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Nonlinear interactions between solitons and dispersive shocks in focusing media
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Nonlinear interactions in focusing media between traveling solitons and the dispersive shocks produced by
an initial discontinuity are studied using the one-dimensional nonlinear Schrödinger equation. It is shown that,
when solitons travel from a region with nonzero background toward a region with zero background, they always
pass through the shock structure without generating dispersive radiation. However, their properties (such as
amplitude, velocity, and shape) change in the process. A similar effect arises when solitons travel from a
region with zero background toward a region with nonzero background, except that, depending on its initial
velocity, in this case the soliton may remain trapped inside the shocklike structure indefinitely. In all cases, the
new soliton properties can be determined analytically. The results are validated by comparison with numerical
simulations.
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I. INTRODUCTION

A common way to study the response of a nonlinear system
is to consider Riemann problems, i.e., the evolution of a
jump discontinuity between two uniform values of the initial
datum. In dispersive nonlinear media, Riemann problems
can give rise to dispersive shock waves (DSWs), which are
nonstationary coherent wave structures and arise in many
different physical contexts, including water waves, the atmo-
sphere, optics, and Bose-Einstein condensates. As a result,
considerable effort has been devoted to the study of DSW
formation, propagation, and interactions [1–8]. The topic has
also attracted renewed interest in recent years [9–14].

An ubiquitous tool in nonlinear physics is the nonlinear
Schrödinger (NLS) equation, which is a universal model for
the evolution of the envelope of weakly nonlinear dispersive
wave trains [15]. The NLS equation arises in a wide variety
of physical settings, including deep water waves, fiber optics,
plasmas and Bose-Einstein condensates [16–19]. The NLS
equation is also a completely integrable infinite-dimensional
Hamiltonian system [19–22]. This means that the initial value
problem can be solved by the inverse scattering transform
(IST) [23,24].

Typically, DSWs are produced either in the small disper-
sion, or semiclassical, limit, which arises when the dispersive
effects are small compared to nonlinear ones, or in the long-
time asymptotics. For the focusing NLS equation, the asymp-
totic behavior of solutions in the semiclassical limit with
zero background (ZBG) has been studied extensively, with
sech-shaped input [25–27], generalizations thereof [28,29],
and boxlike input [30–32]. In all these cases, the focusing non-
linearity results in the formation of highly peaked oscillations
in a localized region of space.

The situation is more complicated with nonzero back-
ground (NZBG), due to the presence of modulational insta-
bility (MI), namely, the fact that a constant background is
unstable to long-wavelength perturbations [33]. A quantitative

description of the nonlinear stage of MI for generic localized
perturbations of a constant background was recently obtained
in Refs. [34–36]. The corresponding behavior, which is com-
posed of two quiescent states separated by a central wedge
with modulated periodic oscillations, was later found to arise
in a broad class of NLS-type evolution equations describing
a variety of focusing nonlinear media in Ref. [37], and was
recently observed experimentally in Ref. [38]. Related scenar-
ios arise from Riemann problems. Special cases of Riemann
problems for the focusing NLS equation were studied in
Refs. [39–41], and more general Riemann problems were
recently considered in Ref. [42]. The expanding oscillatory
wedge between two uniform states can be viewed as a DSW
in focusing media.

Solitons play no role in the above discussion. However,
the focusing NLS equation admits a large variety of soli-
ton solutions, both with ZBG [23] and NZBG [43]. The
combined presence of solitons and dispersive radiation in
focusing media with NZBG was recently shown to produce
novel phenomena such as soliton transmission, trapping, and
wake [44]. The purpose of this work is to investigate nonlinear
interactions arising when the solution contains all three of the
above components, namely, NZBG, solitons, and dispersive
shocks. In particular, we study a practical scenario, namely,
the interaction between a soliton and the oscillatory wedge
formed by a discontinuity in the initial condition. We show
that, when traveling from a region with nonzero background
towards a region with zero background, solitons always pass
through these shock structures and retain their identity, with-
out generating dispersive radiation. Importantly, however, we
also show that, even though the discrete eigenvalue in the
scattering problem is of course time-independent, all of the
properties of the corresponding soliton (including amplitude,
velocity and shape) change once they move from a region with
NZBG to one with ZBG.

