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Interactions between solitons and the coherent oscillation structures generated by localized disturbances via
modulational instability are studied within the framework of the focusing nonlinear Schrédinger equation. Two
main interaction regimes are identified based on the relative value of the velocity of the incident soliton compared
to the amplitude of the background: soliton transmission and soliton trapping. Specifically, when the incident
soliton velocity exceeds a certain threshold, the soliton passes through the coherent structure and emerges on
the other side with its velocity unchanged. Conversely, when the incident soliton velocity is below the threshold,
once the soliton enters the coherent structure, it remains confined there forever. It is demonstrated that the soliton
is not destroyed, but its velocity inside the coherent structure is different from its initial one. Moreover, it is also
shown that, depending on the location of the discrete eigenvalue associated to the soliton, these phenomena can
also be accompanied by the generation of additional, localized propagating waves in the coherent structure, akin

to a soliton-generated wake.
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I. INTRODUCTION

The dynamics of nonlinear media affected by modula-
tional instability displays a number of interesting nonlinear
phenomena [1]. In particular, modulational instability (i.e.,
the instability of the background with respect to long wave-
length perturbations) is the main mechanism for supercon-
tinuum generation [2], integrable turbulence [3-5], and the
formation of rogue waves [6-8]. Modulational instability
is described quantitatively by the one-dimensional focusing
nonlinear Schrodinger (NLS) equation, which is a univer-
sal model for the evolution of weakly nonlinear dispersive
wave packets, and as such arises in such diverse fields as
water waves, plasmas, optics, and Bose-Einstein condensates
[9-13]. Indeed, by linearizing the focusing NLS equation
around the background, one can find the range of unstable
Fourier modes as well as their growth rate [14]. But the lin-
earization cannot capture the dynamics once the perturbations
become comparable with the background, which is referred to
as the nonlinear stage of MIL.

A qualitative explanation proposed for the nonlinear stage
of modulational instability is the formation of solitons (in
particular the so-called superregular breathers [15-17]). As
shown in Ref. [18], however, there exist broad classes of
perturbations of the constant background that generate no
solitons. Therefore, solitons cannot be the main vehicle for
the instability (because all generic perturbations are linearly
unstable, whereas for some perturbations no solitons are
present in the solution). Instead, in Ref. [18] we showed that
the signature of the instability lies in the nonlinear analog
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of the unstable Fourier modes. In Refs. [19,20] we then
characterized the nonlinear stage of modulational instability
for localized perturbations of the constant background. We
showed that, generically, the nonlinear stage of modulational
instability displays universal behavior, with the x¢ plane de-
composing into two quiescent, or plane wave regions, where
the solution asymptotically equals the background up to a
phase, separated by a central region in which the leading-order
behavior is described by a slow modulation of the periodic,
traveling wave solutions of the focusing NLS equation. In
Ref. [21] we further characterized the details of the asymptotic
state and showed that, for large times, the solution in the
modulated oscillation region becomes a coherent collection
of classical (i.e., sech-shaped) solitons of the NLS equation.
Moreover, in Ref. [22] we demonstrated that this kind of
behavior is not limited to the NLS equation, but is instead a
more general feature of nonlinear dynamical systems subject
to modulational instability.

A key requirement in Refs. [19-21], however, was that no
solitons be present in the initial conditions. A natural and
important question is thus what happens when both solitons
and a localized disturbance are simultaneously present. The
purpose of this work is to answer this question. We do so by
studying the interactions between solitons and the coherent
oscillation structures generated by localized disturbances due
to modulational instability, which for brevity hereafter we
refer to as the wedge. We identify three interaction regimes
based on the location of the discrete eigenvalue that gives rise
to the soliton: soliton transmission, soliton trapping, and a
mixed regime in which the soliton transmission or trapping
is accompanied by the generation of additional, localized
contributions in the wedge, which can be considered a soliton-
generated wake.
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II. NLS, SOLITONS, AND MODULATIONAL INSTABILITY

The starting point for our study is the focusing NLS
equation,

igr + @ +2(lg1* — q7)g =0, (1)

where g(x, t) is the complex envelope of a quasimonochro-
matic, weakly nonlinear dispersive wave packet, and the
physical meaning of the variables x and ¢ depends on the
physical context. (For example, in optics, ¢ represents prop-
agation distance while x is a retarded time.) Here ¢, =
lg+| [with g4 = lim,_ 1 g(x,?)] is the amplitude of the
nonzero background (NZBG). The constant background so-
lution of Eq. (1) is simply ¢,(x,t) = g,. Equation (1) is
the compatibility condition of the Lax pair [23] ¢, = X¢
and ¢, = T¢, with X = ikos + Q and T = —i(2k* + ¢> —
lg|> — Q)03 — 2kQ, where o3 = diag(1, —1) is the third

Pauli matrix, and
0 ¢
Ox,t)= ( B ) . 2

The first half of the Lax pair and ¢ (x, t) are referred to as the
scattering problem and the potential, respectively.

