜌0

𝑐
and (39) by 𝑑2𝜎0

𝑐
, respectively, and

differentiate them with respect to 𝑋. Then, adding the resulting equations with (33) and (37),
respectively, we obtain the following system of equations:

− 𝑐𝜌2𝑋 + 𝜌1𝑇 + 𝑑1(𝜌1𝜙1𝑋)𝑋 + 𝑑1𝜌0𝜙1𝑌𝑌 +
𝑑1𝜌0
𝑐
𝜙1𝑇𝑋 +

2𝑑1𝑔1𝜌0
𝑐

𝜑2𝑋

+
𝑑21𝜌0

2𝑐
(𝜙1𝑋)

2
𝑋 −

𝑑21
4𝑐
𝜌1𝑋𝑋𝑋 = 0, (46)

− 𝑐𝜎2𝑋 + 𝜎1𝑇 + 𝑑2(𝜎1𝜓1𝑋)𝑋 + 𝑑2𝜎0𝜓1𝑌𝑌 +
𝑑2𝜎0
𝑐
𝜓1𝑇𝑋

+
2𝑑2𝑔2𝜎0

𝑐
𝜑2𝑋 +

𝑑22𝜎0

2𝑐
(𝜓1𝑋)

2
𝑋 −

𝑑22
4𝑐
𝜎1𝑋𝑋𝑋 = 0, (47)

𝜈𝜑1𝑋𝑋 − 2𝑞𝜑2 + 2(𝑔1𝜌2 + 𝑔2𝜎2) = 0. (48)

This system can be further simplified as follows. Multiply Equations (46) and (47) by −𝑔1

𝑞𝑐
and

−
𝑔2

𝑞𝑐
, respectively, and add the resulting equations. Then, substitute 𝜑2 from Equation (48), and
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use 𝜙1𝑋 =
𝑐

𝑑1𝜌0
𝜌1, 𝜓1𝑋 =

𝑐

𝑑2𝜎0
𝜎1 and 𝜌1𝑋 =

𝑑1𝑔1𝜌0

𝑑2𝑔2𝜎0
𝜎1𝑋 . This way, we end up with the following KP

equation:

(𝜌1𝑇 + 𝐴1𝜌1𝑋𝑋𝑋 + 𝐴2𝜌1𝜌1𝑋)𝑋 +
𝑐

2
𝜌1𝑌𝑌 = 0, (49)

where the coefficients 𝐴1 and 𝐴2 are given by

𝐴1 =
𝜈𝑐4 − (𝑑31𝑔

2
1𝜌0 + 𝑑

3
2𝑔
2
2𝜎0)

4𝑞𝑐3
, (50)

𝐴2 =
3(𝑔31𝑑

2
1𝜌0 + 𝑔

3
2𝑑
2
2𝜎0)

𝑐𝑑1𝑔1𝜌0𝑞
. (51)

Importantly, the above analysis ends up with a single KP equation for the unknown field 𝜌1.
Once this function assumes the form of a KP soliton, the unknown field 𝜎1 can be obtained from
Equation (45), while the phases 𝜙1 and 𝜓1 can be obtained from Equations (32) and (36), respec-
tively. This way, as we will see, an approximate solution of the original nonlocal NLS system can
be constructed upon employing the exact soliton solutions of the KP equation (49).

3.2 Cylindrical case

In this case, Equations (7)-(11) lead to the following results. First, Equation (7) yields

𝑂(𝜀3∕2) ∶ −𝑐𝜌1𝑅 + 𝑑1𝜌0𝜙1𝑅𝑅 = 0, (52)

𝑂(𝜀5∕2) ∶ 𝜌1𝑇 + 𝑑1

[
(𝜌1𝜙1𝑅)𝑅 +

𝜌0
𝑐2𝑇2

𝜙1ΘΘ +
𝜌0
𝑐𝑇
𝜙1𝑅 + 𝜌0𝜙2𝑅𝑅

]
(53)

with −𝑐𝜌2𝑅 = 0. From Equation (8) we obtain

𝑂(𝜀) ∶ −𝑐𝜙1𝑅 + 2𝑔1𝜑1 = 0, (54)

𝑂(𝜀2) ∶ 𝜙1𝑇 − 𝑐𝜙2𝑅 + 2𝑔1𝜑2 +
𝑑1
2

(
𝜙21𝑅 −

1

2𝜌0
𝜌1𝑅𝑅

)
= 0. (55)

Equation (9) yields

𝑂(𝜀3∕2) ∶ −𝑐𝜎1𝑅 + 𝑑2𝜎0𝜓1𝑅𝑅 = 0, (56)

𝑂(𝜀5∕2) ∶ 𝜎1𝑇 + 𝑑2

[
(𝜎1𝜓1𝑅)𝑅 +

𝜎0
𝑐2𝑇2

𝜓1ΘΘ +
𝜎0
𝑐𝑇
𝜓1𝑅 + 𝜎0𝜓2𝑅𝑅

]
(57)
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with −𝑐𝜎2𝑅 = 0. From Equation (10) we obtain