A similar scenario arises when solitons travel from a region
with ZBG to one with NZBG, except that now, depending its
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velocity, the soliton can remain trapped inside the shock-like
structure indefinitely. In both cases, the new soliton proper-
ties are analytically determined by computing the long-time
asymptotics of solutions, and the results are validated by
comparison with extensive numerical simulations.

II. NLS EQUATION, ZBG AND NZBG, SOLITONS

The cubic one-dimensional NLS equation is the partial
differential equation

iqt + qxx + 2
(|q|2 − q2

o

)
q = 0. (1)

Subscripts x and t denote partial differentiation, and q(x, t )
typically describes the complex-valued envelope of oscilla-
tions. The nonnegative real parameter qo corresponds to a
background amplitude [45].

The IST makes crucial use of the existence of a Lax pair,
namely the fact that Eq. (1) is the compatibility condition
φxt = φtx of the overdetermined linear system

φx = Xφ, φt = T φ, (2)

with X = −ikσ3 + Q and T = −i(2k2 + q2
o − |q|2 −

Qx ) σ3 − 2kQ, where σ3 = diag(1,−1) is the third Pauli
matrix, and

Q(x, t ) =
(

0 q
−q∗ 0

)
. (3)

The first half of the Lax pair Eq. (2) and q(x, t ) are referred to
as the scattering problem and the potential, respectively, while
k is the scattering parameter or eigenvalue of the scattering
problem.

Here we study the behavior of solutions of Eq. (1) with the
following steplike boundary conditions:

q(x, t ) → q±, x → ±∞, (4)

with q− = 0, and where without loss of generality we can
take q+ = qo thanks to the phase invariance of the NLS
equation. We refer to Eq. (4) as the case of one-sided nonzero
background (1SNZBG). When qo = 0, they reduce to the case
of ZBG [19,20,22,23]. Conversely, when q− �= 0, one has a
problem with a two-sided NZBG.

The IST in the case with ZBG was developed in the
seminal work by Zakharov and Shabat [23]. The symmetric
NZBG case |q−| = |q+| = qo was developed in Ref. [43],
and was extended to the fully asymmetric case |q±| �= 0 and
|q−| �= |q+| in Ref. [46], while the one-sided NZBG was
studied in Ref. [47]. Recall that the IST works by associating
to q(x, t ) time-independent scattering data via the scattering
problem. Once the scattering data are obtained from the initial
conditions (ICs), the solution of Eq. (1) is then reconstructed
by inverting the scattering transform. The scattering data are
computed in terms of the Jost eigenfunctions, which are the
solutions φ±(x, t, k) of the Lax pair Eq. (2) that reduce to
plane waves as x → ±∞, and are therefore the nonlineariza-
tion of the Fourier modes. The set of all complex values of
k for which the Jost eigenfunctions are defined comprises
the continuous spectrum � of the scattering problem. For
potentials on ZBG, the continuous spectrum is simply the
real k axis; i.e., �zbg = R [23]. For potentials on NZBG
or 1SNZBG, however, the continuous spectrum acquires a

FIG. 1. Contour lines of constant soliton velocity in the spectral
plane for solitons on NZBG and the domains D+

1 , D+
2 , D+

3 , D+
4 re-

sulting in the various interaction outcomes for a right-moving soliton
(see text for details). The blue dashed curve is determined by a
system of modulation equations (see text for details). Red dots: the
discrete eigenvalues that generate the solitons in Fig. 3.