The inverse scattering transform allows one to solve the
initial-value problem for Eq. (1) by associating to g(x,t)
time-independent scattering data via the solutions of the scat-
tering problem. Once the scattering data are obtained from
the initial condition, g (x, t) is reconstructed in terms of them
by inverting the scattering transform. Specifically, the nonlin-
earization of the Fourier modes are the Jost eigenfunctions
¢+(x, t, k), which are the solutions of the Lax pair that reduce
to plane waves as x — =£o00. In the case of NZBG,

¢r(x,1,k) = Ex(k)e""™"P% 4 o(1), x — Foo, (3)
where EL(k) =1 +i/(k+ A)o30Q+, and
OCx, 1, k) =rx —2kat, Atk = (K +¢2)'"%. @

The Jost solutions are defined over the continuous spec-
trum ¥ = R Ui[—gq,, g,], which is the image of the Fourier
wave numbers. In particular, the range i[—gq,, ¢,] is the im-
age of the modulationally unstable Fourier modes [18]. The
scattering matrix A(k) is defined by the scattering relation

O_(x,t, k) =¢(x,t,k)Ak), keX, (5)

and the reflection coefficient r(k) = —ay;/a;; is the nonlin-
earization of the Fourier transform (see Appendix for details).

As usual, each discrete eigenvalue, if present, generates a
soliton. In the case of NZBG, the velocity of a soliton gener-
ated by a discrete eigenvalue at k = k, in the absence of lo-
calized disturbances is [24] V, = 2sina (Z2 4+ 1/Z%)/(Z —
1/Z), with z(k,) =iZ e '® and z(k) = k + A(k), implying
Z>landa € (=%, 7).

When no solitons are present, it was shown in Refs. [19,20]
that an initial disturbance localized near x = 0 generates a
coherent oscillation structure confined to the wedge-shaped
region |x| < 4+/2¢,t, whereas outside this region the solution
remains equal to the background value up to a phase. The
same approach as in Ref. [20] can be used to show that these
features remain the same when solitons are present.
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FIG. 1. Density plots of numerical simulations of Eq. (1) with
initial conditions consisting of a soliton plus a Gaussian perturbation
of the constant background with ¢, = 1. The horizontal axis is x, the
vertical axis is ¢, and the grayscale shows |g(x, t)|. Recall that the
wedge generated by an initial disturance localized at x = 0 is con-
fined to the region |x| < 4v/2¢,t [21]. (a) k, = 3 4+ 0.5 (implying
V, = 12.7), resulting in a soliton transmission. (b) k£, = 0.3 + 1.5
(implying V, = 1.63), resulting in a soliton trapping.

III. TRANSMISSION, TRAPPING, AND SOLITON WAKE

To study the interactions between solitons and localized
disturbances, we performed careful numerical simulations of
the focusing NLS equation (1) with a variety of initial con-
ditions consisting of a localized disturbance of the constant
background initially placed at x = O together with a soliton
with initial velocity V, > 0 (generated by a corresponding
discrete eigenvalue k,) and initially placed at a location
X, < 0. The kinds of possible outcomes are shown in Fig. 1
and Fig. 2(b) in three representative cases corresponding to
different choices for k,. Those in Fig. 1 result in a soliton
transmission and a soliton trapping, respectively, whereas that
in Fig. 2(a) results in a mixed outcome in which the soliton
transmission is accompanied by the generation of additional
contributions inside the wedge. As we show next, all of
these phenomena can be accurately described quantitatively
by computing the long-time asymptotics of solutions.

