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We revisit the scattering problem for the defocusing nonlinear Schrödinger
equation with constant, nonzero boundary conditions at infinity, i.e., the
eigenvalue problem for the Dirac operator with nonzero rest mass. By
considering a specific kind of piecewise constant potentials we address and
clarify two issues, concerning: (i) the (non)existence of an area theorem relating
the presence/absence of discrete eigenvalues to an appropriate measure of the
initial condition; and (ii) the existence of a contribution to the asymptotic
phase difference of the potential from the continuous spectrum.

1. Introduction

The nonlinear Schrödinger (NLS) equation is a universal model for the behavior
of weakly nonlinear, quasi-monochromatic wave packets, and it arises in a
variety of physical settings, such as nonlinear optics, plasmas, water waves,
Bose–Einstein condensation, etc. In particular, the so-called defocusing NLS
equation,

iqt + qxx − 2|q|2q = 0 (1)

[where q = q(x, t) and subscripts x and t denote partial differentiation
throughout], describes the stable propagation of an electromagnetic beam in
(cubic) nonlinear media with normal dispersion, and has been the subject
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of renewed applicative interest in the framework of recent experimental
observations in Bose–Einstein condensates [1, 2] and dispersive shock waves
in optical fibers [3].

The defocusing NLS equation admits soliton solutions with nonzero
boundary conditions (NZBCs) at infinity, so-called dark/gray solitons. The
simplest, one-soliton solution has the form

qs(x, t) = e−2iq2
o tqo[ cos α + i(sin α) tanh[qo(sin α) (x − xo + 2qo t cos α)] ]

(2)

with qo > 0, and α and xo arbitrary real parameters. Dark solitons tend to a
constant background, q(x, t) → q± as x → ±∞, with |q±| = qo, and appear as
localized dips of intensity q2

o sin2 α. As in the case of zero boundary conditions
(BCs), each dark soliton corresponds to a discrete eigenvalue of the scattering
problem associated with the NLS equation (1) (see Section 2 for details).

Recall that the defocusing NLS equation (1) is the compatibility condition
of the Lax pair

�x = −ikσ3� + Q �, �t = −2ik2σ3� + T �, (3)

where � = �(x, t, k) is a 2 × 2 matrix,

σ3 =
(

1 0
0 −1

)
, Q(x, t) =

(
0 q
q∗ 0

)
,

and

T (x, t, k) = iσ 3(Qx − Q2) + 2k Q.

The first half of (3) is of course the Zakharov–Shabat scattering problem. As
usual, the solution q(x, t) of the NLS equation is referred to as the scattering
potential and the eigenvalue k as the scattering parameter. To include dark
solitons, one must study (1) with the BCs

q(x, t) → q±(t) = qo e−2iq2
o t+iθ± as x → ±∞,

with θ± arbitrary real constants. The solution of the initial-value problem
for the defocusing NLS equation with the above BCs by inverse scattering
transform (IST) was first discussed almost 40 years ago [4], and the problem
has been subsequently studied by several authors [5–12]. Nonetheless, many
important issues still remain to be clarified for the IST with NZBCs, in spite
of the experimental relevance of the problem. The main reason for this is that
the IST is significantly more involved than in the case of decaying potentials
(for which classic references exist, see for instance [13–15]), in particular as
far as the analyticity of the eigenfunctions of the associated scattering problem
is concerned. As a matter of fact, (the analogue of) Schwartz class is usually
assumed for the potential (cf., for instance, [8,9]), which is clearly unnecessarily
restrictive. In Refs. [10, 11] the issue of establishing the analyticity of the
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eigenfunctions was addressed by reformulating the scattering problem in terms
of a so-called energy dependent potential, but the drawback of that approach is
a very complicated dependence of eigenfunctions and data on the scattering
parameter.

A step forward in the direction of a rigorous IST was recently presented in
Ref. [16], where, among other things, it was shown that the direct scattering
problem is well defined for potentials q such that q − q± ∈ L1,2(R±), where
L1,s(R) is the complex Banach space of all measurable functions f (x) for
which (1 + |x |)s f (x) is integrable on the whole real line, and analyticity of
eigenfunctions and scattering data was proved rigorously.

The purpose of this work is to address two further issues in the spectral
theory of the scattering problem associated with the defocusing NLS equation
with NZBCs. The first issue is whether an area theorem can be established,
to relate the existence and location of discrete eigenvalues of the scattering
problem to the area of the initial profile of the solution, suitably defined to take
into account the NZBCs. For the focusing NLS equation with vanishing BCs,
it was shown [17, 18] that there are no discrete eigenvalues and no spectral
singularities if the L1-norm of the potential is smaller that π/2. Conversely, it is
well-known that no such result holds for the Korteweg-deVries equation, whose
scattering problem [which is the time-independent Schrödinger equation] with
positive initial datum can have discrete eigenvalues even for initial profiles
with arbitrarily small area (see for instance [19]). Whether an area theorem
can be proven for the existence of discrete eigenvalues for the defocusing
NLS equation with NZBCs was still an open issue, however. The first result
of this work is to show that no area theorem can be proved. We do so by
providing explicit examples of box-type initial conditions (ICs) where at least
one discrete eigenvalue exists, no matter how small the difference between the
initial profile and the background field is.

The second issue addressed in this work is whether the radiative part
of the spectrum can yield a nontrivial contribution to the asymptotic phase
difference of the potential. It is well-known (see, for instance, [8]) that the trace
formula for the NLS equation determines the asymptotic phase difference,
arg(q+/q−), in terms of a contribution from the discrete spectrum and one
from the continuous spectrum via the reflection coefficient (see Section 2 for
details). In this work we show that the radiative component of the solution can
indeed provide a nonzero contribution to the asymptotic phase difference of
the potential. Again, we do so by explicitly providing examples of piecewise
constant ICs corresponding to a nonzero asymptotic phase difference in the
potential for which no discrete eigenvalues are present.