𝑂(𝜀) ∶ −𝑐𝜓1𝑅 + 2𝑔2𝜑1 = 0, (58)

𝑂(𝜀2) ∶ 𝜓1𝑇 − 𝑐𝜓2𝑅 + 2𝑔2𝜑2 +
𝑑2
2

(
𝜓21𝑅 −

1

2𝜎0
𝜎1𝑅𝑅

)
= 0, (59)

and Equation (11) leads to

𝑂(𝜀) ∶ −𝑞𝜑1 + 𝑔1𝜌1 + 𝑔2𝜎1 = 0, (60)

𝑂(𝜀2) ∶ 𝜈𝜑1𝑅𝑅 − 2𝑞𝜑2 + 2(𝑔1𝜌2 + 𝑔2𝜎2) = 0. (61)

The above system can be solved using the methodology presented in the Cartesian case. We thus
end up with the following cylindrical KP equation, also known as Johnson’s equation:28(

𝜌1𝑇 + 𝐴1𝜌1𝑅𝑅𝑅 + 𝐴2𝜌1𝜌1𝑅 +
1

2𝑇
𝜌1

)
𝑅

+
1

2𝑐𝑇2
𝜌1ΘΘ = 0, (62)

where the coefficients 𝐴1 and 𝐴2 are given by Equations (50) and (51). As in the Cartesian case,
solutions of the Johnson’s equation (62) can be used to obtain approximate solutions of the non-
local NLS system.

3.3 Versions of the KP and Johnson’s equations

Having derived the KP and Johnson’s equations, for the Cartesian and cylindrical geometry,
respectively, it is convenient to further normalize these equations and express them in their “stan-
dard” form.2,29 We beginwith the Cartesian case, namely with the KP equation (49).We introduce
the transformations:

𝑇 ↦ 𝐴1𝑇, 𝑌 ↦

√
6|𝐴1|
𝑐

𝑌, 𝜌1 ↦
𝐴2
6𝐴1

𝜌1, (63)

and put Equation (49) into the form:

(𝜌1𝑇 + 𝜌1𝑋𝑋𝑋 + 6𝜌1𝜌1𝑋)𝑋 + 3𝜎𝜌1𝑌𝑌 = 0, (64)

where

𝜎 = sgn(𝐴1). (65)

Similarly, in the cylindrical case, we use the scale transformations:

𝑇 ↦ 𝐴1𝑇, Θ ↦

√
6𝑐|𝐴1|Θ, 𝜌1 ↦

𝐴2
6𝐴1

𝜌1, (66)
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and cast Johnson’s equation (62) into the form:(
𝜌1𝑇 + 𝜌1𝑅𝑅𝑅 + 6𝜌1𝜌1𝑅 +

1

2𝑇
𝜌1

)
𝑅

+
3𝜎

𝑇2
𝜌1ΘΘ = 0, (67)

where 𝜎 is given by Equation (65).
According to the above, it is clear that the type of KP equation—either in Cartesian or cylindri-

cal coordinates—is determined by the parameter 𝜎, that is, the sign of parameter 𝐴1: For 𝜎 = +1
(𝐴1 > 0), the KP equations are of KP-II type, while for 𝜎 = −1 (𝐴1 < 0) the KP equations are of
KP-I type. It is important to point out that—as we will see below—the parameter 𝜎 not only char-
acterizes the type of the equation (and the stability of its soliton solutions), but also the type of
soliton itself, which may be of the dark or bright type (on top of the background solution). Note
that the value of 𝜎 turns out to depend on the degree of nonlocality—see below.

4 APPROXIMATE SOLITON SOLUTIONS

The above multiscale analysis reveals that one can construct approximate (i.e., valid up to order
𝑂(𝜀)) soliton solutions of the nonlocal NLS system (1)-(3). This solution can be expressed in terms
of the soliton solution 𝜌1 of the KP equations (49) or (62), in the Cartesian and cylindrical geom-
etry, respectively, as follows:

𝑢 ≈ (𝜌0 + 𝜀𝜌1)
1∕2 exp

[
−2𝑖𝑔1𝜑0𝑡 + 𝑖𝜀

1∕2 𝑐

𝑑1𝜌0 ∫ 𝜌1d𝜉

]
, (68)

𝑣 ≈

(
𝜎0 + 𝜀

𝑑2𝑔2𝜎0
𝑑1𝑔1𝜌0

𝜌1

)1∕2
exp

[
−2𝑖𝑔2𝜑0𝑡 + 𝑖𝜀

1∕2 𝑐𝑔2
𝑑1𝑔1𝜌0 ∫ 𝜌1d𝜉

]
, (69)

𝜑 ≈ 𝜑0 + 𝜀
𝑔1
𝑞

(
1 +

𝑑2𝑔
2
2𝜎0

𝑑1𝑔
2
1𝜌0

)
𝜌1, (70)

where 𝜉 = 𝑋 or 𝜉 = 𝑅 for the Cartesian or the cylindrical geometry, respectively. Here, it is
reminded that 𝜌0 and 𝜎0 are arbitrary 𝑂(1) parameters that set the background amplitudes, while
𝜑0 is given in Equation (14). Next, we will proceed to identify the types of these approximate soli-
ton solutions, and study their dynamics via direct numerical simulations.

