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Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for the con-
trolled generation of dark soliton trains upon choosing suitable box-type initial configurations are described.
First, the direct scattering problem for the defocusing nonlinear Schrödinger equation with nonzero boundary
conditions and general box-type initial configurations is discussed, and expressions for the discrete spectrum
corresponding to the dark soliton excitations generated by the dynamics are obtained. It is found that the size of
the initial box directly affects the number, size and velocity of the solitons, while the initial phase determines
the parity of the solutions. The analytical results obtained for the untrapped system are compared to those of
numerical simulations of the Gross-Pitaevskii equation, both in the absence and in the presence of a harmonic
trap. The numerical results bear out the analytical results with excellent agreement.
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I. INTRODUCTION

Dark solitons are fundamental nonlinear excitations stem-
ming from the balance between dispersion and suitable kinds
of nonlinearity. They are found to arise in diverse physical
systems ranging from water waves [1] and magnetic materials
[2] to nonlinear optics [3–5] and Bose-Einstein condensates
(BECs) [6–9]. For instance, in nonlinear optics dark solitons
emerge in media with positive dispersion and defocusing
nonlinearity whose evolution is described by the so-called
defocusing nonlinear Schrödinger (NLS) equation [10]. On
the other hand, in the BEC context dark solitons form in
systems with repulsive interatomic interactions [11] obeying
the so-called Gross-Pitaevskii equation (GPE).

BECs, due to their high degree of controllability and iso-
lation from the environment [12], constitute fertile physical
platforms for investigating the existence, dynamics and in-
teractions [13–16] of these matter waves or multicomponent
[17–19] and multidimensional variants thereof [20–22]. Ad-
ditionally, several powerful techniques have been utilized in
order to generate such waves. These include, among oth-
ers, phase imprinting [8,20,23] and density engineering [22],
perturbing the BEC with localized impurities [24,25] and in-
terference experiments [26–29].

Among the aforementioned methods, the latter is based on
the matter-wave interference of two colliding condensates, a
process via which dark soliton trains can be produced. Sev-
eral experimental and theoretical works have been devoted to
studying the controllable creation of such dark soliton arrays
[26–28,30,31]. They revealed, among other things, that the
momenta of the colliding BEC parts and their relative phase

play an important role in the number of generated solitonic
entities. This result has been derived analytically for the de-
focusing NLS equation by means of the inverse scattering
transform (IST) in the seminal work of Ref. [3]. Recent
theoretical attempts have exploited the integrable nature of
the above scalar NLS model and further developed an IST
formalism accounting for both symmetric [32,33] and fully
asymmetric non-zero-boundary conditions (NZBC) [34].

In the present work we exploit the unprecedented level
of control that the ultracold environment offers along with
the exact analytical tools provided by both direct scattering
methods and the IST with NZBC, and we report the on-
demand generation of dark soliton arrays. In particular, we
consider a one-dimensional (1D), harmonically trapped scalar
BEC composed of repulsively interacting atoms, and we study
the response of such a system to box-type initial configura-
tions [3,31,33,35] (see also Refs. [36–38] in nonlinear optics)
whose shape is controlled by five distinct parameters. Limit-
ing cases of the latter directly mimic interference and density
or phase engineering processes suggesting the experimental
relevance of our findings. The closest analog to this in the
context of trapped BECs that we are familiar with appears in
Ref. [30]; however, that work is based on the (approximate)
Bohr-Sommerfeld quantization rule for hyperbolic function
based perturbations of the initial density or phase profile.
Here, on the other hand, we leverage both the pioneering work
of Ref. [3] and the recent developments of Refs. [32,33] to
obtain explicit analytical results based on IST.

More specifically, first we consider the integrable version
of the problem, i.e., the defocusing NLS equation with NZBC.
The direct scattering problem for this equation with the above
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box-type initial condition is solved analytically. Expressions
for the discrete eigenvalues of the scattering problem, which
as usual determine the amplitudes and the velocities of the
ensuing dark solitons, are found, and the exact soliton wave-
forms and the center of each of them can be extracted within
the IST. Having at hand the exact analytical expressions, a sys-
tematic study of the dynamical evolution of the scalar system
is then put forth. Distinct parameter explorations are con-
ducted including, for instance, in-phase (IP) and out-of-phase
(OP) initial configurations. In all cases investigated herein,
remarkable agreement between the analytical predictions and
our numerical findings is observed. This agreement in turn
means that, for example, the number of dark solitons that are
expected to nucleate via interference is a priori predicted by
our initial condition, along with the amplitudes and veloci-
ties of the emergent matter waves. It is also found that the
size of the initial box directly affects the number, amplitude,
and velocity of the emitted dark solitons. Additionally, its
phase, which can be now manipulated with the analytical tools
discussed in this work, along with its depth can determine
not only the even or odd number of nucleated dark solitons,
but can also lead to an asymmetrical distribution thereof.
Remarkably, the analytical solutions of the homogeneous set-
ting (where by “homogeneous” we mean the case without
confinement) can be suitably extended to the presence of a
harmonic confinement. Specifically, it is found that in each
scenario the number of in-trap emitted dark solitons and their
amplitudes coincide with that of the homogeneous setting,
while their trajectories closely follow those of a particle in
a harmonic oscillator [9]. Additionally here, by monitoring
during evolution the center of mass of each nucleated dark
soliton, estimations of the oscillation frequency of individual
waves are obtained. Excellent agreement with the analytical
expressions is exposed for the soliton amplitudes and ve-
locities, while deviations smaller than 4% are identified for
the oscillation frequency when compared to the analytical
predictions.

The flow of this paper is as follows. In Sec. II we introduce
the model and discuss the direct scattering problem for the
NLS with a general box-type initial condition. Additionally,
we comment on limiting cases, in terms of the involved box
parameters, and thus establish connections with interference
and density or phase engineering processes used in contem-
porary BEC experiments. In Sec. III we present our findings.
First, we extract the eigenvalues of the scattering problem
over a wide range of different initial configurations. Then we
perform a comparison of the analytical predictions with direct
numerical simulations of the GPE both in the absence and in
the presence of the trap. Finally, in Sec. IV we summarize our
results and discuss possible directions for future study.

II. MODEL SETUP, SCATTERING PROBLEM,
AND DISCRETE EIGENVALUES

A. The Gross-Pitaevskii and nonlinear Schrödinger
equation setup

The system of interest is a scalar 1D BEC consisting
of repulsively interacting atoms being confined in a highly
anisotropic trap with longitudinal and transverse trapping fre-

quencies chosen such that ωx � ω⊥. In such a cigar shaped
geometry [8,17], the condensate wave function along the
transverse direction, being the ground state of the respective
harmonic oscillator, can be integrated out. Then, in the mean-
field framework, the BEC dynamics for the longitudinal part
of the wave function �(x, t ) is governed by the following 1D
GPE [6,7]:

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ V (x)� + g|�|2�. (1)

Moreover, in the above expression V (x) = mω2
x x2/2 de-

notes the external harmonic potential. Additionally, m denotes
the atomic mass, while g = 2h̄ω⊥as is the effective 1D cou-
pling constant expressed in terms of the s-wave scattering
length, as. The latter accounts for two-atom collisions and
can be tuned by means of Feshbach resonances [39,40]. In
the present work we consider g = 1 and our setup can be real-
ized experimentally by considering, e.g., a gas of 87Rb atoms
[6,7]. By performing the transformations: |q|2 = 2as|�|2,
x′ = a−1

⊥ x, with a⊥ = √
h̄/mω⊥ being the transverse oscilla-

tor length, and t ′ = ω⊥t , we cast the aforementioned scalar
GPE in the dimensionless form

i
∂q

∂t
= −1

2

∂2q

∂x2
+ 1

2
�2x2q + |q|2q, (2)

where � ≡ ωx/ω⊥. For convenience we dropped the primes.
In the absence of a trapping potential (i.e., for � = 0), Eq. (2)
reduces to the well-known defocusing NLS equation [10].