The relevance of the results presented in this work is twofold. From a
theoretical point of view, recall that, for the defocusing NLS equation with
NZBCs at infinity, the scattering problem is equivalent to the eigenvalue problem
for the one-dimensional Dirac operator with nonzero rest mass. [That is, the first
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of (3) is equivalent to the eigenvalue problem iσ3(∂x − Q) � = k �.] Therefore,
the results in this work are also statements on the spectral properties of said
operator.

Conversely, from an applied point of view, these results are relevant in
the context of recent theoretical studies and experimental observations of
defocusing NLS equation in the framework of dispersive shock waves in
optical fibers (see, for instance, [3] regarding the appearance and evolution of
dispersive shock waves when an input (reflectionless) pulse containing a large
number of dark or gray solitons is injected in the fiber).

2. IST for the defocusing NLS equation with NZBCs

In this work we use a different, more convenient normalization for the
eigenfunctions than the one commonly adopted in the literature; namely, one
which allows the reduction qo → 0 to be taken continuously. To establish
our notation, we therefore briefly review the IST for the defocusing NLS
equation (1) with NZBCs. We refer the reader to [4, 8, 16] for further details.

It is also convenient to take both asymptotic values q± to be constant in
time. To do so in a way that is compatible with the time evolution prescribed
by (1), one can perform a trivial rescaling to remove the constant rotation due
to the background field, obtaining a modified NLS equation in the form

iqt + qxx + 2
(
q2

o − |q|2) q = 0. (4)

The corresponding BCs then become

q(x, t) → q± = qo eiθ± as x → ±∞, (5)

where q± are now independent of time. The Lax pair for the new NLS
equation (4) is still given by (3), but where now

T (x, t, k) = iσ3(Qx − Q2) + 2k Q + iq2
oσ3.

Hereafter, the asterisk denotes complex conjugation.
With the BCs (5), the asymptotic scattering problems [obtained by replacing Q

with Q± = limx→±∞ Q(x, t) in (3)] have eigenvalues ±iλ where λ2 = k2 − q2
o .

It is then convenient to think of the variable k as belonging to a Riemann surface
K consisting of a sheet K

+ and a sheet K
− each coinciding with the complex

plane cut along the semilines 	 = (−∞, −qo] ∪ [qo, ∞), with its edges glued
in such a way that λ(k) is continuous through the cut. Without loss of generality,
we label these sheets such that Im λ(k) > 0 on K

+ and Im λ(k) < 0 on K
−.

The continuous spectrum of the scattering problem is the set of all values of
k for which λ(k) ∈ R, namely k ∈ 	. For all k ∈ 	, the Jost solutions are
defined as the simultaneous solutions of both parts of the Lax pair identified
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by the BCs

�±(x, t, k) ≡ Y±(k) e−i
(x,t,k)σ3 + o(1) as x → ±∞, (6)

where

Y±(k) = I − i

k + λ
σ3 Q±, (7)


(x, t, k) = λ(x − 2kt) and where the columns of Y±(k) are the corresponding
eigenvectors of the asymptotic scattering problems.

Modified eigenfunctions with constant limits as x → ±∞ can then be defined
as M±(x, t, k) = �±(x, t, k) ei
(x,t,k)σ3 . If q(x, t) − q± vanishes sufficiently
fast as x → ±∞, one can write Volterra integral equations that define the
modified eigenfunctions ∀k ∈ 	. We use the notation A = (A1, A2) to identify
the columns of a 2 × 2 matrix A. The columns of M± can then be analytically
extended into the complex K

± planes: M−,1 and M+,2 in K
+, M−,2 and M+,1

in K
−. The analyticity properties of �± follow accordingly.

Because det �± = 2λ/(λ + k) ∀(x, t) ∈ R
2 and ∀k ∈ 	 \ {±qo}, �− and

�+ are both fundamental matrix solutions of both parts of the Lax pair, and
one can introduce the time-independent scattering matrix S(k) as

�−(x, t, k) = �+(x, t, k) S(k), k ∈ 	 \ {±qo}. (8)

We denote the entries of S(k) as

S(k) =
(

a(k) b̄(k)
b(k) ā(k)

)
. (9)

Since det �+ = det �−, we have det S(k) = 1 for all k ∈ 	 \ {±qo}. Moreover,
the entries of the scattering matrix can be written in terms of Wronskians of
the Jost solutions. In particular,

a(k) = λ + k

2λ
Wr(�−,1, �+,2), ā(k) = −λ + k

2λ
Wr(�−,2, �+,1), (10)

which show that a(k) and ā(k) can be analytically continued respectively on
K

+ and K
− (and may have poles at the branch points k = ±qo). On the other

hand, b(k) and b̄(k) are continuous for k ∈ 	 but in general nowhere analytic.
As eigenfunctions and scattering data depend on λ, they are only single-valued

for k ∈ K [as opposed to k ∈ C]. To identify the appropriate sheet of K, we
will therefore label the eigenfunctions by making the λ dependence explicit
when necessary. For instance, the Jost eigenfunctions satisfy the following
symmetry relations with respect to the involution (k, λ) → (k∗, λ∗):

�±,1(x, t, k, λ) = σ1(�±,2(x, t, k∗, λ∗))∗, σ1 =
(

0 1
1 0

)
, (11)
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implying

a(k, λ) = ā∗(k∗, λ∗), b(k, λ) = b̄∗(k, λ∗). (12)

Then det S(k) = 1 yields

|a(k)|2 = 1 + |b(k)|2, k ∈ 	 \ {±qo}. (13)

The scattering problem also admits a second involution: (k, λ) → (k∗, −λ∗).
The corresponding symmetries for the eigenfunctions are given by:

(�±,1(x, t, k∗, −λ∗))∗ = iq±
λ − k

σ1�±,1(x, t, k, λ), (14)

(�±,2(x, t, k∗, −λ∗))∗ = −iq∗
±

λ − k
σ1�±,2(x, t, k, λ). (15)

In turn, these symmetries imply the following relations for the scattering data:

a∗(k∗, −λ∗) = q−
q+

a(k, λ), ā∗(k∗, −λ∗) = q+
q−

ā(k, λ), (16)

b∗(k, −λ) = −q+
q∗−

b(k, λ), b̄∗(k, −λ) = −q∗
+

q−
b̄(k, λ). (17)

In view of the inverse problem, is convenient to introduce a uniformization
variable z defined by the conformal mapping (cf. [8])

z = k + λ(k),

which is inverted by

k = 1

2

(
z + q2

o/z
)
, λ = 1

2

(
z − q2

o/z
)
.