Re k

FIG. 2. (a) Same as Fig. 1, but for k, = 0.1 +0.5i (implying
V, = 15.5), resulting in a mixed regime in a soliton transmission
is accompanied by the formation of a wake in the wedge. (b)
Contour lines of constant soliton velocity in the spectral plane and
the domains D, (gray), D, (dark and light blue), and D; (orange) of
the spectral plane resulting in the various outcomes. (The red curve
is determined by the modulation equations in Ref. [21].)
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IV. SOLITONS AND LONG-TIME ASYMPTOTICS

The inverse scattering transform yields the solution of
Eq. (1) via the reconstruction formula [20,24]

q(xvt)=_21 lim leZ(x7tak)5 (6)
k—o00

where M(x, t, k) is the solution of a matrix Riemann-Hilbert
problem [25,26] defined in terms of the reflection coefficient,
and, when discrete eigenvalues are present, the corresponding
poles and associated norming constants [20,24] (see Appendix
for details).

As usual [9,27], we compute the long-time asymptotics
along lines x = &t with & = const. The difference between
the present scenario and the one in Refs. [19,20] is the
additional presence of poles in the Riemann-Hilbert problem
coming from the discrete spectrum, i.e., the discrete eigen-
value at k =k, that produces the soliton. Next we briefly
discuss how solitons arise in the calculation of the long-time
asymptotics.

Both the jump condition and the residue conditions contain
the phase 6(x,t, k) = O(k, &)t, with O(k, &) = A(E — 2k)
[20,24] (see Appendix for details). As in Ref. [28], one can
show that when the reflection coefficient is zero the poles give
a vanishingly small contribution to g(x, t) as t — oo for all
& such that 6y, (k,, &) # 0. Conversely, when & is such that
Oim(k,, &) = 0, the poles give an O(1) contribution to the
solution. As a result, the soliton velocity is simply the value
of & such that O, (k,, £) = 0. When ¢, = 0 (i.e., with zero
background), the phase reduces to ®(k, §) = k& — 2k?. In this
case the above criterion recovers the familiar expression V, =
4k, with k, = ke + ikim. When g, # 0 instead (i.e., with
NZBG), the same criterion yields V, = 2(kie + kim Are/Aim)»
with A(k,) = At + iAim, Which coincides with the expression
given earlier. Thus, one can identify the soliton velocity
without computing the solution of the NLS equation.

Figure 2(b) shows the contour lines of the soliton velocity
in the spectral plane with NZBG. Note that the curves of
constant soliton velocity are simply given by Oy (k, &) =0
for different values of £. These curves touch the real £ axis
twice for V, > 4\/§q0, once for V, = 4\/§qo, and never for
V, < 4+/2q,. This feature affects the calculation of the long-
time asymptotics. Also, Fig. 2(b) shows that the contour line
V, = 4+/2g, divides the spectral plane into three domains: D,
(gray region), where V, > 44/2q, extending to infinity; D,
(dark and light blue regions, respectively, D and D ), where
V, < 4ﬁq0; and Dj (orange region), where V, > 4\/§qo
touching the segment [0, ig,]. Below we show that these
regions correspond to the locations of discrete eigenvalues
that result in soliton transmission, trapping, and the mixed
regimes.

Since V, > 0, the results of Refs. [19,20] also apply in
our case for x <0, and the solution is unaffected by the
presence of the soliton as ¢+ — oo, apart possibly from an
overall constant phase. Thus, hereafter we restrict ourselves
to computing the long-time asymptotics for x > 0.

V. SOLITON TRANSMISSION

Consider a discrete eigenvalue k, € D). Recall that the
boundary of the wedge is given by the lines x = +4+/2¢,t,

and the range |&| > 4v/2qg, is the plane wave region. The
value & =V, lies in this range. Even in the presence of a
discrete eigenvalue, for & # V, the calculations proceed as in
Ref. [20], and the discrete eigenvalue yields no contribution
to the solution in the long-time asymptotics. Conversely, for
& =V, ityields a leading-order contribution that results in the
soliton, as before. In other words, the long-time asymptotics
predicts that the soliton appears as a localized traveling object
outside the wedge, and that the soliton velocity after the
interaction coincides with V,, in perfect agreement with the
numerical results. Moreover, the long-time asymptotics also
recovers the asymptotic phase difference of the solution as
x — o0, consistently with the constraint coming from the
discrete eigenvalue [24].

