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p-star models, mean-field random networks, and the heat hierarchy
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We consider the mean-field analog of the p-star model for homogeneous random networks, and we compare
its behavior with that of the p-star model and its classical mean-field approximation in the thermodynamic
regime. We show that the partition function of the mean-field model satisfies a sequence of partial differential
equations known as the heat hierarchy, and the models connectance is obtained as a solution of a hierarchy of
nonlinear viscous PDEs. In the thermodynamic limit, the leading-order solution develops singularities in the
space of parameters that evolve as classical shocks regularized by a viscous term. Shocks are associated with
phase transitions and stable states are automatically selected consistently with the Maxwell construction. The
case p = 3 is studied in detail. Monte Carlo simulations show an excellent agreement between the p-star model
and its mean-field analog at the macroscopic level, although significant discrepancies arise when local features
are compared.
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I. INTRODUCTION

Networks provide an effective conceptual framework to
model complex systems where fundamental constituents and
interactions can be represented by nodes and links, respec-
tively [1,2]. Following a standard mathematical terminology,
a network is a graph where vertices correspond to nodes
and links to edges. Graph theory, introduced by Leonard
Euler in 1736 and inspired by the celebrated problem of the
seven bridges of Könisberg, has further developed into an
established field of mathematics with numerous applications
in a variety of disciplines, such as physics, technology and
information sciences, biology, sociology, and epidemiology
[1,3–10]. However, understanding real-world networks is par-
ticularly challenging, since they exhibit specific features of
complex systems, like for instance absence of equilibrium,
complex intrinsic topology, geometry, and dynamics, which
make detailed analysis and prediction of their behavior a task
currently out of reach.

Random graph models are often introduced with the aim to
capture and provide a qualitative description of macroscopic
features of complex networks which may arise independently
of the specific microscopic detail of their realisation. An
important class of such models are the exponential random
graphs models (ERGMs). ERGMs are specified by a proba-
bility distribution that maximizes the Gibbs entropy subject to
constraints on expectation values of observables [1,11]. In this
paper, ERGMs are defined in analogy to a well studied class
of statistical mechanical models for which the partition func-
tion and the free energy satisfy suitable integrable differential
identities [12–14] (see also Refs. [15–17] for earlier studies
and Refs. [18,19] for more recent extensions to random ma-
trix models). A special family of ERGMs is represented by
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network models where interactions from groups of up to p
links sharing a common node are considered. These models
are referred to as p-star models. The Gibbs-Boltzmann (GB)
probability distribution of p-star models is of the form [1]

P[A] = e−Hp[A]

Zn
, (1)

where

Hp[A] = −
p∑

k=1

τk

nk−1
Sk (A) (2)

is the graph Hamiltonian, p ∈ N, A = (Ai j )i, j=1,...,n is the
n × n adjacency matrix of a simple undirected graph, i.e.,
Ai j ∈ {0, 1} if i �= j, Aii = 0 and Ai j = Aji, τk are the coupling
constants and

Sk (A) = 1

k!

∑
i, jl �= jm

Ai j1 Ai j2 . . . Ai jk (3)

is the number of k-stars (sets of k links attached to the same
node). The partition function is defined in a standard way as

Zn =
∑
{A}

e−Hp[A], (4)

where the sum is evaluated over the set {A} all possible con-
figurations of A.

In this paper we consider a mean-field (MF) analog of the
p-star model Eq. (2) defined by the Hamiltonian

HMF[A] = −
p∑

k=1

tk
(2N )k−1

(∑
i, j

Ai j

)k

, (5)

which we refer to as MF model, where N = n(n − 1)/2 is
the maximum number of links in a simple undirected graph
of n nodes. MF model Eq. (5) is defined for a finite-size
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system and its applicability relies on the assumption that all
k tuples of links interact via effective coupling constant tk .
We shall clarify the difference between the mean-field model
represented by the Hamiltonian Eq. (5), where pairs, triples,
and so on, interact, respectively, with constant of t2, t3, etc.,
and the mean-field approximation (see remark at the end
of Sec. IV), where the Hamiltonian is replaced by a linear
expression where each link interacts with the average link.
The Hamiltonian Eq. (5), unlike Eq. (2), accounts indeed
for contributions from all interactions of k-links for k � p
independently on whether links share a node or not, and hence
is linearly extensive for large N , i.e., HMF[A] = O(N ) as
N → ∞. We compare the qualitative features of both models
Eqs. (2) and (5) at finite n and in the thermodynamic limit (i.e.,
n → ∞).

In this paper, we present the hydrodynamic formulation of
the MF theory for ERGMs. The approach is analog to that
introduced in the context of classical fluid models [16,20],
magnetic models [12] and more recently in the context of ran-
dom matrix models [18,19]. The main observation is that the
partition function, and therefore the state functions (obtained
as derivatives of the free energy w.r.t. the thermodynamic
conjugated variables), satisfy suitable differential identities
which are given by nonlinear integrable differential equations.
The study of the thermodynamic limit requires the analysis of
a system of nonlinear differential equations of hydrodynamic
type.

We note that, in general, different models may be associ-
ated to the same differential identity but each of them will
be specified by a particular initial condition. This description
allows to classify models via the differential identities to
which they are associated and their classification is based on
the theory of normal forms and singularities of their solutions
[21]. For example, the Curie-Weiss model, generalized to p-
spin interactions [12], and the MF p-star model discussed in
this paper, belong to the same class, as they are associated to
the same differential identity (the heat equation and its hierar-
chy), but they are specified by different initial conditions. The
universal critical behavior of the order parameters corresponds
to the universal critical behavior of a nonlinear breaking wave
obtained as solution of the associated viscous nonlinear par-
tial differential equation [21–23]. We point out that although
some of the examples considered in the present work are
amenable by direct statistical considerations, the proposed
formulation offers a unifying classification framework for the
models based on the properties of the probability distribution
(and associated differential identities) rather than merely on
the critical behavior of the order parameters. Furthermore, the
hydrodynamic formulation of the thermodynamic asymptotic
regime provides insightful analogies between thermodynam-
ics and the theory of nonlinear waves [15,16,18,20].