Then: (i) the two sheets K
+ and K

− are mapped onto the upper and lower
half-planes C

± of the complex z-plane, respectively; (ii) the cut 	 on the
Riemann surface is mapped onto the real z-axis; (iii) the segments −qo � k � qo

on K
+ and K

− are mapped onto the upper and lower semicircles of radius qo

and center at the origin of the z-plane; (iv) the involution (k, λ) 
→ (k∗, λ∗)
corresponds to z → z∗, and (k, λ) 
→ (k∗, −λ∗) to z → q2

o/z∗. (Note also
k − λ = q2

o/z.)
The discrete spectrum is the set of all values of k ∈ K such that a(k) = 0

or ā(k) = 0. It is well known that for the scalar defocusing NLS equation
such zeros are real and simple [8]. If q − q± ∈ L1, 4(R±), then one can prove
there is a finite number of zeros, all of which belonging to the spectral gap
k ∈ (−qo, qo) [16], corresponding to z ∈ Co := {z ∈ C : |z| = qo}. Moreover,
the symmetries of the scattering data imply that a(z) = 0 if and only if
ā(z∗) = 0. Let then {ζ j }N

j=1 denote the zeros of a(z) on the upper half of
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Co, and {ζ ∗
j }N

j=1 the corresponding zeros of ā(z) in the lower half. For all
j = 1, . . . , N , the Wronskian representations (10) yield

�−,1(x, t, ζ j ) = b j �+,2(x, t, ζ j ), �−,2(x, t, ζ ∗
j ) = b̄ j �+,1(x, t, ζ ∗

j ), (18)

for some complex constants b j and b̄ j , with b∗
j = b̄ j due to the symmetries (11).

Moreover, writing the symmetries (14) and (15) in terms of the uniformization
variable, one can easily verify that b j and b̄ j also satisfy

b∗
j = −q−

q∗+
b j , b̄∗

j = −q∗
+

q−
b̄ j .

In turn, these provide the residue relations

Res
z=ζ j

[
M−,1

a

]
= C j e−2i
(x,t,ζ j ) M+,2(x, t, ζ j ),

Res
z=ζ ∗

j

[
M−,2

ā

]
= C̄ j e2i
(x,t,ζ j ) M+,1(x, t, ζ ∗

j )

(which will be needed in the inverse problem), where the norming constants
are C j = b j/a′(ζ j ) and C̄ j = b̄ j/ā′(ζ ∗

j ), and satisfy the symmetry relations:

C̄ j = C∗
j , C∗

j = q+
q∗+

C j .

Note that the Jost solutions are continuous at the branch points ±qo, while the
scattering coefficients generically have simple poles when z = ±qo, unless the
columns of �±(x, t, z) become linearly dependent at either z = qo or z = −qo,
or both. In this case, a(z) and ā(z) are nonsingular near the corresponding
branch point. When this happens, in scattering theory the point z = −qo or
z = qo is called a virtual level [8].

The asymptotic behavior of the eigenfunctions and scattering data as z → ∞
and as z → 0 is given by

M±(x, t, z) =
(

1 −iq(x, t)/z
iq∗(x, t)/z 1

)
+ h.o.t. as z → ∞ (19a)

M±(x, t, z) =
(

q(x, t)/q± −iq±/z
iq∗

±/z q(x, t)/q∗
±

)
+ h.o.t. as z → 0 (19b)

implying S(z) = I + O(1/z) as z → ∞ and S(z) = diag(q+/q− , q−/q+) +
O(z) as z → 0.

The inverse problem [i.e., the problem of recovering the potential q(x, t) from
the scattering data] can be formulated as a matrix Riemann–Hilbert problem
(RHP) in terms of the uniformization variable. Indeed, from (8) one obtains:

μ−(x, t, z) = μ+(x, t, z)(I − R(x, t, z)), ∀z ∈ R, (20)
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where the sectionally meromorphic functions are

μ+(x, t, z) = (
M+,2, M−,1/a

)
, μ−(x, t, z) = (

M−,2/ā, M+,1
)
,

the jump matrix is

R(x, t, z) =
( |ρ(z)|2 e−2i
(x,t,z)ρ(z)

−e2i
(x,t,z)ρ∗(z) 0

)
,

and the reflection coefficient is ρ(z) = b(z)/a(z). The matrices μ±(x, t, z) − I
are O(1/z) as z → ∞. After regularization, to account for the poles at z = 0
(cf., (19)) and at the discrete eigenvalues {ζ j , ζ

∗
j }N

j=1, the RHP (20) can be
solved via Cauchy projectors, and the asymptotics of μ± as z → 0 yields the
reconstruction formula

q(x, t) = q+

⎡
⎣1 −

N∑
j=1

C j

ζ j
M+,2(x, t, ζ j ) e−2i
(x,t,ζ j )

− 1

2π i

∫ +∞

−∞

ρ(ζ )

ζ
M+,2(x, t, ζ ) e−2i
(x,t,ζ )dζ

]
. (21)

Taking into account the analyticity properties of a(z) in the UHP, the
location of its zeros, as well as the symmetries, one can obtain for Im z > 0
the following representation (trace formula):

a(z) =
N∏

j=1

(
z − ζ j

z − ζ ∗
j

)
exp

[
− 1

2π i

∫ ∞

−∞

log(1 − |ρ(ζ )|2)

ζ − z
dζ

]
. (22)

Recalling that a(z) → q+/q− as z → 0, we conclude that the potential satisfies

q+
q−

=
N∏

j=1

ζ j

ζ ∗
j

exp

[
− 1

2π i

∫ ∞

−∞

log(1 − |ρ(z)|2)

z
dz

]
, (23)

sometimes referred to as the θ -condition [8].

