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Abstract
The semiclassical (small dispersion) limit of the focus-
ing nonlinear Schrödinger equation with periodic initial
conditions (ICs) is studied analytically and numerically.
First, through a comprehensive set of numerical simu-
lations, it is demonstrated that solutions arising from a
certain class of ICs, referred to as “periodic single-lobe”
potentials, share the same qualitative features, which
also coincide with those of solutions arising from
localized ICs. The spectrum of the associated scattering
problem in each of these cases is then numerically com-
puted, and it is shown that such spectrum is confined
to the real and imaginary axes of the spectral variable in
the semiclassical limit. This implies that all nonlinear
excitations emerging from the input have zero velocity,
and form a coherent nonlinear condensate. Finally,
by employing a formal Wentzel-Kramers-Brillouin
expansion for the scattering eigenfunctions, asymptotic
expressions for the number and location of the bands
and gaps in the spectrum are obtained, as well as
corresponding expressions for the relative band widths
and the number of “effective solitons.” These results
are shown to be in excellent agreement with those from
direct numerical computation of the eigenfunctions. In
particular, a scaling law is obtained showing that the
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number of effective solitons is inversely proportional to
the small dispersion parameter.
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1 INTRODUCTION

Many physical systems are characterized by the simultaneous presence of dispersion and nonlin-
earity. The combination of these two effects can produce a wide variety of physical phenomena,
ranging frommodulational instability, collapse and supercontinuum generation to the formation
of solitons, rogue waves, dispersive shocks, wave turbulence, etc. (eg, see Refs. 1–8 and references
therein).
Often, the typical scales in the system are such that nonlinear effects are much stronger than

dispersive ones. These kinds of problems are referred to as small-dispersion (or semiclassical)
limits. The canonical example is perhaps that of the Korteweg-deVries (KdV) equation. Indeed,
it was the desire to understand the Fermi-Pasta-Ulam recurrences via the behavior of solutions
in the small-dispersion limit of the KdV equation that led to the discovery of solitons in the first
place9 as well as to the development of the inverse scattering transform (IST) to solve the initial
value problem for the KdV equation.10 The IST was then used to study the small-dispersion limit
of the KdV equation analytically in Ref. 11 and many works thereafter.
While the KdV equation provided the initial impetus for these discoveries, many nonlin-

ear dispersive systems are governed by the nonlinear Schrödinger (NLS) equation. Indeed, the
NLS equation is known to be a universal model for the evolution of nonlinear dispersive wave
trains.12,13 As such, it arises in such diverse fields as water waves, plasmas, optics, and Bose-
Einstein condensates.14–19 Like the KdV equation, the NLS equation is also a completely inte-
grable Hamiltonian system, and as a result a number of analytical techniques such as the IST are
available to study the behavior of its solutions.14,20–23 The NLS equation comes in two variants:
the defocusing case (arising with normal dispersion in optical fibers and repulsive Bose-Einstein
condensates) and the focusing case (arising in water waves, anomalous dispersion, and attractive
condensates). Typically, the dispersive and nonlinear effects in the NLS equation should be com-
parable to obtain solitons. However, inmany physical scenarios the nonlinearity is much stronger
than dispersion. For example, this happens with high-power input lasers or high-nonlinearity
fibers in optics. These regimes give rise to strongly nonlinear phenomena. In previous works we
showed that, for the KdV and defocusing NLS equations, in many cases the resulting dynamics is
characterized by the generation of a large number of “effective solitons.” In the present work, we
show that the same is true in the focusing case.
The semiclassical limit of the focusingNLS equation has been studied extensively.24–32 Previous

works however considered localized initial conditions (ICs). For the defocusingNLS equation, the
thermodynamic limit of solutions generated by a special class of ICswith nonzero backgroundwas
studied in Ref. 33. In the defocusing case with periodic ICs, the small dispersion limit was recently
realized in fiber optics experiments, which show fission of dark solitons from periodic breaking
points.34,35 These results were then characterized analytically in Ref. 36. Experimental studies on
related nonlinear problems were also recently reported in Refs. 37–40. It should be mentioned
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that observing the semiclassical regime of the focusing NLS equation experimentally involves a
very delicate and careful setup, since small values of the semiclassical parameter 𝜖 in Equation (1)
imply that any higher-order physical effects present in the systemmight spoil the phenomena that
one is seeking to observe. Fiber optic experiments were reported that are equivalent to values of
𝜖 as small as 0.002.41 It was also recently shown experimentally that the semiclassical description
of focusing NLS equation is still valid for not so small values of 𝜖 as well, see, for example, Ref. 42.
Nonetheless, the experimental observation of detailed semiclassical behavior in the anomalous
dispersion regime in fiber optics is still a challenging problem.43 Moreover, to the best of our
knowledge, no analytical studies are available on the behavior of solutions of the semiclassical
focusing NLS equation with periodic ICs.
In this work, we report an analytical and numerical study of focusing periodic dispersivemedia

in a strongly nonlinear regime. First, through a comprehensive set of numerical simulations, we
show in Section 2 that solutions arising from many different ICs, referred to as “periodic single-
lobe” potentials, share the same qualitative features, which coincide with those of solutions aris-
ing from localized ICs. Then, in Section 3, we compute the spectrum of the associated scattering
problem, and we show that the spectrum is entirely confined to the real and imaginary axes of the
spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging
from the input have zero velocity, and form a coherent nonlinear condensate. Finally, in Section 4,
by employing a formalWentzel-Kramers-Brillouin (WKB) expansion for the scattering eigenfunc-
tions, we obtain asymptotic expressions for the number and location of the bands and gaps in the
spectrum, aswell as corresponding expressions for the relative bandwidths, which are in excellent
agreement with direct numerical computation of the eigenfunctions. In particular, we show that
the problem naturally leads one to formulate the concept of “effective solitons,” and we obtain
a law describing the scaling of the number of effective solitons as a function of the small disper-
sion parameter. Section 5 provides a discussion of the various numerical methods used, further
numerical results, while Section 6 provides some details of the WKB calculations. We conclude
this work with a discussion and some final remarks in Section 7.

2 SEMICLASSICAL FOCUSING NLS EQUATIONWITH
SINGLE-LOBE PERIODIC POTENTIALS

The starting point for our study is the focusing NLS equation in the semiclassical regime, namely,

𝑖𝜖𝑞𝑡 + 𝜖2𝑞𝑥𝑥 + 2|𝑞|2𝑞 = 0, (1)

where 𝑞(𝑥, 𝑡) is the slowly varying complex envelope of a quasi-monochromatic, weakly dispersive
nonlinear wave packet, subscripts 𝑥 and 𝑡 denote partial derivatives and the physical meaning
of the variables 𝑥 and 𝑡 depends on the physical context. (For example, in optics, 𝑡 represents
propagation distance while 𝑥 is a retarded time.) The parameter 𝜖 quantifies the relative strength
of dispersion compared to nonlinearity. (In quantum-mechanical settings, 𝜖 is also proportional
to Planck’s constant ℏ.) Of course, both instances of 𝜖 in Equation (1) could be scaled away via
suitable changes of independent and dependent variables. However, the solutions of Equation (1)
also depend on the ICs, and the corresponding transformations would produce ICs that depend
on 𝜖. In other words, studying the semiclassical limit corresponds to the study of the behavior of
solutions of Equation (1) with fixed ICs as 𝜖 ↓ 0.
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2.1 Initial conditions

Here we study the dynamics of solutions of Equation (1) generated by a certain class of ICs which
we refer to as “single-lobe periodic potentials.” Specifically, we call a single-lobe periodic poten-
tial the continuous periodic extension of a real-valued function 𝑞 ∶ [−𝐿, 𝐿] → ℝ for which (a)
𝑞(−𝐿) = 𝑞(𝐿) and (b) there exists a point 𝑥max ∈ (−𝐿, 𝐿) such that 𝑞(𝑥) is increasing on (−𝐿, 𝑥max)
and decreasing on (𝑥max, 𝐿). (Here, we used the translation invariance of the NLS equation and
the corresponding Zakharov-Shabat (ZS) scattering problem so that the minimum of the poten-
tial is obtained at 𝑥 = ±𝐿). To the best of our knowledge, potentials of this form had only been
studied on the infinite line.24–27,44–46 Moreover, for simplicity in all the examples discussed in this
work we also assume that 𝑞(𝑥) is even and 𝑞(±𝐿) ≥ 0. These last two conditions will simplify the
calculations of the asymptotic behavior of the spectrum.
In particular, we will consider the following specific examples of single-lobe periodic ICs as

distinguished cases:

𝑞cos(𝑥, 0) = (1 + cos 𝑥)∕2, (2a)

𝑞expsin(𝑥, 0) = e− sin
2
𝑥, (2b)

𝑞dn(𝑥, 0) = dn(𝑥|𝑚), 0 < 𝑚 < 1. (2c)

The shape in Equation (2a), commonly referred to as a “raised cosine,” is easily generated
experimentally and is quite common in optical communications.47,48 Here and below, dn(⋅|𝑚)
is one of the Jacobian elliptic functions, and𝑚 the corresponding elliptic parameter.49 Recall that
dn(𝑥|0) = 1 while dn(𝑥|1) = sech 𝑥. Hence, when 𝑚 = 1 the problem reduces to that studied in
Refs. 24–27. More in general, the real period of Equation (2c) is 2𝐾(𝑚), where 𝐾(⋅) is the com-
plete elliptic integral of the first kind.49 One of the main points of this work, however, is that the
dynamics are relatively insensitive to the specific input, and many different choices of ICs would
lead to similar results. See further discussion in Section 5.