VI. SOLITON TRAPPING AND VELOCITY CHANGE

The outcome changes when the soliton is generated by &, €
D;’ . In this case V, < 4ﬁq0, hence now the value £ =V,
occurs inside the wedge. Thus, the long-time asymptotics now
predicts that no soliton is present in the plane wave region,
consistently with the numerics. A natural question is then
whether the soliton is destroyed by the interaction or whether
it persists inside the wedge. To this end, Fig. 3(a) shows the
difference between the amplitude of a solution with a soliton
present and that of a solution in which the soliton is absent.
The permanent change across the wedge in Fig. 3(a) clearly
demonstrates the persistent presence of the soliton trapped
inside the structure.

At the same time, Fig. 3 also clearly shows that the soliton
velocity inside the wedge differs from V,. To understand
this phenomenon, recall that the calculation of the long-time
asymptotics changes for 0 < & < 4+/2¢, [19,20]. Specifi-
cally, in that range the controlling phase in the Riemann-
Hilbert problem must be modified in order to regularize the
problem, and one must replace ®(k, &) with a new phase

:\w\\
\‘

FIG. 3. Density plots of the difference between the amplitude of
a solution with a soliton and that of a solution without the soliton
(i.e., generated by just the localized disturbance), demonstrating the
presence of the soliton inside the wedge, the change in the soliton ve-
locity and the generation of the soliton wake. (a) k, = 0.1 4 1.02i €
D, (implying V, = 1.95), resulting in a soliton trapping. (b) k, =
0.2+ 0.5i € D; (implying V, = 8.42), resulting in a mixed regime
comprising a soliton transmission and a soliton-generated wake.
Blue lines: the boundaries x = +4+/2¢,¢ of the wedge. Dashed red
lines and solid red lines: trajectories corresponding to V, and to V,,
respectively.
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FIG. 4. Effects of the interaction between the soliton and the
wedge. (a) Velocity V, (vertical axis) of the trapped soliton after it
enters the wedge as a function of the incident soliton velocity V,,.
(Black: ki, = 1.02; blue: ki, = 1.05; red: ki, = 1.1; magenta: ki, =
1.4. Also shown for comparison is the dashed gray line V, =V,.)
(b) Velocity V, of the soliton-generated wake as a function of V,,.
(Black: ki, = 0.8; blue: ki, = 0.6; red: ki, = 0.4; magenta: ky, =
0.2.) All velocities are in units of 4ﬁq0.

function h(k, &) defined in terms of Abelian integrals [20]
(see Appendix for details). It is thus h(k, &), not O(k, &),
that controls the soliton velocity V, inside the wedge. More
precisely, setting Ay, (k,, £) = 0 yields an implicit equation
that determines V, (see Appendix for details). As shown in
Fig. 3(a), the value of V, predicted by the long-time asymp-
totics is in excellent agreement with the numerical results.
Figure 4(a) shows a plot of V, as a function of V,,. Note that V,
is always less than V,,, meaning that the soliton always slows
down as a result of the trapping. The change in the soliton
velocity can be interpreted as the result of the interaction
between the soliton and the infinite number of sech-like peaks
inside the wedge [21]. At & = V,, the solution is locally a
nonlinear superposition of a soliton and a periodic solution
of the NLS equation, similarly to Ref. [29]. Note that V,
does not depend just on V,, as demonstrated by Fig. 4, which
shows solitons with the same V, but generated by different
eigenvalues yield different values of V, in general.

VII. MIXED REGIMES AND SOLITON WAKE

Yet a different scenario arises when k, € D3 or k, € D, .
When k, € D3, we again have V, > 44/2¢,, implying & =
V, occurs in the plane wave region, so again we expect a
soliton transmission with an unchanged soliton velocity after
the interaction. The twist, however, is that when k, € D3 the
implicit equation hjpy(k,, £) = 0 also has a solution for £ =
£, € (0,4+4/2g,). Thus, the long-time asymptotics predicts
that a single discrete eigenvalue k, € D3 generates two dis-
tinct contributions to the long-time behavior, propagating at
different velocities: &, and V,,. We are unaware of any previous
instances in which a similar phenomenon was reported in any
physical context.