3. Box-type piecewise-constant ICs

Consider a piecewise-constant IC of the type

q(x, 0) =
⎧⎨
⎩

q− = qo eiθ− x < −L ,

qc = h eiα −L < x < L ,

q+ = qo eiθ+ x > L ,

(24)

where h, qo, and L are arbitrary nonnegative parameters, and α and θ± are
arbitrary phases. The above IC models a potential well or a potential “box”
(both on a nonzero background) when h < qo and when h > qo, respectively.
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As we are only concerned with the discrete spectrum of the scattering operator,
which is time-independent, hereafter we will consider the scattering problem
at t = 0 and omit the time dependence from the eigenfunctions. (Recall that
all scattering coefficients are time-independent with our normalizations.) The
scattering problem (3) in each of three regions at t = 0 then takes the form

�x = (−ikσ3 + Q j )�, j = c, ±, (25)

with constant potentials

Q± =
(

0 q±
q∗

± 0

)
, Qc =

(
0 qc

q∗
c 0

)
. (26)

The scattering problem can be solved explicitly. Introducing

λ2 = k2 − q2
o , μ2 = k2 − h2, (27)

one can easily find explicit solutions to (25):

ϕl(x, k) = Y−(k) e−iλxσ3 x � −L , (28a)

ϕc(x, k) = Yc(k) e−iμxσ3 − L � x � L , (28b)

ϕr (x, k) = Y+(k) e−iλxσ3 x � L , (28c)

where Y±(k) is as in (7), and

Yc(k) = I − i

k + μ
σ3 Qc.

We then have an explicit, simple representation for the Jost solutions �±(x, k)
in their respective regions:

�−(x, k) ≡ ϕl(x, k) x � −L , (29a)

�+(x, k) ≡ ϕr (x, k) x � L . (29b)

The form of the Jost solutions beyond these domains can then be obtained
by writing each Jost solution as an appropriate linear combination of the
fundamental matrix solution of the scattering problem in each region and then
imposing continuity at the boundary. On the other hand, because we are
only concerned with the determination of the scattering data, we can follow
a simpler procedure: At the boundary of each region one can express the
fundamental solution on the left as a linear combination of the fundamental
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solution on the right, and vice versa. In particular, we can introduce scattering
matrices S−(k) and S+(k) such that

ϕl(−L , k) = ϕc(−L , k)S−(k), ϕr (L , k) = ϕc(L , k)S+(k). (30)

As a consequence, taking into account (3), we can express the scattering matrix
S(k) in (9) relating the Jost solutions �±(x, k) as

S(k) = S−1
+ (k)S−(k) = eiλLσ3Y −1

+ (k)Yc(k) e−2iμLσ3Y −1
c (k)Y−(k) eiλLσ3 . (31)

In particular, after some straightforward algebra, we obtain

2λμ e−2iλLa(k) = μ cos (2μL)

[
λ + k + q+

q−
(λ − k)

]

+ i sin (2μL)

[
−k(λ + k) + q+

q−
k(λ − k) + qcq∗

− + q∗
c q+

]
,

2λμ b(k) = sin (2μL)

[
k(q∗

+ − q∗
−) + q∗

c (λ + k) − qc
q∗

−
q∗+

(λ − k)

]
+ iμ cos (2μL) (q∗

− − q∗
+).

The remaining two entries in the scattering matrix can be determined from the
symmetries of the scattering data.

Without loss of generality owing to the phase invariance of the NLS
equation, we now set θ+ = −θ− = θ . Also, owing to the reflection symmetry
x → −x of the NLS equation, without loss of generality we can limit ourselves
to considering θ ∈ [0, π/2]. Taking into account that by assumption |q±| = qo

and qc = h eiα, we then obtain the following expressions for the scattering
coefficients:

λμ e−2iλL−iθa(k) = μ cos (2μL) [λ cos θ − ik sin θ ]

+ i sin (2μL) [hqo cos α − k (k cos θ − iλ sin θ )] , (32)

λμb(k) = −μqo sin θ cos (2μL)

− i sin (2μL) [kqo sin θ + heiθ (λ sin(θ + α) + ik cos(θ + α))].

(33)

Note that both a(k) and b(k) can have a pole at λ = 0, in general, while all
terms have a finite limit as μ → 0.

In the special case in which the asymptotic phase θ is taken to be zero, the
above expressions of the scattering coefficients simplify to:

λμe−2iλLa(k) = λμ cos (2μL) + i sin (2μL) (qo h cos α − k2), (34)

λμb(k) = h sin (2μL) (k cos α − iλ sin α). (35)
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In the following sections we use the above expressions to answer the two
issues raised in the introduction.

4. Discrete eigenvalues

Recall that the discrete eigenvalues of the scattering problem are the zeros
of a(k). As the scattering problem is self-adjoint, any such eigenvalues must
be real. Moreover, owing to (13), the zeros of a(k) can only be located in the
spectral gap −qo < k < qo. When θ = 0, the potential is an even function of
x , and thus discrete eigenvalues come in opposite pairs ±k j [20]. Thus, when
θ = 0 we can restrict our search to the range 0 � k < qo. It is convenient to
introduce r = h/qo and ω = qo L , and to rescale the scattering parameter as
k = qo y. We investigate various scenarios.