For the purposes of this work, it is crucial to write
the Hamiltonian Eq. (5) in terms of the connectance L =∑

i j Ai j/(2N ), that is

HMF[L] = −
p∑

k=1

(2N )tk Lk, (6)

where the notation emphasizes the fact that the Hamiltonian
only depends on the connectance of the given configura-

tion. We demonstrate that the partition function associated
to Eq. (6) satisfies a compatible hierarchy of linear PDEs
(the heat hierarchy), of which the heat equation is the first
member and in which the coupling constants tk play the role of
independent variables. The large n limit is singular and, with
a suitable rescaling, at the leading order, the expectation value
of the connectance satisfies a hierarchy of quasilinear PDEs
(the Hopf hierarchy). Solutions to the Hopf hierarchy develop
singularity for finite values of the independent variables tk and
such singularities are associated to critical points and phase
transitions in the system. A comparison between the exact
solution of the heat hierarchy and Monte Carlo simulations
of both p-star models and their MF analog shows that the an-
alytical solution provides an accurate quantitative description
of the system for sufficiently large n.

The paper is organized as follows: in Sec. II we show
that the partition function for the MF model satisfies the
heat hierarchy, and the free energy also satisfies a set of
nonlinear viscous PDEs known as the Burgers’ hierarchy. In
Sec. III we compare MF networks and p-star models in the
thermodynamic limit by minimising the Kullbach-Leibler di-
vergence. In Sec. IV we discuss the properties of the network
connectance, show that it satisfies the Hopf hierarchy, whose
generic solution develops a gradient catastrophe singularity
and explore the critical sector and singularity resolution. In
Sec. V we provide some thermodynamical considerations and
discuss Monte Carlo simulations performed to explore the
landscape of the free energy and reconstruct the correspond-
ing profile of the connectance. Section VI is devoted to the
comparison of local properties of MF and p-star models. Fi-
nally, Sec. VII offers some concluding remarks.

II. THE HEAT HIERARCHY

Following the approach outlined in Ref. [12], we observe
that the partition function for the MF model

Z (MF)
n (t) =

∑
{A}

e−HMF[L], (7)

satisfies a set (hierarchy) of linear partial differential equations
of the form

∂Z (MF)
n

∂tk
= νk−1 ∂kZ (MF)

n

∂t k
1

k = 1, 2, . . . , p, (8)

where ν = (2N )−1. This statement can be verified by di-
rect substitution given the specific form of the Hamiltonian
Eq. (6). It is straightforward to verify that equations of the
hierarchy Eq. (8) are compatible, that is

∂

∂tk

(
∂Z (MF)

n

∂tl

)
= ∂

∂tl

(
∂Z (MF)

n

∂tk

)
∀l, k ∈ {1, . . . , p}.

Equations (8) are referred to as the heat hierarchy, since the
first member of the hierarchy is the heat equation

∂Z (MF)
n

∂t2
= ν

∂2Z (MF)
n

∂t2
1

.
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The partition function of the MF model is given by the
solution of the hierarchy (8) that matches the initial condition

Z (MF)
n,0 (t1) ≡ Z (MF)

n

∣∣
tk=0 ∀ k>1 =

∑
{A}

et1
∑

i, j Ai j . (9)

We note that Eq. (9) represents the partition function of the
celebrated Erdös-Rényi (ER) model [24], with Hamiltonian

HER = −t1
∑
i, j

Ai j, (10)

which defines an exponential random graph model for a net-
work of noninteracting links. Hence, the MF model can be
viewed as the “evolution” in the space of coupling constants
of the ER model according to the heat hierarchy.

As the partition function diverges exponentially in the large
n limit, to study the MF model in the thermodynamic, i.e., in
the limit n → ∞, let us introduce the function

Fn = ν log Z (MF)
n . (11)

In a statistical mechanical context one has

Fn = −�n/(2T ),

where �n is the analog of the specific Helmholtz free energy
and T is the temperature of the thermodynamic systems. As
the temperature plays the role of a scaling factor in the GB
distribution, we incorporate it into the coupling constants.
Hence, for an effective comparison we can set β = T −1 = 1.
With this choice, �n is expressed in terms of the specific
internal energy En and the specific entropy Sn as

�n = En − Sn.

For the sake of clarity in the use of terminology, we note that
due to the minus sign, the stable equilibrium associated to
the minimum of the Helmholtz free energy corresponds to a
maximum of the function Fn.

Rewriting the heat hierarchy Eq. (8) in terms of Fn we
obtain the following hierarchy of nonlinear viscous equations,
also known as the Burgers’ hierarchy

∂Fn

∂tk
= νkPk

[
1

ν

∂Fn

∂t1

]
, k = 1, 2, . . . , p, (12)

where Pk[ f ] denotes the Faà di Bruno polynomials which are
defined recursively as follows [25]:

Pk+1[ f ] := ∂Pk[ f ]

∂t1
+ f Pk[ f ], P0[ f ] := 1.

We observe that, given a solution F (MF)
n (t) of the hierarchy

Eq. (12), the derivatives

∂Fn

∂tk
= 〈Lk〉n, k = 1, 2, . . . , p, (13)

where

〈Lk〉n :=
∑

{A} Lke−H

Z (MF)
n

, (14)

provide an effective way of calculating the expectation value
of the connectance 〈L〉n and its higher moments 〈Lk〉n.