2.2 Dynamical behavior

We numerically integrated Equation (1) with IC given by Equation (2) using an eighth-order
Fourier split-step method50–54 in double precision. All results were checked for numerical con-
vergence (see Section 5 for further details). Figure 1 shows density plots of the numerically com-
puted amplitude |𝑞(𝑥, 𝑡)| using the raised cosine IC (2a) with 𝜖 = 0.06 (top left), the exp-sine IC
(2b) with 𝜖 = 0.026 (top right), and the dn IC (2c) with𝑚 = 0.92 and 𝜖 = 0.044 (bottom left). For
comparison, we also include an IC on the infinite line, namely, 𝑞(𝑥, 0) = sech𝑥 with 𝜖 = 0.037

(bottom right).
It is well known that, in the focusing NLS equation on the line (ie, for localized ICs as in the

bottom right panel of Figure 1), the focusing dynamics often (but not necessarily) results in a
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F IGURE 1 Density plot of the amplitude |𝑞(𝑥, 𝑡)| of the solution of the focusing NLS equation in the semi-
classical limit with different ICs. The horizontal axis is the spatial variable 𝑥 and the vertical axis is time 𝑡. Top left:
the “raised cosine” IC in Equation (2a) with 𝜖 = 0.06. Top right: the exp-sine IC in Equation (2b) with 𝜖 = 0.026.
Bottom left: the dn IC in Equation (2c) with 𝑚 = 0.92 and 𝜖 = 0.044. For comparison purposes, the bottom right
panel shows a density plot of the numerical solution of the focusingNLS equationwith localized IC 𝑞(𝑥, 0) = sech𝑥
and 𝜖 = 0.037. See Section 5 for a demonstration of the dynamical behavior as 𝜖 ↓ 0

focusing singularity or a gradient catastrophe. (The gradient catastrophe typically occurs in both
the amplitude and the phase of the solution. Note however that the chirp, either from the ICs
or developed in the process of the time evolution, can either accelerate or slow down, or even
prevent, the occurrence of the gradient catastrophe.) More specifically, what one sees in Figure 1
is a typical picture of primary gradient catastrophe of amodulated planewave, followed by similar
catastrophes of higher genus solutions.
The singularity is regularized by the weak dispersion, and the subsequent generation of a com-

plex oscillation structure corresponding to a slowmodulation of the genus-2 solutions of the focus-
ing NLS equation.26–28,31,32 A secondary breaking is also present, beyond which the asymptotic
analysis of the inverse problem in the IST breaks down.26,55 Numerical evidence and the asymp-
totics of the inverse problem in the ISTboth suggest that, after the secondary breaking, the solution
is described by a slow modulation of genus-4 solutions,31,55 and the possible existence of further
breakings was also conjectured there. (Indeed, Figure 1 clearly indicates the presence of a tertiary
breaking beyond which onemight have genus-6 behavior.) The spatial and temporal period of the
small-scale oscillations is proportional to 𝜖, and therefore the limit 𝜖 ↓ 0 can only be interpreted in
a weak sense. Nonetheless, the large-scale structure of oscillations (and in particular the breaking
time and the location of the caustic curves) become independent of 𝜖 in the dispersionless limit.
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This phenomenon is also observed with periodic boundary conditions, as illustrated in Figure 5
for a specific choice of potential, namely, Equation (2b). Most importantly, however, the results
shown in Figure 1 clearly demonstrate that the semiclassical behavior of solutions to the focus-
ing NLS equation on the infinite line—namely, a sequence of three breakings each leading to the
formation of higher-genus oscillations—is also observed with periodic boundary conditions. In
other words, Figure 1 demonstrates that the behavior of solutions of the focusing NLS equation in
the semiclassical limit displays universal features, independently of the ICs and of whether such
ICs are periodic or localized. (Of course one should not interpret the above statement as saying
that all ICs give rise to this behavior, and other scenarios are also possible; see the discussion in
Section 5 and Section 7 for further details. We also note that the universality of the first gradient
catastrophe was proved in Ref. 32.)
It was argued in Ref. 56, numerically investigated in Ref. 57, and proved in Ref. 32 in specific

situations that the behavior of solutions near the first breaking point (ie, the gradient catastro-
phe) possesses universal features, which for the focusing NLS equation are described in terms of
the Tritonquée solution of the Painlevé I equation. A precise asymptotic characterization of the
oscillation pattern after the first breaking was also obtained in Ref. 32, and is also described by
the Tritronquée solution. All these analytical results, however, as well as those mentioned in the
previous paragraph, are limited to the NLS equation with localized IC. Indeed, Figure 1 shows
that within the class of single-lobe potentials the qualitative features of the solution are the same,
independently of whether the ICs are periodic or localized and also independently of the specific
details of the ICs. The above result is in marked constrast to the semiclassical limit of the KdV
and of the defocusing NLS equations, where the dynamics results in the formation of solitons
that separate from each other and travel independently.

3 NLS SPECTRUM IN THE SEMICLASSICAL LIMIT

Some of the features discussed above can be characterized analytically by taking advantage of the
mathematical tools associated with the complete integrability of the NLS equation.

3.1 Lax pair and monodromymatrix

Recall that Equation (1) is the compatibility condition of the matrix Lax pair20

𝜖𝜙𝑥 = 𝑋𝜙, (3a)

𝜖𝜙𝑡 = 𝑇𝜙, (3b)

where 𝜙(𝑥, 𝑡, 𝜁) is a simultaneous solution of both parts of Equation (3), with

𝑋(𝑥, 𝑡, 𝜁) = −𝑖𝜁𝜎3 + 𝑄, (4a)

𝑇(𝑥, 𝑡, 𝜁) = −𝑖(2𝜁2 − |𝑞|2 + 𝜖𝑄𝑥) 𝜎3 + 2𝜁𝑄, (4b)
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where 𝜎3 = diag(1, −1) is the third Pauli matrix, and

𝑄(𝑥, 𝑡) =

(
0 𝑞(𝑥, 𝑡)

−𝑞∗(𝑥, 𝑡) 0

)
, (5)

where the asterisk denotes complex conjugation. The first half of the Lax pair (ie, Equation (3a)),
𝜁, and 𝑞(𝑥, 𝑡) are referred to as the ZS scattering problem, scattering parameter, and scattering
potential, respectively. Equation (3a) can also be written as the eigenvalue problem

𝜖 𝜙 = 𝜁𝜙, (6)

where 𝜖 is the one-dimensional Dirac operator

𝜖 = 𝑖𝜎3(𝜖𝜕𝑥 − 𝑄). (7)

Thus, 𝜁 and𝜙(𝑥, 𝑡, 𝜁) are also referred to as the eigenvalue and the corresponding eigenfunction,
respectively. The Lax spectrum Σ(𝜖) of 𝜖 is the set of all values of 𝜁 ∈ ℂ for which nontrivial
bounded solutions 𝜙(𝑥, 𝑡, 𝜁) of Equation (3a) exist.
The IST allows one to solve the initial-value problem for Equation (1) by associating to 𝑞(𝑥, 𝑡)

suitable scattering data via the solutions of the scattering problem. Once the scattering data are
obtained from the IC, 𝑞(𝑥, 𝑡) is reconstructed in terms of the scattering data by inverting the scat-
tering transform.14,21,58
Floquet-Bloch theory59–61 implies that, when the potential in Equation (3a) is 2𝐿-periodic, all

bounded solutions are of the form

𝜙(𝑥, 𝜁) = e𝑖𝜈𝑥𝑤(𝑥, 𝜁), (8)

where𝑤(𝑥 + 2𝐿, 𝜁) = 𝑤(𝑥, 𝜁), 𝑖𝜈 is referred to as the Floquet exponent, 𝜈 ∈ [0, 𝜋∕𝐿), and the time
dependence was omitted for brevity. Moreover, the Floquet multipliers 𝜇 = e2𝑖𝜈𝐿 are the eigenval-
ues of the monodromy matrix𝑀(𝜁), defined as

𝑀(𝜁) = Φ(𝑥 − 𝐿, 𝜁)−1Φ(𝑥 + 𝐿, 𝜁), (9)

whereΦ(𝑥, 𝜁) is any fundamental matrix solution of Equation (3a). Since det𝑀 ≡ 1, the eigenval-
ues of 𝑀 are the roots of the polynomial 𝜇2 − (tr𝑀) 𝜇 + 1 = 0, and it follows that Equation (3a)
has bounded solutions if and only if 𝜁 is such that tr𝑀 ∈ ℝ and−2 ≤ tr𝑀 ≤ 2. The Floquet-Bloch
spectrum of 𝜖 is then given by

Σ𝜈(𝜖) = {𝜁 ∈ ℂ ∶ tr𝑀(𝜁) = 2 cos(2𝜈𝐿)}, (10)

and the Lax spectrum is the union of all Floquet-Bloch spectra: Σ(𝜖) = ∪𝜈∈[0,𝜋∕𝐿)Σ𝜈(𝜖). The
NLS equation (1) amounts to an isospectral deformation of 𝜖; therefore, tr𝑀(𝜁), Σ𝜈(𝜖), and
Σ(𝜖) are independent of time. However, 𝜖 is non-self-adjoint, which complicates the problem
significantly, since it means that the spectrum is in general complex. Nonetheless, the symmetries
of the scattering problem imply that the Lax spectrum is always symmetric with respect to the real
𝜁-axis. Moreover, if 𝑞(𝑥, 𝑡) is even with respect to 𝑥, the spectrum is also symmetric with respect
to the imaginary 𝜁-axis.
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3.2 Numerical evaluation of the Lax spectrum