4.1. Potential well

In this case h < qo, implying 0 � r < 1. Here we take θ = 0 and use the
corresponding expression (34) for a(k). When looking for discrete eigenvalues
in the range h � k < qo [i.e., for zeros of a(y) with y ∈ [r, 1)], one has
λ = iqo

√
1 − y2 and μ = ±qo

√
y2 − r2, implying

e2ω
√

1−y2
a(y) = cos (2ω

√
y2 − r2) − y2 − r cos α√

1 − y2

sin (2ω
√

y2 − r2)√
y2 − r2

. (36)

[Note that all results are independent of the choice of the sign for μ.] The
limit of a(y) as y → 1− (corresponding to λ → 0, i.e., k → qo) shows that
generically a(y) has a pole at the branch points, because r cos α < 1, unless
ω = nπ/(2

√
1 − r2) for some n ∈ N. The sign of the function a(y) in a left

neighborhood of the branch point depends on the sign of sin (2ω
√

1 − r2).

4.1.1. Nonexistence of an area theorem. Here we consider potentials
satisfying the condition r � cos α, and we show that all such potentials admit
at least one discrete eigenvalue, no matter how small the value of ω > 0 is.
For this purpose, for any fixed 0 � r < 1, consider values of ω sufficiently
small that 2ω

√
1 − r2 < π/2, so that sin (2ω

√
1 − r2) > 0. As a consequence,

limy→1− a(y) = −∞, regardless of the choice for α ∈ R and 0 � r < 1. On
the other hand, a(y) is continuous in the limit y → r+, and

lim
y→r+

e2ω
√

1−y2
a(y) = 1 + 2rω√

1 − r2
(cos α − r ).

This means that, for any choice of α ∈ R and 0 � r < 1 such that cos α � r , the
function a(y) changes sign in the interval (r, 1). Therefore, by continuity a(y)
must have at least one zero in that interval. Note the area of the box (namely,



On the Spectrum of the Dirac Operator 149

the size of the perturbation from the constant background) is 2ω(1 − r ). Thus,
the above results imply that no area theorem is possible for the defocusing
NLS equation with NZBCs, because there exists a class of potentials for which
the scattering problem has at least one discrete eigenvalue, no matter how
small the area of the IC is.

Next we look at generic values of ω and α for any fixed value of 0 � r < 1
and discuss the existence, number and precise location of discrete eigenvalues.
In locating the zeros of a(y), it will be convenient to study separately the cases
cos α < r and r � cos α, as well as the ranges y ∈ [0, r ) and y ∈ [r, 1).

4.1.2. Location of discrete eigenvalues: y ∈ [r, 1) and r � cos α. Intro-
ducing the variable ξ =

√
y2 − r2, we can obtain all the discrete eigenvalues

in the range [r, 1) [i.e., the zeros of a(y) in (36)] as the solutions of the
transcendental equation

tan(2ωξ ) = ξ
√

1 − r2 − ξ 2

r2 − r cos α + ξ 2
, (37)

with 0 < ξ <
√

1 − r2 < 1. [Note ξ = 0 (i.e., y = r ) is always a solution
of (37), but it is a zero of a(y) iff 2rω(r − cos α) = √

1 − r2. In particular,
y = r can never be a zero of a(y) if cos α � r .] Note also that: (i) the
numerator in the right-hand side (RHS) of (37) is positive ∀ξ ∈ (0,

√
1 − r2)

and zero at the endpoints; (ii) the denominator equals 1 − r cos α > 0 at
ξ = √

1 − r2, hence it is always positive in a neighborhood of this point;
(iii) the tangent in the left-hand side (LHS) is positive ∀ξ ∈ (0,

√
1 − r2) if

ω � π/(4
√

1 − r2), but has one or more vertical asymptotes, and therefore
takes on all positive and negative real values, if ω > π/(4

√
1 − r2).

As cos α � r , the denominator in the RHS is negative ∀ξ ∈ (0, ξo), positive
∀ξ ∈ (ξo,

√
1 − r2), and zero for ξ = ξo, where ξo = √

r cos α − r2. Thus,
the RHS of (37) has a pole at ξ = ξo, and takes on all real values when
ξ ∈ (0,

√
1 − r2). As a result, for all r = 0 (37) has exactly one nontrivial root

whenever 0 < ω < π/(2
√

1 − r2), and one more root appears, as ω increases,
each time the value of the tangent at ξ = √

1 − r2 goes through a zero, i.e., at
ω = ωn , with ωn = nπ/(2

√
1 − r2), for all n ∈ N. Similar arguments apply

when r = 0, except that in this case ξ ≡ y and ξo = 0; here the RHS of (37)
has no pole, but tends to 1 as ξ → 0.

4.1.3. Location of discrete eigenvalues: y ∈ [r, 1) and cos α < r . Discrete
eigenvalues are still given by the solutions of (37), with ξ defined as above.
However in this case the situation is slightly more complicated.

The RHS of (37) is positive ∀ξ ∈ (0,
√

1 − r2) and vanishes at ξ = 0
and ξ = √

1 − r2, while the LHS is an increasing function in each interval
of continuity. Again, suppose r = 0 first. Comparing the slope of the LHS
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and that of the RHS at ξ = 0, one sees that for all ω ∈ (0, ωo), with
ωo = √

1 − r2/[2r (r − cos α)] exactly one intersection exists. On the other
hand, for all ωo < ω < ω1 (with ω1 as above) no intersections exist. Finally,
discrete eigenvalues in the range y ∈ [r, 1) are again present for all ω > ω1,
and one more discrete eigenvalue appears at ω = ωn , as in the previous case.