subset of the imaginary axis, namely, �nzbg = �1snzbg = R ∪
i[−qo, qo] [43,47]. Moreover, for potentials on NZBG, the
nonlinear analog of the Fourier wave number is given by
λ = (q2

o + k2)1/2.
The discrete spectrum of the scattering problem, when

present, gives rise to soliton solutions. In particular, each
discrete eigenvalue contributes one soliton to the solution.
Both with ZBG and with NZBG, all the properties of the
soliton are determined explicitly by the location of the discrete
eigenvalue in the complex plane. These properties, however,
differ with ZBG versus NZBG. In particular, a soliton on ZBG
generated by a discrete eigenvalue k = kre + ikim travels with
velocity [23]

Vzbg(k) = 4kre. (5)

A soliton on NZBG generated by the same discrete eigen-
value, however, travels with velocity

Vnzbg(k) = 2(kre + kimλre/λim ), (6)

where λ = λre + iλim. A contour plot of constant soliton
velocity in the spectral plane for solitons on NZBG is given
in Fig. 1. For solitons on ZBG, the curves of constant soliton
velocity are obviously given by vertical lines, towards which
the contour lines in Fig. 1 tend asymptotically as Im k → ∞.
Note also Vnzbg(k) > Vzbg(k) for all k in the first quadrant.

III. INTERACTIONS BETWEEN SOLITONS
AND DSWS: SET-UP

The simplest realization of ICs consistent with the bound-
ary conditions Eqs. (4), is a “pure step” problem, namely,

qstep(x, 0) = qoH (x), (7)

where H (x) is the Heaviside step function, defined as H (x) =
0 for x < 0 and H (x) = 1 for x > 0. The above IC results
in the formation of an oscillatory “wedge” (or DSW) in the
region 0 < x < 4

√
2qot , to the left of which the solution is
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negligible and to the right of which the solution is approx-
imately equal to the background qo. Inside the wedge, the
solution can be described as a slow modulation of the traveling
wave (elliptic) solutions of the focusing NLS equation [41]
(see below for details).

Here we consider situations arising from a combination
of the above step ICs and a traveling soliton of the focusing
NLS equation. Specifically, we consider the case of a soliton
generated by a discrete eigenvalue located at k = ko and
initially positioned at x = Xo. If Xo > 0, then the soliton is
initially positioned to the right of the step (i.e., on a NZBG),
whereas if Xo < 0, then it is initially positioned to the left of
the step (i.e., on a ZBG). Denoting by Vo the initial velocity
of the soliton, if Re(ko) > 0, then the soliton will travel to
the right (i.e., Vo > 0), whereas if Re(ko) < 0, then it will
travel to the left (i.e., Vo < 0). Thus, if XoVo > 0, then the
soliton will travel away from the DSW, whereas if XoVo < 0,
then it will move toward it. The most interesting scenario is
obviously the latter. We therefore consider two main cases:

(1) A left-moving soliton initially placed on NZBG (i.e., to
the right of the initial discontinuity), corresponding to Vo < 0
and X0 > 0.

(2) A right-moving soliton initially placed on ZBG (i.e., to
the left of the initial discontinuity), corresponding to Vo > 0
and X0 < 0.

It should be noted that, numerically, the ICs corresponding
to the above situations are realized in a different way depend-
ing on whether Xo is positive or negative. If Xo < 0, then one
can simply add a one-soliton solution of the focusing NLS
equation with ZBG to the pure step IC. If Xo > 0 instead,
then one should multiply the pure step IC by the one-soliton
solution of the focusing NLS equation with NZBG. Once the
appropriate ICs have been realized, the time integration of
Eq. (1) was performed using an eighth-order Fourier split-step
method. As in Refs. [34–37], the computed time evolution is
only accurate up to the time at which round-off error grows to
O(1) [48].

IV. INTERACTION BETWEEN SOLITONS
AND DSWS: RESULTS

Figure 2 presents the results of numerical simulations
corresponding to case 1 above (left-moving soliton initially
placed to the right of the step), while Fig. 3 corresponds to
case 2 (right-moving soliton initially placed to the left of
the step). In each case, the left column shows density plots
of the solution amplitude |q(x, t )|. while the right column
shows the difference between the solution to the left and that
obtained from the pure step IC (7), which provides a direct
visual illustration of the nonlinear interaction effects. Each
row corresponds to a different choice of discrete eigenvalue.