Wenext show that the Lax spectrumof the ZS operator simplifies considerably in the semiclassical
limit. Recall that the focusing ZS scattering problem on the line (ie, with potentials 𝑞 ∈ 𝐿1(ℝ))
possesses both a continuous and a discrete spectrum, with the former consisting of the real 𝜁-axis,
whereas the latter can be fairly complicated,62,63 even though for single-lobe potentials the discrete
spectrum is confined to the imaginary 𝜁-axis.44,45 The semiclassical limit of the ZS problem was
studied numerically in Ref. 64, and formal WKB calculations were reported in Refs. 26, 65, while
an unpublished result by Deift, Venakides and Zhou states that, as 𝜖 ↓ 0, the discrete eigenvalues
of the ZS problem on the line with real-valued potentials accumulate to the real and imaginary
axes of the spectral plane. (A modified version of their result can be found in section 3 of Ref. 66.)
All of the above results, however, apply to potentials on the infinite line, not to periodic potentials.
For periodic potentials, the Lax spectrum of the ZS problem is composed of a (possibly infinite)

number of spectral bands, each spectral band consisting of a (finite or infinite) curve along which
tr𝑀(𝜁) ∈ [−2, 2] [cf. (10)]. Since 𝑞 is 2𝐿-periodic the band edges correspond to the Floquet-Bloch
spectrum for 𝜈 = 𝜋∕𝐿, and 𝜈 = 𝜋∕2𝐿, which in turn is associated with periodic and antiperiodic
eigenfunctions, respectively. It was recently proved in Ref. 67 that the periodic eigenvalues, ie,
the Floquet-Bloch spectrum with 𝜈 = 𝑛𝜋∕𝐿, 𝑛 ∈ ℤ of Equation (3a) with real-analytic periodic
potentials concentrate on the real and imaginary 𝜁-axes as 𝜖 ↓ 0. This is a powerful result, which
applies to general real-analytic periodic potentials (ie, not only single lobe). On the other hand,
it does not provide any information about the Floquet-Bloch spectrum for 𝜈 ≠ 𝑛𝜋∕𝐿. In practice,
this means that, even though half of the band edges converge to the real and imaginary axis, no
information is available about the behavior of the full spectral bands. To investigate this question,
we therefore turn to numerics.
Using Floquet-Hill’s method,68 we performed a series of careful numerical simulations of the

focusing ZS problem in the semiclassical limit with periodic potentials. The results, some ofwhich
are shown in Figure 2 (see Section 5 for further details), reveal persistent features of the Lax spec-
trum across a variety of single-lobe periodic potentials, namely: (a) an infinitely long band along
the real 𝜁-axis, as well as a continuous band along the segment [−𝑖𝑞min, 𝑖𝑞min] of the imaginary
𝜁-axis, (b) the absence of any spectral bands in the strips |Im𝜁| > |𝑞|max, and (c) a sequence of
bands and gaps on the interval (𝑖𝑞min, 𝑖𝑞max) of the imaginary 𝜁-axis. Most interestingly, how-
ever, the numerical evidence strongly suggests that the Lax spectrum in the semiclassical limit
is confined to the real and imaginary axes. Indeed, a numerical convergence study (see the bot-
tom right panel of Figure 2) shows that, for eigenvalues off the imaginary axis (ie, for Re𝜁 ≠ 0),
one has max(|Im𝜁|) = 𝑂(𝜖𝛼) as 𝜖 ↓ 0, with 𝛼 = 0.65 ± 0.013 for Equation (2a), 𝛼 = 15.1 ± 4.27 for
Equation (2b), and 𝛼 = 14.2 ± 1.89 for Equation (2c), where the intervals represent 99% confi-
dence bands about the slope of the linear regression fit. These results are also confirmed by directly
computing the scattering eigenfunctions via numerical integration of Equation (3a) and using the
results to construct themonodromymatrix. Of course, the spectra arising fromdifferent choices of
potentials are quantitatively different. On the other hand, we find it remarkable that all of them
display the same qualitative features. In fact, the properties of the Lax spectrum may be more
general, and hold for a large class of real (complex) potentials.
The fact that the spectrum is confined to the real and imaginary axes in the semiclassical limit

has an important practical consequence. Recall that, for the focusing NLS on the infinite line:
(a) each discrete eigenvalue generates a soliton, and (b) the real part of the eigenvalue is propor-
tional to the soliton speed. This means that, if all discrete eigenvalues lie on the imaginary axis,
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F IGURE 2 The spectrum (red bands) of the scattering problem Equation (3a) as computed numerically via
Floquet-Hill’s method. Top left: the raised cosine potential in Equation (2a) with 𝜖 = 0.04. Top right: the exp-sine
potential in Equation (2b) with 𝜖 = 0.07. Bottom left: the dn IC in Equation (2c) with 𝑚 = 0.9 and 𝜖 = 0.2. Bot-
tom right: Convergence of nonimaginary eigenvalues to the real axis as 𝜖 ↓ 0. The stars, triangles, and squares are
numerically computed data points; the dotted, dashed, and dot-dashed lines are a linear regression fit

all the solitons will have zero velocity, and will therefore generate a bound state. Some such situ-
ations were recently studied in Ref. 69. Moreover, these soliton bound states become increasingly
complex as the number of solitons increase.
The situation is more complicated in the periodic case, because here one never has true soli-

tons, andmust dealwithmore complex nonlinear excitations instead.Nonetheless, a similar result
emerges, namely, that the velocity of these nonlinear excitations is proportional to the real part
of the corresponding eigenvalues.70 Thus, the above results already have an important practi-
cal consequence, because they demonstrate that, in the small dispersion limit, the focusing NLS
dynamics is very different to that for the KdV and defocusing NLS equations. There, each soliton
has a different velocity, and therefore they all fly away from each other. In contrast, here all the
solitons have zero velocity, and the solution is characterized by a coherent soliton condensate, as
we discuss in detail next.

4 SEMICLASSICAL SOLITON CONDENSATES

Next we analyze in more detail the properties of the spectrum and the resulting NLS dynamics
in the semiclassical limit. Since the spectrum is independent of time, for brevity we will omit the
time dependence in the potential 𝑞 and the eigenfunctions 𝜙.
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4.1 Asymptotic analysis of the scattering problem

The invertible change of variables 𝑣 = 𝜙1 + 𝑖𝜙2 and 𝑣 = 𝜙1 − 𝑖𝜙2 maps Equation (3a) into the
time-independent Schrödinger equation with a complex potential, namely,

𝜖2𝑣′′ + (𝑖𝜖𝑞′(𝑥) + 𝑍(𝑥, 𝜆)) 𝑣 = 0, (11)

where for convenience we defined

𝑍(𝑥, 𝜆) = 𝜆 + 𝑞2(𝑥), (12)

with 𝜆 = 𝜁2. This formulation immediately suggests the use of the WKB method to obtain an
asymptotic description of the Lax spectrum. In our case, however, the situation is complicated
by the fact that the spectral problem in Equation (11) is non-self-adjoint, and the use of the WKB
method in such situations is known to be challenging (cf. “WKB paradox” in Ref. 64).
We note, however, that even though the eigenfunctions 𝑣(𝑥, 𝜆) are rapidly varying in 𝜖 (due

to the coefficient 𝜖2 in front of the second derivative), 𝑞(𝑥) is independent of 𝜖, and therefore
the term 𝑖𝜖𝑞′(𝑥) is expected to be a higher-order contribution. In other words, Equation (11) is
formally a small perturbation of Hill’s equation.60 (Indeed, it was already remarked in Ref. 20
that the focusing ZS scattering problem becomes formally self-adjoint in the semiclassical limit.)
This observation, and the strong numerical evidence presented earlier, both suggest that, despite
the fact that Equation (11) is not a self-adjoint problem, the WKB method can still be effective in
describing the asymptotic properties of the spectrum in the semiclassical limit. We next show that
this is indeed the case.
For brevity we limit ourselves to reporting the results of our formal WKB analysis, omitting

the details of the calculations (see Section 6 for further details). When 𝑞(𝑥) in Equation (3a) is a
single-lobe periodic potential, the real 𝜆-axis divides into three disjoint regions, depending on the
possible existence of turning points, ie, values of 𝑥 at which 𝑍(𝑥, 𝜆) = 0. More precisely:

(i) For 𝜆 ∈ (−∞,−𝑞2max), one has 𝑍(𝑥, 𝜆) < 0 for any 𝑥 ∈ [−𝐿, 𝐿]. Hence, there are no turning
points, and the WKB expansion immediately yields

tr𝑀(𝜆) = 2 cosh(𝑆i(𝜆)∕𝜖), (13a)

where 𝑆i(𝜆) = ∫ 𝐿

−𝐿

√
−𝑍(𝑥, 𝜆) 𝑑𝑥. Since tr𝑀(𝜆) > 2 for all 𝜆 in this range, these values of 𝜆

are not part of the Lax spectrum.
(ii) For 𝜆 ∈ (−𝑞2min,∞), one has𝑍(𝑥, 𝜆) > 0 for any 𝑥 ∈ [−𝐿, 𝐿]. Hence, there are also no turning

points in this case, and

tr𝑀(𝜆) = 2 cos(𝑆ii(𝜆)∕𝜖), (13b)

where 𝑆ii(𝜆) = ∫ 𝐿

−𝐿

√
𝑍(𝑥, 𝜆) 𝑑𝑥. Since tr𝑀(𝜆) ≤ 2 for all 𝜆 in this range, these values of 𝜆

form an infinitely long band.
(iii) For 𝜆 ∈ (−𝑞2max, −𝑞

2
min), there are two symmetric turning points, located at 𝑥 = ±𝑝(𝜆). (That

is, ±𝑝(𝜆) are defined by the condition 𝑍(±𝑝(𝜆), 𝜆) = 0.) In this case, one must write differ-
ent representations for the eigenfunctions in each subregion and then connect the resulting
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expressions across the two transition regions. The result of the analysis is (see Section 6 for
further details)

tr𝑀(𝜆) = 2 cos(𝑆1(𝜆)∕𝜖) cosh(2𝑆2,𝜖(𝜆)∕𝜖), (13c)

where

𝑆1(𝜆) = ∫
𝑝(𝜆)

−𝑝(𝜆)

√|𝑍(𝑥, 𝜆)| 𝑑𝑥, (14a)

𝑆2(𝜆) = ∫
𝐿

𝑝(𝜆)

√|𝑍(𝑥, 𝜆)| 𝑑𝑥, (14b)

and 𝑆2,𝜖(𝜆) = 𝑆2(𝜆) + 𝜖 ln 2∕2. Thus, in this region tr𝑀 is a rapidly oscillating function with
exponentially growing amplitude as 𝜖 ↓ 0. Accordingly, this region is divided into a sequence
of bands and gaps, and comprises themost interesting part of the Lax spectrum (see Figure 3).