4.1 Cartesian case

4.1.1 Antidark and dark stripe solitons

Westartwith theKP inCartesian coordinates, namelyEquation (49). The simplest soliton solution
of this equation is the line soliton, which is actually a tilted KdV soliton in the 𝑥𝑦-plane. The
relevant one-line soliton solution of Equation (49) reads

𝜌1 =
12𝐴1
𝐴2

𝜅2sech
2
𝜉, (71)
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𝜉 ≡ 𝜅
[
𝑋 + 𝜆

√
6|𝐴1|
𝑐

𝑌 − 𝐴1
(
4𝜅2 + 3𝜆2

)
𝑇 + 𝛿0

]
, (72)

where the free, 𝑂(1), parameters 𝜅 and 𝜆 control the propagation direction in the plane, and 𝛿0
sets the initial soliton location. Using Equations (50) and (51), it can readily be found that the
soliton amplitude is given by

12𝐴1
𝐴2

𝜅2 = (𝜈 − 𝜈𝑐)
𝑐2𝑑1𝑔1𝜌0

𝑑31𝑔
2
1𝜌0 + 𝑑

3
2𝑔
2
2𝜎0

𝜅2, (73)

where the critical value 𝜈𝑐 is given by

𝜈𝑐 =
1

𝑐4

(
𝑑31𝑔

2
1𝜌0 + 𝑑

3
2𝑔
2
2𝜎0

)
. (74)

It is now important to note that as the fraction in the right-hand side of Equation (73) is always
positive, the type of the soliton of Equation (49) depends crucially on the sign of 𝜈 − 𝜈𝑐. In addition,
it is easy to see that

sgn(𝜎) = sgn(𝜈 − 𝜈𝑐), (75)

which means that both the type of the KP equation and the stability of its line soliton solution
depend on the degree of nonlocality. In particular:

∙ If 𝜈 > 𝜈𝑐 (𝜎 = +1), that is, for a relatively strong nonlocality, Equation (49) is of the KP-II type,
and its line soliton solution (71) gives rise to antidark stripe solitons (see Equations (68)-(69)),
namely of the form of intensity elevations on top of the cw background.

∙ If 𝜈 < 𝜈𝑐 (𝜎 = −1), that is, for a relatively weak nonlocality (in other words, closer to the local
NLS limit—see Equations (4)-(5)), Equation (49) is of the KP-I type and its line soliton solu-
tion (71) leads to approximate dark soliton stripes (see Equations (68)-(69)), that is, intensity
dips off of the cw background.

It is clear from Equations (50), (51), and (73) that the type of the soliton (dark or antidark)
depends on the sign of the coefficient 𝐴1. The latter is depicted in Figure 1 as a function of
the nonlocality parameter 𝜈 for both the one- (red line) and the two-component (blue line)
cases. Other parameter values are fixed, namely 𝑑1 = 𝑔1 = 𝑞∕5 = 1 for the one-component sys-
tem, 𝑑1 = 2𝑑2∕3 = 𝑔1 = 𝑔2 = 𝑞∕5 = 1, for the two-component one, while, in both cases, the cw
amplitudes are chosen as 𝜌0 = 𝜎0 = 1. Shown also are the regimes of existence of dark and anti-
dark solitons: in the one- (two-) component system, dark solitons exist for 𝜈 < 𝜈1 (𝜈 < 𝜈2), while
antidark ones exist for 𝜈 > 𝜈1 (𝜈 > 𝜈2). It is thus clear that the role of the second component is
to reduce the threshold set by the nonlocality parameter for the existence of antidark solitons:
indeed, these states can be formed in the interval 𝜈1 < 𝜈 < 𝜈2, which would not be possible in the
single-component system.
The existence and dynamics of these approximate soliton solutions will be investigated below

by means of direct simulations. Nevertheless, before proceeding, it is important to make the
following comments. As is well known (see, e.g., Refs. 25, 41 and references therein), the line
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F IGURE 1 The possible type of solitons (dark or antidark) in the (𝐴1, 𝜈) plane, for both cases of the single- (red
line) and two- (blue line) component systems.Observe that the role of the second component in the two-component
system is to reduce the threshold set by the nonlocality parameter 𝜈 for the existence of antidark solitons (see text)

soliton solutions of the KP-II (KP-I) are stable (unstable) under the action of long-wavelength
transverse perturbations; in such a situation, the line soliton develop strong undulations and even-
tually decay—see, for example, the review25 for analysis and references therein, as well as Ref. 42
for results of numerical simulations. However, as was recently shown,26 the effect of nonlocality
can suppress the transverse instability, in the sense that it manifests itself at later times compared
to the local NLS case. It is therefore relevant to investigate not only the antidark stripe solitons,
but also the dark ones, whichmay also exist and propagate for finite times in the nonlocal system.
In what follows, we will use the exponential time-differencing fourth-order Runge-Kutta