Note that as ω → ω−
o , the intersection tends to ξ = 0, i.e., y = r . Note also

that the exclusion zone (ωo, ω1) might be empty if r and α are such that
ω1 � ωo. As before, similar considerations apply when r = 0. We are now left
to look for zeros of a(y) for y ∈ [0, r ), for both choices of the sign of r − cos α.

4.1.4. Location of discrete eigenvalues: y ∈ [0, r ) and r � cos α. In this
case λ = iqo

√
1 − y2 as before, but μ = ±iqo

√
r2 − y2. (Again, the result is

independent of the sign choice.) Then (36) is replaced by

e2ω
√

1−y2
a(y) = cosh

(
2ω
√

r2 − y2
)+ r cos α − y2√

1 − y2

sinh
(
2ω
√

r2 − y2
)

√
r2 − y2

.

(38)
All terms in the RHS are nonnegative except r cos α − y2. Thus, a necessary
condition for a(y) to vanish is that this term be negative. In turn, because here
we are considering y ∈ [0, r ), a necessary condition for this to happen is that
cos α < r . Therefore, we can conclude that when cos α � r no zeros of a(y)
exist for y ∈ [0, r ).

4.1.5. Location of discrete eigenvalues: y ∈ [0, r ) and cos α < r . We
distinguish two sub-cases: (i) If cos α < 0, one should look for zeros of a(y)
in the entire range y ∈ [0, r ). (ii) If 0 � cos α < r , the search can be restricted
to the range y ∈ [

√
r cos α, r ). In either case, the zeros of a(y) are given by

the solutions of the transcendental equation

tanh(2ωξ ) = ξ
√

1 − r2 + ξ 2

r2 − r cos α − ξ 2
, (39)

where now ξ =
√

r2 − y2. [The corresponding ranges for ξ are ξ ∈ (0, r ] in
case (i) and ξ ∈ (0,

√
r (r − cos α)) in case (ii).] Both the LHS and the RHS

of (39) are monotonically increasing functions of ξ . Moreover: (i) If cos α < 0,
both the LHS and the RHS are continuous and positive ∀ξ ∈ (0, r ]. (ii) If
0 � cos α < r < 1, the RHS has a pole at ξ = ξo, with ξo = √

r (r − cos α),
and it is negative for ξ ∈ (ξo,

√
r (r − cos α)), while for ξ ∈ (0, ξo) it takes

on all positive values. In both cases, however, comparing the slope of the
LHS and that of the RHS at ξ = 0 one arrives at the same conclusion: when
cos α < r , the scattering coefficient a(y) has exactly one zero in the range
y ∈ [0, r ) iff ω > ωo (with ωo as before), and no zero otherwise. Indeed, it is
easy to see that as ω → ω+

o , the zero tends to ξ = 0, i.e., y = r . Thus, this
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discrete eigenvalue is nothing else but the continuation of the solution branch
discussed earlier. Moreover, as ω → ∞, this unique discrete eigenvalue tends
to y∞ = y(ξ∞), where ξ∞ is the value of ξ for which the RHS of (39) equals 1,
i.e., ξ∞ = r (r − cos α)/

√
r2 − 2r cos α + 1, implying

y∞ = r | sin α|√
r2 − 2r cos α + 1

. (40)

4.1.6. Summary and examples. We can summarize the above results for the
potential well (i.e., r = h/qo < 1) as follows. In all cases (i.e., independently
of the relative values of r and cos α), there is always at least one discrete
eigenvalue. Moreover, for all 0 < ω < ω1 there is exactly one eigenvalue,
and, as ω increases, one more eigenvalue appears at each ω = ωn , with
ωn = nπ/(2

√
1 − r2), for all n ∈ N. Finally: (i) If r � cos α, all such eigenvalues

are located in the range k ∈ (h, qo), and each of them tends asymptotically to
k = h as ω → ∞. (ii) If r > cos α, the statements about the location of the
eigenvalues and their limit as ω → ∞ apply to all eigenvalues except one.
This exceptional eigenvalue, which is present for all values of ω, is located
in the range (h, qo) for all ω < ωo, at k = h for ω = ωo, and in the range
(y∞qo, h) for all ω > ωo. In addition, this eigenvalue tends to y∞qo in the
limit ω → ∞. In all these cases, all the eigenvalues are always accompanied
by their symmetric counterparts in the range k ∈ (−qo, 0].

The various cases are illustrated by a few representative examples in Fig. 1,
while Fig. 2 shows the dependence of the discrete spectrum on ω when
cos α � r (left) and cos α < r (right). It is worthwhile to note that, in all
these cases, discrete eigenvalues always bifurcate from the branch points. In
other words, generically speaking the discrete eigenvalues appear through the
formation of virtual levels.

4.2. Further considerations

4.2.1. Potential barrier. In this case h > qo. Taking again θ = 0 and using
the notation k = qo y and ω = qo L introduced above, we now have r > 1 and
μ = iqo

√
r2 − y2. We still obtain (38), but now with r > 1, and we need to

look for zeros of a(y) for y ∈ [0, 1). (Contrary to the previous case, here the
whole range of values y is allowed in principle.) In this case, a(y) has a pole at
the branch points unless r cos α = 1.

If r cos α � 1, all terms in the above expression are positive, and therefore
no zeros of a(y) exist for y ∈ [0, 1)—i.e., the problem does not have any
discrete eigenvalues. If r cos α < 1, on the other hand, zeros of a(y) may exist
in principle. Introducing ξ =

√
r2 − y2, we find that the discrete eigenvalues

are given by the solutions of the transcendental equation (39) as before, but
where now ξ ∈ (

√
r2 − 1, r ]. In order for (39) to admit any solutions, one

obviously needs its RHS to be strictly less than 1. In turn, reverting back to y



152 G. Biondini and B. Prinari

Ξ0.0 0.2 0.4 0.6 0.8

− 4

− 2

0

2

4

Ξ0.0 0.2 0.4 0.6 0.8

− 4

− 2

0

2

4

Ξ0.0 0.2 0.4 0.6 0.8

− 4

− 2

0

2

4

0.0 0.2 0.4 0.6 0.8

− 4

− 2

0

2

4

Figure 1. The LHS (red) and RHS (black) of (37) for a potential well with r = 0.7 as a
function of ξ in (0,

√
1 − r 2). Top left: α = 0 (cos α > r ) and ω = 1, yielding one intersection.