The latter integrable model can be solved analytically via
IST and it is known to possess dark soliton solutions that
have NZBC at infinity [33]. To this end for the analytical
considerations to be carried out below, we further perform the
rescaling q̃(x, t ) = q(

√
2x, t ) exp (−2iq2

ot ) in the integrable
version of Eq. (2) and by omitting the tildes we end up with

iqt + qxx − 2
(|q|2 − q2

o

)
q = 0. (3)

Notice that with the aforementioned transformation Eq. (3)
satisfies the following time-independent NZBC at infinity:

lim
x→±∞ q(x, t ) = q± = qoeiθ± . (4)

Henceforth, qo = |q±| > 0 (without loss of generality), θ± are
real numbers, and the subscripts t and x introduced in Eq. (3)
denote here and throughout this work partial differentiation
with respect to time and space, respectively.

Motivated by our recent work of Ref. [31], but also by
the earlier works of Refs. [3,36,38,41–44] regarding the con-
trollable nucleation of soliton arrays, for our analytical and
numerical investigations below, we consider the following
box-type initial configurations for the condensate wave func-
tion:

q(x, 0) =

⎧⎪⎨
⎪⎩

qoeiθ− , x < −L

heiα, |x| < L

qoeiθ+ , x > L

. (5)

Here h � 0 refers to the depth (h < qo) or height (h > qo) of
the box. Additionally, L corresponds to the half width of the
box, qo is the background amplitude, θ± are the asymptotic
phases at either side of the box, and α is the phase inside the

023329-2



ON-DEMAND GENERATION OF DARK SOLITON TRAINS … PHYSICAL REVIEW A 103, 023329 (2021)

FIG. 1. Schematic illustration of the box-type initial configura-
tion (5), for generic wave function parameters, i.e., L, qo, θ, h and
α (a) in the absence and (b) in the presence of a harmonic trapping
potential. Note that the quantities shown are measured in transverse
oscillator units.

box. It will be convenient to introduce the quantities

�θ = θ+ − θ−, �θ+ = θ+ − α, �θ− = α − θ− (6)

to denote the distinct phase differences in each of the different
regions of the box. Owing to the phase invariance of the
NLS equation, we can take θ+ = −θ− = θ without loss of
generality, and we will do so hereafter so that �θ = 2θ and
�θ± = θ ∓ α. Note, however, that the phase inside the box, α,
remains as an additional, independent parameter. We will refer
to the cases �θ = 0 and �θ = π as in-phase (IP) and out-of-
phase (OP) condensates, respectively, and to the special case
h = 0 (which describes the complete absence of atoms inside
the box) as that of a “zero box.” A schematic illustration of
the initial configuration (5) is provided in Fig. 1(a).

B. Direct scattering of box-type configurations

Here we follow the presentation of Ref. [33]. As noted
earlier, the defocusing NLS equation [Eq. (3)] is an integrable
nonlinear partial differential equation, whose initial value
problem can be solved by means of the IST via its Lax pair.
The 2 × 2 Lax pair associated with Eq. (3) is

φx = Xφ, φt = Tφ, (7)

where φ is a 2 × 2 matrix eigenvector,

X(x, t, k) = ikJ + Q, (8)

T(x, t, k) = 2ik2J − iJ
(
Qx − Q + q2

o

) − 2kQ, (9)

and

J =
(−1 0

0 1

)
, Q(x, t ) =

(
0 q
q∗ 0

)
. (10)

The first equation in (7) is referred to as the scattering
problem, k ∈ C as the scattering parameter, and q(x, t ) as the
scattering potential. One can expect that, as x → ±∞, the
solutions of the direct scattering problem are approximated by
those of the asymptotic scattering problem φx = X±φ, where
X± = ikJ + Q± and Q± = limx→±∞ Q(x, t ).

The eigenvalues of X± are ±iλ, where

λ(k) =
√

k2 − q2
o. (11)

As in Refs. [33,45–47], we take the branch cut along the
semilines (∞,−qo) and (qo,∞), and we define uniquely λ(k)
by requiring that Imλ(k) � 0. (This corresponds to working
on one sheet of the two-sheeted Riemann surface defined by
λ(k) [33,45–47]).

Here we define the Jost solutions φ±(x, t, k) as the simul-
taneous solutions of both parts of the Lax pair satisfying the
boundary conditions

φ±(x, t, k) ≡ Y±(k)ei�(x,t,k) + o(1) as x → ±∞, (12)

where �(x, t, k) = �x − �t , � = diag(−λ, λ), � =
diag(2kλ,−2kλ), and Y±(k) are the simultaneous eigenvector
matrices of X± and T±. Both Jost solutions are related to each
other through the scattering relation

φ−(x, t, k) = φ+(x, t, k)S(k), (13)

and the scattering coefficients [the entries of the 2 × 2 scat-
tering matrix S(k)] are time independent on account of the
fact that the Jost eigenfunctions are chosen to be simultaneous
solutions of the Lax pair.

As we are concerned with only the discrete eigenvalues of
the scattering operator, which are time independent, hereafter
we will consider the scattering problem at t = 0 and omit the
time dependence from the eigenfunctions. At t = 0 the scat-
tering problem in each of the three regions x < −L, |x| < L,
and x > L takes the form vx = (−ikJ + Q j )v with the index
j = c,± with constant potentials Q± and Qc,

Q± =
(

0 qoe±iθ

qoe∓iθ 0

)
, Qc =

(
0 heiα

he−iα 0

)
, (14)

where again we set θ+ = −θ− = θ without loss of generality.
One can then easily find explicit solutions for the scattering
problem in each of the three regions:

ϕl (x, k) = Y−(k)ei�x x � −L, (15a)

ϕc(x, k) = Yc(k)eiMx |x| � L, (15b)

ϕr (x, k) = Y+(k)ei�x x � L, (15c)

where M = diag(−μ,μ), with μ = √
k2 − h2, and

Y±(k) =
(

k + λ −iqoe±iθ

iqoe∓iθ k + λ

)
, (16)

Yc(k) =
(

k + μ −iheiα

ihe−iα k + μ

)
. (17)

We then have explicit representations for the Jost solutions
φ±(x, 0, k) in their respective regions, i.e., φ−(x, 0, k) ≡
ϕl (x, k) for x � −L, and φ+(x, 0, k) ≡ ϕr (x, k) for x � L. At
the boundary of each region one can express the fundamental
solution on the left as a linear combination of the fundamental
solution on the right, and vice versa. In particular, we can
introduce scattering matrices S−(k) and S+(k) such that

ϕ−(−L, k) = ϕc(−L, k)S−(k), (18a)

ϕc(L, k) = ϕ+(L, k)S+(k). (18b)
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As a consequence, we can express the scattering matrix
S(k) relating the Jost solutions φ±(x, k) as

S(k) = S+(k)S−(k)

= e−i�LY−1
+ Yce2iMLY−1

c Y−e−i�L. (19)

Computing the right-hand side of Eq. (19), we obtain the
following expression for the first element s11(k) of the scatter-
ing matrix S(k):

λμe−i(2λL+θ )s11(k)

= μ cos(2μL)(λ cos θ − ik sin θ )

+ i sin(2μL)[hqo cos α − k(k cos θ − iλ sin θ )]. (20)

The discrete eigenvalues of the scattering problem are the
zeros of s11(k). Each of them contributes a dark soliton to the
solution. For the scalar defocusing NLS equation the zeros
are real and simple, and there is a finite number of them,
belonging to the spectral gap k ∈ (−qo, qo) [48]. In the case
of a single zero ko, the dark soliton solution of Eq. (3) reads

qd (x, t ) = qo cos βo − iqo sin βo tanh [sin βo(x − κ0(t ))],

(21)

where ko = qo cos βo and λo = iqo sin βo provide the velocity
and the amplitude of the soliton,

v = −qo cos βo ≡ −ko, (22a)

Ad = qo sin βo ≡
√

q2
o − k2

o , (22b)

respectively, and κ0(t ) = x0 − qo cos βot stands for the center
of the soliton.