In terms of the original spectral variable 𝜁, the above results imply that the Lax spectrum is
comprised of the entire real axis plus the band 𝜁 ∈ (−𝑖𝑞min, 𝑖𝑞min), together with bands and gaps
for 𝜁 ∈ (−𝑖𝑞max, −𝑖𝑞min) ∪ (𝑖𝑞min, 𝑖𝑞max). As shown in Figure 2, these predictions are in excellent
agreement with the numerical results from the Floquet-Hill method for all of the potentials con-
sidered (see sections 5 and 6 for further details).
Of course the WKB method yields not only bounds on the location of the spectrum, but also

an asymptotic representation for the full monodromy matrix. Therefore, one can further validate
the WKB analysis by comparing its predictions with direct calculation of the monodromy matrix
by numerical integration of the ordinary differential equations (ODEs) of the scattering problem,
Equation (3a) (see Section 5 for further details). The results are shown in Figure 3, in which tr𝑀
is plotted as a function of 𝜆 for the ICs in Equation (2). (Equivalent results were obtained with
other ICs, see Section 5 for further details.) As shown in the plots, the agreement is excellent in
all three ranges of 𝜆.

4.2 Effective solitons and soliton condensate

Next we use the WKB expansion to identify the asymptotic properties of the spectral bands and
gaps. Recall that the spectrum is composed of a sequence of bands and gaps, and that, in the
semiclassical limit, the gaps are confined to the region 𝜆 ∈ (−𝑞2max, −𝑞

2
min) (cf. Figure 3). Again,

here we limit ourselves to presenting the main results, referring the reader to Section 6 for some
of the details.
We first look at how the number of bands scales in the semiclassical limit. Let 𝑁𝜖 equal

the number of spectral bands. Recall the WKB expansion of the trace function in the range
𝜆 ∈ (−𝑞2max, −𝑞

2
min) in Equation (13c). Because the amplitude of the oscillations grows exponen-

tially, one has that, in this range, each spectral band is narrowly concentrated around one of the
zeros of the trace. Hence the number of zeros 𝑧𝑛 of tr𝑀 is also the number of spectral bands. Using
Equation (13c) and noting that 𝑆1(𝜆) is an increasing function, we see that 𝑁𝜖 is determined by
the value of 𝑆1(𝜆) at the edge of the infinitely long band, ie, 𝜆 = −𝑞2min. That is, to leading order,
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F IGURE 3 Trace of the monodromy matrix of the scattering problem. Top left: the raised cosine potential
given by Equation (2a) with 𝜖 = 0.04. Top right: the exp-sine potential given by Equation (2b) with 𝜖 = 0.0255.
Bottom left: the dn potential given by Equation (2c) with 𝑚 = 0.1 and 𝜖 = 0.05. Bottom right: the dn potential
given by Equation (2c) with 𝑚 = 0.9 and 𝜖 = 0.01. Red (dashed): WKB approximation of tr𝑀 as a function of 𝜆.
Blue (solid): Results from numerical integration of the ODEs of the scattering problemEquation (3a). Dashed lines:
the values −max[𝑞2(𝑥)] and −min[𝑞2(𝑥)], which define the boundaries of the three regions of the spectrum. Dot-
dashed lines: the values tr𝑀∕2 = ±1which correspond to the edges of the spectrum. Note that, since the amplitude
of the oscillations grows exponentially, to capture the whole behavior in a single plot we take the vertical axis to
be 𝑓(tr𝑀∕2) rather than tr𝑀 itself, with the function 𝑓(𝑦) defined as 𝑓(𝑦) = 𝑦 for |𝑦| ≤ 1 and 𝑓(𝑦) = sgn(𝑦)(1 +

log10 |𝑦|) for |𝑦| > 1, as in Ref. 71

the number of spectral bands is given by the expression

𝑁𝜖 =

⌊
𝑆1(−𝑞

2
min)

𝜋𝜖
+
1

2

⌋
, (15)

as 𝜖 ↓ 0, where the floor function ⌊𝑥⌋ denotes the integer part of a real number 𝑥 (ie, the largest
integer less than or equal to 𝑥). This estimate for the number of bands can also be compared with
the results obtained from direct numerical calculation of the monodromy matrix. The results,
as shown in Figure 4 (left), demonstrate that the asymptotic formula Equation (15) matches the
numerical results very well. Moreover, the asymptotic predictions become more accurate as 𝜖 ↓ 0
as expected.
Let 𝜆𝑛 (for 𝑛 = 1, 2, … ) be the increasing sequence of values of 𝜆 such that tr𝑀 = ±2 (ie, 𝜆4𝑚−3

and 𝜆4𝑚 are the values such that tr𝑀 = 2 and 𝜆4𝑚−2 and 𝜆4𝑚−1 are the values such that tr𝑀 = −2),
so the 𝑛th spectral band is given by the interval [𝜆2𝑛−1, 𝜆2𝑛]. The width of the 𝑛th spectral band
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F IGURE 4 Left: The number of spectral bands as a function of 𝜖 for various single-lobe periodic potentials.
The stars, circles, and squares are data points obtained from direct computation of the monodromy matrix via
numerical integration of the ZS scattering problem Equation (3a); the dotted, dashed, and dot-dashed lines are
the WKB predictions based on Equation (15). Right: The 𝑛𝜖th relative band width (defined by Equation (17)) as a
function of 𝜖 for various single-lobe periodic potentials. The squares, circles, and stars are data points obtained from
direct numerical computation of the monodromy matrix via numerical integration of the ZS scattering problem
Equation (3a); the dot-dashed, dashed, and dotted curves are the WKB predictions based on Equation (18)

(which is approximately centered at 𝑧𝑛) and that of the 𝑛th spectral gap are thus

𝑤𝑛 = 𝜆2𝑛 − 𝜆2𝑛−1, 𝑔𝑛 = 𝜆2𝑛+1 − 𝜆2𝑛, (16)

respectively. As in Refs. 36, 72, one is also interested in the relative band width and relative gap
width, as they can be used to distinguish solitonic excitations from nonsolitonic ones. The relative
band width and the relative gap width are defined, respectively, as

𝑊𝑛 =
𝑤𝑛

𝑤𝑛 + 𝑔𝑛
, 𝐺𝑛 = 1 −𝑊𝑛. (17)

Using a Taylor expansion of Equation (13c), we get the following leading-order asymptotic expres-
sion of the 𝑛th relative band width (see Section 6 for details):

𝑊𝑛 =
4

𝜋
sech

(
2𝑆2,𝜖(𝑧𝑛)

𝜖

)
(18)

as 𝜖 ↓ 0. Again, one can compare these asymptotic expressions with the values obtained from
direct numerical calculation of the monodromy matrix. The results, as shown in Figure 4 (right),
show excellent agreement between Equation (18) and the numerical results.
The relative band width𝑊𝑛 is a physically important quantity. This is because, as in the KdV

and defocusing NLS equations,36,72,73 its value governs the characteristic features of periodic non-
linear excitations. More precisely, when𝑊𝑛 → 1 the corresponding nonlinear excitation reduces
to a constant background, whereas in the opposite limit,𝑊𝑛 → 0, the excitation becomes a soliton
(eg, see chapter 5 in Ref. 70).
Accordingly, given a fixed threshold 𝜅 ≪ 1, we define a nonlinear excitation of the periodic

problem to be an “effective soliton” if its relative band width is less than 𝜅, similarly to Refs.
36, 72, 73. Note that, while the introduction of an arbitrary threshold parameter 𝜅 might seem
unsatisfactory, we will show that the precise value of 𝜅 is immaterial in the limit 𝜖 ↓ 0.
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The condition 𝑊𝑛 < 𝜅 provides a criterion that allows one to distinguish between solitonic
and nonsolitonic excitations. Explicitly, using the asymptotic expression in Equation (18) for𝑊𝑛,
the inequality 𝑊𝑛 < 𝜅 implies that, as 𝜖 ↓ 0, the solitonic excitations are confined to the range
𝜆 ∈ (−𝑞2max, 𝜆𝑠), where 𝜆𝑠 is implicitly defined by the equation

𝑆2(𝜆𝑠) =
𝜖

2
ln

(
8

𝜋𝜅

)
. (19)

While no simple closed-form expression for 𝑆2(𝜆) or its inverse is available, one can easily find 𝜆𝑠
numerically. Also, one can obtain an analytical approximation for 𝜆𝑠 by Taylor expanding 𝑆2(𝜆)
near 𝜆 = −𝑞2min, noting that 𝑆2(−𝑞

2
min) = 0. Substituting the expansion into Equation (19), we

obtain that, to leading order, the spectral threshold of the solitonic excitations is given by

𝜆𝑠,approx =
𝜖

2𝑆′2(−𝑞
2
min)

ln

(
8

𝜋𝜅

)
− 𝑞2min. (20)

In other words, the band widths shrink exponentially with 𝜖 (as implied by (18)), but the gap
widths and the solitonic threshold both scale linearly with 𝜖. This is the same as what happens
in the case of the KdV and defocusing NLS equations.36,72,73 The number 𝑁𝑠 of effective solitons
equals the number of spectral bands of the trace function in the interval (−𝑞2max, 𝜆𝑠). Using similar
arguments as for Equation (15), we then immediately obtain

𝑁𝑠 =

⌊
𝑆1(𝜆𝑠)

𝜋𝜖
+
1

2

⌋
. (21)

Moreover, by expanding 𝑆1(𝜆) in a Taylor series about 𝜆 = −𝑞2max (noting that 𝑆1(−𝑞2max) = 0) and
substituting into Equation (21), we can also obtain a linear approximation for 𝑁𝑠:

𝑁𝑠,approx =

⌊
𝑆′1(−𝑞

2
max)

𝜋𝜖
(𝑞2max − 𝑞2min) + 𝑐

⌋
, (22)

with 𝑐 = 𝑆′1(−𝑞
2
max)∕[2𝜋𝑆

′
2(−𝑞

2
min)] ln[8∕(𝜋𝜅)] +

1

2
. Note that𝑁𝑠,approx is independent of 𝜅 to lead-

ing order. Hence, the particular value chosen for the threshold 𝜅 becomes progressively less rele-
vant as 𝜖 ↓ 0.
Importantly, note also fromEquation (20) that 𝜆𝑠 → −𝑞2min as 𝜖 ↓ 0. This has an important prac-

tical consequence, since it means that all nonlinear excitations become effective solitons in the
semiclassical limit. Thus, the semiclassical limit of the focusing NLS equation with single-lobe peri-
odic potential is characterized by a coherent soliton condensate.