Equations for 〈L〉n follow from Eq. (12) by differentiating
both sides w.r.t. t1 and the result leads to the so-called Burgers’

hierarchy. For instance, the first two equations of the hierarchy
read as

∂〈L〉n

∂t2
= ∂

∂t1

(
〈L〉2

n + ν
∂〈L〉n

∂t1

)
,

∂〈L〉n

∂t3
= ∂

∂t1

(
〈L〉3

n + 3ν〈L〉n
∂〈L〉n

∂t1
+ ν2 ∂2〈L〉n

∂t2
1

)
.

(15)

To study the system in the thermodynamic limit, i.e., n →
∞ (or equivalently ν → 0), we assume that Fn admits the
expansion of the form

Fn = F + F1ν + F2ν
2 + O(ν3). (16)

A similar expansion holds for the Helmholtz free energy
�n = � + O(ν). Substituting the expansion Eq. (16) into
Eq. (12), at the leading-order one gets the hierarchy of the
Hamilton-Jacobi equations

∂F

∂tk
=

(
∂F

∂t1

)k

, k = 1, 2, . . . , p. (17)

The expansion Eq. (16) implies 〈L〉n = 〈L〉 + O(ν), and in
the thermodynamic limit the leading-order term 〈L〉 of the
connectance satisfies the following hierarchy of hyperbolic
PDEs (the Hopf hierarchy):

∂〈L〉
∂tk

= ∂〈L〉k

∂t1
, k = 1, . . . , p. (18)

We note that the Hopf equation and its hierarchy emerge in
connection with a variety of models in statistical thermody-
namics, e.g., van der Waals theory [16,20] and p-spin models
[12], and different models are specified by a different initial
condition. The general solution of the hierarchy Eq. (18) is
obtained by the method of characteristics and it is implicitly
given by the equation

p∑
k=1

k〈L〉k−1tk = f (〈L〉), (19)

where the function f (〈L〉) is an arbitrary function of its argu-
ment specified by the initial condition.

The general solution of Eq. (17) obtained by integration
along characteristics (on which 〈L〉 is constant) is given by

F (t) =
p∑

k=1

〈L〉ktk + g(〈L〉), (20)

where the function g is an arbitrary function of its argument.
To specify the arbitrary functions, we need the explicit

expression of the initial condition Eq. (9), that is the partition
function of the ER model Eq. (9). A direct calculation gives

Z (ER)
n,0 =

∑
{A}

e2t1
∑

i< j Ai j =
∑
{A}

∏
i< j

e2t1Ai j

=
∏
i< j

1∑
Ai j=0

e2t1Ai j =
∏
i< j

(1 + e2t1 ) = (1 + e2t1 )N .

Therefore, the initial condition for Fn is given by

Fn,0(t1) = ν log
(
Z (ER)

n,0

) = 1
2 log(1 + e2t1 ), (21)
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from which, using Eq. (13), we obtain the initial condition,
i.e., the connectance for the noninteracting model,

〈L〉n,0 = ∂Fn,0

∂t1
= e2t1

1 + e2t1
. (22)

Importantly, Fn,0 and 〈L〉n,0 do not depend on n, hence
Eqs. (21) and (22) also give the initial conditions for the hier-
archies Eqs. (17) and (18), respectively. Evaluating Eqs. (19)
and (20) at tk = 0 for k > 1 we can specify the functions f (z)
and g(z), i.e.,

f (z) = 1

2
log

z

1 − z
, (23)

g(z) = −1

2
log[zz(1 − z)1−z]. (24)

Combining Eqs. (19) and (23) we obtain the thermodynamic
equation of state for the MF model

〈L〉 = 1

2

[
1 + tanh

(
p∑

k=1

ktk〈L〉k−1

)]
. (25)

Combining Eqs. (20) and (24) we construct the leading-order
Helmholtz free energy

� = −2F, (26)

where F is the solution to Eq. (17) matching the initial condi-
tion Eq. (21), i.e.,

F (t) =
p∑

k=1

〈L〉ktk − 1

2
log[〈L〉〈L〉(1 − 〈L〉)1−〈L〉], (27)

and 〈L〉 is a function of t implicitly defined by Eq. (25).
Equation (27) has the natural thermodynamic interpretation
where the first term in the right-hand side is proportional to
the internal energy E , i.e.,

E = −2
p∑

k=1

〈L〉ktk, (28)

and the second term is identified with the entropy of the
system, that is

S = −〈L〉 log〈L〉 − (1 − 〈L〉) log (1 − 〈L〉). (29)

III. MF NETWORK AND p-STAR MODEL

As mentioned above, the MF model Eq. (5) is defined for
a finite-size system and its applicability relies on the assump-
tion that all k tuples of links interact via effective coupling
constant tk . This is fundamentally different from the p-star
model Eq. (2) where only k tuples of links sharing one and the
same node interact with a coupling constant τk and all other
k tuples do not interact, i.e., for k tuples that do not share
a link the coupling constant vanishes. We show that the MF
approximation of the p-star model, expected to be valid at the
equilibrium in the thermodynamic limit, is mapped into the
thermodynamic limit of the MF model—and the solutions to
the Hopf hierarchy—by a rescaling of the coupling constant.