We point out that the maximum soliton speed |vmax| = qo,
which coincides with the speed of sound of the condensate,
c = qo (note that c = √

gn [49,50] in the dimensionless units
adopted herein, with n being the density of the BEC). Recall
[cf. Eqs. (22)] that a true soliton can never reach such speed
(v = ko < qo). On the other hand, the maximum amplitude of
a soliton is Amax

d = qo, and it is attained by solitons with v =
ko = 0, also known as black solitons. In what follows, we will
use the variable ko to refer to a generic zero or to a set of zeros.

C. Special cases, symmetries, interference,
and phase-density engineering

Some of the most popular methods to generate dark soli-
tons in 1D BECs are phase imprinting, density engineering,
and colliding condensates, as discussed in the introduction.
In this section we show how box-type initial configurations
can be analogous to most setups used in the aforementioned
methods for the generation of dark solitons in 1D BECs, and
we obtain analytical results in the corresponding cases.

Before discussing each case, it is worth noting that, regard-
less of the method of creation, configurations with a phase
difference �θ = π allow the emergence of black solitons.
Recall that black solitons are static solitons, i.e., v = ko = 0
[see Eqs. (22)]. We can establish straightforward necessary
and sufficient conditions to ensure that k = 0 is a discrete
eigenvalue, i.e., a zero of s11(k). Since we are looking for
zeros, from now on it is convenient to work with only the
right-hand side of Eq. (20). When k = 0 both λ and μ are

purely imaginary, i.e., λ = iqo and μ = ih, and Eq. (20) yields

cosh(2hL) cos θ + sinh(2hL) cos α = 0. (23)

Thus, k = 0 is a discrete eigenvalue if and only if ei-
ther (i) cos θ = cos α = 0, for any choice of h, L, qo or (ii)
tanh(2hL) = − cos θ sec α. The former is in line with the pre-
vious statement regarding black solitons, i.e., θ = π/2. The
latter obviously requires cos θ sec α > −1.

Equation (23) is a special case of the symmetries possessed
by the discrete spectrum in certain configurations. Since λ and
μ are both even functions of k, when θ = 0 (corresponding to
an in-phase background, i.e., �θ = 0), the right-hand side of
Eq. (20) is also an even function of k. Thus, independently of
the value of h and α, to each discrete eigenvalue ko �= 0 there
corresponds a symmetric discrete eigenvalue −ko, yielding a
pair of symmetric solitons with the same amplitude and oppo-
site velocity. The same symmetry also arises when θ = π/2
(i.e., �θ = π ) if either h = 0 or α = π/2, since in this case
the right-hand side of Eq. (20) becomes an odd function of k.

We now discuss how the box-type configurations (5) re-
late to two of the aforementioned methods, associated with
the interference process. Such a setup in principle consists
of two condensates, e.g., of the same atomic species, being
separated from each other by some distance. The emergence
of dark solitons in this setting relies on matter-wave in-
terference phenomena occurring during the collision of the
condensates [26–29]. Basically, when the condensates collide
an interference pattern appears. Then, depending on the initial
momenta and phase of the colliding condensates, some of the
interference fringes formed might develop into dark solitons.
Specifically, the number of the latter is known to be propor-
tional to the momenta of the colliding condensates [27,28] and
can be increased by placing them farther apart. Additionally,
also known is that the parity of the number of solitons depends
on the phase difference between the condensates. Namely, an
even (odd) number of them is going to emerge if the initial
condensates are IP (OP). A box-type initial configuration that
can mimic such an interference process is that with h = 0.
In this case the two sides of the box represent the two inde-
pendent colliding condensates, being separated by a distance
2L and having a phase difference �θ = 2θ . Taking h = 0,
Eq. (20) reduces to

0 = k cos (2kL)[λ cos θ − ik sin θ ]

−ik sin (2kL)[k cos θ − iλ sin θ ], (24)

which can be rewritten as√
k2 − q2

ok cos(2kL + θ ) − ik2 sin(2kL + θ ) = 0. (25)

Apart from the trivial solution k = 0, the other solutions kn

are given by

2knL + θ = arctan

(√
q2

o − k2
n

kn

)
+ πn, (26)

with n ∈ Z (note: in Sec. III the subscript n is replaced by
o). This sets all the solutions in the interval −qo < kn < qo, as
expected. Moreover, the limiting case of kn → qo provides the
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number of zeros N for a given L and 0 � θ � π as

N =
⌈

2qoL + θ

π

⌉
. (27)

In the above expression  � denotes the ceiling function
[Eq. (27) was already derived in Refs. [3,35]]. From the above
equation, it is then clear that the number of solitons (zeros)
is proportional to the distance between the colliding conden-
sates, and its parity depends on their phase difference.

We now discuss the second methodology, namely, phase
imprinting [8,23,51]. This technique imprints a phase jump
on the condensate, by exposing part of it to a far-detuned laser
beam, which can dynamically develop into dark solitons. This
setting can be reproduced by box-type initial configurations
even with L = 0. This extreme case represents the setting of a
highly localized in space phase imprinting. Notice that such a
choice indeed leads to a condensate that has two regions with
different phases. Then Eq. (20) directly reduces to

λ cos θ − ik sin θ = 0, (28)

which yields a single zero

k = qo cos θ = qo cos

(
�θ

2

)
. (29)

Notice also that a black soliton solution occurs when �θ =
π , as expected from condition (i) of Eq. (23). Even though
Eq. (29), having a single phase jump, does not produce soliton
trains, it nevertheless assures the controlled generation of
a single soliton given a particular θ . Moreover it correctly
captures earlier findings [8,14,52,53] according to which the
generated solitons are faster, shallower and wider, the smaller
the phase difference is [see also Eqs. (22)].

We can consider other cases as well. For instance a case
in which a phase is imprinted on a finite region of the BEC,
resulting in a three-section condensate with two phase jumps
[8,14,52,53]. To reproduce such a setup with the box-type
initial configuration of Eq. (5) we consider a homogeneous
condensate (h = qo) having an extent 2L and to which we
impose a phase (α). In this case, if L ≈ qo then Eq. (20) needs
to be numerically solved. Yet, in the limit L � qo, we can
treat both phase jumps as being sufficiently far apart from each
other to treat them locally. Thereby, we can make use again of
Eq. (29) with the appropriate phase difference

k± = qo cos

(
�θ±

2

)
= qo cos

(
θ ∓ α

2

)
. (30)

Recall that ± denotes the right or the left phase jump
[see Eq. (5)]. Here we want to point out that we assume
0 � �θ± � π , otherwise it needs to be transformed accord-
ingly with a π shift. Yet, another case example consists of a
box-type initial configuration corresponding to a barrier on
top of a background, i.e., h > qo. Considering h � qo and
imposing a phase α at the location of the barrier, Eq. (20) can
be expressed as

tanh(2hL) = k sin θ − √
q2

o − k2 cos θ

qo cos α
. (31)

Since the left-hand side is always positive, Eq. (31) pro-
vides zeros if and only if θ and α are such that they produce

a positive right-hand side. For example, if we look for zeros
corresponding to black solitons, i.e., ko = 0, we recover con-
dition (ii) from Eq. (23). Additionally, in the limit L, h → ∞,
Eq. (31) reduces to

k± = qo sin �θ±. (32)

Last, we briefly comment on the analogy of density en-
gineering methods with our box-type initial configurations.
These methods are typically used to create density defects
on a condensate, which can be small [24] or substantial [25]
depletions of the latter. To mimic such techniques with our
box-type initial configurations, each case needs to be consid-
ered individually and the zeros must be found numerically by
solving Eq. (20). Specific case examples of the zeros and their
parametric dependencies for distinct box-type initial configu-
rations are presented in the next section.

