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Abstract

The asymptotic equations governing the envelope of a quasi-monochromatic optical pulse in a non-resonant y‘* material
are derived. Under rather general assumptions, equations of nonlinear Schrodinger (NLS) type with coupling to mean fields
result. In relevant physical situations either scalar or vector systems are obtained. Special reductions include the usual scalar
and vector NLS equations. Based on results of similar systems a brief discussion of some of the properties of the equation

is included. © 1997 Published by Elsevier Science B.V.

1. Introduction

The nonlinear Schrodinger equation (NLS) is a
centrally important equation in nonlinear optics, fluid
dynamics, plasma physics, etc. In optics, its spatial
and temporal versions provide a framework to describe
and explain a large variety of phenomena, from op-
tical switching to long-distance communication sys-
tems. Generalized NLS systems with coupling to a
mean term (d.c. field) also appear in various physi-
cal situations [1,2]. Hereafter we denote such equa-
tions as NLSM. In this Letter, we derive novel multi-
dimensional NLSM equations in nonlinear optics by
studying materials with non-zero y‘? (i.e. materials
with quadratic nonlinear response).

These NLSM systems are known to be integrable in
some special cases; e.g. for water waves, this occurs in
the study of multi-dimensional modulated wave pack-
ets in the shallow water limit. This limiting integrable
case was first studied in Ref. [ 3], and is often referred

to as the Davey-Stewartson equation. Subsequently,
the integrable equations have been the subject of many
research papers (cf. Refs. [4-6]). However, even in
the general, non-integrable case these systems exhibit
interesting phenomena depending on the coefficients
in the equation, such as focusing, singularities and a
rich structure of solutions (see e.g. Refs. [7,8]). We
will return to discuss this issue more fully later.

The potential importance of the coupling between
d.c. fields and the fundamental was realized early in
nonlinear optics — in a different context [9]. NLSM
equations in media with quadratic response arise
through non-resonant coupling between a fundamen-
tal and d.c. and second-harmonic components. A
recent discussion of this subject appears in Ref. [10],
where a prototypical scalar system is derived from a
scalar wave equation. A more extensive scalar deriva-
tion was also performed in one spatial dimension
in Ref. [11]. However, as derived here, the NLSM
equations obtained from the multi-dimensional, vec-
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tor wave equation offer a richer mathematical and
physical structure.

2. Scalar NLSM equations

As a first case we consider the propagation of a
light pulse in a (biaxial) orthorhombic mm2 material.
This particular choice of symmetry class is motivated
by the special structure assumed by the nonlinear sus-
ceptibility tensors x‘?, y® (cf. Ref. [12]), which
enables us to obtain a relatively simple equation scalar
in the optical field. (Later in this Letter we will see
how different symmetry classes lead to similar NLSM
equations.) A material with such a symmetry class
is provided by KNbO3 [13]. In such a non-magnetic
material, in the absence of sources, the Maxwell equa-
tions yield the following vector nonlinear wave equa-
tion for the electric field,

2
sz—V(v-E)—iza—z(E+P)=o, (1)
ce gt
where c is the speed of light in vacuum. The polar-
ization is expressed in terms of the electric field by
the expansion P = y(U « E + x2), * EE + x{3,, *
EEE + ..., where x{%) ,(t),...,t,) is the nth-order
susceptibility of the material, and the star denotes an
n-dimensional convolution integral. Although not in-
dependent from Eq. (1), the divergence law V - (E+
P) =0 is useful in the calculations.

We study the evolution of a quasi-monochromatic
wave with central frequency w. We consider an inci-
dent field polarized along the x axis and propagating
along the z axis. For convenience of exposition, we
take our x axis to coincide with the crystallographic z
axis of the material and vice versa. Our presentation is
based on well-known multiple scale perturbation ex-
pansions (cf. Ref. [ 14]). We define the rapidly vary-
ing phase 8 = kz — wt and the slowly varying time
and space coordinates as X = ex, Y = &y, Z = &’z,
T =&(t —v~'z), where ¢ is a small parameter which
measures the slow modulation of a wave packet, and
k(w) and v(w) are respectively the wavenumber and
the group velocity, to be determined later. Concretely
speaking, we assume that the scale over which the
amplitude of the electromagnetic field varies is much
longer than the optical wavelength.

The outline of the scheme is as follows. We expand
the electric field in powers of &, and assume that at
leading order the electric field consists only of the first
harmonic polarized in the x direction. One deduces
the higher-order terms in the usual manner for such
perturbation expansions. Explicitly, in each direction
Jj (j=x,¥.2) we write

E; =sE(-” +82E(~2) +83E(-3) +.o,

with E{D = A(X, % Z,T) & + (%), and E{" = E{1) =
0. At any subsequent order, E; is found to consist only
of a finite number of higher harmomcs generated by
the nonlinear part of the polarization.