(ETDRK4) method of Ref. 43 to verify that the above solutions do propagate as solutions of the
original nonlocal NLS model. In particular, we use initial conditions of the form 𝑢(𝑥, 𝑦, 0) =

𝑢𝑏(𝑥, 𝑦)𝑢s(𝑥, 𝑦, 0) (and similarly for the field 𝑣), where 𝑢s(𝑥, 𝑦, 0) is the initial soliton profile (i.e.,
the solution (68) at 𝑡 = 0). Furthermore, 𝑢𝑏(𝑥, 𝑦) is an almost flat background of finite extent (in
the infinite system, this would be 𝑢𝑏(𝑥, 𝑦) = 1), namely a very broad super-Gaussian of the form
𝑢𝑏(𝑥, 𝑦) = exp[−(𝑥∕0.8𝐿)

12 − (𝑦∕0.8𝐿)12], where 𝑥, 𝑦 ∈ [−𝐿, 𝐿]; here, 𝐿 denotes the size of the
computational domain, taken to be sufficiently large (e.g., of the order of 103). Note that the use
of a background of finite extent is more realistic, as dark (or antidark) solitons are always created
on top of a finite background in real experiments. Then, using these initial conditions (𝑡 = 0), we
numerically integrate the nonlocal NLS system (1)-(3) with the following choices for the parame-
ter values:

𝑑1 = 2𝑑2∕3 = 𝑔1 = 𝑔2 = 𝜈∕5 = 𝑞∕5 = 1, 𝜌0 = 𝜎0 = 1, (76)

and for the soliton parameters 𝜆 = 𝛿0 = 0 and 𝜅 = 1. Note that this choice gives 𝐴1 = 1∕32 >
0, 𝐴2 = 39∕20 > 0, and 𝜈𝑐 = 35∕8 < 𝜈 (i.e., 𝜎 = +1), which means that the solitons are of the
antidark type and the amplitude function 𝜌1 obeys the KP-II equation. For the above choice, the
initial condition for our direct simulations, which depends only on the formal small parameter 𝜀,
reads:

𝑢(𝑥, 𝑦, 0) =

√
1 +

5

26
𝜀 sech

2
(𝜀1∕2𝑥) exp

[
𝑖
5

26
𝜀1∕2 tanh(𝜀1∕2𝑥)

]
, (77)



752 KOUTSOKOSTAS et al.

𝑣(𝑥, 𝑦, 0) =

√
1 +

15

52
𝜀 sech

2
(𝜀1∕2𝑥) exp

[
𝑖
5

26
𝜀1∕2 tanh(𝜀1∕2𝑥)

]
, (78)

𝜑(𝑥, 𝑦, 0) =
2

5
+
5

52
𝜀 sech

2
(𝜀1∕2𝑥), (79)

and we fix 𝜀 = 0.1. The propagation, depicted in Figure 2, shows that the antidark stripes do exist
and propagate without any distortion up to time 𝑡 = 50.
A similar situation occurs also for the approximate dark soliton stripe solitons, for which the

field 𝜌1 obeys the KP-I equation. To show this, first we note that, for the following choice of the
parameter values:

𝑑1 = 2𝑑2∕3 = 𝑔1 = 𝑔2 = 𝜈 = 𝑞∕5 = 1, 𝜌0 = 𝜎0 = 1, (80)

and for soliton parameters 𝜆 = 𝛿0 = 0 and 𝜅 = 1 as before, one obtains 𝐴1 = −27∕160 < 0, 𝐴2 =
39∕20, and 𝜈𝑐 = 35∕8 > 𝜈 = 1 (i.e., 𝜎 = −1), which corresponds to the case of dark solitons. For
these parameter values, the initial conditions are

𝑢(𝑥, 𝑦, 0) =

√
1 −

27

26
𝜀 sech

2
(𝜀1∕2𝑥) exp

[
−𝑖
27

26
𝜀1∕2 tanh(𝜀1∕2𝑥)

]
, (81)

𝑣(𝑥, 𝑦, 0) =

√
1 −

81

52
𝜀 sech

2
(𝜀1∕2𝑥) exp

[
−𝑖
27

26
𝜀1∕2 tanh(𝜀1∕2𝑥)

]
, (82)

𝜑(𝑥, 𝑦, 0) =
2

5
−
27

52
𝜀 sech

2
(𝜀1∕2𝑥). (83)