III. DARK SOLITON GENERATION AND DYNAMICS

A. Analytical results for the discrete spectrum

Here we analytically characterize the dark solitons pro-
duced by the box-type initial configurations (5) by studying
the zeros of the first element, s11(k), of the scattering matrix,
S(k) [Eq. (20)], upon considering different selections of the
system parameters. Specifically, we utilize the wave function
of Eq. (5) which is characterized by the following five pa-
rameters: the half width, L, the amplitude, qo, the side phase,
±θ , the depth (or height) of the box, h, and its phase, α [see
also Fig. 1(a)]. To sort out all the spectra, we choose a set
defined by two main variables, which will be varied while the
remaining system parameters are held fixed. Since L and h
can be thought of as the main parameters of the scalar system
under consideration, the following discussion will be mainly
focused on the set of values of L and h. The corresponding
exploration, in terms of parametric variations, is performed
for the following selection of the configuration parameters:

L ∈ [1, 9], θ =
{

0,
π

2

}
, h ∈ [0, qo], α = {0, π},

(33)
together with qo = 1. However, we will also briefly comment
on other selections too whose results are not included herein
for brevity.

In what follows, we present the spectra of zeros of the first
element s11(k) of the scattering matrix for three different sets
of values of L and h. Each distinct exploration is shown in a
figure consisting of 10 panels (a) to (i) that range from L = 1
to L = 9, respectively. Each panel contains different zeros, ko,
as h is varied, with each of which corresponding to a particular
dark soliton solution.

1. All in-phase

The first selection we investigate is the case qo = 1, θ = 0
and α = 0. Here �θ = 0 implying an IP configuration [see
Fig. 1(a)], and α = 0 implies that the box is also in-phase
with the background. The corresponding spectra of zeros is
presented in Fig. 2. Due to the parity of the zeros, only ko > 0
are shown in the figure. As can be directly seen, increasing
L increases the number of solitons (i.e., the number of ko).
Particularly, when L = 1 only one pair of zeros, ±k1, appears
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FIG. 2. Zeros of s11(k) as a function of h for different values of L.
The parameters qo = 1, θ = 0, and α = 0 remain fixed. Only ko > 0
are shown due to the parity of the zeros. Note that the quantities
shown are measured in transverse oscillator units.

(one pair of soliton solutions) while L = 5 (L = 9) allows up
to four (six) pairs of them, ±k1, . . . ,±k4 (±k1, . . . ,±k6), to
occur. This is in agreement with the analytical expression of
Eq. (27) and correctly captures the h = 0 case. Recall that h =
0 is referred to as a “zero box” and is physically associated
with a setting of independent condensates colliding. Note also
that even though Eq. (27) is not a general expression but rather
a limiting case, the number of solitons still increases with L
and qo even when h �= 0. Also by inspecting Fig. 2, it becomes
apparent that for fixed h, increasing L decreases the value of
ko. This implies that the resulting solitons are slower as L
increases [see Eqs. (22)], which can be understood as the mo-
menta available in the system being distributed among a larger
number of solitons. This trend can be easily discerned by
monitoring, e.g., k1(h = 0) as L increases [see also Eq. (26)].
Indeed, initially, i.e., for L = 1, k1(h = 0) = 0.515 [Fig. 2(a)].
Then, for L = 2, k1 decreases to k1(h = 0) = 0.313 [Fig. 2(b)]
and already for L = 9 k1(h = 0) = 0.083 [Fig. 2(i)]. On the
other hand, for a fixed L it is found that the value of ko

increases, i.e., the solitons become faster, upon increasing h.
Moreover, since k ∈ (−qo, qo) (see also Sec. II), this increas-
ing tendency of ko for increasing h holds as such until ko = qo,
a threshold above which solitons cease to exist [see Eqs. (22)].
Recalling now that increasing h implies that the initial jump
in the configuration becomes progressively shallower, then
when h = qo there is no box configuration that can lead to the
creation of solitonic excitations. Such an outcome also persists
for h > qo.

2. Out-of-phase box

Next we turn to the second selection of parameters, in
which qo = 1, θ = 0 as before, but where now α = π . This

FIG. 3. Zeros of s11(k) as a function of h for different values of L.
The parameters qo = 1, θ = 0, and α = π remain fixed. Only ko > 0
are shown due to the parity of the zeros. Note that the quantities
shown are measured in transverse oscillator units.

is also an IP configuration, but the box is now out-of-phase
with the background. The analytical solutions, given by the
zeros of the first scattering element, are illustrated in Fig. 3.
Since �θ = 0 here as well, we show only the range ko > 0,
as before. Below we solely focus on k1 since it is the only
zero having a distinct trend when compared to those shown
in Fig. 2. Notice that contrary to the aforementioned zeros,
and also to the previous parameter selection, as h increases k1

decreases with the associated soliton thus becoming slower
and, in fact, k1 → 0 as h → ∞. This decreasing tendency
of k1 is in agreement with Eq. (23) and specifically with
condition (ii).

Additionally, it is also evident from Figs. 3(b)–3(i) that
k1 → 0 as L → ∞ independently of h. A discrete eigenvalue
k1 = 0 would in theory correspond to a pair of black solitons,
each generated as a consequence of the phase jump �θ± =
∓π at x = ±L. In turn, this would correspond to k1 = 0 being
a degenerate eigenvalue with degeneracy two. However, it is
well known that, for the scalar defocusing NLS, all discrete
eigenvalues are simple [48], and no coalescence of zeros is
possible, in contrast to the focusing case. What is happening
is that, as L → ∞, one reaches an approximate degeneracy:
when the phase jumps at x = ±L are sufficiently far apart
from each other, one can approximately treat them as indepen-
dent scattering problems. Then the solution to each problem
is simply given by Eq. (29), which indeed coincides with the
observed result. Nonetheless, it is important to realize that the
discrete eigenvalues of the overall system are only approxi-
mately given by those of the individual scattering problems,
and a careful analytical treatment shows that in practice the
symmetric pair of discrete eigenvalues is always at a nonzero
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L(h) : qo = 1, θ = π/2, α = 0
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FIG. 4. Zeros of s11(k) as a function of h for different values of
L. The parameters qo = 1, θ = π/2, and α = 0 remain fixed. Note
that the quantities shown are measured in transverse oscillator units.

distance from k = 0, although this distance vanishes in the
limit L → ∞.

Finally, we note in passing that cases corresponding to
different choices of α have also been explored, for which
upon increasing h, k1 → k± [Eq. (30)]. To be precise, it is
found that if 0 � α � π/2 then k1 increases and eventually
reaches k1 = qo. On the other hand, if π/2 < α � π , then k1

asymptotically tends to a different yet again finite value, as h
is increased. Indeed, taking the limit h � qo and for θ = 0,
Eq. (31) yields

tanh(2hL) = − sec α

√
1 −

(
k

qo

)2

, (34)

which directly implies that sec α < 0 explaining this way that
there exist values of α for which k1 = qo is reached. Past this
point, and for L → ∞ or h → ∞, k1 → qo sin α asymptoti-
cally slow [see Eq. (32)].