5 NUMERICALMETHODS AND FURTHER NUMERICAL RESULTS

In this section, we provide some details about the numerical methods used and about the results
presented in the previous sections.
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F IGURE 5 Density plot of the amplitude |𝑞(𝑥, 𝑡)| of the solution of the focusing NLS equation with the same
“exp-sine” IC (2b) for decreasing values of the semiclassical parameter. Top left: 𝜖 = 0.078. Top right: 𝜖 = 0.052.
Bottom left: 𝜖 = 0.037. Bottom right: 𝜖 = 0.026

5.1 Numerical solution of the focusing NLS equation

All the numerical simulations of the semiclassical focusing NLS equation (1) were performed
using an eighth-order Fourier split-step method51–54 with at least 𝑁 = 211 Fourier modes. The
spatial accuracy of this method is spectral, while the temporal accuracy is eighth-order. The coef-
ficients chosen for the time stepping are found by solving a system of algebraic equations (see
Ref. 50 for details). The time step was always chosen to satisfy the Courant-Friedrichs-Levy sta-
bility requirement,53,54 namely, Δ𝑡 ≤ (Δ𝑥)2∕𝜖, where Δ𝑥 = 2𝐿∕𝑁 and 2𝐿 is the spatial period of
the particular IC considered. (For the sech and Gaussian ICs discussed below, we took 2𝐿 = 30.)
All results were checked for numerical convergence, and the isospectral property of the scattering
data was also checked using Floquet-Hill’s method (see below), which served as further valida-
tion of numerical convergence. The corresponding simulations for each of the cases presented
took several hours of computer time on a standard desktop computer. All calculations were done
in double precision.

5.2 Semiclassical dynamics and further numerical solutions

To illustrate the focusing dynamics of (1) as the semiclassical parameter tends to zero, Figure 5
shows density plots of the amplitude |𝑞(𝑥, 𝑡)| using the IC (2b) for decreasing values of 𝜖. Similar
behavior was observed for the other potentials considered in this work (see Table 1). Note how the
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TABLE 1 List of ICs and the corresponding values of 𝜖 considered

𝒒(𝒙, 𝟎) 𝝐

(1 + cos 𝑥)∕2 0.240 0.120 0.100 0.060 0.050 0.030
exp(− sin

2
𝑥) 0.100 0.078 0.052 0.037 0.0277 0.026

dn(𝑥|0.92) 0.176 0.088 0.044 0.022 0.020 0.010
dn(𝑥|0.9) 0.200 0.100 0.053 0.046 0.026 0.0255
dn(𝑥|0.7) 0.200 0.100 0.080 0.063 0.050 0.025
dn(𝑥|0.5) 0.200 0.100 0.060 0.055 0.050 0.029
dn(𝑥|0.1) 0.200 0.100 0.060 0.056 0.047
sech𝑥 0.200 0.100 0.050 0.042 0.037 0.020
exp(−𝑥2) 0.080 0.060 0.030 0.026
1 − |𝑥∕𝜋| 0.160 0.080 0.055 0.040 0.030 0.019
exp(−|𝑥|) 0.120 0.060 0.030 0.027 0.014

spatial period of the small-scale oscillations is proportional to 𝜖, but the location of the caustics
becomes independent of 𝜖 as 𝜖 ↓ 0.
In Figure 1, we showed for comparison purposes a solution with IC given by the following

single-lobe potential on the infinite line:

𝑞sech(𝑥, 0) = sech𝑥. (23)

Here we present additional numerical simulations of the focusing NLS equation (1) with small
dispersion and various kinds of ICs, to investigate the generality of our results. A list of ICs and
the corresponding values of 𝜖 considered is given in Table 1.
In Figure 6, we present the results obtained from different kinds of ICs, to corroborate the gen-

eral similarities between solutions with localized and periodic ICs. Specifically, we compare the
solutions obtained with

𝑞gaussian(𝑥, 0) = e−𝑥
2 (24)

as a potential on the infinite line,

𝑞tent(𝑥, 0) = 1 − |𝑥∕𝜋| (25)

with−𝜋 < 𝑥 < 𝜋, as well as the dn IC in Equation (2c) with other values of𝑚, and−𝐾(𝑚) < 𝑥 <

𝐾(𝑚).
Importantly, the results in Figure 6 (top right) demonstrate that behavior similar to the one

shown in Figure 1 is produced even by the nondifferentiable IC (25), and virtually identical results
were also obtained if the IC in Equation (25) is replaced by 𝑞(𝑥, 0) = e−|𝑥|. This is significant
because the initial-value problem becomes elliptic in the limit 𝜖 ↓ 0. Therefore, analyticity of ICs
is in general a necessary condition even just for solutions to exist, and the problem becomes very
sensitive to perturbations.
Prior numerical work by Bronski andKutz25 indicated an immediate detection by the dynamics

of points of failure of analyticity of the data. This is confirmed by Figure 6 (top right), which shows
that the gradient catastrophe (ie, the “nose” of the caustic) appears to develop almost immediately.
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F IGURE 6 Density plot of the amplitude |𝑞(𝑥, 𝑡)| of the solution of the focusing NLS equation for various
potentials and values of the semiclassical parameter. (Top left) The “tent-shape” IC in Equation (25) with 𝜖 = 0.08.
(Top right) The same “tent-shape” IC but with 𝜖 = 0.04. (Bottom left) The “dn” IC in Equation (2c) with 𝑚 = 0.1

and 𝜖 = 0.056. (Bottom right) The Gaussian IC in Equation (24) with 𝜖 = 0.03

On the other hand, Figure 6 (top right) demonstrates that the resulting dynamical behavior
is rather robust. This is similar to what happens for the focusing NLS equation on the line with
nonzero boundary conditions, where it was recently demonstrated that similar behavior occurs
both with analytic and discontinuous data.74–76
Some differences are evident in the behavior produced by Equation (2c) with low values of𝑚.

This should not be surprising, however, since the function in Equation (2c) becomes shallower
as 𝑚 decreases, and eventually tends to the constant value 1 ∀𝑥 ∈ ℝ as 𝑚 → 0. Therefore, one
should not expect the results to hold uniformly for all values of𝑚. Nonetheless, the above numer-
ical results provide further validation of the general nature of the behavior of solutions in the
semiclassical limit with periodic or localized ICs.

5.3 Numerical calculation of the Lax spectrum via Floquet-Hill’s
method

Recall that the ZS scattering problem is given by Equation (3a). Because this problem is not self-
adjoint, when calculating the spectrum numerically one must use techniques that are capable of
efficiently calculating the spectrum in a large portion of the complex plane. One such technique
is Floquet-Hill’s method, which applies Floquet-Bloch theory to give an almost uniform global
approximation to the entire spectrum, as opposed to just an approximation of a few elements of
the spectrum (see Ref. 68 for details). Since 𝑄(𝑥 + 2𝐿) = 𝑄(𝑥), by Floquet’s theorem all bounded
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solutions of Equation (3a) are of the form

𝜙(𝑥, 𝜁) = e𝑖𝜈𝑥𝑤(𝑥, 𝜁), (26)

where 𝑤(𝑥 + 2𝐿, 𝜁) = 𝑤(𝑥, 𝜁), and 𝜈 ∈ [0, 𝜋∕𝐿). As usual, we refer to 𝑖𝜈 as the Floquet exponent.
Inserting Equation (26) into Equation (3a) yields the modified eigenvalue problem

𝜎3[𝜖(𝑖𝜕𝑥 − 𝜈𝐼) − 𝑖𝑄]𝑤 = 𝜁𝑤. (27)

While Equations (3a) and (27) are obviously equivalent, the crucial difference from a computa-
tional point of view is that, unlike𝜙(𝑥, 𝜁) the eigenfunction𝑤(𝑥, 𝜁) is also periodic. One can there-
fore expand Equation (27) in Fourier series to obtain

̂𝜖
𝜈�̂� = 𝜁�̂�, (28)

where �̂� = (… , �̂�−1, �̂�0, �̂�1, …)
𝑇 and �̂�𝑗 is the 𝑗th Fourier coefficient of 𝑤(𝑥, 𝜁), and

̂𝜖
𝜈 =

(
−𝜖(𝑘 + 𝜈 𝐼) −𝑖

−𝑖 𝜖(𝑘 + 𝜈 𝐼)

)
,

𝑘 = diag(𝑘𝑛)𝑛∈ℤ is the doubly infinite diagonal matrix of Fourier wavenumbers, with 𝑘𝑛 = 𝑛𝜋∕𝐿,
and  is the doubly infinite Toeplitzmatrix representing the convolution operator that is produced
by the Fourier series of 𝑞(𝑥)𝑤(𝑥, 𝜁).
The method then approximates the eigenvalues of the scattering problem by numerically com-

puting the eigenvalues of the finite matrix obtained by a truncation of Equation (28). The numer-
ical accuracy of the approximation is dependent on the number of Fourier modes used and on the
eigenvalue solver. Note also that the density of the spectral bands depends on number of Floquet
exponents chosen in the interval [0, 𝜋∕𝐿).
For each of the Floquet-Hill’s method simulations shown in this work we used no less than

𝑁 = 28 Fourier modes and at least 104 Floquet exponents. All results were checked for numeri-
cal convergence. Namely, we ensured that the number of Fourier modes and the step size for the
Floquet exponent were such that the results were independent of the specific values of each. We
also double-checked our results with exactly solvable examples such as the step, plane wave and
sech potentials.
Additional plots of the numerical calculation of the Lax spectrum are provided in Figure 7. The

top row shows numerical calculations of the Lax spectrumvia Floquet-Hill’smethod.Note how, as
𝜖 ↓ 0 the spectral data clusters on the real and imaginary axes, the number of bands grows, and the
band widths decay to resemble point spectra. The bottom row shows the WKB approximation of
tr𝑀(𝜆), where 𝜆 = 𝜁2. We see excellent agreement between theWKB approximation and Floquet-
Hill’s method, especially as 𝜖 ↓ 0, as expected.