The above predictions are borne out by the numerical
simulations, as shown in Fig. 2(a) and Fig. 3(b). Both figures
clearly show that the soliton is transmitted through the wedge,
but at the same time a soliton-generated wake is clearly visible
inside the wedge. Also, Fig. 3(b) demonstrates once more
an excellent agreement with the prediction of the velocity
of the soliton-generated wake coming from the long-time
asymptotics. A plot of the velocity V, of the soliton-generated
wake as a function of V,, is shown in Fig. 4(b). Physically,
the difference between D; and in Dj is that, for the same

amplitude and velocity, eigenvalues in D3 always lead to
much broader solitons than eigenvalues in D; (cf. Appendix).
A similar situation arises when k, € D, , except that no
soliton arises outside the wedge in the long-time asymptotics,
and two contributions are generated inside the wedge. That
is, him (k,, &) = 0 twice for & € (0, 4«/§qa): once for & = V,,
corresponding to the trapped soliton, and again for & = &,,
corresponding to the soliton-generated wake (cf. Appendix).

VIII. DISCUSSION

In summary, we presented a study of nonlinear interactions
between solitons and localized disturbances in focusing media
with nonzero background, we classified the possible out-
comes, which include soliton transmission, soliton trapping,
and the generation of a soliton wake, and we identified precise
conditions that determine the velocity of the trapped solitons
and the soliton wake.

We emphasize that in the pure transmission regime, the
interaction is clean. That is, no permanent residuals are left
in the wedge, and (apart from a constant phase shift) the solu-
tion for |x| < 4+/2¢,t is virtually undistinguishable from one
without the soliton (as confirmed by the analog of Fig. 3 for a
soliton transmission, see Fig. 6 in Appendix). The same is true
in the trapping regime except for the presence of the soliton
inside the structure (cf. Fig. 1). Conversely, in the mixed
regimes the wedge acquires additional permanent localized
traveling objects, and interacts nonlinearly with them. The
analytical predictions for the velocity of the soliton-generated
wake remain valid in the limit when the discrete eigenvalue
k, € D3 touches the segment [0, ig,], in which case the soli-
ton is replaced by an Akhmediev breather and V, = 0.

Soliton interactions with NZBG in the absence of localized
disturbances have recently been studied in Refs. [30,31].
Interactions between solitons and localized disturbances had
been previously studied in the case of zero background
[9,12,32,33], but in that case they only lead to small effects,
even in modulationally unstable media. It is only in focusing
media with NZBG that dramatic effects such as a soliton
velocity change and a soliton-generated wake arise.

The phenomena discussed here are related to interactions
between solitons and dispersive shock waves (DSWs) [34].
Soliton tunneling was recently studied in the context of DSWs
in defocusing media in Ref. [35]. Also, soliton trapping by
an initial discontinuity was recently studied in Refs. [36,37].
Note, however, that phenomena governed by the Korteweg-
deVries (KdV) equation or the defocusing NLS equation are
very different from those described by the focusing NLS
equation. In both the KdV equation and the defocusing NLS
equation, the soliton velocity is proportional to its amplitude.
Thus, the soliton velocity and amplitude decrease as the soli-
ton travels up the ramp generated by the discontinuity, with
the soliton eventually disappearing altogether. In the focusing
NLS equation, in contrast, the soliton velocity and the soliton
amplitude are entirely decoupled (i.e., independent of each
other), the mechanism that drives the change in the soliton
velocity is completely different, and the soliton amplitude and
velocity inside the wedge are constant.

We also emphasize that the applicability of our results is
expected to be very broad, since, similarly to Refs. [19-22],
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the results are essentially independent of the specific details
of the initial localized disturbance. Moreover, since the NLS
equation arises in many physical contexts, including nonlin-
ear optics, deep water waves, acoustics, plasmas, and Bose-
Einstein condensates, the results of this work apply to all
of these areas. (Recall that suitable scalings to observe NLS
dynamics in each of these domains are well known, e.g., see
Refs. [2,9-11,13].) Finally, since the results of Ref. [19] were
shown in Ref. [22] to extend to a broader class of modula-
tionally unstable systems, we expect that the same will apply
in this case. In particular, nonlinear optical fibers and gravity
waves in one-dimensional deep water channels are especially
promising candidates for the experimental verification of the
phenomena described here.

ACKNOWLEDGMENTS

We thank M. J. Ablowitz, M. A. Hoefer, M. Onorato, and
S. Trillo for many interesting discussions. This work was
partially supported by the National Science Foundation under
Grants No. DMS-1614623 and No. DMS-1615524.

APPENDIX

Here we give a few details of the inverse scattering trans-
form (IST) for the focusing NLS equation with NZBG, the
wedge structure, the calculation of the long-time asymptotics,
the numerical methods used and some further numerical re-
sults.