A. MF approximation

Let us introduce the probability distribution P associated
to the p-star model Hamiltonian Hp and the probability dis-
tribution Q associated to the ER Hamiltonian of the form
HER = −h

∑
i, j Ai j , i.e.,

P = e−Hp

Zp
Q = e−HER

ZER
. (30)

Gibbs’ inequality establishes that [26]

D(h) =
∑
{A}

Q log
Q

P
� 0, (31)

where D(h) is referred to as Kullback-Leibler divergence. In
particular equality holds only if P = Q. As in our case P �= Q,
we look for a MF approximation for the distribution P of the
ER form Q as given in Eq. (30). Q is chosen such that D(h)
attains its minimum as a function of the variational parameter
h. Introducing the free energy in the form

φ(h) =
∑
{A}

Q log
Q

P
− log Zp, (32)

we observe that, as Zp does not depend on h, D(h) and φ(h)
simultaneously attain a minimum as a function of h. Substi-
tuting the expressions of the probability distributions P and
Q defined in Eq. (30) into the definition of D(h) we have the
following identity:

∑
{A}

Q log
Q

P
− log Zp = 〈Hp〉Q − 〈HER〉Q − log ZER, (33)

where the notation 〈O〉Q is the expectation value of the ob-
servable O w.r.t. the ER distribution Q, i.e.,

〈O〉Q =
∑
{A}

QO.

Hence, we can write

φ(h) = 〈Hp〉Q − 〈HER〉Q − log ZER. (34)

The advantage of Eq. (34) compared with Eq. (32) is that all
terms can be evaluated explicitly as the expectation values are
calculated w.r.t. the ER probability distribution

〈HER〉Q = −2Nh〈L〉Q,

〈Hp〉Q = −
p∑

k=1

τk

nk−1
(n − k)

(
n

k

)
〈L〉k

Q,

where as discussed above for the ER model,

log ZER = N log(1 + e2h), (35)

〈L〉Q = e2h

1 + e2h
. (36)

Hence, the condition

∂φ

∂h
= 0
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gives

h =
p∑

k=1

kτk

nk

n − k

n − 1

(
n

k

)(
e2h

1 + e2h

)k−1

. (37)

Observing, as it follows from Eq. (36), that

h = arctanh(2〈L〉Q − 1),

we obtain the self-consistency equation

〈L〉Q = 1

2

(
1 + tanh

p∑
k=1

kτk

nk

n − k

n − 1

(
n

k

)
〈L〉k−1

Q

)
. (38)

In the thermodynamic regime, direct comparison of the above
self-consistency Eq. (38) and the equation of state Eq. (25)
lead to the identification

tk = τk

nk

n − k

(n − 1)

(
n

k

)
. (39)

In particular, we have t1 = τ1. Observe that, for a large net-
work (n → ∞), Eq. (39) implies that τk 
 k!tk . Thus, the
identification of the p-star model Hamiltonian Eq. (2) in the
MF regime with the MF model Hamiltonian Eq. (5), also
implies that Hp[A] = O(N ) = O(n2), and therefore

Sk = O(nk+1), n → ∞.

IV. CRITICAL SECTOR AND SINGULARITY
RESOLUTION

A. Gradient catastrophe

Based on the relation Eq. (13), the expectation value of
the connectance 〈L〉 is calculated as the derivative of the free
energy Fn w.r.t. its conjugated variable t1, and therefore it is
interpreted as an order parameter of the theory. According to
the standard statistical mechanical interpretation, singularities
of the order parameter are associated to the critical point of a
phase transition in the system. As demonstrated in the above
Sec. II, the equation of state Eq. (25) (and therefore 〈L〉 as
a function of tk’s), can be interpreted as a solution of the
hierarchy of nonlinear hyperbolic PDEs (18) (the Hopf hier-
archy), whose generic solution is known to develop a gradient
catastrophe singularity in the (t1, tk ) plane for any given k > 1
(see, e.g., Refs. [27] and [16]). To obtain the singularity loci
in the space of coupling constants tk , let us rewrite Eq. (19) in
the following equivalent form:

�(〈L〉) ≡ t1 +
p∑

k=2

ktk〈L〉k−1 − 1

2
log

〈L〉
1 − 〈L〉 = 0. (40)

The conditions that characterize the presence of a cusp singu-
larity are [28]

∂�

∂〈L〉 = 0,
∂2�

∂〈L〉2
= 0, (41)

FIG. 1. Projection of the critical curve Eq. (43) on the (t1, t2)
plane. The curve is parametrized by the connectance 〈L〉 and each
point represents the vertex of a sector on the plane where the solution
〈L〉 of the corresponding equation of state is multivalued. Examples
of sectors are shown for t3 = −1, 0, 1, 2.

which give, respectively,

p∑
k=2

k(k − 1)tk〈L〉k−1 = 1

2(1 − 〈L〉)
,

p∑
k=3

k(k − 1)(k − 2)tk〈L〉k−1 = 2〈L〉 − 1

2(1 − 〈L〉)2
. (42)

For example, if p = 2, then Eqs. (42) and (40) ad-
mit the single-point simultaneous solution (t1, t2, 〈L〉) =
(−1, 1, 1/2). For p > 2 the singular sector is a geometric
variety in the space of coupling constants. For instance, in the
case p = 3, the singular sector can be expressed as a curve
in the three dimensional space (t1, t2, t3) parametrized by 〈L〉,
that is

t1 = 1

2
log

〈L〉
1 − 〈L〉 + 4〈L〉 − 3

4(1 − 〈L〉)2
,

t2 = 2 − 3〈L〉
4〈L〉(1 − 〈L〉)2

,

t3 = 2〈L〉 − 1

12〈L〉2(1 − 〈L〉)2
. (43)