The results of the direct simulations, stemming from the above initial condition for 𝜀 = 0.1 (as in
the antidark soliton case), are shown in Figure 3. It can readily be seen that dark solitons stripes
are also supported by the original nonlocal systemand, interestingly, can propagate undistorted up
to 𝑡 = 50. Thus, although these structures obey an effective KP-I equation—and, as such, should
be prone to transverse instability—they do feature a stable evolution for finite times; this is in
accordance with the analysis of Ref. 26, predicting nonlocality-induced partial suppression of the
transverse instability. We note in passing that we have checked that, indeed, at later times the
transverse instability sets in and eventually destroys the dark soliton stripes. A systematic investi-
gation of such an analysis, which is relevant and interesting in its own right, is beyond the scope
of this work.
At this point, it is also relevant to test the validity of our analytical approximations, by compar-

ing the numerical and analytical values of the solitons’ velocities. In particular, according to our
analytical approximation, the stripe solitons propagate with a velocity 𝑣s = 𝑐 + 4𝜀𝜅2𝐴1. Using the
above mentioned parameter values, we find that 𝑣s ≈ 1.01 for the antidark solitons, and 𝑣s ≈ 0.93
for the dark solitons. On the other hand, the respective numerical values 𝑣num = Δ𝑥∕Δ𝑡 (where
Δ𝑥 is the distance traveled by the soliton in time Δ𝑡) are 𝑣num ≈ 1 and 𝑣num ≈ 0.92 for the anti-
dark and dark soliton stripes, respectively. As one can see, the agreement between the analytical
predictions and the numerical results is excellent.
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F IGURE 2 The two top panels show, in 3D, the spatial profile of the modulus of the antidark stripe solitons
at 𝑡 = 0—see Equations (77) and (78) with 𝜀 = 0.1. Left (right) panels depict the 𝑢- (𝑣-)component, and the three
bottom rows are contour plots showing the modulus of the antidark solitons at 𝑡 = 0, 𝑡 = 25 and 𝑡 = 50
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F IGURE 3 Similar to Figure 2, but for the case of dark stripe solitons. The initial condition, in this case, is
given by Equations (81) and (82), for 𝜀 = 0.1
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4.1.2 Dark lump solitons

Apart for the 1D stripe soliton solutions that were studied before, the KP-I equation (for𝐴1 < 0, or
𝜎 = −1, corresponding to the weakly nonlocal regime) supports also genuinely 2D solitons. These
states, known as “lumps,” 2 are weakly localized—that is, they decay algebraically at infinity. A
lump solution of Equation (49) is given by

𝜌1(𝑋, 𝑌, 𝑇) =
24𝐴1
𝐴2

−
3𝐴1

𝛼
− (𝑋 + 𝛼𝑇)2 +

2𝛼𝑌2

𝑐(
−
3𝐴1

𝛼
+ (𝑋 + 𝛼𝑇)2 +

2𝛼𝑌2

𝑐

)2 , (84)

where 𝛼 is a 𝑂(1) free parameter linking the soliton amplitude with its velocity and transverse
width. Note that, as here 𝜎 = −1, we have 𝐴1 < 0, meaning that the vector soliton solution (68)
and (69) is of the dark type; in other words, in this case, the approximate 2D soliton solutions
supported by the nonlocal NLS system are dark lumps.
The existence and dynamics of these structures is also investigated numerically. In particular,

choosing the same parameter values that were used in the case of the dark soliton stripe (see
Equation (80)), and fixing 𝛼 = 1, the relevant initial condition that we use in the simulations is

𝑢(𝑥, 𝑦, 0) =

√√√√√√√1 −
27𝜀

13

81

160
− 𝜀𝑥2 + 2𝜀2𝑦2(

81

160
+ 𝜀𝑥2 + 2𝜀2𝑦2

)2 × exp ⎛⎜⎜⎝−𝑖
27

13

𝜀𝑥
81

160
+ 𝜀𝑥2 + 2𝜀2𝑦2

⎞⎟⎟⎠, (85)

𝑣(𝑥, 𝑦, 0) =

√√√√√√√1 −
81𝜀

26

81

160
− 𝜀𝑥2 + 2𝜀2𝑦2(

81

160
+ 𝜀𝑥2 + 2𝜀2𝑦2

)2 × exp ⎛⎜⎜⎝−𝑖
27

13

𝜀𝑥
81

160
+ 𝜀𝑥2 + 2𝜀2𝑦2

⎞⎟⎟⎠, (86)

𝜑(𝑥, 𝑦, 0) =
2

5
−
27𝜀

26

81

160
− 𝜀𝑥2 + 2𝜀2𝑦2(

81

160
+ 𝜀𝑥2 + 2𝜀2𝑦2

)2 . (87)

The results of the simulations, for 𝜀 = 0.1 as before, is shown in Figure 4.
Once again, we find that our analytical predictions are numerically confirmed: the dark lumps

do exist and propagate without any deformation, for times up to 𝑡 = 50. Furthermore, as in the
case of soliton stripes,wehave compared analytical andnumerical values of the lumpvelocity. The
analytical prediction is 𝑣an = 𝑐 − 𝜀𝛼 ≈ 0.9, the respective numerical value is 𝑣n = Δ𝑥∕Δ𝑡 ≈ 0.88;
once again, we find an excellent agreement between the two.
Here, we should also mention that it is expected (as per the analysis of Refs. 23, 24, 44) that

sufficiently weak dark soliton stripes, in the form of Equations (81)-(82), which undergo the trans-
verse instability, will eventually decay into 2D structures that resemble dark lumps. Asmentioned
above, a detailed analysis of the instability induced dynamics of the dark soliton stripes is beyond
the scope of this work. Interestingly, however, KP-I lumps were long conjectured to be stable (see,
for instance,45) but no proof was available until recently. In Ref. 46, Bäcklund transformations are
used to prove that the KP-I lump is nondegenerate, with Morse index 1 and, as a consequence, it
is orbitally stable.
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F IGURE 4 Similar to Figure 3, but now for the dark lump soliton. Here, the initial condition is given by
Equations (85)-(86), for 𝜀 = 0.1