5.4 Numerical calculation of the monodromymatrix

The results obtained from the Floquet-Hill method described above, and the predictions obtained
from the WKB expansion of the scattering problem (see below), can both be tested by comparing
them with the results of direct numerical integration of the scattering problem.



BIONDINI and OREGERO 343

F IGURE 7 Top row: Spectrum (red bands) of the ZS scattering problem as computed numerically via Floquet-
Hill’s method. Left column: exp-sine potential in Equation (2b), with 𝜖 = 0.3. Right column: same potential with
𝜖 = 0.0255. Bottom row: trace of the monodromy matrix. Red dashed curves: WKB approximation of tr𝑀 as a
function of 𝜆. Blue solid curves: Results from numerical integration of the scattering problem. Dashed lines: the
values −max[𝑞2(𝑥)] and −min[𝑞2(𝑥)] that define the boundaries of the three regions of the spectrum. Solid black
lines: the values tr𝑀∕2 = ±1 corresponding to the spectral band edges

Recall that the monodromy matrix is defined by Equation (9) as 𝑀(𝜁) = Φ(𝑥 − 𝐿, 𝜁)−1Φ(𝑥 +

𝐿, 𝜁), where Φ(𝑥, 𝜁) is any fundamental matrix solution of Equation (3a). Choosing Φ(0, 𝜁) = 𝐼,
where 𝐼 is the 2 × 2 identity matrix as IC, one can obtain the monodromy matrix simply as

𝑀(𝜁) = Φ(2𝐿, 𝜁). (29)

Integrating Equation (3a) numerically using a fourth-order Runge-Kutta method with step size
Δ𝑥 ≤ 10−3 then allows one to compute themonodromymatrix via Equation (29). Since tr𝑀 yields
all the necessary information about the spectrum of the scattering problem, one can therefore use
it to validate the result that the spectral bands converge to the real and imaginary 𝜁-axes in the
semiclassical limit aswell as the asymototic expressions for the location of the spectral bands (thus
confirming the results obtained with the WKB method).

6 WKB EXPANSIONS AND ASYMPTOTIC CALCULATIONS

In this section, we provide some details of the asymptotic calculation of the trace of the mon-
odromy matrix via the WKB method.
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F IGURE 8 Schematic plot of
𝑍(𝑥, 𝜆) = 𝜆 + 𝑞2(𝑥) for a single-lobe periodic
potential 𝑞(𝑥) with 𝜆 ∈ (−𝑞2min,∞) (purple,
range (ii)), 𝜆 = −𝑞2min (black dashed),
𝜆 ∈ (−𝑞2max, −𝑞

2
min) (light blue, range (iii)),

𝜆 = −𝑞2max (black dashed), 𝜆 ∈ (−∞,−𝑞2max)

(yellow, range (i)), and 𝑍(𝑥, ⋅) = 0 (black
dotted). For the WKB analysis we have regions
1-3 (blue lines) and transition regions 1-2 (red
lines). The overlap in these regions allow for
asymptotic matching. For 𝜆 in range (iii) we
have 𝑥 = ±𝑝(𝜆) are the turning points

6.1 Eikonal and transport equations

Recall that the change of variables 𝑣 = 𝜙1 + 𝑖𝜙2, and 𝑣 = 𝜙1 − 𝑖𝜙2 transforms the scattering prob-
lem Equation (3a) into the time-independent Schrödinger equation (11).
We look for an asymptotic representation of solutions of the second-order differential equa-

tion (11) in the form

𝑣(𝑥) = (𝐴(𝑥) + 𝑂(𝜖))e𝑖𝑆(𝑥)∕𝜖, 𝜖 ↓ 0. (30)

Substituting Equation (30) into Equation (11) yields the eikonal and transport equation, respec-
tively, as

(𝑆′)2 = 𝑍(𝑥, 𝜆) (31)

2𝑆′(𝑥)𝐴′ + 𝑆′′(𝑥)𝐴 + 𝑞′(𝑥)𝐴 = 0. (32)

These equations can be easily integrated (up to arbitrary additive and multiplicative constants,
respectively) once the sign of 𝑍(𝑥, 𝜆) is known. Because of the possible presence of turning points
however, we need to analyze the spectrum in three separate ranges of values of 𝜆.

6.1.1 Range (i): 𝝀 < −𝒒𝟐max

For 𝜆 in this range, one has 𝑍(𝑥, 𝜆) < 0 (cf. Figure 8), and the leading order WKB approximations
are of the form

𝑣±(𝑥, 𝜆) = 𝐴±(𝑥)e
𝑆∓(𝑥)∕𝜖, (33)

with

𝑆±(𝑥) = ±∫
𝑥

−𝐿

√|𝑍(𝑥, 𝜆)| 𝑑𝑥 (34)
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𝐴±(𝑥) =

√
∓𝑖

√|𝑍(𝑥, 𝜆)| + 𝑞(𝑥)

4
√|𝑍(𝑥, 𝜆)| . (35)

Thus, a fundamental matrix solution in range (i) is given by

Φ(𝑥, 𝜆) =

(
𝑣− 𝑣+
𝑣′− 𝑣′+

)
. (36)

Since 𝑍(𝑥, 𝜆) ≠ 0 in this range, this solution is valid for all 𝑥 ∈ [−𝐿, 𝐿]. We can obtain the mon-
odromymatrix from Equation (9) evaluated at 𝑥 = −𝐿. Simple matrix algebra then gives the trace
of𝑀 as Equation (13a).

6.1.2 Range (ii): 𝝀 > −𝒒𝟐min

For 𝜆 in this range, one has 𝑍(𝑥, 𝜆) > 0 (cf. Figure 8), and the leading order WKB approximations
are of the form

𝑣±(𝑥) = 𝐴±(𝑥)e
𝑖𝑆±(𝑥)∕𝜖, (37)

with

𝑆±(𝑥) = ±∫
𝑥

−𝐿

√
𝑍(𝑥, 𝜆) 𝑑𝑥 (38)

𝐴±(𝑥) =

√
∓
√|𝑍(𝑥, 𝜆)| + 𝑞(𝑥)

4
√|𝑍(𝑥, 𝜆)| , (39)

Thus, we again have that a fundamental matrix solution in range (ii) is given by Equation (36),
but with 𝑣±(𝑥, 𝜆) now given by Equation (37). Since 𝑍(𝑥, 𝜆) ≠ 0 in this range as well, the above
solution is also valid for all 𝑥 ∈ [−𝐿, 𝐿]. Thus, as before, we obtain the monodromy matrix from
Equation (9) at 𝑥 = −𝐿. Simple matrix algebra then yields the trace of𝑀 as Equation (13b).

6.1.3 Range (iii): −𝒒𝟐max < 𝝀 < −𝒒𝟐min

For 𝜆 in this range, 𝑍(𝑥, 𝜆) has two real zeros at 𝑥 = ±𝑝(𝜆), ie,

𝑍(±𝑝(𝜆), 𝜆) = 0 (40)

(cf. Figure 8). Thus, in the context of WKB there are two real turning points, one at each zero of
𝑍(𝑥, ⋅). We must therefore discuss the behavior of the WKB approximation in the following five
subregions of the fundamental period 𝑥 ∈ [−𝐿, 𝐿]:

(a) Region 1, 𝑥 ∈ [−𝐿,−𝑝(𝜆)).
(b) Transition 1, 𝑥 ∈ (−𝑝(𝜆) − 𝛿,−𝑝(𝜆) + 𝛿), 𝛿 > 0.
(c) Region 2, 𝑥 ∈ (−𝑝(𝜆), 𝑝(𝜆)).
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(d) Transition 2, 𝑥 ∈ (𝑝(𝜆) − 𝛿, 𝑝(𝜆) + 𝛿), 𝛿 > 0.
(e) Region 3, 𝑥 ∈ (𝑝(𝜆), 𝐿].

These regions are shown inFigure 8. For brevity, we drop the 𝜆 dependence of the turning points
and simply write 𝑝 = 𝑝(𝜆). Note that one could exploit the evenness and reality of the potential,
and the resulting symmetries of the eigenfunctions, to obtain the eigenfunctions for𝑥 < 0 in terms
of those for 𝑥 > 0. Namely, Φ(𝑥, 𝜁) = 𝜎1Φ(−𝑥, 𝜁)𝜎1, where 𝜎1 is the first Pauli matrix.

Region 1

The WKB approximation for the general solution of Equation (11) in this region is

𝑣1(𝑥) = 𝑎+1 𝑣+(𝑥) + 𝑎−1 𝑣−(𝑥), (41)

where 𝑣±(𝑥) are given by Equation (33), with the lower integration limit replaced by −𝑝 in Equa-
tion (34) (to avoid any issues related to the sign change of 𝑍(𝑥, 𝜆)) and 𝐴±(𝑥) given by Equa-
tion (35).