Figure 1 shows the projection of the curve Eq. (43) on the
(t1, t2) plane. The curve separates the region of the plane
where the solution 〈L〉 of the equation of state Eq. (40) is
single-valued, i.e., where the free energy admits only one min-
imum, from the region where the solution 〈L〉 is multi-valued
as a function of coupling constants, i.e., where the free energy
admits three critical points. In the latter region the system is
bistable, as the analog of the Helmholtz free energy admits
two local minima. Figure 2 shows the profile of the Helmholtz
free energy � = −2F , where F is given by Eq. (27), for a
choice of coupling constants (t1, t2, t3) corresponding to the
point of gradient catastrophe. The profile of the connectance
as a function of t1 clearly shows the occurrence of the gradient
catastrophe singularity.
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FIG. 2. Top panel: profile of the free-energy Eq. (26) in the
case p = 3 for a choice of critical values of coupling constants
t1 = −1.342, t2 = 1.871, and t3 = −0.756. The minimum (marked
by a cross) corresponds to the value of the connectance 〈L〉 = 0.3
at the critical point. Bottom panel: profile of the connectance as a
function of t1. It shows the occurrence, at the critical point, of a gra-
dient catastrophe singularity. The agreement between the analytical
solution of the MF model and MC simulations for both MF and 3-star
model in the specified regime n = 103 is compelling.

B. Transition formula

The Hopf hierarchy Eq. (18) provides the leading-order
asymptotics of the connectance 〈L〉 as ν → 0. The gradient
catastrophe is associated to the critical point of the phase
transition, and multivaluedness captures simultaneous stable
and metastable states of the system that are associated to
multiple local minima of the free energy. In the vicinity of
the point of gradient catastrophe, the viscous term represented
by the highest derivative in Eq. (12) is no longer negligible
in the limit ν → 0. In fact, the viscous contribution, arising
from the highest derivatives in Eq. (12), prevents the gradient
catastrophe and the occurrence of multivaluedness [27].

We now construct the solution Fn to the exact Eq. (12) and
the corresponding connectance 〈L〉 = ∂Fn/∂t1 that matches
the solution of Eq. (25) for ν → 0 but remains single-valued.
For the sake of simplicity we present the explicit calculations
for p = 3.

Let us first observe that Eq. (25) implies that

lim
t1→−∞〈L〉 = 0, lim

t1→∞〈L〉 = 1. (44)

This is intuitive, as the parameter t1 acts as an external field
enhancing or preventing the occurrence of links by being

largely positive or negative, respectively. We seek a solution
that matchs these asymptotic values as the gradient vanishes at
t1 → ±∞. In particular, we look for the heteroclinic solutions
to the system of Eqs. (15) connecting two equilibrium states at
t1 → ±∞. Substituting a “travelling wave” ansatz of the form

〈L〉n = λ(θ ) θ = t1 + c2t2 + c3t3, (45)

into Eq. (15) and integrating once, one obtains the system of
ODEs

c2λ = λ2 + νλ′ + k0,

c3λ = λ3 + 3νλλ′ + ν2λ′′ + l0,
(46)

where λ′ = dλ/dθ . The boundary conditions Eq. (44) imply

c2 = c3 = 1, k0 = l0 = 0.

The first equation in Eq. (46) is a separable ordinary partial
differential equation which yields

λ(θ ) = 1

2

{
1 + tanh

[
1

2ν
(θ − c)

]}
, (47)

and this solution is compatible with the second equation in
Eq. (46). Consistency with the initial condition Eq. (22) re-
quires that 〈L〉n(t = 0) = 1/2, from which it follows that the
integration constant is c = 0. Finally, we obtain the transition
formula

〈L〉(t) = 1

2

{
1 + tanh

[
1

2ν
(t1 + t2 + t3)

]}
, (48)

which smoothly connects the asymptotic states specified by
the boundary conditions (44) and describes analytically a
shock singularity at t1 + t2 + t3 = 0 in the limit ν → 0. We
note that Eq. (48) can be straightforwardly extended to the
case of generic p by extending the sum of tk for k = 1, . . . , p.

C. (0,1)-bistability approximation

For any choice of coupling constants tk such that the free
energy of the p-star model admits two sufficiently deep min-
ima at values of 〈L〉 sufficiently close to 0 and 1, as shown in
Figs. 3 and 4, we can make the approximation that the system
is found in either of two configurations AC , corresponding
to the complete graph where all links are active, or AE , cor-
responding to the empty graph where all links are inactive.
Under these assumptions we have

p(AC ) + p(AE ) 
 1, (49)

where

p(AC ) = 1

Z
e−H (AC ), p(AE ) = 1

Z
e−H (AE ), (50)

and the partition function is

Z 
 e−H (AC ) + e−H (AE ). (51)

The expectation value of the k-star Sk is therefore evaluated as

〈Sk〉 
 Sk (AC ) · p(AC ) + Sk (AE ) · p(AE )


 n

(
n − 1

k

)
· e−H (AC )

e−H (AC ) + e−H (AE )
, (52)
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FIG. 3. Free energy Eq. (59) as a function of the connectance
for the 3-star model for a choice of the parameters t1 = −3, t2 = 2,
t3 = 1 such that connectance is a multivalued function of the cou-
pling constants. In this example, the connectance admits two possible
values associated with the two minima (marked by crosses) of almost
equal depth located in the vicinity of 〈L〉 = 0 and 〈L〉 = 1.

where we observed that Sk (AE ) = 0. Using Eqs. (50) and the
fact that, given Eq. (2), H (AE ) = 0 and

H (AC ) = −
p∑

s=1

(
n

s

)
(n − s)

ns−1
τs,

Eq. (52) gives

〈Sk〉 
 n

2

(
n − 1

k

){
1 + tanh

[
p∑

s=1

(
n

s

)
(n − s)

2ns−1
τs

]}
. (53)

FIG. 4. Comparison of the solution to the equation of state
Eq. (25) and MC (time averaging) simulations for the correspond-
ing 3-star and MF models with t2 = 2, t3 = 1, and n = 103. The
theoretical Eq. (25) appears accurate for both models apart from
small deviations, in the case of 3-star model, when approaching the
multivaluedness region. The branch of the MF solution on which
〈L〉 decreases with t1 is unstable due to the negative susceptibility
and corresponds to the (local) maximum of the free energy (Fig. 3)
and therefore the corresponding states can not be obtained via the
simulations. The dashed line corresponds to the transition Eq. (48)
and shows a good agreement with the MF solution and simulations
apart from a neighborhood of the point of discontinuity.