At O(e) the x component of Eq. (1) yields
the dispersion relation: & ~ k,(w), with ka( w) =
(w/c)*[1 + ¥5(w)], and where we neglect the
imaginary part of §‘"(w), which leads to attenua-
tion. At O(g?), for the x component, we obtain the
group velocity v = v,(w), with uj_l(w) = k}(w),
and we find the second harmonic generated by the
quadratic nonlinearity,

EP = 4(0/0)’ [ Fi( 0, 0) /£ (@)] A%
+ () + &,

where 43(w) = [2kj(w)]? — k3(2w). We empha-
size that in our derivation we assume AE( w) > &
i.e. we are far away from the phase-matching condi-
tion which leads to second harmonic resonance. We
also note that the particular choice of material (re-
flecting in the tensor structure of y(?’) ensures that
no new Cartesian components are generated as an ef-
fect of the nonlinearity. Note in E{? the presence of
a d.c. field ¢, (X, ¥ Z,T), which is a solution of the
homogeneous problem, and is determined at higher
order. In fact, at O(&?), similar d.c. fields -being ho-
mogeneous solutions —are also required in the y and z
directions. As we will see, all d.c. fields play a crucial
role in the calculation. In the y direction E(2) = ¢y,
with ¢y = ¢, (X, X Z T). Finally, at 0(82) the di-
vergence equation determines the z component of the
electric field up to a mean field ¢, (X, ¥, Z,T),

EP =in}(w)/[k(@)n}(w)] dxAe’ + (+) + &

where n2(w) =1+ X( D (w) is the index of refraction.
At O(&%), for the x component, we find the evolution
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equation for the slowly varying amplitude of the inci-
dent field,

[ 2ik,dz + (1 — ax,1)dxx + Oy — kxk;/ﬁrr
+anllA|2+MX,0¢X]A=O’ (2)

where

aj) =1 —nj(w)/ni(w),

Mo =2(w/c)* 4 (0,0),

M;, = 3(a)/c)2,{/}j3j}(w,w, —w)
+8(w/c)* %) 2w, —0) ¥} (0, 0) /43 (w) .

(Recall that, for convenience, our choice of axes is a
permutation of the crystallographic set.) We note that
a,, contains the contribution of V(V - E), while
M results from the combined effects of x® and
two x® in cascade. The first term in M, is due
to the self-interaction of the fundamental, the second
originates from the coupling between first and second
harmonic. Similar physical situations are known to
be capable of leading to large “effective” third-order
processes [15]. Again, the choice of the symmetry
class is instrumental in simplifying the contribution
arising from y .

Eq. (2) contains the coupling of the fundamental
with the mean field ¢, (X, Y, Z, T). From V- (E+P) =
0 an explicit equation for ¢; in terms of ¢, and ¢, is
found at order O(&?),

Ir, = [x(w) /n2(0)1[n2(0)dxdy + n}(0)drd,
+ 2R pun(@, —@)dx (JA])] .

However, explicit expressions for ¢, and ¢, cannot
be obtained in general at this order. Rather, coupled
evolution equations for ¢, and ¢, in terms of the
fundamental are found. The two necessary ingredients
for this kind of coupling to occur are the presence of
a multi-dimensional wave and quadratic nonlinearity.
The evolution of the mean fields ¢, and ¢, is captured
at O(&*), where it is found that

[(1 — ax0)dxx + dw + 5:0r7] Px — @, 09xv D)y

= [Neadrr — Ni2dxx) (JAP) (3)
[dxx + (1 — ay0)dy + $y917) ) — Cx09xy P

= —Ne20xr (|AP) (4)

with
Nji = 2/A 5 (0, —w),

aj0=1-r3(0)/n(0), s;=1/vi(w)—1/c3(0),

where cjz(w) = /11 + ,?;})(w)] is the phase ve-

locity. Like a1, the coefficients ajo and N, result
from the vector nature of the electric field, via the term
V(V-E).