Top right: α = 0 (cos α > r ) and ω = 3, yielding two intersections. Bottom left: α = π/2
(cos α < r ) and ω = 1, yielding no intersections. Bottom right: α = π/2 (cos α < r ) and
ω = 3, yielding one intersection.
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Figure 2. The discrete spectrum of the potential well as a function of ω for r = 0.7
and α = 0 (left), α = π/2 (right). The horizontal axis is y = k/qo, the vertical axis is ω.
The dashed vertical line identifies the value y = r . The dotted horizontal lines delimit the
exclusion zone

√
1 − r 2/[2r (r − cos α)] � ω � π/(2

√
1 − r 2). The dot–dashed vertical line

shows the limiting value y∞ given by (40).
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Figure 3. The LHS (red) and RHS (black) of (39) as a function of ξ in (
√

1 − r 2, r ] for a
potential barrier with r = 1.2, α = π/4 and ω = 1.

and taking into account that y < 1, this inequality implies

r2 sin2 α

1 + r2 − 2r cos α
< 1. (41)

Conversely, whenever this condition is satisfied the right-hand side of (39)
takes on all positive real values for ξ ∈ (

√
r2 − 1, r ] exactly once, which

ensures the existence of a discrete eigenvalue.
It is straightforward to check, however, that the inequality (41) is identically

satisfied when r cos α < 1.
On the other hand, note that, unlike the case of a potential well, at most one

discrete eigenvalue exists in this case (because the hyperbolic tangent is not an
oscillating function). Indeed, it is easy to see that as ω → ∞, the unique
discrete eigenvalue tends to the value of y for which the RHS of (39) equals 1,
i.e., y∞ given by (40) as before.

Summarizing, for a potential barrier (i.e., when r > 1) no discrete eigenvalues
exist if r cos α � 1, and exactly one discrete eigenvalue (plus its symmetric
counterpart) exists if r cos α < 1 (cf. Figure 3 for an example of the latter case).

Figure 4 shows the spectrum of the scattering problem as a function of ω

for a few choices of α satisfying the condition r cos α < 1.

4.2.2. Black solitons. We now return to the general expression for a(k)
given in (32). Recall that the contribution to the solution obtained from a
discrete eigenvalue at k = 0 is referred to as a black soliton. Also recall
that the asymptotic phase difference of the potential is θ+ − θ− = 2θ . It is
straightforward to establish necessary and sufficient conditions to ensure that
k = 0 is a discrete eigenvalue, i.e., a zero of a(k). Indeed, when k = 0 both λ

and μ are purely imaginary: λ = iqo and μ = ih, and

e2qo L−iθa(0) = cosh(2hL) cos θ + sinh(2hL) cos α.
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Figure 4. The discrete spectrum of the potential barrier as a function of ω for r = 1.2 and a
few different values of α satisfying the condition r cos α < 1: α = π/4 (blue), α = π/2
(purple), α = 2π/3 (red) and α = π (orange). As before, the horizontal axis is y = k/qo, the
vertical axis is ω. The dotted vertical lines show the limiting value y∞ in each case.

Thus, k = 0 is a discrete eigenvalue if and only if either (i) cos α = cos θ = 0,
for any choice of h, L , qo; or (ii) tanh(2hL) = − cos θ sec α. This second case
obviously requires cos θ sec α > −1.

4.2.3. Step-like potentials. The reduction L = 0 yields the case in which
the potential is a simple step, with the same constant amplitude qo for x ≶ 0
and a phase jump of 2θ across x = 0. In this case, the scattering coefficient
a(k) in (32) reduces to

e−iθa(k) = cos θ − i
k

λ
sin θ. (42)

For k ∈ [−qo, qo] one has λ = i
√

q2
o − k2. The case θ = 0 obviously corres-

ponds to the trivial solution q(x, t) ≡ qo. For any value θ ∈ (0, π/2] it is easy
to see from (42) that there is exactly one discrete eigenvalue located at
k = qo cos θ . Note how, even in this case, the discrete eigenvalue appears from
the branch point as soon as the potential deviates from the constant background.

5. Contribution of the continuous spectrum to the asymptotic phase
difference

Recall that the condition (23) determines the asymptotic phase difference 2θ

of the potential in terms of a contribution from the discrete spectrum and one
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from the continuous spectrum. The symmetries (16) imply that the reflection
coefficient satisfies |ρ(z)| = |ρ(q2

o/z)| and the integral in (23) simplifies to∫ ∞

−∞

log(1 − |ρ(z)|2)

z
dz = 2

∫ −qo

−∞

log(1 − |ρ(z)|2)

z
dz

+ 2
∫ ∞

qo

log(1 − |ρ(z)|2)

z
dz.

The first term in the RHS is positive, while the second term is negative.
(Recall 0 � 1 − |ρ(z)|2 < 1.) Nonetheless, because no symmetry relates the
two integrands, one should not expect an exact cancellation in general. This
suggests that the radiative part of the spectrum can in principle produce a
nontrivial contribution to the asymptotic phase difference of the potential. We
next show that this is indeed the case by constructing an explicit example in
which a nonzero asymptotic phase difference of the potential originates only
from the contribution of the continuous spectrum.