Transition region 1

The first transition region corresponds to a neighborhood of the first transition point, 𝑥 = −𝑝. In
this region,we have that𝑍(𝑥, 𝜆) = 𝑎(𝑥 + 𝑝) + 𝑜(1) as 𝑥 → −𝑝, with 𝑎 > 0. Following the standard
approach (eg, seeRef. 77), one can then obtain the solution of Equation (11) in this region to leading
order as

𝑣1→2(𝑥) = 𝑐−1 Ai[𝜉(𝑥, 𝜆)] + 𝑐+1 Bi[𝜉(𝑥, 𝜆)], (42)

where 𝜉(𝑥, 𝜆) = −𝑎1∕3(𝑥 + 𝑝)∕𝜖2∕3 and Ai(⋅) and Bi(⋅) are the Airy functions.49

Region 2

TheWKB approximation to the solution of Equation (11) in this region has two different but equiv-
alent representations depending on the starting point of integration, namely:

𝑣2(𝑥) = 𝑎+2 𝑣+(𝑥) + 𝑎−2 𝑣−(𝑥) (43)

𝑣2(𝑥) = �̄�+2 𝑣+(𝑥) + �̄�−2 𝑣−(𝑥), (44)

where

𝑣±(𝑥) = 𝐴±(𝑥) exp

(
±𝑖 ∫

𝑥

−𝑝

√|𝑍(𝑠, 𝜆)|d𝑠∕𝜖) (45)

𝑣±(𝑥) = 𝐴±(𝑥) exp

(
±𝑖 ∫

𝑥

𝑝

√|𝑍(𝑠, 𝜆)|d𝑠∕𝜖) (46)

and 𝐴±(𝑥) given by Equation (39).
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Transition region 2

In the second transition region, we have 𝑍(𝑥, 𝜆) = −𝑏(𝑥 − 𝑝) + 𝑜(1) as 𝑥 → 𝑝, with 𝑏 > 0. Fol-
lowing similar steps as before, one can write the solution of Equation (11) in this region to leading
order as

𝑣2→3(𝑥) = 𝑐−2 Ai[𝜂(𝑥, 𝜆)] + 𝑐+2 Bi[𝜂(𝑥, 𝜆)], (47)

where 𝜂(𝑥, 𝜆) = 𝑏1∕3(𝑥 − 𝑝)∕𝜖2∕3.

Region 3

The WKB solution of Equation (11) in this region is

𝑣3(𝑥) = 𝑎+3 (𝑥)𝑣+(𝑥) + 𝑎−3 𝑣−(𝑥), (48)

where 𝑣±(𝑥) are as in Equation (33) and the lower integration limit in Equation (34) replaced by
𝑝.

6.2 Asymptotic matching and connection formulae

We now perform asymptotic matching across each boundary layer. We begin by matching 𝑣1(𝑥)
with 𝑣1→2(𝑥). To leading order, in region 1 one has

𝑣±(𝑥) =
4
√|𝜆|

4
√
𝑎|𝑥 + 𝑝|e±

2

3
𝑎1∕2|𝑥+𝑝|3∕2∕𝜖

𝑥 → −𝑝−. (49)

Using the well-known asymptotic expansions of the Airy functions (cf. section 9.7 in Ref. 49)
and requiring that the expansion for 𝑣1(𝑥) as 𝑥 → −𝑝− matches that of 𝑣1→2(𝑥) as 𝜉 → ∞ we
obtain the connection formula(

𝑐−1
𝑐+1

)
= 𝐶1

(
𝑎−1
𝑎+1

)
, 𝐶1 =

4
√
𝜋2|𝜆|

(𝑎𝜖)1∕6

(
2 0

0 1

)
. (50)

Next, we match 𝑣1→2(𝑥) with 𝑣2(𝑥). To leading order, in region 2 one has

𝑣±(𝑥) =
4
√|𝜆|

4
√
𝑎(𝑥 + 𝑝)

e
±𝑖

2

3
𝑎1∕2(𝑥+𝑝)3∕2∕𝜖

, 𝑥 → −𝑝+. (51)

Requiring that the above expansion for 𝑣2(𝑥)matches that for 𝑣1→2(𝑥) as 𝜉 → −∞ we obtain the
connection formula (

𝑎+2
𝑎−2

)
= 𝐶2

(
𝑐−1
𝑐+1

)
, 𝐶2 =

(𝑎𝜖)1∕6

2 4
√
𝜋2|𝜆|

(
−𝑖e𝑖𝜋∕4 e𝑖𝜋∕4

𝑖e−𝑖𝜋∕4 e−𝑖𝜋∕4

)
. (52)
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Similarly, matching 𝑣2(𝑥) with 𝑣2(𝑥) yields the connection formula(
�̄�+2
�̄�−2

)
= 𝐶3

(
𝑎+2
𝑎−2

)
, 𝐶3 = e

𝑖𝜎3 ∫ 𝑝

−𝑝

√|𝑍(𝑠,𝜆)|d𝑠∕𝜖
, (53)

where 𝜎3 = diag(1, −1). Next, matching 𝑣2(𝑥) with 𝑣2→3(𝑥), we obtain(
𝑐+2
𝑐−2

)
= 𝐶4

(
�̄�+2
�̄�−2

)
, 𝐶4 =

4
√
𝜋2|𝜆|

(𝑏𝜖)1∕6

(
e𝑖𝜋∕4 e−𝑖𝜋∕4

−𝑖e𝑖𝜋∕4 𝑖e−𝑖𝜋∕4

)
. (54)

Finally, matching 𝑣2→3(𝑥) with 𝑣3(𝑥) we get(
𝑎−3
𝑎+3

)
= 𝐶5

(
𝑐+2
𝑐−2

)
, 𝐶5 =

(𝑏𝜖)1∕6

4
√
𝜋2|𝜆|

(
1 0

0 1∕2

)
. (55)

Combining all of the above expressions we obtain that the matrix

𝐶 = 𝐶5𝐶4𝐶3𝐶2𝐶1 (56)

allows us to extend a solution in region 1 to one in region 3.
Some remarks are now in order. It is well known that, in general, one must deal with the direc-

tional character of the WKBmethod when connecting through classically forbidden regions.77–79
Note that our calculations to obtain the connection formulae are purely formal. Moreover, the
approach we employed is the time-honored method of matching asymptotic expansions. Indeed,
the approach we used is exactly the same as the one used in Refs. 80–83, where connection prob-
lems of exactly the same kind were presented and solved in exactly the same way. In any case,
the asymptotic expression we obtained for the trace of the monodromy matrix agrees extremely
well with the results of direct numerical simulations of the spectrum of the scattering problem
(cf. Figures 3 and 7), and also agrees very well with the results of Floquet-Hill’s method. All of this
serves as a strong validation of the WKB results. Finally, exactly the same approach was already
applied with similar success to characterize the spectrum of the time-independent Schrodinger
equation for the defocusing Zakharov-Shabat (ZS) scattering problem in Refs. 36, 72.

6.3 Monodromymatrix in range (iii)

We now have all the necessary information to calculate the trace of𝑀 in range (iii). To simplify
the resulting expressions, it is convenient to introduce the function

𝑆(𝑥, 𝜆) = ∫
𝑥

−𝑝

√|𝑍(𝑠, 𝜆)|d𝑠 (57)

as well as 𝑆1(𝜆) and 𝑆2(𝜆) defined in Equation (14). Note that 𝑆1 is a nonnegative monotone
increasing function of 𝜆 in (−𝑞2max, −𝑞2min), while 𝑆2 is a nonnegative monotone decreasing func-
tion of 𝜆 in the same domain. A plot of both functions is shown in Figure 9.
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F IGURE 9 Left: 𝑆1(𝜆) for Equation (2a) (red), Equation (2b) (blue), Equation (2c) with𝑚 = 0.9 (light blue),
and (𝑛 − 1∕2)𝜋𝜖 (horizontal dashed). Right: 𝑆2(𝜆) for Equation (2a) (red), Equation (2b) (blue), and Equation (2c)
with𝑚 = 0.9 (light blue)

We can write a fundamental matrix solution of the scattering problem in the form of Equa-
tion (36), where 𝑣±(𝑥) are given by Equation (33) in region 1, and by their continuation (obtained
through the connection formulae discussed above) for 𝑥 ∈ (−𝑝(𝜆), 𝐿]. Explicitly, to leading order
we have

Φ(−𝐿, 𝜆) = Φ𝑜 e
−𝑆2(𝜆)𝜎3∕𝜖 , (58)

Φ(𝐿, 𝜆) = Φ𝑜 e
𝑆2(𝜆)𝜎3∕𝜖 𝐶 , (59)

where

Φ𝑜 =

(
𝐴−(𝐿) 𝐴+(𝐿)

𝐴−(𝐿)
√|𝑍(𝐿, 𝜆)|∕𝜖 −𝐴+(𝐿)

√|𝑍(𝐿, 𝜆)|∕𝜖
)

(60)

and 𝐶 is the overall connection matrix given by Equation (56). The monodromy matrix can then
again be computed via Equation (9). Simple matrix algebra then gives that the trace of𝑀 is given
by Equation (13c).

6.4 Number of bands, band widths, and gap widths

We now provide some details of the calculations used to find the asymptotic expressions for the
bandwidths, gap widths, and number of bands.We begin by finding an asymptotic representation
for the number of bands. From Equation (13c) it is clear that the oscillation amplitude grows
exponentially as 𝜖 ↓ 0. This means that the values of 𝜆 such that tr𝑀 = ±2 (which are the band
and gap edges) are clustered near the zeros 𝑧𝑛 of tr𝑀. In turn, the zeros are given by the equation

𝑆1(𝑧𝑛) = (𝑛 − 1∕2)𝜋𝜖, 𝑧𝑛 ∈ (−𝑞2max, −𝑞
2
min). (61)

Then, since 𝑆1(𝜆) is a monotonically increasing function (see Figure 9), one obtains
Equation (15).
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Note that Equation (61) is equivalent to the Bohr-Sommerfeld quantization condition that one
would obtain for the discrete eigenvalues of a potential well by taking into account the directional
character of the WKB approximation (eg, see Refs. 77, 79).
Next recall that the 𝑛th relative band width is defined by Equation (17) as𝑊𝑛 = 𝑤𝑛∕(𝑤𝑛 + 𝑔𝑛),

where the absolute band width and gap width are given by Equation (16), and 𝜆𝑛 denotes the
increasing sequence of values of 𝜆 such that tr𝑀 = ±2. It is convenient to introduce the half-trace
as 𝜏(𝜆) = tr𝑀(𝜆)∕2. Taylor expanding 𝜏 about 𝑧𝑛 and differentiating, we have

𝜏(𝜆) = 𝜏′(𝜆 − 𝑧𝑛) +
𝜏′′

2
(𝜆 − 𝑧𝑛)

2 + 𝑂(𝜆 − 𝑧𝑛)
3, (62)

as 𝜆 → 𝑧𝑛 and

𝜏′|𝜆=𝑧𝑛 = −
𝑆′1(𝑧𝑛)