3. Asymptotic phase difference

Our last parametric exploration, shown in Fig. 4, consists
of various choices of L and h as before, but with the re-
maining system parameters as qo = 1, θ = π/2, and α = 0.
This initial state preparation corresponds to an OP box-type
configuration, with �θ = π . In contrast to the previous cases,
this choice produces an asymmetric distribution of discrete
eigenvalues. This outcome is evident by looking at the ze-
ros as h is varied, as illustrated in Fig. 4. Exceptionally,
for h = 0 all zeros are paired, i.e., ko = ±k, except for the
k7 one. For instance, for L = 9 and h = 0, 13 soliton so-

lutions are identified, corresponding to the thirteen distinct
zeros, k1, . . . , k13, shown in Fig. 4(i). From these, solutions
k1, . . . , k6 = −k13, . . . ,−k8, respectively. As in the preceding
scenarios, it is clear that in the present case the number of
solitons also increases as L increases, and increasing L while
keeping h fixed results in zeros that have smaller |ko| value
and are thus slower. Additionally, for fixed L the number of
expected soliton solutions decreases as we increase h. For
example, for L = 3 all five solutions k5, . . . , k9 occur, e.g.,
at h = 0, but only four of them, i.e., k6, . . . , k9, are left for
h = 0.6, further reducing to three (k6, k7 and k8) for h = 0.8
[Fig. 4(c)]. Moreover, increasing h produces also an increase
in the magnitude of each zero (|ko|) until eventually |ko| = qo

is reached, leading in turn to the absence of soliton solutions.
Exceptions to the aforementioned general behavior of the

solutions are the zeros k7 and k8 that never reach the threshold
|ko| = qo for h � qo. Instead, these two solutions are seen to
merge asymptotically as h increases, a merging that occurs
faster for larger L values. This merging can in turn be trans-
lated into two (asymptotically) identical solitons, having the
same velocity and amplitude, but different soliton centers,
x0 [see Eqs. (22)]. To understand further the aforementioned
behavior, we considered also different values of θ which in
turn unraveled that if h = qo then k7 = k8 → qo cos(θ/2) as
L → ∞ [see Eq. (30)]. This is also in line with our interpreta-
tion for the existence of approximate degenerate zeros in the
scalar NLS (see also our previous discussion). On the other
hand, if h → ∞ then k7 = k8 → qo sin(�θ±) independently
of L [see Eq. (32)]. Note here that the subscripts referring
to the solutions k7, k8 are such for the specific case example
addressed herein. However, different values of θ might change
the number of solutions and thus their relevant labeling.

B. Nucleation of dark soliton trains: Without confinement

In this section we aim to validate the analytical results
presented in Sec. III A (and more specifically to bear out the
discrete eigenvalues identified there) by numerically solving
the scalar GPE in the absence of a confining potential, i.e.,
� = 0 [Eq. (2)]. For the dynamical evolution of the aforemen-
tioned scalar system, we employ a fourth-order Runge-Kutta
integrator accompanied by a second-order finite-difference
method that accounts for the spatial derivatives. The spa-
tial and temporal discretizations introduced are dx = 0.1 and
dt = 0.001, respectively, and the position of the boundaries
used in the dynamics is at |x| = 2500 to avoid finite-size
effects. In the following, we fix L = 5 and qo = 1 and we
consider as representative examples the values h = {0, 0.5}.
Additionally, for this h selection, we further consider the cases
of θ = {0, π/2} and α = {0, π}.

Below we present our findings regarding the dynamical
nucleation of dark solitons via the matter-wave interference
of two colliding condensates [26–29] for various initial con-
figurations. When comparing the analytical predictions to the
numerical observations, it is important to keep in mind that
the various solitons generated by the initial conditions (5)
are in general interacting with each other. Therefore, one
can expect to be able to visually identify individual solitons
only in the asymptotic limit of x → ±∞, after the solitons
emerge from the creation process and can be considered to be
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FIG. 5. Dark soliton solutions resulting from the box-type initial
condition (5) with L = 5, qo = 1, θ = 0, h = 0, and α = 0, corre-
sponding to a zero box and an in-phase background [cf. Fig. 2(e)].
(a) Snapshot of |q| at t = 250 given by the GPE (solid blue line)
and the analytical solutions with κ0(t = 0) = 0 (dashed yellow line).
The inset shows the spatiotemporal evolution of |q| at initial times.
(b) Contour plot of Res11 = 0 (solid blue line) and Ims11 = 0 (dashed
yellow line) on the complex k-plane for Rek � 0. The zeros, ko, are
depicted by red circles. Temporal evolution of the velocities (c) and
the amplitudes (d) of the dark solitons. In both (c) and (d) the distinct
lines (from bottom to top) correspond to the analytical predictions
stemming from the zeros (from right to left) in (b). Dotted black
line in (c) refers to the speed of sound and in (d) to the maximum
amplitude. The zeros, ko, follow the notation introduced in the legend
of Fig. 2, with k1 = 0.1428, k2 = 0.4271, k3 = 0.7069, and k4 =
0.9608. Note that the quantities shown are measured in transverse
oscillator units.

well separated and independent from one another. Conversely,
during the initial stages of the dynamics one expects to see dis-
crepancies between the analytically determined solitons and
the numerically observed ones. One can also expect any such
discrepancies to become smaller and gradually disappear as
t → ±∞. This expectation is indeed reflected by the results,
as discussed below.

1. Zero box, in-phase background

We start presenting our findings in Fig. 5. According to our
analytical estimates [see Fig. 2(e) and Eq. (27)] four pairs of
dark solitons are expected and indeed form when a zero box
(h = 0) IP (�θ = 0) configuration is utilized. Note that due
to the symmetric nucleation of the matter waves only the soli-
tons located at x < 0, having negative velocities, v < 0, and
thus corresponding to the positive zeros, ko > 0, occurring at
Rek � 0 are shown in Figs. 5(a) and 5(b). Remarkable agree-
ment between the analytical solutions and the dynamically
nucleated matter waves is observed already at times t = 250
during evolution, as illustrated in this profile snapshot of the
norm of the wave function |q|t=250 [Fig. 5(a)]. Notice how the
emergent dark solitons spread outwards at their initial stages
of formation, i.e., right after the collision of the two sides of
the initial box around x = 0. Such spreading at early times
t < 5, as depicted in the spatiotemporal evolution of |q| [inset
of Fig. 5(a)], bends the trajectories of the solitons that are
symmetrically emitted around the origin. However, already

FIG. 6. Same as Fig. 5 but for L = 5, qo = 1, θ = π/2, h = 0,
and α = 0, corresponding to a zero box and an out-of-phase back-
ground. From left to right the zeros, ko, in (b) that lead to the
solitons formed in (a) are located at k7 = 0.0, k8 = 0.2852, k9 =
0.5679, k10 = 0.8423 (see the legends in Fig. 4). Note that the quan-
tities shown are measured in transverse oscillator units.

at t ≈ 25, where also the trajectories of the propagating soli-
tons become linear, the instantaneous velocities, v = dxCM/dt
(see below), of the individual coherent structures reach the
asymptotic analytical predictions stemming from the zeros,
ko, identified in Fig. 5(b), remaining thereafter nearly constant
for all times [Fig. 5(c)]. The same trend holds also for the
amplitudes, Ad , of the emergent entities illustrated in Fig. 5(d).
Note also that in both Figs. 5(c) and 5(d) the fastest dark wave
denoted by k4 has a velocity proximal to the speed of sound
c = q0 = 1 [dotted black line in Fig. 5(c)], while the slowest
soliton denoted by k1 has an amplitude close to the maximum
one, i.e., Amax

d = q0 = 1 [dotted black line in Fig. 5(d)].
Finally, it is important to mention at this point that, in

order to obtain the amplitude of each of the aforementioned
solitons (and also for the cases to be presented below), we
numerically followed the dark soliton minima during evolu-
tion. Then the amplitude corresponds to the value of |q| at
these minima. For measuring the instantaneous velocity, we
used instead the position given by the center of mass, i.e.,
xCM = (

∫ xr

xl
x|q|2 dx)/(

∫ xr

xl
|q|2 dx), of each soliton with xl,r

denoting the area of integration around each dark soliton’s
core. Therefore, at early times, the oscillations observed in
the temporal evolution of v [Fig. 5(c)] stem from the dis-
crepancies in the calculation of xCM . Indeed, at the initial
stages of the dynamics, the calculation of xCM might present
some irregular oscillations if a soliton is not well formed nor
separated enough from its neighbors or the emitted radiation.
The latter, seen for instance at x < −275 in Fig. 5, is a direct
effect of the highly excited initial state introduced herein.