Observing that 〈L〉 = 〈S1〉/(2N ), Eq. (53) above gives

〈L〉 
 1

2

{
1 + tanh

[
p∑

k=1

(
n

k

)
(n − k)

2nk−1
τk

]}
, (54)

which, given the identification of the coupling constants
Eq. (39), is consistent with Eq. (48). We point out that the
(0,1)-bistability approximation for a p-star model with p > 2
can be achieved only for particular ranges of the coupling
constants.

D. Remark

It is interesting to compare the MF approximation of
the p-star model obtained via the minimisation of the
Kullback-Leibler divergence and a common approach (see,
e.g., Ref. [1]) based on the assumption that in each star a link
is coupled with the average link π = 〈Ai j〉. Therefore, given
the kth-star interaction term Eq. (3), namely,

Sk = 1

k!

∑
i

∑
j1

Ai j1

∑
j2 �= j1
j2 �=i

Ai j2 · · ·
∑
jk �= jl

l=1,...k−1
jk �=i

Ai jk (55)

and replacing Ai, js → 〈Ai js〉 
 π for s = 2, . . . , k for js �= i
we have

Sk 
 1

k!
(n − 2) . . . (n − k)π k−1

∑
i, j

Ai j, (56)

which leads to the Erdös-Rényi Hamiltonian of the form

Hp 
 HER = −t̄1
∑
i, j

Ai, j,

with

t̄1 =
p∑

k=1

τk

nk

n − k

(n − 1)

(
n

k

)
π k−1.

Then the solution of Eq. (22) and the hypothesis π = 〈L〉 give
the self-consistency equation

〈L〉 = 1

2

(
1 + tanh

p∑
k=1

τk

nk

n − k

(n − 1)

(
n

k

)
〈L〉k−1

)
, (57)

leading to the identification

tk = τk

knk

n − k

(n − 1)

(
n

k

)
. (58)

It is immediate to verify that, although the self-consistency
Eqs. (57) and (38) are of the same form, Eq. (54) is not
consistent with Eq. (48) under the identification Eq. (58).
Hence, while the approximation Eq. (56) predicts the same
qualitative behaviors obtained from minimisation of the
Kullback-Leibler divergence, the positions of the transition
regions do not coincide, as the identification of the parameters
Eq. (58) differs by a factor 1/k compared with Eq. (39).
Hence, the MF approximations based, respectively, on the
minimization of Kullback-Leibler divergence and the one il-
lustrate above (based on the linearization of the Hamiltonian
by replacing pairwise interactions with the mean field) are not
equivalent and only the former is consistent with the exact
traveling wave solution of Eq. (48) of the Burgers equation.
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V. THERMODYNAMIC CONSIDERATIONS AND MONTE
CARLO SIMULATIONS

In this section we compare the above theoretical results
with the outcomes of Monte Carlo simulations for the case
of p = 3. The code used in this work is available online [29].

For the simulations described in this work, we use a
Markov chain-based method known as Metropolis-Hastings
algorithm [30,31]. This method is effective in identifying
the ground state in the region of parameters where the free
energy admits a single minimum. However, performing sim-
ulations in the region of coupling constants such that the free
energy admits multiple minima requires a careful analysis.
Metastable states, i.e., local but not absolute minima of the
free energy, behave as attractors, and transitions to the stable
state associated to the absolute minimum of the free energy
may require a long iteration time. Indeed, according to the
Néel relaxation theory [32], the typical transition time from a
metastable to a stable state grows exponentially with the size
of the energy barrier between the two states, which in turn is
proportional to the size N of the system. Therefore, simula-
tions of states fluctuating around a metastable state produce
a time series of autocorrelated states. Estimates obtained by
averaging over the time series of states generated from a given
initial condition are referred to as time averaging. Figure 4
shows a comparison of the connectance obtained from time
averaging and the solution of the MF model Eq. (25) and the
transition Eq. (48).

For sufficiently small networks, it is possible to perform
a sufficient number of iterations such that the autocorrelation
decays even in regimes where the system admits metastable
states. This allows us to obtain accurate results for the av-
erages over the actual canonical ensembles. Estimates of
observables obtained by averaging over the realisations of the
system starting from random initialization are called ensemble
averages. Ensemble averages capture stable states of the sys-
tem and provide results that are consistent with the solution of
the Burgers’ hierarchy Eq. (15).

In this section we analyze the analog of the Helmholtz free
energy � for the MF model, defined as

� = −2F = −2
p∑

k=1

〈L〉ktk + log[〈L〉〈L〉(1 − 〈L〉)1−〈L〉],

(59)

where 〈L〉 is a solution of Eq. (25). We then compare the
predicted observables with the Monte Carlo simulations for
the p-star model and its MF approximation. For illustrative
purposes we consider the case p = 3.

We should point out that the free-energy Eq. (27) [or equiv-
alently Eq. (59)], expressed in terms of the solutions Eq. (25)
of the Hopf hierarchy, is derived under the assumption that 〈L〉
is continuous and differentiable. This assumption is fulfilled in
the region of the space of coupling constants tk such that the
solution is single valued, but cannot be continuously extended
across the singular sector (as illustrated for example in Fig. 1),
to the region where the solution is multivalued. However, in
the region where the solution is multivalued, Eq. (25) allows to
calculate the free energy of the system by selecting the branch
where the free energy attains a minimum.