𝜖
cosh(2𝑆2,𝜖(𝑧𝑛)∕𝜖)(1 + 𝑜(1)),

𝜏′′|𝜆=𝑧𝑛 = 1

𝜖2
e2𝑆2(𝑧𝑛)∕𝜖(1 + 𝑜(1)),

as 𝜖 ↓ 0. Evaluating Equation (62) at 𝜆2𝑛−1 yields

𝜆2𝑛−1 − 𝑧𝑛 = 1∕𝜏′ + 𝑂(𝜖e−4𝑆2(𝑧𝑛)∕𝜖), 𝜖 ↓ 0. (63)

Thus,

𝑤𝑛 =
2𝜖|𝑆′1(𝑧𝑛)| sech

(
2𝑆2,𝜖(𝑧𝑛)

𝜖

)
+ 𝑂(𝜖e−4𝑆2(𝑧𝑛)∕𝜖), (64)

as 𝜖 ↓ 0. Next, note that since

𝑤𝑛 + 𝑔𝑛 = (𝜆2𝑛 − 𝑧𝑛) + (𝑧𝑛 − 𝜆2𝑛−1) + (𝜆2𝑛+1 − 𝜆2𝑛),

𝑧𝑛+1 − 𝑧𝑛 = (𝜆2𝑛 − 𝑧𝑛) + (𝜆2𝑛+1 − 𝜆2𝑛) + (𝑧𝑛+1 − 𝜆2𝑛+1),

we have

(𝑤𝑛 + 𝑔𝑛) − (𝑧𝑛+1 − 𝑧𝑛) = 𝑂(𝜖e−4𝑆2(𝑧𝑛+1)∕𝜖), 𝜖 ↓ 0.

From Equation (61) we also have 𝑆1(𝑧𝑛+1) − 𝑆1(𝑧𝑛) = 𝜋𝜖∕2. Next, expanding 𝑆1(𝜆) about 𝑧𝑛, eval-
uating at 𝜆 = 𝑧𝑛+1, and solving for 𝑧𝑛+1 − 𝑧𝑛 we obtain

𝑧𝑛+1 − 𝑧𝑛 =
𝜋𝜖

2|𝑆′1(𝑧𝑛)| + 𝑂(𝜖2), 𝜖 ↓ 0. (65)

Combining the above results yields

𝑤𝑛 + 𝑔𝑛 =
𝜋𝜖

2|𝑆′1(𝑧𝑛)| + 𝑂(𝜖2), 𝜖 ↓ 0. (66)
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Finally, Equations (64) and (66) together yield Equation (18) for the 𝑛th relative band width.

7 DISCUSSION

In summary, we presented numerical evidence that the semiclassical limit of the focusing NLS
equation possesses certain features that are relatively independent of the ICs and of whether such
ICs are localized or periodic.
Moreover, we tied these numerical observations to an asymptotic characterization of the spec-

tral content of the solutions.We did so by showing that, for a representative class of potentials, the
spectrum of the associated scattering problem in the semiclassical limit clusters to the real and
imaginary axis of the spectral variable. This implies that any nonlinear excitations have zero veloc-
ity in the semiclassical limit.We then showed that for single-lobe periodic potentials, the spectrum
can be analytically characterized using standard asymptotic techniques. Finally, we computed
asymptotic expressions for the relative bandwidth of the nonlinear excitations, we formulated the
concept of effective solitons, and we showed that the number of bands scales like 1∕𝜖 (similarly
to the number of discrete eigenvalues for the semiclassical limit on the line64). We also showed
that, as 𝜖 ↓ 0, all nonlinear excitations become effective solitons, implying that the solution of the
focusing NLS equation in the semiclassical limit is described by a coherent soliton condensate.
The asymptotic analysis of the spectrum for single-lobe potentials is quite general. However, the

ICs must be sufficiently “peaked” in order for the qualitative features of the temporal evolution
in Figure 1 to arise. (For example, for ICs with a flat top one can expect behavior such as in Refs.
30, 31. See also Section 5 for another example). At the same time, the properties of the periodic
spectrum obtained in Ref. 67 are not limited to single-lobe potentials. Therefore, it is possible that
the results of this work apply to a broader class of potentials. Whether this is indeed the case is
an interesting topic for future study. On the other hand, we strongly emphasize that not all kinds
of ICs obviously give rise to the same kind of dynamical behavior. This should not be surprising,
because themodulational instability in the focusingNLS equation becomesmore andmore severe
as 𝜖 gets smaller, and the initial-value problem for the associatedWhithammodulation equations
becomes formally ill-posed in the limit 𝜖 ↓ 0. Therefore, one can expect very sensitive dependence
of the results with respect to small perturbations, similarly to what happens in the infinite line.29
Another interesting question is therefore a precise characterization of the ICs that produce the
phenomena presented here.
We emphasize that the fact that the behavior in the semiclassical limit is qualitatively the same

for localized and periodic ICs is limited to the focusing NLS equation. That is, no such result
applies for the KdV equation or the defocusing NLS equation. This is despite the fact that the
WKB analysis is very similar to those for the KdV and defocusing NLS equation in Refs. 72, 73
and 36, respectively. The fundamental difference between the defocusing NLS and KdV equa-
tions on one hand and the focusing NLS equation on the other hand is that, for the former two,
each of the effective solitons produced in the semiclassical limit has a different velocity. There-
fore, these solitons separate from each other, and can be easily identified in the actual solution of
the PDE. In contrast, we showed that for the focusing NLS equation all the bands have zero real
part, and therefore the effective solitons have zero velocity, leading to the formation of a coherent
soliton condensate.
We should note that, physically speaking, the gradient catastrophe is a localized phenomenon,

occurring when the compression due to the focusing nonlinearity causes a singularity in the dis-
persionless approximation of the NLS equation, which is a spatially localized effect. It is therefore
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possible the results of Ref. 32may be extended to general caseswhen amodulated plane undergoes
a gradient catastrophe (ie, a new band is born from the endpoint of the existing band), regardless
of the boundary conditions (BCs) or the behavior of the potential as 𝑥 → ±∞. On the other hand,
the setting in Ref. 32 depends crucially on the boundary conditions (for example, the fact that
the jump in the Riemann-Hilbert problem is confined to the real 𝜁-axis). Therefore, whether the
proofs in Ref. 32 easily extend to other settings remains as an interesting question for further study.
For the ZS problemon the infinite line, there exists a proof that the Lax spectrumof nonnegative

single-lobe potentials is contained within the real and imaginary axes for all values of 𝜖 > 0.44–46
The property does not extend to periodic single-lobe potentials for finite values of 𝜖. The numeri-
cal evidence presented in this work, however, suggests that the property applies in the semiclas-
sical limit.
The results of this work open up the obvious problem of characterizing the semiclassical limit

in the 𝑥𝑡-plane. Even in the semiclassical limit on the infinite line, a characterization of solutions
beyond the secondary breaking curve is still an open problem. We also emphasize that the genus
of the spectral curve arising from the scattering problem in the IST (which is independent of 𝑥
and 𝑡) differs from the genus of the solution in the semiclassical limit, which is local (ie, depen-
dent on 𝑥 and 𝑡) and is determined by the semiclassical asymptotics for each fixed value of 𝑥 and
𝑡. For example, for the top right panel of Figure 1, both the asymptotics and the numerics of the
scattering problem both indicate a number of spectral bands in excess of 10. On the other hand,
for all (𝑥, 𝑡) below the primary caustic, the effective genus of the solution is 0. It is an interest-
ing open question whether the genus of the spectral curve corresponds to the maximum possi-
ble value of the effective genus in the semiclassical limit. (For example, in the top right panel of
Figure 1, only three breakings are visible, corresponding to amaximum effective genus of 6, which
is significantly less than the 10 bands predicted by the spectral problem. It is possible that further
breakings would appear at later times, but the maximum integration time in the numerical sim-
ulations is limited by the severe growth of round-off error as a result of modulational instability.)
The above is also related to the conjecture, formulated in Ref. 55 for the semiclassical limit

on the line, that an infinite number of caustics arise in the limit 𝜖 ↓ 0. The numerical evolution
results shown here suggest that the same conjecture extends to the problem with periodic BCs.
Indeed, the WKB prediction that the number of bands in the Lax spectrum is 𝑂(1∕𝜖) provides a
first, indirect, result in support of the conjecture. On the other hand, to make the WKB rigorous
one should obtain rigorous bounds for the asymptotic approximation of the spectrum obtained
with the WKB method. Doing so is outside the scope of this work.
Yet another interesting open question is whether the solutions display recurrence of ICs (like in

the semiclassical limit of the KdV9 and defocusing NLS equations36). It is well known84 that the
evolution of the IC 𝑞(𝑥, 0) = sech𝑥 with 𝜖 = 1∕𝑁 is indeed time-periodic, with temporal period
𝑂(1∕𝜖). More generally, sufficient conditions are also available ensuring the periodicity of degen-
erate solutions of the focusing NLS equation on the line with zero boundary conditions.69 (The
term “degenerate” indicates solutions produced by purely imaginary discrete eigenvalues.) Recur-
rence of ICs has also been shownwhen few spectral bands are present.85,86 However, it is unknown
whether recurrence exists for more general single-lobe potentials and generic values of 𝜖 (either
on the line or with periodic ICs).
We expect the results of this work to have broad applicability, since, similarly to those in Refs.

74–76, 87, they are almost independent of the details of the IC. Moreover, since the NLS equa-
tion arises in many physical contexts, including nonlinear optics, deep water waves, acoustics,
plasmas, and Bose-Einstein condensates, the results of this work apply to all of these areas. In
particular, nonlinear optical fibers and gravity waves in one-dimensional deep water channels are
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especially promising candidates for the experimental verification of the phenomena described
here. Indeed, the phenomena predicted in Refs. 74–76, 87 have recently been observed experi-
mentally in optical fibers.40 We therefore hope that similar settings could provide the vehicle for
observing some of the phenomena discussed in this work.
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