2. Zero box, out-of-phase background

Next we turn to the exploration of the dynamics upon
considering a zero box but with OP (�θ = π ) background.
Here our analytical findings suggest the emergence of an odd
number of solitons [see Fig. 4(e) at h = 0 and Eq. (27)]. This
outcome is dynamically confirmed by Fig. 6, which shows
three pairs of dark solitons being nucleated together with a
central black soliton, adding up to the expected odd number
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FIG. 7. Same as Fig. 5 but for L = 5, qo = 1, θ = 0, h = 0.5,
and α = 0, corresponding to a nonzero box in-phase with respect to
its background. From left to right the zeros, ko, in (b) that lead to the
solitons formed in (a) are located at k1 = 0.5526, k2 = 0.6914, k3 =
0.8763 (see the legends in Fig. 2). Note that the quantities shown are
measured in transverse oscillator units.

[Fig. 6(a)]. Since once more the generation is symmetric with
respect to the origin, only the left moving matter waves are
shown in the snapshot of |q|t=250 in Fig. 6(a) that corre-
spond to the zeros k7 − k10 illustrated in Fig. 6(b). Notice
the close similarities between this process and the previous
one. Indeed, besides the number of nucleated waves, the only
discernible difference at the early stages of soliton formation
is the generation of the central black soliton [inset Fig. 6(a)].
The velocities and amplitudes of the evolved solitons also
follow a trend analogous to the IP case with minor differences
for the relevant magnitudes of v and Ad for each individual
dark soliton [Figs. 6(c) and 6(d)]. The black soliton (k7) has, as
expected, v = 0 and the maximum amplitude Amax

d = q0 = 1.

3. Nonzero boxes, dispersive shock waves

We now discuss initial configurations whose shape re-
sembles a density defect immersed in the BEC [23–25]. To
achieve the latter we fix h = 0.5. Figure 7 and Fig. 8 illus-
trate representative examples of the dynamical evolution of
the scalar system for IP initial configurations but with α = 0
and α = π , respectively [see also Fig. 2(e) and Fig. 3(e),
respectively]. In both cases, at the initial stages of the dynam-
ics, t < 5, multiple interference events significantly distort
the homogeneous background and also disturb the nucleation
process.

It should be noted how, in this case as well as the fol-
lowing two, the time evolution generates dispersive shock
waves [54] as a result of the initial discontinuities. This is a
well-known phenomenon, and in marked contrast to the case
when the amplitude in the central box is zero, in which no
such structures are generated [55]. The formation and initial
dynamics of these dispersive shock waves can be effectively
described using Whitham’s modulation theory for the defo-
cusing NLS equation [56–61]. In situations where more than
one dispersive shock wave is generated, as in the present case
(where each discontinuity generates a separate structure), their
interactions can also be effectively studied, as in Refs. [62,63],
using the Whitham modulation equations of higher genus

FIG. 8. Same as Fig. 5 but for L = 5, qo = 1, θ = 0, h = 0.5,
and α = π , corresponding to a nonzero box out-of-phase with re-
spect to its background. From left to right the zeros, ko, in (b) that
lead to the solitons formed in (a) are located at k1 = 0.0045, k2 =
0.06073, k3 = 0.8269 (see the legends in Fig. 3). Note that the quan-
tities shown are measured in transverse oscillator units.

[64]. It is also interesting to note that one could still choose to
look at the individual oscillations in these dispersive shocks as
the initial manifestations of the dark solitons that are the main
object of our study. Also note, however, that the initial speeds
of propagation of these individual excitations are quite differ-
ent from those predicted by the IST, and are instead very well
in agreement with the predictions from Whitham modulation
theory. Nonetheless, after these structures have interacted, the
final state of the system does become a collection of solitons
whose properties agree very well with the predictions of the
IST, as per the calculations in Sec. II B.

An even more dramatic instance of the same phenomenon
arises in the case of α = π , as depicted in the inset of Fig. 8(a).
Indeed, the spatiotemporal evolution of this configuration
captures the formation of two counterpropagating dispersive
shock waves whose downstream soliton emission [24,65] is
illustrated in Fig. 8(a). As in the case shown in Fig. 7(a), these
shock waves interact with the newly formed dark solitons,
an interaction that is most pronounced for the two central
nearly black solitons visible in the inset of Fig. 8(a). For both
cases, close inspection of the relevant insets indeed reveals
that solitons with positive velocities are initially formed at
x ≈ −5. On the other hand, the negative velocity ones arise
symmetrically at x ≈ 5. Despite the much more involved soli-
ton generation, in both cases our simulations almost perfectly
match the analytical predictions when we set the origin of
the latter at x = 0 [see the identified zeros in Fig. 7(b) and
Fig. 8(b), respectively]. Our results continue to hold even
for significantly larger evolution times than those depicted
herein. It is also at these later times, and in particular around
t ≈ 1000, that the two central dark solitons, whose zeros
are identified at k1 = ±0.0045 [see the k1 > 0 in Fig. 8(b)],
visibly repel [29] one another effectively, given their opposite
but extremely small in magnitude velocities (results not shown
here for brevity). Finally, due to the above-described dynam-
ics, both the instantaneous velocities, v [Fig. 7(c), Fig. 8(c)],
and the amplitudes, Ad [Fig. 7(d), Fig. 8(d)], of all three pairs
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FIG. 9. Same as Fig. 5 but for L = 5, qo = 1, θ = π/2, h = 0.5,
and α = 0 (see the legends in Fig. 4). In this case (b) depicts all
the complex k–plane. From left to right the zeros, ko, in (b) that
lead to the solitons formed in (a) are located at: k4 = −0.9750, k5 =
−0.7700, k6 = −0.5814, k7 = 0.4329, k8 = 0.4718, k9 = 0.6869,
k10 = 0.9155. Note that the quantities shown are measured in trans-
verse oscillator units.

of solitons formed in both scenarios acquire their expected
nearly constant trend for t � 25.

4. Other configurations

In all cases discussed so far, the initial configuration gave
rise to a symmetric distribution of solitons. We now explore
a scenario corresponding to an OP initial configuration, the
analytical predictions of which can be found in Fig. 4(e). The
corresponding dynamical process is illustrated in Fig. 9. In
contrast to the previously discussed IP box-type configura-
tions, in the present case, since both �θ = π and �θ± = π/2,
we do expect an asymmetric distribution of the zeros, ko,
and thus asymmetrically produced dark solitons. Both expec-
tations are confirmed and shown in Figs. 9(a) and 9(b). In
particular, seven distinct solitons are nucleated in Fig. 9(a),
with each of them corresponding to each of the seven distinct
solutions shown in Fig. 9(b). The spatiotemporal evolution of
|q| at early times [inset of Fig. 9(a)] shows that three of them
have v = −ko > 0 and four v = −ko < 0. This asymmetric
generation of matter waves entails also the largest deviations
between our analytical findings and the numerically obtained
ones. This can be easily inferred by inspecting either the pro-
files or even better the estimated velocities, v, and amplitudes,
Ad , of the ensuing waves illustrated, respectively, in Figs. 9(c)
and 9(d). For instance, the fastest soliton, k4 = −0.9750,
bears such a small amplitude that renders it indistinguishable
from the background radiation for times up to t ≈ 180. As
such, the corresponding v and Ad are not depicted in Figs. 9(c)
and 9(d), respectively, until t > 180. Yet, another example
refers to the solitons labeled k7 and k8. Namely, the two
entities that are tightly close to one another [see here Eq. (30)
and Eq. (32)] and thus interact continuously with each other.
It is this continuous interaction that holds for t � 1000, before
the soliton repulsion sets in, to which the discrepancy in the
amplitudes observed at t = 250 is attributed [Fig. 9(a)]. Even
though the largest deviation between our analytical predic-
tions, provided by the zeros of Eq. (20), and our numerical

findings, found for the aforementioned asymmetric initial
configurations, still lies within our numerical precision, i.e.,
δ = ±0.01.