4.2 Cylindrical case

Next, we proceed with the cylindrical case, and derive approximate soliton solutions governed
by Johnson’s equation (62), which—much like the Cartesian KP (49)—is a completely integrable
model.47 As for its soliton solutions, here we focus on radially symmetric solitons, which are inde-
pendent of Θ. In this case, Johnson’s equation reduces to the cylindrical KdV (cKdV) equation:

𝜌1𝑇 + 𝐴1𝜌1𝑅𝑅𝑅 + 𝐴2𝜌1𝜌1𝑅 +
1

2𝑇
𝜌1 = 0, (88)
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which has cylindrical (sech2−shaped) soliton solutions on top of a rational background.48 Such
soliton solutions of Equation (88) read:

𝜌1 =
𝑅

2𝐴2𝑇
+
12𝜂2𝐴1
𝐴2

(
𝑇0
𝑇

)
sech

2
𝜁, (89)

𝜁 ≡ 𝜂
(
𝑇0
𝑇

)1∕2
𝑅 + 𝐴1

[
2𝜂

(
𝑇0
𝑇

)1∕2]3
𝑇 + 𝜁0, (90)

where 𝜂, 𝑇0, and 𝜁0 are free parameters. Let us now assume that 𝑇 ↦ 𝑇 + 𝑇0 (with 𝑇0 ≫ 𝑇), 𝑅 ↦
𝑅 + 𝑅0 (with 𝑅0 ≫ 𝑅), and consider the regime 𝑇0 ≫ 𝑅0. Then, it can readily be found that, in this
limit, the solution (89) reduces to the usual KdV soliton:

𝜌1 →
12𝜂2𝐴1
𝐴2

sech
2[
𝜂
(
𝑅 − 4𝐴1𝜂

2𝑇 + 𝜁0
)]
, (91)

that is, Equation (89) becomes identical to Equation (71) for 𝜆 = 0, and with the obvious
changes 𝜂 ↦ 𝜅, as well as 𝑋 ↦ 𝑅 and 𝛿0 ↦ 𝜁0. Note that the rational background (∝ 𝑅∕𝑇) in
Equation (89) does not play any role here, as we are considering the long-time behavior of solu-
tions featuring large radii; for an analysis of the asymptotic behavior in the limit 𝑡 → 0, see
Ref. 49.
It is clear that Equation (91) describes a ring-shaped soliton (which, in our case, is on top of

the cw pedestal), characterized by the free parameter 𝜂, which sets the soliton characteristics. In
particular, the parameters characterizing the soliton’s core, that is, amplitude, power, velocity, and
inverse width, scale according to 𝜂2, 𝜂3, 𝜂4, and 𝜂, respectively, as is the case of usual KdV solitons.
As concerns the type of the ring solitons, they are either antidark or dark. Specifically, the sign
of 𝐴1 determines, once again, the nature of the soliton: if 𝐴1∕𝐴2 > 0 (i.e., 𝜎 = +1 and 𝜈 > 𝜈𝑐),
the solitons are annular humps on top of the cw background, hence ring anti-dark solitons (RAS);
if 𝐴1∕𝐴2 < 0 (i.e., 𝜎 = −1 and 𝜈 < 𝜈𝑐), the solitons are annular depressions of the background,
hence ring dark solitons (RDS).
Thus, an interesting question is what would happen if a sech2 initial profile evolved under

the cKdV, Eq. (88). The answer, which was found first numerically50 and later analytically,51,52 is
that the solution of the relevant Cauchy problem consists of a primary wave, of a sech2 profile,
and a very small-amplitude shelf. Indeed, the asymptotic analysis of the cKdV equation, based
on an appropriate small parameter (𝜖 = 1/initial radius, in dimensionless variables), shows the
following:51,52 to leading order of approximation, and in the regime 𝑇 ≫ 𝑅 (i.e., the first term
in Equation (89) is much smaller than the second), the primary wave (that decays to zero at
both upstream and downstream infinity) takes the form of the KdV soliton of Equation (91).
Nevertheless, as indicated by Equations (89)-(90), there exists an important difference: 𝜂 now
becomes a slowly varying function of 𝑇, due to the presence of the term (1∕2𝑇)𝜌1 in the cKdV
equation.
According to the above discussion, an approximate solution of Equations (1)-(3) in the cylindri-

cal geometry is given by the primary part of the soliton (seeEquation (91) and remarks above),with
the soliton amplitude and velocity varying with time. To justify this, and investigate the propaga-
tion properties of RAS andRDS,we numerically evolve an initial (at 𝑡 = 𝑡0 = 5) annular profile for
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both cases. In other words, and as explained above, the initial conditions used in the simulations
for the RAS are