1. IST with NZBG: Direct problem

The direct problem in the IST consists in computing the
scattering data (i.e., reflection coefficient, discrete eigenval-
ues, and norming constants) from the potential g (x, ¢). This is
done through the Jost eigenfunctions ¢4 (x, ¢, k), which are
the simultaneous matrix solutions ¢ (x, 7, k) of both parts
of the Lax pair that reduce to plane waves as x — £o00. In
the case of NZBG [24], they are given by Eq. (3), where
+iX and E4 (k) are, respectively, the eigenvalues and cor-
responding eigenvector matrices of X4 = lim,_, 1o X. The
value of A(k) is uniquely determined for all £k € C by requir-
ing that the branch cut is on i[—q,, g,], A(k) is continuous
from the right on the cut, and that Im A(k) > O for Imk > O.
These Jost eigenfunctions, which are the nonlinearization of
the Fourier modes, are defined for all values of k € C such
that A(k) € R, namely the continuous spectrtumk € ¥ =R U
i[—40, q,]- The reflection and transmission coefficients are
r(k) = —ap;/ay; and t(k) = 1/ay;, respectively. The zeros of
a1 (k) and ay; (k) define the discrete spectrum of the problem,
which leads to solitons. As usual, the time evolution in the
IST is trivial. In particular, with the above normalization of
the Jost eigenfunctions, all the scattering data are independent
of time [24].

2. IST with NZBG: Inverse problem

The inverse problem in the IST consists in reconstructing
the solution g (x,t) of the NLS equation from the scatter-
ing data, and is formulated in terms of a Riemann-Hilbert
problem, namely the problem of finding the sectionally

meromorphic matrix M (x, t, k), which in terms of the direct
problem is given by [19,20]

[ b_» e—i00s ,

azzd’
M(x7 t’ k) = ¢+2 —i90’3
-1 a.d e s

k E C+ \I[Os qo]a
k€ C\i[—g,,0],
(AL)

where C* are the upper half and lower half of the complex
k plane, respectively, ¢+ ; for j = 1, 2 denote the columns of
¢+ and d(k) = 21 /(k + 1) = det E4 (k). More precisely, the
RHP consists in computing M (x, t, k) from the knowledge of
the jump condition,

M*(x,t,k) =M~ (x,1,k)V(x,1,k), keX, (A2)

where superscripts £+ denote projection from the left/right
of the contour X (oriented rightward along the real k axis
and upward along the segment i[—q,, ¢,]), together with the
normalization M (x,t,k) =1+ O(1/k) as k — oo, residue
conditions at the discrete eigenvalues and suitable growth con-
ditions at the branch points [38]. Note that det M (x, ¢, k) = 1
for k € C\ X. The jump matrix, obtained using the scattering
relation and symmetries, is [20]

v ) — g/d 7 e%if ke R A3
(x’tv )_(rezig d )v € kl ( a)
P R 2i0 —9i ok
Vet k) — (z()» . li)r/qfe . ZIK/q*f m)’
—iqZg/(2}) iA+k/q”e
k €il0, g,], (A3b)
. = 2i0 ;
Vix,t, k)= —(l “* —{—zl.c)r/q_e . lq_g/(ZjM)_m)’
ir/q_ iA—ky/q*e
k € i[—q,, 0], (A3c)

with 7#(k) = r*(k*) and g(k) = 1 + r (k)7 (k), where the aster-
isk denotes complex conjugation. The residue condition at the
poles induced by the discrete eigenvalues are [24]

0 0\ .
Res M(x, 1, k) = M(x, t, k,,)( 0>e‘219<"”’k0), (Ada)
Co

=Ko

0 _ k
]B_ek%M(x,t,k)=M(x,l‘,kZ)< K

—2i6(x,t,k}) Adb
0 0 )e . (Adb)

¢, being an arbitrary, complex-valued norming constant.

As shown in Ref. [18], the signature of MI in the inverse
problem is the exponentially growing entries of V (x, ¢, k) for
k € i[—q,, q,] through the time dependence of 0(x, ¢, k).