Eqgs. (2)-(4) constitute the fundamental scalar
system that governs the evolution of a multi-
dimensional quasi-monochromatic pulse in a non-
resonant quadratic material. The absence of a Z
derivative in Egs. (3), (4) originates from the choice
of using a reference frame that is moving with the
group velocity of the pulse. We remark upon the im-
portance of the sign of s;: if 5; > O the systems (3),
(4) are elliptic, whereas if s; < 0 they are hyperbolic.
Indeed, in the case of all the materials considered
here s; < 0, which we believe will have important
ramifications, as discussed below. Finally, we observe
that the standard NLS equation can be considered as
a special “limiting” case where y®’ = 0, in which
case we have M, o= N, = Ny3 =0, ¢; = const, and

Nj2 = c2(0)N;1,

M, = 3(w/c)2f(iilx(w,w, —w).

If we further assume y(! to be isotropic, ay; =
0 and we obtain the usual scalar multi-dimensional
NLS equation for isotropic materials as a reduction of
Egs. (2)-(4).

A similar result is found when the (uniaxial) tetrag-
onal 4mm class is considered. Materials with such a
symmetry class are provided, for instance, by BaTiOs,
SBN and KTN. The derivation of the fundamental
equations proceeds exactly in the same way as before,
and the result is still formally given by Egs. (2)-(4).
However, due to the equality x,y = xz; (i-€. Xxx = Xyy
in the crystallographic system), it follows that a,o =
0. Thus ¢, does not appear in the equation for ¢,, and
Egs. (2), (3), which now form a closed system, are
sufficient to describe the behavior of the material con-
sidered. We note, however, that even in this relatively
simpler situation the underlying dynamics of the sys-
tem is characterized by highly non-trivial d.c. inter-
actions in all Cartesian components. It is evident that
the NLSM equations (2)~(4) are rather general.

Several comments are now in order. (i) As men-
tioned before, the above equations are derived under
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the assumption that there are no resonant wave inter-
actions; otherwise the governing equations and rele-
vant scales would be very different. (ii) The mean
fields are driven by the optical field and play a cen-
tral role in the equations. Indeed, we emphasize that
it is necessary to incorporate the d.c. field in the anal-
ysis (at O(&?)); otherwise secularities arise in the
expansion. This is true even in the one-dimensional
case [11] (i.e. when the optical and mean fields are
independent of X and Y). In this case however the
mean fields can be integrated explicitly; only then do
the equations reduce to the well-known NLS equa-
tion. In particular, if ¥» = 0 (i.e. for the familiar
Kerr materials) there are no source terms in the ana-
logue of Egs. (3), (4) and the mean fields are zero.
(iti) We do not introduce d.c. fields at leading order
(i.e. O(g)) because we are interested in the evolution
of a modulated optical field and not in the interactions
amongst different waves. This is a standard assump-
tion in order to obtain NLS - and in this case NLSM
- type equations. Of course, other assumptions would
lead to different evolution equations (e.g. long-short
wave interactions, cf. Refs. [8,16]). (iv) It is worth
discussing what results are known for similar (2+1)-
dimensional NLSM equations which arise in water
waves (cf. Refs. [7,8]), since we expect that many
of the issues will be also relevant in our context: (a)
One-dimensional solitons (i.e. NLS solitons) are un-
stable to slow transverse perturbations. (b) For var-
ious choices of signs in the equations the solutions
can blow up in finite time. (¢) For certain choices of
signs and magnitude of the coefficients the equations
are known to be integrable. (d) In the integrable case,
stable localized pulses which are driven by the appro-
priate mean fields are known to exist. We expect that
similar multi-dimensional pulses will exist even in the
more general non-integrable case described here. We
will address these issues in a future paper.

3. Vector NLSM equations

We next mention the vector case, that is, the case
in which the incident field is assumed to have two
non-zero Cartesian components. This situation yields a
novel coupled system of NLSM equations whose ana-
logue is not known in other physical contexts (e.g. wa-
ter waves and plasma physics). For concreteness, we

consider a (uniaxial) hexagonal 6 material. Materi-
als with other uniaxial symmetry classes such as 3m
(like LiNbO; and LiTaOs, cf. Ref. [13]) will result
in similar vector NLSM equations. The electric field
is expanded as before; however, in this case we al-
low for the presence of both transverse electric field
components, i.c. we take E{" = A, ¢ 4 (x), E{") =
Aye?r + (x) and E{D = 0, where now we take x, ¥, 2
to c01nc1de with the crystallographic axes of the mate-
rial, and where 6, = k,z — wt, a = x, y. We allow for
a small birefringence in the transverse dimensions by
assuming that |k, — k,| < &, due to a slight effective
difference between X)(CL) and x{}) (which could be ob-
tained in various ways, e.g. a waveguide, which could
break the eigenvalue degeneracy of the propagation
modes. Of course, in a waveguide we would neglect
one of the transverse derivatives). Due to space con-
siderations, we cannot present the general case here.
The general system of equations, together with its full
derivation, will be reported in a forthcoming paper. A
special and interesting situation occurs when |k, — ky|
is non-zero and O(e). In this case there are a number
of terms which, due to the phase difference (k,— ky)z,
are rapidly varying and do not contribute to the sys-
tem. The transverse components of the electric field
are then found to satisfy the following system of cou-
pled NLSM equations,

[2ika0z + badr + (1 — 8uxaq ) Ixx

+ (1 = Sayaa,1)dyy — koklldmr + M, 1| Adl?