We also explored cases for which h is close to qo but h �
qo. Here our results are found to be consistent with the limiting
cases discussed in Sec. II C. In particular, θ = α = 0 leads
to sound wave emission but no soliton production. For θ = 0
and α = π the creation of two almost black solitons (ko ≈ 0)
located at x = ±(L + ε), where ε > 0 is a small displacement
caused by the emission of radiation, is seen. Last, θ = π/2
and α = 0 (θ = π/2 and α = π ) results into two nearly equal
zeros, with Reko > 0 (Reko < 0).

C. Nucleation of dark soliton trains: With confinement

We now aim to generalize our findings by taking into ac-
count the presence of a harmonic confinement that is naturally
introduced in BEC experiments [8,19,66]. To this end, for the
numerical considerations to be presented below we turn on the
harmonic potential introduced in Eq. (2), and we further fix
the trapping frequency to � = 0.01 [66]. The latter choice,
besides its experimental relevance, is also an optimal one
since it allows for properly handling the sound wave emission
that takes place at the initial stages of the interference process.

Indeed, for tighter trappings the radiation emitted remains
also trapped and, as such, multiple collisions of the generated
dark solitons with these sound waves would result in a much
more involved dynamical evolution of the nucleated matter
waves.

Yet another important point worth mentioning here refers
to the analytical estimates regarding the soliton genera-
tion provided by solving the direct scattering problem (see
Sec. II B). Specifically, in the trap setting under considera-
tion these estimates can serve as approximate ones, since for
instance the NZBC, which in turn define the asymptotic be-
havior of the solitons formed in terms of amplitude, velocity,
and location, cannot be fulfilled. However, as we shall show
later, the strength of the analytical predictions is not limited to
the homogeneous setup but provides a particularly insightful
tool for the confined case as well.

In the present setting, in order to induce the dynamics we
initially find, by using imaginary time propagation, the ground
state of the scalar system [Eq. (2)]. We then embed in it the
wave function of Eq. (5). A schematic illustration of the afore-
mentioned initial state is illustrated in Fig. 1(b). Moreover,
in order to offer a direct comparison between the homoge-
neous and the confined cases, we consider as representative
examples five distinct selections of the involved parameters.
Namely, L = 5, qo = 1 while h = {0, 0.5}, α = {0, π} and
θ = {0, π/2} (see also the relevant discussion around Figs. 5–
9). Additionally, we design the analytical estimates for the
trapped scenario by molding onto the ground state, qgs, the
analytical solutions of the corresponding homogeneous set-
ting [see Eq. (21)] as follows:

|q(x, t )|2 = q2
o

∣∣∣∣∣
∏

i

q(i)
d (x, t )

qo

∣∣∣∣∣
2

− [
q2

o − |qgs(x)|2]. (35)

In Eq. (35) the product is performed over all the different
solutions of a set of zeros ko, while the first term on the right
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FIG. 10. Spatiotemporal evolution of |q| for distinct choices of
the involved parameters L, qo, h, α, and θ (see legends). Dashed red
lines correspond to the analytical trajectories given by Eq. (36). Panel
(f) is a magnified version of (d) which captures the two dark solitons
that are symmetrically placed around the trap center (x = 0). The
other four solitons that appear at the collision points are stretched
due to the zoom. The trapping frequency is fixed to � = 0.01. Note
that the quantities shown are measured in transverse oscillator units.

side corresponds to a dark soliton train solution in the absence
of a trapping potential having a background amplitude qo.
The second term properly adjusts the former, by preserving
the shape of each soliton, onto the in-trap ground state. It
is important to remark that given our particular set of initial
conditions and parameter selection, the right hand side of
Eq. (35) is always positive. In particular, � = 0.01 assures a
trapping potential growth slow enough to satisfy the positivity
of the right-hand side of Eq. (35). Additionally, the center of
each dark soliton is now given by

κ0(t ) = − ko

ωo
sin(ωot + φo) + x0, (36)

where the amplitude of the oscillation directly depends on ko.
Here ωo is the characteristic in-trap oscillation frequency of
a single dark soliton [29,67] (see our discussion below), x0 is

FIG. 11. Profile snapshots of |q| at t = 210 for distinct choices
of the involved parameters L, qo, h, α, and θ (see legends). The
snapshots from (a) to (e) correspond to the relevant in each case
dynamics presented in Figs. 10(a)–10(e), respectively. The analytical
solutions are given by Eq. (35). The trapping frequency is fixed to
� = 0.01. Note that the quantities shown are measured in transverse
oscillator units.

the equilibrium position, and φo is an additional phase factor.
Both x0 and φo are fixed to zero unless stated otherwise. Our
results are summarized in Fig. 10 and Fig. 11, as well as in
Table I.

In particular, Fig. 10 illustrates the spatiotemporal evo-
lution of |q|, for different parametric variations, along with
the trajectory of each soliton center obtained by using the
analytical expression of Eq. (36) (see dashed red lines in
Fig. 10). Additionally, Fig. 11 gives the corresponding profile
snapshots of |q| at t = 210 for each selection of parame-
ters, together with the relevant analytical estimates stemming
from Eq. (35). Notice here the very good agreement between
the analytical predictions and the dynamically formed dark
solitons. In general, it is found that the number of the dark
solitons formed in each in-trap dynamical process is the same
as in the homogeneous case, as dictated by Eq. (27). For

TABLE I. Numerically obtained oscillation frequencies ωnum. Each of the five groups of values contains the parameter characterizing each
soliton (ko) and the relative error (εo) with respect to the analytical prediction for the frequency of oscillation of a single dark soliton, i.e.,
ωo = �/

√
2 [9], for different variations of the system’s parameters. From left to right each group corresponds to Figs. 10(a) to Figs. 10(e),

respectively. Other parameters used are L = 5, qo = 1, and � = 0.01. Note that the quantities shown are measured in transverse oscillator
units.

h = 0, α = 0, θ = 0 h = 0, α = 0, θ = π/2 h = 0.5, α = 0, θ = 0 h = 0.5, α = π, θ = 0 h = 0.5, α = 0, θ = π/2

ko ωnum εo ko ωnum εo ko ωnum εo ko ωnum εo ko ωnum εo

k1 0.007184 0.016 k7 0 – k1 0.007043 0.004 k1
a 0.023905 0.023 k4 0.007330 0.036

k2 0.007229 0.022 k8 0.007228 0.022 k2 0.007169 0.014 k2 0.007145 0.011 k5 0.007226 0.022
k3 0.007267 0.028 k9 0.007233 0.023 k3 0.007265 0.027 k3 0.007253 0.026 k6 0.007063 0.001
k4 0.007330 0.036 k10 0.007265 0.027 k7 0.007077 0.0008