3. Coherent oscillation region

As shown in Refs. [20,21], when no solitons are present
the leading-order solution in the coherent oscillation region is
expressed in terms of Jacobi elliptic functions, and represents
a slow modulation of the traveling wave (periodic) solutions
of the focusing NLS equation. In particular,

| Gasymp (X, ) = (o + tim)*

— 4q,0tim SN*[Cy (x — 20t — X );m],
(AS)
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where the elliptic parameter m and the constants Cy. are

m = 4q,0im [ [og + (o + otim)*], (A6a)
Ci=latig) =, /a2 +(goLim)?,  (Abb)

and the slowly varying offset X is explicitly determined by
the reflection coefficient. The four points +ig,, & = e +
ioim and o™ are the branch points of the elliptic solutions
of the focusing NLS equation. In particular, « is a slowly
varying function of £ determined implicitly via the system of
modulation equations [39,40]
& =dae + 2(6102 - ajzm)/arev (ATa)
(o + (@0 — otim)*) K (m) = (o, — et + ¢5) E(m),
(A7b)

where K(m) and E(m) are the complete elliptic integrals
of the first and second kind [41], respectively. The detailed
properties of the asymptotic state in the coherent oscillation
region were characterized in Ref. [21]. When § = 4ﬁq(,,
Egs. (A7) yield m =0 and o = go/~/2; when & =0, one
has m = 1 and @ = ig,. The trajectory described by « in the
complex k plane for & € (0, 44/2qg,) is given by the red curve
in Fig. 2 in the main text, which delimits the upper and lower
portions of D, respectively, denoted D;t.

4. Long-time asymptotics with a discrete spectrum

Consider the situation in which a discrete eigenvalue at
k =k, is present in the spectrum. Owing to the invariance
of the NLS equation under spatial reflections, it is enough
to consider the case in which k, is in the first quadrant of
the spectral plane, implying V,, > 0. Note that the asymptotic
results are independent of whether the sign of the initial
soliton position X, is positive or negative, the only difference
being whether the interaction between the soliton and the
localized disturbance occurs at positive versus negative times.

Let x =&t and 6(x,t, k)= O(k,&)t, with Ok, &) =
A€ —2k). As in Ref. [20], the calculation of the long-
time asymptotics differs depending on whether |§| 2 4/2q,.
When |&] > 4\/§q0, one can deform the RHP to remove the
exponentially growing jumps without introducing additional
branch cuts or modifying the phase function. Conversely,
when [&] < 4\/§q0, in order to remove the exponential growth
one must introduce an additional branch cut and replace
O(k, &) with a new phase function h(k, &) defined by the
Abelian integral [20]

1 k k
h(k,$)=§</' +f >dh,
—1q0 19,

dh = —4(z — §/4+ae)(z—a)(z—a")/y(z)dz  (A8b)

with y(z) = [(z> + qf)(z — a)(z — a*)]"/2. Without loss of
generality, we take the two branch cuts of A(k, &), respec-
tively, along the segment of the imaginary axis from —ig, to
iq, and along the curve hiy, (k, £) = 0 connecting o™ to « [20].

The only difference between the long-time asymptotics in
our case and that in Ref. [20] arises when ®;y,(k,, £) = 0 in
the plane wave region or hiy(k,, &) = 0 in the wedge. Those

(A8a)

0
(a) T (b)
,1 G
_2 _
00 02 04 06 08 10 00 0.2 04 06 08 1.0
1
e (d)
0 0
-1 -1

00 02 04 06 08 10 00 02 04 06 08 1.0

FIG. 5. The value of hj,(k,, &) (blue curve) as a function of
£ (in units of 44/2¢,) in the wedge in a few representative cases.
(a) k, = 1.24 + 1.1ie D, (V, = 6, transmission). (b) k, = 0.216 +
1.1ie DS (V, =2, trapping). (c) k, = 0.0479 + 0.95i € D; (V, =
5, trapping plus wake). (d) k, = 0.214 4+ 0.5ie D5 (V, = 8, trans-
mission plus wake). Black dots: V,; red dots: V, (trapped soliton);
blue dots: &, (wake).

are the only values of & at which the poles in the RHP give an
O (1) contribution to the solution. Conversely, as in the case of
zero background, for all values of £ in the plane wave region
such that Oy, (k,, &) # 0, and all values of £ in the wedge
such that A, (k,, &) # 0, the poles give an exponentially small
contribution to the solution as ¢t — co.