For instance, Fig. 3 illustrates the free-energy profile as
a function of 〈L〉 for a choice of coupling constants such
that 〈L〉 is multivalued. The free energy �(〈L〉|t) admits two
local minima of different depth in the close vicinity of 0
and 1. Based on the classical thermodynamic description, the
absolute minimum corresponds to the stable state and the
relative minimum is associated to a metastable state. MC
simulations show that the GB distribution (1) realized via a
Markovian dynamics is such that, if the system is initialized
in a metastable state, the system will remain in that state for
exponentially long times as a function of the number of links
N [32]. Therefore, for any finite timescale and for sufficiently
large N , a system can be considered as nonergodic, which
implies that averages over time differ from averages over
ensembles.

In Fig. 4 we compare the connectance for the MF solution
of Eq. (25) (corresponding to the limit N → ∞) and p-star
models in the thermodynamic regime. The comparison shows
that the for n = 103 the p-star model is in the thermodynamic
regime. The analytic solution of Eq. (25) for the MF models
in the thermodynamic limit is consistent with time averages of
MC simulations for both models. In particular, the multivalued
solution of Eq. (25) captures the metastable states observed
in MC simulations via suitable initialization of the system.
The transition Eq. (48) accurately captures the stable states
for both models in the thermodynamic regime.

Figure 5 shows the profile of the free energy �(〈L〉|t) for
the 3-star model and its MF analog for fixed values of t1, t2 and
t3, compared with the connectance 〈L〉 as a function of t1 for
the same values of t2 and t3. The lowest minimum describes
the stable branch of the solution 〈L〉. Metastable states are
associated to local minima and correspond to the additional
valued of 〈L〉 in the region of multivaluedness.

The position, the depth and number of local minima of
�(〈L〉|t) change with tk and, when a local minimum turns
into a global one as t1 increases, ensemble averages of the
observables develop a jump. The branches of the curve of
Eq. (25) on which 〈L〉 decreases with t1 correspond to the
(local) maxima of �(〈L〉|t) and therefore are not stable.

In Fig. 6 we compare the expectation values, via ensem-
ble averages, of the density of k-stars in the p-star model,
defined as

σk ≡ 1

n

(
n − 1

k

)−1

Sk ∈ [0, 1], (60)

and the moments 〈Lk〉 for the MF model. For illustrative
purposes we choose again p = 3. In the region of values for
the coupling constants where the free energy has a single local
minimum, the hierarchy of Eqs. (17) holds in the thermody-
namic regime, and implies the equality

〈Lk〉 = 〈L〉k k = 1, 2, 3, . . . (61)

In this regime, the k-star densities, estimated via MC sim-
ulations, are well approximated by the corresponding kth
moments of the MF model, for k = 2 and k = 3. This re-
sult is consistent with existing studies on the MF theory
approximation in the thermodynamic limit; see, e.g.,
Ref. [33]. Furthermore, Fig. 6, shows that, even for small
networks, the MF theory is accurate sufficiently far from
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FIG. 5. Profiles of the free energy for the 3-star model and its
MF analog for t1 = 3, 6, 8, 9.5; t2 = −15 and t3 = 9 (lower panel) is
compared with the connectance 〈L〉 for the same values of t2 and t3

as t1 changes (upper panel). The lowest minima of the free energy
correspond to the stable branches of 〈L〉(t). Metastable states are
associated to local minima and correspond to the additional values
of 〈L〉 in the region of multivaluedness.

the transition region. In the case where the system admits
(0,1)-bistability, Eq. (53) provides ensemble averages of the
observables in the transition region.

VI. LOCAL PROPERTIES: MF VERSUS p-STAR MODEL

To further clarify the regime of validity of the MF theory
as a devise to extract information on the exact p-star model, it
is interesting to compare the MF and p-star models relative to
some local features such as the expectations 〈ki〉 of the node
degree,

ki =
n∑

j=1

Ai j,

which give the number links attached to a given node, and the
expectation 〈ci〉 of the local clustering coefficient (LCC)

ci(A) =
∑

j,k Ai jA jkAki∑
j,l Ai jAil (1 − δ jl )

, (62)

which gives the ratio between triangles and 2-star in the
network. For illustrative purposes, the MC simulations are
performed for the case p = 3. Hence, we write the Hamil-
tonian of the 3-star model in terms of the node degree as

FIG. 6. Comparison of simulated densities of 2-stars and 3-stars
for the 3-star model and moments 〈L2〉 and 〈L3〉 for the correspond-
ing MF model for different sizes n. For illustrative purposes we chose
t2 = 2, t3 = 1. Multivalued solution for the MF model in the thermo-
dynamic limit is also shown for reference. For the chosen values of
n, the figure shows that the MF model and transition Eq. (48) provide
an accurate description of 3-star model.

follows:

H (A) = −ε1

n∑
i=1

ki − ε2

2n

n∑
i=1

k2
i − ε3

6n2

n∑
i=1

k3
i , (63)

where

ε1 = τ1 − τ2

2n
+ τ3

3n2
ε2 = τ2 − τ3

n
ε3 = τ3. (64)

As observed in Ref. [34], the Hamiltonian of the general
homogeneous ERGM with interactions among links sharing
a node can be written as sum of the Hamiltonian Eq. (2) and
a term proportional to the number of triangles in the graph.
It is therefore interesting to study how the LCC behaves in
the p-star model per se, in absence of extra contribution from
triangles.