𝑢(𝑥, 𝑦, 5) =

√√√√29

39
+
2

39

√
𝑥2 + 𝑦2 −

27

130
𝜀−1∕2sech

2

[
27

20
√
5
−
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 − 5

)]

× exp

[
−
𝑖

39

(
131 − (𝑥2 + 𝑦2) + 10

√
𝑥2 + 𝑦2

))

+

((
27

26
√
5
𝜀−1∕4 tanh

[
27

20
√
5
−
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 − 5

)])]
(92)

𝑣(𝑥, 𝑦, 5) =

√√√√ 8

13
+
1

13

√
𝑥2 + 𝑦2 −

81

260
𝜀−1∕2sech

2

[
27

20
√
5
−
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 − 5

)]

× exp

[
−
𝑖

39

(
131 − (𝑥2 + 𝑦2) + 10

√
𝑥2 + 𝑦2

))

+

((
27

26
√
5
𝜀−1∕4 tanh

[
27

20
√
5
−
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 − 5

)])]
(93)

𝜑(𝑥, 𝑦, 5) =
53

195
+
1

39

√
𝑥2 + 𝑦2 −

27

260
𝜀−1∕2sech

2

[
27

20
√
5
−
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 − 5

)]
(94)

while the initial conditions for the RDS read:

𝑢(𝑥, 𝑦, 5) =

√√√√29

39
+
2

39

√
𝑥2 + 𝑦2 + 3𝜀−1∕2sech

2

[
1

4
√
5
+
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 + 5

)]

× exp

[
−
𝑖

39

(
131 − (𝑥2 + 𝑦2)
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+
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√
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1

4
√
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(95)

𝑣(𝑥, 𝑦, 5) =

√√√√ 8
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+
1

13

√
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2

[
1

4
√
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+
𝜀−1∕4√
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(√
𝑥2 + 𝑦2 + 5

)]

× exp

[
−
𝑖

39

(
131 − (𝑥2 + 𝑦2) + 10

√
𝑥2 + 𝑦2

))



KOUTSOKOSTAS et al. 759

−

((
6
√
5𝜀−1∕4 tanh

[
1

4
√
5
+
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 + 5

)])]
(96)

𝜑(𝑥, 𝑦, 5) =
53

195
+
1

39

√
𝑥2 + 𝑦2 +

1

52
𝜀−1∕2sech

2

[
1

4
√
5
+
𝜀−1∕4√
5

(√
𝑥2 + 𝑦2 + 5

)]
(97)

where the initial radii are 𝑟0 = 4.6 for the RAS and 𝑟0 = 7.37 for the RDS, respectively. In the
numerical simulations, we use the parameter values (76) and (80), for the RAS and RDS, respec-
tively, as well as the value 𝜀 = 0.1.
The results of the simulations are shown in Figures 5 (for the RAS) and 6 (for the RDS). It is

clearly observed that both structures undergo an expansion, without any distortion, which justi-
fies the existence of these states, and supports our analytical prediction regarding their dynamics.
Note that the expanding dynamics of the ring solitons can roughly be understood as the dynamics
of a right-going stripe soliton of finite length, which is bent so as to form a ring soliton.
To further test the validity of our analytical approach, we have also calculated the analyti-

cal and numerical values of the ring solitons’ velocities. The analytical prediction is 𝑣r = 𝑐 −
(1∕2)𝜖1∕2𝑟0𝑡

−1∕2 leading to the values 𝑣r ≈ 0.85 for the RAS and 𝑣r ≈ 0.9 for the RDS. The respec-
tive numerically found velocities, 𝑣num = Δ𝑟∕Δ𝑡 (where Δ𝑟 is the change of the soliton radius
during the time Δ𝑡), are 𝑣n ≈ 0.99 for the RAS and 𝑣num ≈ 1 for the RDS, in reasonably good
agreement with the analytical predictions. In addition, in this case, it is relevant to estimate ana-
lytical and numerical decay rates. Using Equation (89), the analytical estimation for the decay rate
is (𝑡0∕𝑡) = 5∕50 = 0.1, while the numerically found decay rate for the RAS and RDS is given by
≈ 0.098, as seen in Figures 5 (for the RAS) and 6 (for the RDS).
Note that RDSs were predicted in BECs53 and in optical media exhibiting either Kerr54 or non-

Kerr55 nonlinearities, while they were also observed in experiments.56 On the other hand, RASs
were only predicted to occur in non-Kerr media—for example, saturable media.55,57 In addition,
both RDS and RAS were predicted to occur in the scalar version of the nonlocal NLS.33 Here,
these structures are again found, but now as vectorial states, in the context of themulticomponent
model (1)-(3). Obviously, the results of Ref. 33, together with the ones presented herein, comple-
ment this picture, as RASs (RDSs) are formed in the regime of relatively strong (weak—closer to
the local Kerr nonlinearity) nonlocality.