The idea is to look for a similar result as for the potential barrier in section 4,
where one can find parameter regimes for which the scattering problem has
no discrete eigenvalues. The analysis for the potential barrier in Section 4 is
limited to the case θ = 0, for which there is no asymptotic phase difference. If
one can obtain a similar result in the case θ = 0, however, the asymptotic
phase difference in the potential can only be due to radiation.

In light of the above considerations, we take h > qo, implying r = h/qo > 1,
but now with α = 0. As before we parameterize k as k = qo y. As in this case the
potential is not symmetric with respect to x , we need to consider both positive
and negative values of y in (−1, 1). Taking ω = qo L as before, (32) becomes

e−iθ+2ω
√

1−y2
a(y) = 1√

1 − y2

[
f1(y)√

r2 − y2
sinh

(
2ω
√

r2 − y2
)

+ f2(y) cosh
(
2ω
√

r2 − y2
)]

, (43)

where

f1(y) = r − y(y cos θ +
√

1 − y2 sin θ ), (44a)

f2(y) =
√

1 − y2 cos θ − y sin θ. (44b)

The hyperbolic sine and cosine in the RHS of (43), as well as the square
roots in the denominator, are all positive ∀y ∈ (−1, 1). Moreover, because
r > 1, it is straightforward to show that f1(y) > 0 ∀θ ∈ R and ∀y ∈ (−1, 1).
The last term in the RHS of (43) is not sign-definite, however. Nonetheless,
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(44) suggests that if θ is sufficiently small, f2(y) is also positive except
in a neighborhood of y = ±1, where it becomes negative. Note, however,
that f2(y) = O(θ ) as θ → 0, whereas f1(y) remains O(1) as a function
of θ for all y ∈ [−1, 1], thereby keeping the RHS of (43) from becoming
negative.

To prove that this is indeed the case, recall that we can take
θ ∈ [0, π/2] without loss of generality, and note that for all y ∈ [−1, 1] one
has

f1(y) � r − 1, f2(y) � − sin θ.

Therefore, a sufficient condition for the RHS of (43) to be strictly positive is
that

tanh(2ω
√

r2 − y2) >

√
r2 − y2

r − 1
sin θ ∀y ∈ [−1, 1].

As the smallest value of the LHS in the above inequality (achieved at y = ±1)
is tanh(2ω

√
r2 − 1), while the largest value of the RHS (achieved at y = 0)

is [r/(r − 1)] sin θ , a sufficient condition for the RHS of (43) to be strictly
positive is that

sin θ < (1 − 1/r ) tanh (2ω
√

r2 − 1). (45)

To summarize, all potentials satisfying the condition (45) have a nonzero
asymptotic phase difference but no discrete spectrum. This result therefore
demonstrates that the radiative part of the spectrum can indeed contribute to the
asymptotic phase difference of the potential, provided the latter is sufficiently
small.

Figure 5 shows, for a few values of θ , the boundary of the region in the
rω-plane for which the condition (45) is satisfied. Because the RHS of (45)
can be made arbitrarily close to 1 by taking sufficiently large values of r ,
for any given θ < π/2 one can construct potentials in which the asymptotic
phase difference is produced only by the continuous spectrum. On the other
hand, because both factors in the RHS of (45) are strictly less than 1, an
asymptotic phase difference 2θ = π is not guaranteed. Note however that the
condition (45) is sufficient but not necessary, as demonstrated in Fig. 6. Next
we therefore look at the special case θ = π/2.

When r > 1, α = 0 and θ = π/2, the discrete eigenvalues (if any) are given
by the solutions of the transcendental equation

tanh(2ω
√

r2 − y2) = g(y), g(y) = y
√

r2 − y2

r − y
√

1 − y2
.

The LHS and the denominator of g(y) are strictly positive for y ∈ [−1, 1],
so solutions can only exist for y ∈ (0, 1). There, the LHS is a decreasing
function of y, taking on all values in the range (tanh(2ω

√
r2 − 1), tanh(2ωr )).
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ω

Figure 5. The boundaries of the ranges of r (horizontal axis) and ω (vertical axis) that
guarantee that no discrete eigenvalues exist as a function of θ according to the condition (45).

Figure 6. Plots of log10 |a(y)| (vertical axis) versus y (horizontal axis) for ω = 1, θ = π/4
and r = 2, 3 and 4 (solid blue curves). Also shown (dot–dashed red curve) is the curve
obtained for the value of r that makes the two sides of (45) equal. Note how even for lower
values of r no discrete eigenvalues exist.

On the other hand, it is straightforward to show that g(y) has a local maximum
at y = yr , with yr = r/

√
r2 + 1 and g(yr ) = 1. Moreover, g(0) = 0 and

g(1) =
√

1 − 1/r2 < 1. Therefore one is guaranteed at least one intersection
for y ∈ (0, 1), implying that for the specific class of potentials considered
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here, when the asymptotic phase difference of the potential is π there always
exists at least one discrete eigenvalue.

6. Final remarks

Even though we have restricted our attention to potentials that could be
characterized with elementary techniques, their study has nonetheless enabled
us to draw general conclusions on the spectral properties of the scattering
problem—namely, that no area theorem is possible and that the continuous
spectrum can indeed provide a nonzero contribution to the asymptotic phase
difference of the potential.

Also, because the initial datum q(x, 0) coincides with its boundary values
for all |x | > L , such ICs belong to the equivalent of compact support potentials
in the case of zero BCs, and are therefore included in any functional class
for which IST can conceivably be implemented, implying that the above
conclusions hold in any such class.

On the other hand, other conclusions are specific to the examples considered
here, and therefore open up the question of whether they remain true for generic
potentials. One such question is whether an asymptotic phase difference of π

always implies the existence of at least one discrete eigenvalue. Of course
to answer this question in general one must investigate a broad class of ICs
defined in an appropriate functional space. Such a study is outside the scope of
this work. Nonetheless, the explicit examples discussed here should provide
useful insight that will help the construction of a general theory.
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