In case 1 (soliton initially on a NZBG and traveling
leftward toward the DSW) we observe that, for all choices
of discrete eigenvalue, the soliton is transmitted through the
DSW and emerges as a soliton on ZBG. Importantly, however,
Fig. 2 clearly shows that all of the properties of the soliton
(that is, its amplitude, width, velocity, and its breatherlike
versus traveling-wave nature) are changed after it has traveled
through the oscillatory structure.

FIG. 2. Solutions of the focusing NLS equation with a left-
moving soliton initially placed on a NZBG qo = 1 and a step to ZBG
at x = 0. Left column: Density plot of |q(x, t )| as a function of x and
t . Right column: Density plot of the difference between q(x, t ) and
the solution qstep(x, t ) produced by the pure step IC (7), illustrating
the permanent effect of the nonlinear interactions. Solid white lines:
boundaries x = 0 and x = 4

√
2qot of the wedge. Dashed lines: initial

trajectory (yellow, velocity Vnzbg) and the trajectory of the soliton
after it exits the wedge (red, velocity Vzbg), demonstrating the change
of the soliton velocity. Top row [(a) and (b)]: ko = −2 + 1.5i ∈ D−

1 ,
resulting in Vzbg = −8 and Vnzbg = −8.68. Second row [(c) and (d)]:
ko = −0.4 + i ∈ D−

2 , resulting in Vzbg = −1.6 and Vnzbg = −3.24.
Third row [(e) and (f)]: ko = −0.3 + 0.8i ∈ D−

3 , resulting in Vzbg =
−1.2 and Vnzbg = −4.29. Bottom row [(g) and (h)]: ko = −0.4 +
0.3i ∈ D−

4 , resulting in Vzbg = −1.6 and Vnzbg = −6.21.

The change of the soliton features may be surprising, since
the properties of the soliton are completely determined by the
location of the discrete eigenvalue, and both the continuous
and discrete spectrum of the scattering problem are indepen-
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FIG. 3. Same as Fig. 2, but for a right-moving soliton initially
placed on ZBG together with a step to the NZBG qo = 1 at x = 0.
Dashed lines: initial trajectory (red, velocity Vzbg) and trajectory
of the soliton after it exits the wedge (yellow, velocity Vnzbg, or
blue, velocity Vs, or green, velocity V∗, see text for details). The
discrete eigenvalues are the symmetric counterparts of those in
Fig. 2: namely, ko 	→ −k∗

o . Correspondingly, all values of Vzbg and
Vnzbg are the opposite of those in Fig. 2. Additionally, Vs = 2.78 in
(d), Vs = 3.83 and V∗ = 2.55 in (f), and V∗ = 2.93 in (h).

dent of time. As we show below, however, these changes are
not a numerical artifact, and are indeed reflective of the true
nonlinear dynamics of the system.

As shown in Fig. 3, a similar outcome arises in case 2
(soliton initially on a ZBG and traveling rightward toward
the DSW). In addition, however, here there are cases (e.g.,
second and third row) in which the soliton does not escape
the oscillatory wedge, and remains trapped there forever, as
is easily seen by comparing the soliton trajectory with that of
the wedge boundary [49].

V. LONG-TIME ASYMPTOTICS

We emphasize that none of the velocities in the trajectories
shown in the right column of Figs. 2 and 3 were determined
numerically, and all of them are determined analytically in-
stead. Indeed, we next show that the numerical results of
Figs. 2 and 3 can be fully characterized by studying the long-
time asymptotics of solutions of the focusing NLS equation
with nonzero background.