k8 0.007077 0.0008
k9 0.007246 0.025
k10 0.007297 0.032

aSee Eq. (37) and the discussion around it.
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instance, Figs. 10(a) and 11(a) show the generation of four
pairs of dark solitons which is exactly the number of matter
waves that are predicted and observed for the homogeneous
counterpart of this parameter selection illustrated in Fig. 5.
This outcome holds equally also for the dynamical processes
shown in Figs. 10(b)–10(d) and Figs. 11(b)–11(d) (cf. Figs. 6–
8, respectively). Here according to our homogeneous findings,
three pairs of dark solitons are expected and indeed nucleate
symmetrically around the trap center. Notice also the cen-
tral black soliton in the former of these processes. Only one
difference is worth commenting on, namely the last of the
aforementioned cases [Fig. 10(d)]. By monitoring the dynam-
ical evolution of the pair of dark solitons that are closer to
the trap center, a magnified version of which is provided in
Fig. 10(f), it is found that these two dark solitons instead of
executing large amplitude oscillations as the remaining pairs
do, they lock into an out-of-phase oscillation mode, similar
to the ones explored previously (including experimentally) in
the works of, e.g., Refs. [28,29]. In this case, their centers are
provided by Eq. (36) but with φo = π/2 since here, the os-
cillation of each solitary wave begins at maximum amplitude.
Additionally, for this particular out-of-phase oscillation of this
pair, the in-trap oscillation frequency, i.e., ωOP, and equilib-
rium position, i.e., x±, are given by Eq. (37) and Eq. (38),
respectively (see our discussion below). As our last case ex-
ample, in Fig. 10(e) we show the dynamical evolution of the
system for parameters that lead to asymmetric soliton genera-
tion analogous to the one found in the homogeneous scenario
(see Fig. 9). Also in this case the number of dark solitons
coincides with the one found in the homogeneous setting, with
seven such entities being generated. Even more importantly
here, and also for all cases discussed above, it is not only
the number of nucleated states that is in accordance with
the analytical predictions discussed in the homogeneous case,
but also the relative position and amplitude of the evolved
states. The former is almost perfectly captured by Eq. (36),
as depicted by the dashed red lines in Fig. 10 while the latter
is also well captured by Eq. (35) as it is evident by inspecting
Fig. 11. Note though that while the solitons corresponding to
the solutions k7 and k8 shown in Fig. 9(a) propagate parallel to
each other but eventually, due to repulsion, they will separate
out, this is not the case for their trapped analogues shown in
Fig. 10(e), which eventually feel the effect of the confining
potential. Before proceeding, it is worth commenting at this
point on why the solutions stemming from the homogeneous
case so closely match those of the trapped one. This behavior
can be attributed to the weak, yet experimentally relevant,
confinement frequency introduced herein (� = 0.01). Such
a weak confinement leads to a condensate density around
the trap center that is flat enough so that locally the initial
conditions for both the homogeneous and trapped scenario are
nearly equal, thus producing rather similar soliton trains.

In order to further shed light on the observed in-trap
dynamics of the dark solitons generated in each case, we
once more follow the center of mass, xCM , of each entity
for evolution times up to t = 3000. The numerically obtained
oscillation frequencies, ωnum, are included in Table I. In par-
ticular, Table I contains ωnum for each soliton that can in
turn be compared to the (asymptotic) analytical prediction
ωo ≡ �/

√
2 = 0.007071 within the so-called Thomas-Fermi

regime where qo � � [9,67]. From left to right, each
of the five groups of values in Table I corresponds to
Figs. 10(a)–10(e), respectively. Additionally, the different so-
lutions are denoted by the different zeros, ko, identified by the
scattering problem (see the notation introduced in Figs. 5–9).
Evidently, the faster moving solitons (ko ≈ c), such as the
outermost illustrated in Fig. 10(a) corresponding to the solu-
tion labeled k4 in the first group of Table I, have the largest
ωnum and also the maximum deviation, εo = |ωnum − ωo|/ωo,
from the analytical prediction. In some cases, such waves are
indistinguishable from the radiation itself. For these cases,
we were not able to trace the center of mass of the ensuing
soliton and thus obtain its oscillation frequency. One such
example corresponds to the fastest soliton shown in Fig. 10(e),
whose solution k4 is depicted in the fifth group of Table I,
for which we determined ωnum manually. It turns out that
in all cases investigated herein, the maximum discrepancy
between ωnum and ωo is εo = 3.6% (see k4 in the first and fifth
groups), while the minimum is εo = 0.08% (see k7 and k8 in
the fifth column). Recalling now that ωo is the oscillation fre-
quency of a single dark soliton within the parabolic trap when
slightly displaced from its equilibrium position, the observed
discrepancies can be attributed to (i) the existence of more
than one dark solitons, (ii) the interaction of the dark solitons
with the sound waves emitted during the dynamics, and (iii)
the interactions among one another. These effects have been
studied previously in some of the above cited works, such
as Refs. [28,29], and hence are not examined further here.
However, we can use these previous results to very accurately
describe the out-of-phase oscillations from the soliton pair
shown in Fig. 10(f), for which we numerically obtained an
oscillation frequency ωnum = 0.023905. From Ref. [29] the
oscillation frequency of two solitons performing small out-of-
phase oscillations around their equilibrium positions reads

ω2
OP = ω2

o + 32q2
oe−4qo|x±|, (37)

with the equilibrium positions, x±, given by

x± = ± 1

4qo
w

[
32q4

o

ω2
o

]
, (38)

where w(z) is the Lambert’s w function defined as the inverse
of z(w) = wew. Then Eq. (37) yields ωOP = 0.024487. This
result is in very good agreement with the numerically found
frequency, which presents only a relative error εOP = 0.023.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have investigated the on-demand nu-
cleation of dark soliton trains arising in a 1D repulsively
interacting scalar BEC system both in the absence and in
the presence of a harmonic trap. In particular, by utilizing
box-shaped initial configurations, we have shown that it is
possible to a priori predict not only the number of nucleated
dark matter waves, but also their amplitudes, velocities, and
positions. We have done so by initially considering the inte-
grable version of the problem, namely, the defocusing NLS
equation. For this model and for the aforementioned flexible
initial wave function the direct scattering problem has been
solved analytically. The direct relation of the discrete eigen-
values of the latter with the velocities and amplitudes of the
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emergent dark solitons has been showcased, while the exact
soliton solutions are systematically extracted via IST.

By considering a wide range of parametric selections we
have shown that the number and the symmetric or asym-
metric distribution of the nucleated soliton trains can be
tailored upon suitable adjustment of the initial configuration
parameters. In general, and in line with earlier predictions
based on interference processes [31], it is found that wider
box-type configurations result in larger soliton trains. How-
ever, narrower box-type configurations, resembling, in turn,
phase imprinting techniques that create defects within a BEC
[24], lead to smaller soliton trains. We have explored differ-
ent types of configurations involving shallow boxes, as well
as two entirely separated condensates. Also, asymmetrically
distributed dark trains can be dynamically realized when con-
sidering, e.g., shallow OP initial configurations. Here slowly
interacting dark solitons coexisting with slow and extremely
fast ones arise. In all the cases considered for the integrable
defocusing NLS without a trap, our analytical findings are
supported by the direct dynamical evolution of the scalar
system. In particular, the velocities and amplitudes of the
emergent soliton trains are traced during evolution and both
approach the analytical predictions asymptotically, highlight-
ing an excellent agreement between the two. Finally we also
appreciated the strength of our analytical predictions even in
the presence of a harmonic trap. Our findings for all cases
investigated in the latter setting closely followed the ones
identified in the homogeneous setup in terms of amplitudes
and velocities of the emitted dark soliton trains but upon con-

sidering the modified, in each case scenario, in-trap analytical
estimates. Remarkable agreement between the analytical esti-
mates and our numerical findings is exposed, with deviations
regarding, e.g., the estimated oscillation frequency of each
nucleated matter wave being less than 4%.

An immediate extension of this work points towards a
richer system, consisting of two-component [8,68] or even
three-component BECs [19,31]. In this regard, while recent
works already considered multi-component BEC setups with
box-type initial configurations [31], revealing, among other
things, the generation of dark-bright solitons trains, a sys-
tematic analytical treatment of the problem is still lacking.
Yet another interesting perspective would be to generalize
the diagnostics utilized herein in higher dimensions. There,
naturally the toolbox of integrability is no longer available.
Nevertheless, in this setting, topological excitations may be
expected to emerge as a result of the interference process, in
the presence of suitable phase structure, as has been shown,
e.g., in the experiments of Ref. [69].
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