As discussed in the main text, the condition ®;y, (k,, £) = 0
is satisfied for |&| > 4ﬁq0 when the discrete eigenvalue k,
lies in D, (transmission region) or D3 (wake region), leading
to the appearance of a soliton in the plane wave region in
those cases, but not when k, € D, (trapping region), leading
to the absence of a soliton in the plane wave region in that
case. It therefore remains to examine whether the condition
him(ko, &) = 0 is satisfied for |€] < 44/2g, in each of these
three cases. We discuss this issue next.

0 0.5 1 1.5 2
30 7 7 7
(b) ,l // /’/
’ .
25/ /
,I / e 4
! / e 7
20! ; . L -

1
15 0 -

10, -
4 2
:

5
0
-50 0 50 1 2 3 4 5

FIG. 6. (a) Amplitude difference between the solution shown
in Fig. 1(a) and a solution without the corresponding soliton (as
in Fig. 4), demonstrating that in this case the interaction produces
no lasting effects on the wedge. (b) Full width at half-maximum
(vertical axis) of two solitons with the same velocity, one generated
by a discrete eigenvalue k, € D; (solid lines) and the other by an
eigenvalue k, € D; (dashed lines). The horizontal axis is V,, in units
of 4ﬁq(,. Black lines: ki, = 0.8; blue lines: k;, = 0.6; red lines:
kin = 0.4; magenta lines: ki, = 0.2.
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FIG. 7. Density plot of the (a) amplitude and (b) amplitude
difference produced when k, = 0.05 4+ 0.95{ € D, , resulting in a
soliton trapping and a soliton-generated wake.

50

5. Implicit equation for the soliton velocity in the wedge

The integrals in Eq. (A8a) can be carried out and expressed
in terms of incomplete elliptic functions. On the other hand,
we found it more convenient to just evaluate numerically the
imaginary part of &, which can be shown to be simply

1 k
him(k, §) = —./ dh.
20 Sy

The value of V, is then computed numerically with standard
root finding algorithms.

Figure 5 shows the value of Ay (k,, £) as a function of &
in the wedge (i.e., in the range —4«/§qo <& < 4ﬁq0) for a
few representative values of k, in the transmission, trapping,
and mixed regimes. From these plots we see that the equation
him(k,, &) = 0 has no solution when the discrete eigenvalue
k, is in Dy, i.e., in the pure transmission regime. Conversely,
him(k,, &) = 0 exactly once when k, € D; , corresponding to
the trapped soliton, and when k, € D3, corresponding to the
soliton-generated wake. Finally, hiy(k,, £) = O twice when
k, € D5, with one zero corresponding to the trapped soliton
and the other to the wake. Note that V, is always less than V,
in absolute value, and V, — 4\/§q0 whenever V, — 4\/50.

6. Numerical methods

All numerical simulations of the NLS equation were per-
formed using an eighth-order Fourier split-step method [42]
with periodic boundary conditions and N = 4096 grid points.
The spatial domain used was much larger than the spatial

FIG. 8. Density plots of the solution amplitude corresponding to
Fig. 3 in the main text.

window shown in the figures, so that the phase discontinuity
at the edge of the domain generated by the soliton did not
affect the solution in the plot window. Specifically, we took
x € [-L, L] with L =200, implying a spatial grid size of
Ax =9.77 x 1072, The initial disturbance was realized by
taking g(x,0) =1+ ie ™ cos(v/2x) near x = 0. The time
integration was performed with an integration step size of
At =2 x 107*. This setup allowed us to obtain accurate
results until about r = 15, at which point roundoff errors
become O(1).

7. Further numerical results

Figure 6(a) shows the amplitude difference between the
solution in Fig. 1(a) of the main text and a solution without
the corresponding soliton, clearly demonstrating that no per-
manent effects remain in the wedge. The right panel of Fig. 6
shows a comparison between the width of two solitons with
the same amplitude and velocity, one generated by a discrete
eigenvalue k, € D; and the other by k, € D3, demonstrating
that eigenvalues in D3 always generate broader solitons than
those in D;.

For completeness, Fig. 7 shows an interaction with a
soliton generated by a discrete eigenvalue in D, , in which
case the interaction results in a soliton trapping and a soliton-
generated wake, and Fig. 8 shows the amplitude of the solu-
tions in Fig. 4 of the main text. Finally, we note that the long-
time asymptotics results also apply if the soliton is replaced
by an Akhmediev breather, in which case one simply obtains
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