A full calculation of the long-time asymptotics is beyond
the scope of this work, so here we limit ourselves to presenting
the essential details. Recall that, in the inverse problem of
IST, the solution of the NLS equation is obtained from that of
a suitable matrix Riemann-Hilbert problem (RHP) defined in
terms of the reflection coefficient and, if present, the discrete
spectrum. A key part of the RHP is a controlling phase func-
tion appearing in the jump conditions. In the case of ZBG, this
phase function is θzbg(x, t, k) = k(x − 2kt ) [22], whereas with
NZBG, θnzbg(x, t, k) = λ (x − 2kt ) instead [43], with λ(k) as
above. Indeed, it is precisely by looking along directions x =
V t and setting Im[θ (x, t, ko)] = 0 that one finds the soliton
velocities corresponding to a discrete eigenvalue at k = ko

with ZBG and NZBG.
Importantly, however, in the long-time asymptotics of

solutions with symmetric NZBG in the presence of a
small disturbance initially placed near x = 0, the gov-
erning phase function gets modified in the wedge x ∈
(−4

√
2qot, 4

√
2qot ) [34,36]. For those values of x, θ (x, t, k)

is replaced by a new phase function h(x, t, k) defined in
terms of certain Abelian integrals [36]. It was also shown
in Ref. [44] that it is by setting Im[h(x, t, ko)] = 0 that one
determines the velocity of a soliton inside the wedge. For the
one-sided NZBG studied here, the same considerations apply
in the half wedge x ∈ (0, 4

√
2qot ).

VI. CLASSIFICATION OF INTERACTIONS

For a left-moving soliton starting on a NZBG, the plots in
the right column of Fig. 2 clearly show that, for the choices
of ko considered, the soliton velocity is given by Vnzbg(ko)
before entering the oscillation structure, and by Vzbg(ko) after
exiting it.

The situation is more complex for a right-moving soli-
ton starting on a ZBG. In this case, one observes different
outcomes depending on the precise location of the discrete
eigenvalue. Consider a discrete eigenvalue ko in the first
quadrant of the complex plane, and recall the contour plot
of soliton velocity with NZBG in Fig. 1. One can distinguish
four domains: in D+

1 (purple region) and D+
4 (blue region),

one has Vnzbg(ko) > 4
√

2qo, whereas in in D+
2 (yellow region)

and D+
3 (gray region), one has Vnzbg(ko) < 4

√
2qo. Figure 3

shows the results obtained from a discrete eigenvalue located
in each of these domains. (The domains D−

1 , . . . , D−
4 used in

Fig. 2 are the symmetric counterparts to D+
1 , . . . , D+

4 relative
to the imaginary axis.) The difference between D+

1 and D+
4 is

that the latter collects eigenvalues close to the branch cut, and
results in broader solitons compared to the former [44]. The
difference between D+

2 and D+
3 originates from the long-time

asymptotics.
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Recall that the elliptic solutions of the focusing NLS equa-
tion are determined (up to translations and phase invariance)
by four complex conjugate constants, which are the branch
points of the associated Riemann surface in the IST [2].
For the boundary conditions Eqs. (4) with q− = 0, two of
these branch points are fixed at ±iqo, whereas the other two,
α = αre + iαim and its conjugate, are given by the system of
modulation equations [4]

4αre + 2
(
q2

o − α2
im

)/
αre = V, (8a)(

α2
re + (qo − αim )2

)
K (m) = (

α2
re − α2

im + q2
o

)
E (m). (8b)

Here, m = 4αimqo/|α − qo|2, while K (m) and E (m) are
the complete elliptic integrals of the first and second kind,
respectively [50]. The trajectory described by α in the com-
plex plane as V varies between 0 and 4

√
2qo is shown by the

blue dashed curve in Fig. 1. It is this curve that defines the
boundary between D+

2 and D+
3 .

As shown in Refs. [4,34,35], the same slow modulation
of the traveling wave solutions of the focusing NLS equation
also describes the nonlinear stage of MI induced by localized
perturbations of a constant background.