We have that the degree distribution of the MF model
follows a binomial distribution (as the ER model), i.e.,

〈p(k|A)〉 =
(

n − 1

k

)
Lk (1 − L)N−1−k, (65)

which, for large graphs, and with moderate connectance
p(k|A)〉, is approximated by the Gaussian distribution

〈p(k|A)〉 
 1√
2πnL(1 − L)

e− (k−Ln)2

2nL(1−L) . (66)
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FIG. 7. Degree distributions of 3-star and MF models with 1000
(top panel) and 5000 (bottom panel) nodes for t1 = 3284.58, t2 =
−7500, and t3 = 4500. The degree distribution of the 3-star model is
almost degenerate around dominant degrees. Degree distribution for
the MF model follows instead Eq. (66).

This is a consequence of the fact that the MF Hamiltonian
Eq. (6) depends solely on the connectance, and therefore all
possible graphs with the same total number of links occur with
the same probability. We also observe that the p-star model
does not have this kind of degeneracy and, at low tempera-
tures, produces mostly regular graphs, as shown in Fig. 7. The
LCC distributions are qualitatively similar for both the p-star
and the MF model, as shown in Fig. 8 although, as expected,

FIG. 8. LCC distributions of 3-star and MF models with 1000
(top panel) and 5000 (bottom panel) nodes for t1 = 3284.58, t2 =
−7500, and t3 = 4500.

FIG. 9. Degree and local clustering coefficient distributions for
3-star and MF models at t1 = −0.5, t2 = 0.3, and t3 = 0.1 (top row)
and corresponding log-log plots (bottom row). The degree distribu-
tion of the MF model is described well by the Gaussian Eq. (66)
(dashed curve on degree distribution plots). The vertical dashed lines
on LCC plots show the position of the average LCC found from
Eq. (62). Both degree and LCC distributions of the 3-star model in
this case are wider than the degree distribution of the corresponding
MF model, but the averages match well. Decay is exponential in both
cases as shown in log-log plots.

for the MF model triangles tend to be more dominant over
2-star compared to the p-star model.

Figure 9 shows that the degree distributions of the p-star
model may also be wider than predicted by Eq. (65). This
fact can be explained by the tendency of the p-star model
with positive couplings to create hubs [35], i.e., nodes with
high degrees and, therefore, high numbers of stars. However,
the decay of the distributions appears to be exponential for
both models, as can be seen from the log-log plots of Fig. 9
(bottom).

We finally note that while the functional form of the LCC
distributions of the p-star and MF models shown in Figs. 9 and
8 is different, both distributions get narrower as n increases.
As for the degree distribution, depending on parameters, the
LCC distributions of the p-star model may be slightly wider
(Fig. 9) or narrower (Fig. 8) than that of the MF model.
However, the tails of the distributions are exponential for both
models.

VII. CONCLUDING REMARKS

A detailed comparison between p-star models defined by
the Hamiltonian Eq. (2) and their MF analogues defined by the
Hamitonian Eq. (5) shows that, in the thermodynamic regime,
the latter captures with high accuracy both macroscopic qual-
itative and quantitative features of the former. However, we
have observed that discrepancies arise at the microscopic level
when local properties, such as local clustering coefficients, are
compared. This is indeed not surprising, as the Hamiltonian
of the MF analog admits an explicit expression in terms of
global variables such as the connectance and therefore it is
not devised to discern details of local properties.

MF models, i.e., models defined on a fully connected graph
with arbitrary degree of interaction, are interesting in both the
finite-size and the thermodynamic regimes for their formal as
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well as phenomenological properties. Indeed, the MF model is
a completely integrable system, as the partition function satis-
fies a compatible system of linear partial differential equations
(differential identities) represented by the heat hierarchy and
the solution is specified by an initial condition corresponding
to the Hamiltonian Eq. (5) evaluated at zero coupling con-
stants. Therefore, once the suitable differential identities for
the partition function, corresponding to the heat hierarchy, are
given, the solution of the model is reduced to the solution
of the ER model. The heat hierarchy leads to an explicit for-
mula for both the finite-size and the thermodynamic regime.
The thermodynamic limit is calculated based on the scaling
properties of the heat hierarchy, and the free energy satisfies a
hierarchy Hamilton-Jacobi type equations whose differential
consequences allow to calculate corresponding equations for
the state functions and the order parameters. In the thermody-
namic limit, explicit equations of state are obtained by solving
the hierarchy via the method of characteristics.

We also observed that there is a one-to-one correspondence
between the thermodynamic solutions of the MF models and
the approximation of the p-star models obtained from the min-
imisation of Kulbach-Leibler divergence. The MC simulations
confirm the qualitative and quantitative agreement of the two
models in the specified regime. Hence, the asymptotic study
of the thermodynamic system via the heat hierarchy provides
an effective approach to the description of finite-size effects
leading to the resolution of singularity in the thermodynamic

limit as well as the analytic description of order parameters
in the transition region. In comparison, obtaining the same
results via direct Metropolis-Hastings algorithm requires ex-
tensive simulations due to slow convergence induced by the
presence of metastable states. We finally note that the ap-
proach based on the use of differential identities described
above applies to a variety of systems, from classical mag-
netic systems [12–16,20,36] to random matrix models [18,19]
and it proves to be effective for the analytic description of
systems of increasing complexity. A further natural direction
of investigation is concerned with the extension of the ap-
proach described above, based on the differential identities
for the partition function, to solve more general network mod-
els beyond the mean-field theory. A particularly interesting
model currently being explored is that of a network model
formulated as random matrix model where, as discussed, e.g.,
in Refs. [18,37,38], differential identities still exists and can
be obtained for the sequence of partition functions Zn of an
ensemble of n × n random matrices.
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