+ Maa|Aal* + Mooda — Maohal Ag=0,  (5)
[(1 = 8ax@a0)dxx + (1 — Bayaap) oy

+ 549171 b0 — @apdxyda

= [Naj101r — 8axNa20xx — 8ayNa 20wy

+ Na2dxy1(|Ad* — |Aal®) (6)

where a indicates either x or y, and & is the other trans-
verse coordinate. The coefficients a,m, Mg m, Nom
are the analogue of those appearing in Egs. (2)-(4),
while M, and M,, are an appropriate generaliza-
tion of M 5. Also, b, = 1ka[ k() — K'(w)] /e and
= 1/0*(w) — 1/c2(0), where 5(w) = 1/k(w)
and k’(w) = 2[k’(w) + k’(w)] Finally, &;; is the
Kronecker symbol (§;; = 1 ifi=j, 8y =0ifi # j).
The difference |A,|* — |A,|? in Eq. (6) arises from
the particular tensor structure of the material consid-
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ered (namely, the fact that y(2) = — x{2)), and is not
a generic feature of the equations. The assumption
|kx — ky| ~ € is essential in deriving Egs. (5), (6).
In fact, if |k, — ky| < & the corresponding equations
are more complicated. Vice versa, if |k, — k)| > ¢
then |v; — vy| > e, and equations such as the ones
discussed here do not result. Therefore, the condition
|ky — ky| < & poses a limitation on the types of ma-
terials that can be described via such vector NLSM
equations.

It is interesting to note that the coupled NLS system
is a limiting reduction of (5), (6). Namely, in the case
where y(? = 0, isotropic materials, we have M, ¢ =
Nai = Na2 = ¢ = 0 and furthermore M,, = $M,;
hence Egs. (5), (6) reduce to the well-known coupled
NLS equations (cf. Ref. [17]). Also, vector equations

(5), (6) reduces to the scalar system (2)-(4) if Ay =
(2) = Q.

»yy

Acknowledgement

The authors would like to thank K. Wagner for valu-
able discussions and suggestions. This work was par-
tially sponsored by the Air Force Office of Scientific
Research, Air Force Materials Command, USAF, un-
der grant numbers F49620-97-1-0017 and F49620-95-
1-0432.

References

[1] D.J. Benney, G.J. Roskes, Stud. Appl. Math. 48 (1969) 377.

[2] V.E. Zakharov, Sov. Phys. JETP 35 (1972) 908.

[3] A. Davey, K. Stewartson, Proc. Roy. Soc. London A 338
(1974) 101.

[4] M. Boiti, 1.J. Leon, L. Martina, F Pempinelli, Phys. Lett. A
132 (1988) 432.

[5] A. Fokas, P. Santini, Phys. D 44 (1990) 99.

[6] M.J. Ablowitz, PA. Clarkson, Solitons, Nonlinear Evolution
Equations and Inverse Scattering (Cambridge University
Press, 1991).

[7] M.J. Ablowitz, H. Segur, J. Fluid Mech. 92 (1979) 691.

(8] M.J. Ablowitz, H. Segur, Solitons and the inverse scattering
transform (SIAM, Philadelphia, 1981).

[9] TK. Gustafson, JE. Taran, PL. Kelley, R.Y. Chiao, Opt.
Commun. 2 (1970) 17.

[10] A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-
Wesley, Redwood City, 1992).

[11] A.G. Kalocsai, J.W. Haus, Phys. Rev. A 49 (1994) 574.

[12] PN. Butcher, D. Cotter, The Elements of Nonlinear Optics
(Cambridge University Press, 1990).

{131 A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New
York, 1984).

[14] DJ. Benney, A.C. Newell, J. Math. Phys. (Stud. Appl.
Math.) 46 (1967) 133.

[15] J.R. Thomas, J.E. Taran, Opt. Commun. 4 (1972) 329.

{16] A.G. Kalocsai, J.W. Haus, Phys. Rev. E 52 (1995) 3166.

{17} C.R. Menyuk, IEEE J. Quantum Elec. 23 (1987) 174.