Importantly, each of the domains D+
1 , . . . , D+

4 results in
a different outcome for the nonlinear interaction. The four
cases shown in Fig. 3 correspond to a choice for the discrete
eigenvalue ko in each of the four domains (the precise location
is identified by the red circles in Fig. 1).

In all four cases, the soliton initially travels towards the
oscillatory structure with velocity Vzbg(ko). The simplest case
is that of ko ∈ D+

1 (top row of Fig. 3). Here the soliton is
transmitted through the DSW, and emerges as a soliton on a
nonzero background. However, its velocity is different after
the interaction, and is given by Vnzbg(ko) > 4

√
2qo.

When ko ∈ D+
2 (second row of Fig. 3), we have Vzbg(ko) <

Vnzbg(ko) < 4
√

2qo. Here the soliton is not transmitted through
the DSW, and remains trapped inside the wedge. The velocity
Vs(ko) of the trapped soliton is obtained by solving the equa-
tion him(ko,V ) = 0, with h(k,V ) = h(V t, t, k)/t , which has a
unique root V = Vs(ko) for ko ∈ D+

2 [44].
When ko ∈ D+

3 (third row of Fig. 3), we also have
Vzbg(ko) < Vnzbg(ko) < 4

√
2qo, and the soliton is again trapped

inside the wedge. Here however the equation him(ko,V ) =
0 has two solutions, for V = V∗(ko) and V = Vs(ko) with
V∗(ko) < Vs(ko) [44]. The second of these roots corresponds
to the trapped soliton, the first to the soliton-generated
wake [44,51].

Finally, when ko ∈ D+
4 (fourth row of Fig. 3), we have

Vzbg(ko) < 4
√

2qo but Vnzbg(ko) > 4
√

2qo. Here the soliton is
transmitted through the wedge and eventually re-emerges with
speed Vnzbg(ko) [51]. However, the equation him(ko,V ) = 0

has a solution for V = V∗(ko) which gives rise to a soliton-
generated wake [44].

VII. DISCUSSION

We emphasize that there is no data fitting in Figs. 2 and 3.
Thus, the figures demonstrate excellent agreement between
the numerically computed soliton velocities and those ob-
tained from the long-time asymptotics. In terms of the inverse
problem in the IST, the properties of the soliton depend on
whether the controlling phase function is the one with ZBG or
that with NZBG.

Soliton trapping by a dispersive shock was also recently
discussed in Refs. [12,44], while soliton trapping by a rarefac-
tion wave was considered in Ref. [13].

The dynamics remain virtually unchanged if the sharp
discontinuity in the IC is replaced by a smooth function
which interpolates between the asymptotic values of the
potential, demonstrating the robustness of the results. Note
also that the dynamical behavior produced by a pure step IC
is markedly different in the focusing and defocusing case.
Namely, instead of the oscillatory wedge arising here, in the
defocusing case the pure step IC (7) gives rise to Gibbs-like
phenomena [52,53].

The numerical results do not allow us to draw any conclu-
sions regarding the possible presence of a soliton-generated
wake in interactions between left-moving solitons and the
DSW. We were unable to observe a wake, but we cannot
exclude its existence a priori. A definitive answer can be ob-
tained through a rigorous calculation of the long-time asymp-
totics, which, however, is beyond the scope of this work.

The results of this work open up a number of interesting av-
enues for further research. From a theoretical point of view, an
obvious open problem is the rigorous validation of the results
of this work by explicit computation of the long-time asymp-
totic behavior of solutions, for example using the Deift-Zhou
nonlinear steepest descent method for oscillatory Riemann-
Hilbert problems [54]. From a practical point of view, another
obvious question is whether the results of this work can be
generalized to other NLS-type models, as was previously done
in Ref. [37] for the results obtained in Ref. [34]. Finally, from
an even more practical point of view, an obvious challenge
will be the experimental observation of the results of this
work, perhaps in nonlinear optical fiber experiments, similarly
to those recently conducted in Ref. [38].
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