5 CONCLUSIONS AND DISCUSSION

In this work, we studied the formation and dynamics of vector solitons in media with a spatially
nonlocal nonlinear response. The considered model, namely a two-component nonlocal NLS
equation featuring a defocusing nonlinearity, finds applications in the interaction of two optical
beams of different frequencies, which propagate in a doped nematic liquid crystal. We considered
solutions propagating on top of a continuous-wave solution in both components, andwe employed
a multiscale analysis to asymptotically reduce the original model to completely integrable ones.
The reduced models proved to be the well-known KP equation in the Cartesian setting, as well as
its cylindrical counterpart, namely the cylindrical KP, known also as the Johnson’s equation.
The version of the KP equation (KP-I or KP-II), as well as the type of the solitons (dark or

antidark) that can be supported on top of the background, was found to be determined by the
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F IGURE 5 Similar to Figure 3, but now for the ring antidark soliton (RAS). In this case, parameter values
are given in Equation (76), and the initial condition, at 𝑡 = 5, is given by Equations (77)-(79), with the substitution
𝑥 ↦ 𝑟 − 𝑟0. Here, we again use 𝜀 = 0.1, and the initial ring radius is 𝑟0 = 4.6

strength of the nonlocality of the original system. In particular, we found that if 𝜈 is the parame-
ter characterizing the strength of nonlocality, then there exists a critical value 𝜈𝑐 depending on
the parameters of the system (e.g., the dispersion and nonlinearity coefficients and the back-
ground amplitudes, such that: if 𝜈 > 𝜈𝑐, then the KP equation is of KP-II type, and the solitons are
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F IGURE 6 Similar to Figure 3, but now for the ring dark soliton (RDS). In this case, parameter values are
given in Equation (80), and the initial condition, at 𝑡 = 5, is given by Equations (81)-(83), with the substitution
𝑥 ↦ 𝑟 − 𝑟0. Here, we again use 𝜀 = 0.1, and the initial ring radius 𝑟0 = 7.37

antidark; on the other hand, if 𝜈 < 𝜈𝑐 (i.e., when nonlocality is weak and we are thus closer to the
local NLS limit), then the KP equation is of KP-I type, and the solitons are dark. The change of
character of the KP equation below or above the nonlocality threshold is reminiscent of a similar
situation in the shallow water wave problem: if surface tension is weak, then the KP is of KP-II
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type, while if it is strong (in the sense that it dominates gravity), then the KP is of KP-I type. This
suggests that the degree of nonlocality plays the role of an analogue of surface tension, similarly
to the case of the pertinent single-component nonlocal NLS system.34
Our analysis reveals that the soliton amplitudes in the 𝑢- and 𝑣-components are connected to

each other and thus they are governed by a singleKP equation. The soliton states thatwe predicted
to occur are: antidark and dark soliton stripes (corresponding to the stable and unstable line soli-
tons of the KP-II and KP-I, respectively), dark lump solitons (pertinent to KP-I), as well as ring
antidark and dark solitons in the cylindrical geometry. To check the validity of our predictions,
we also performed direct numerical simulations (using a high-accuracy spectral method), where
initial conditions were borrowed from the analytical form of the predicted KP soliton structures.
We found that all types of solitons are indeed supported by the nonlocal NLS model and propa-
gate undistorted for times (propagation distances in the context of nematic liquid crystals) up to
the computation horizon. In addition, analytically predicted and numerically computed soliton
velocities and decay rates (in the cylindrical case) were found to be in very good agreement. These
results suggest that all the predicted solitons may be experimentally observed.
Dark soliton stripes, which correspond to the unstable line solitons of the KP-I equation, were

also found to be rather robust up to the end of the simulation time. These structures are known to
be prone to long-wavelength transverse perturbations in the framework of KP-I, and it is expected
that this should also be the case in the context of the nonlocal NLS. A systematic investigation
of the instability induced dynamics of these structures is a very interesting problem for future
research. In any case, we surmise (based on the analysis and findings of Refs. 23, 24, 44) that
weak dark stripe solitons will decay into lumps, which are the stable 2D soliton solutions of the
KP-I equation.We also expect that this will be the case for ring dark solitons. In this case, it would
be interesting to see if the onset of the transverse instability would give rise to a “lump necklace,”
which would follow the dynamics of the (now destroyed) ring soliton (similarly to the case of ring
dark solitons that give rise to “vortex necklaces” in Bose-Einstein condensates53).
Our analysis and results pave theway for other interesting future research themes. For instance,

itwould be interesting to investigate if other, quasi one-dimensional states having, for example, the
formof dark-bright soliton stripes or rings, or purely 2D structures, such as vortex-bright solitons58
can be supported in multi-component nonlocal media. In addition, it is worth investigating the
existence, stability, regularity, and radial symmetry of energy minimizing soliton solutions in our
vectorial system, in the lines of the analysis performed for the scalar system.59 Such investigations
are currently in progress, and relevant results will be reported elsewhere.
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