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Abstract

The Eckhaus equation, which is a nonlinear Schrodinger type equation that can be linearized to the free linear Schrodinger
equation, is considered. A linearized analysis of the nonlinear problem indicates that the periodic boundary value problem
is ill-posed. The exact solution also demonstrates the ill-posedness, even though the L? norm of the solution is a constant of
the motion. The ill-posedness disappears on the infinite line with square integrable data, but the solitonic solutions, which
are not square integrable, are seriously unstable. () 1997 Published by Elsevier Science B.V.

There are relatively few nonlinear equations which
can be linearized and, in some cases, explicitly solved.
The best known of these equations is the Burgers equa-
tion, which by a change of variables can be reduced
to the linear heat equation. Another equation of inter-
est, first examined in Ref. [ 1], and often referred to
as the Eckhaus equation, is written as

Wy + o+ 201015 + [y =0,
¢ R* - C. (1)

This equation is of nonlinear Schrodinger type, and
admits a linearization to the free time dependent lin-
ear Schrodinger equation. Eq. (1) was found in Ref.
[1] as an asymptotic multiscale reduction of certain
classes of nonlinear partial differential equations. The
Eckhaus equation was recently obtained [2] in the
study of the instabilities of plane solitons associated
with the Kadomtsev-Petviashvili equation. In Ref. [ 3]
many of the properties of the Eckhaus equation were
investigated, including the linearization, soliton solu-

tions etc. The equation is also linearizable when the
initial value problem on semi-infinite and finite do-
mains is considered [4] or when an external paramet-
ric forcing is applied [5].

In this Letter we study the periodic boundary value
problem for Eq. (1). We show that for square inte-
grable initial data, the periodic solutions are ill-posed
- i.e. the solution suffers from physically unacceptable
instabilities, even though the L2 norm of the solution
is a constant of the motion. Interestingly, as the period
L tends to infinity, the instabilities become less pro-
nounced and eventually disappear in the infinite line
case and the problem, for square integrable initial data,
is well posed. However, for the “solitons”, which tend
to nonzero constants as x — oo, the ill-posedness
and instabilities persist.

We begin by considering the periodic case. It can be
seen immediately that the null solution ¢ (x,7) = 0
is linearly stable, since the stability analysis reduces,
in this special case, to the free linear time dependent
Schrédinger equation for a small perturbation € (x, ¢).
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However, if the perturbation is done around the “fixed-
point” solution ¢ (x,7) = aexp(ilal|*), where a is
any complex number, the result is that all the negative
Fourier modes grow exponentially fast, with growth
rate proportional to the wavenumber. Explicitly, if

Yx,0) = a1+ e(x,1)], (2)
with |e(x,£)| < 1, a # 0, then, to leading order, €
satisfies the partial differential equation

i€, + €x+2|al* (e, +€5) +2]al* (e+€*) =0. (3)
Expanding € in Fourier modes

+oo

e(x,0) = Y enlnye, (4)

n=-—-0o0

with k, = 27rn/L, shows that €,(t) satisfies

i€, —kie,+2ilal*k,(€,+€" ) +2]al* (e, +€,) = 0.
(5)

Introducing the new variables s, =€, + €*, and r, =
€, — €*, Eq. (5) yields

is, — kKr, =0, (6)
iry — ks, + 4ila|*kys, + 4al*s, = 0. (7)

Then we obtain for s,(¢) the ordinary differential
equation

$n+ (ky — 4ilal’k, — 4|a]* ks, = 0, (8)

which yields s, = c,exp(—é,t) + ¢, exp(+&,t),
where &, = ik? + 2|a|?k,. This, in turn, allows us to
write the time dependence of the Fourier modes as

PP a2
enny = (1= BN g emrr Helie e ()
kn ky

where

— ; : 2 2 %
= 2(ik,,+2lal2)[(lk"Ha| Jen(O)Hal e, (0]
(10)

Hence we see that all the Fourier modes are unsta-
ble. But, moreover, their growth rate is proportional
to 2ml|al’n/L, i.e. the growth rate is unbounded as
|| — oo, which is the hallmark of ill-posedness. That

is, the Fourier series corresponding to a general initial
datum for €(x,t) will diverge for all r+ # 0, unless
the Fourier coefficients €,(0) of the initial datum de-
cay faster than any exponential for n — 0o. Thus we
conclude that the solution of the initial value problem
associated with the linear equation (3) with periodic
boundary conditions does not depend continuously on
the initial conditions. Therefore the problem is not
well-posed in the sense of Hadamard [6].

This linearized analysis alone indicates that the peri-
odic problem for the fully nonlinear Eckhaus equation
is ill-posed, even though the L? norm of the solution in
(—L/2,L/2) is preserved! A more general result can
be obtained if the stability analysis is done through
the exact linearization of the Eckhaus equation. How-
ever, to use this approach an appropriate linearizing
transformation for the periodic case is required. The
transformation

é(x,1)
[C2(1) +2 [, dx’ |(x/, 2]/
(11)

(x,1) =

d(x, 1) =C(DY(x,1)

X

X exp(/ dx’ |¢(x',t)|2), (12)

X0

maps the Eckhaus equation into the (free) linear
Schrodinger equation

i¢r+¢x,\'=09 (13)
provided that
C(1) =iCT (1) [du(x, )" (x,1)

- ¢(xv {)¢;(xv t)])(=xo

=iC (1) [ (x, )" (x,1)

_w(xvt)tﬂ;(xvt)],\’:xo- (14)
The initial/boundary conditions for ¢
#(x,0) =¢o(x), (15)
f(x+L,t) =¢(x,t), (16)

are translated into

X

(x,0) =t (x) exp(/ dx’ |¢o<x’)12), (17)

Xq
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d(x+L,t)

x+L

=¢(x,t)exp(/ dx’ |¢(x’,t)|2>. (18)

X

We note that the linearization does not translate the
periodic problem for ¢ into a periodic problem for ¢
(except for the very special case in which g(x) =
0, which is not in the class considered in (2)). This
minor difficulty can be overcome by introducing a new
dependent variable as

g(x.1) = d(x,1) exp(—mox), (19)
where
L/2
mo = % / dx |¢(x,t)|2. (20)
-1/2

That is, we use

g(x,t) =C(OY(x,1)

x exp(—m0x+/dx' |I/I(xl,t)2), (21)
_ q(x,r)em™*
l//(x,[) - [C2(t) +2f;; dx’ e2moxllq(x,’t)12]l/2,
(22)

Hence, if ¢ is periodic, so is g, and, if ¢ satisfies the
Eckhaus equation, ¢ satisfies the linear equation

iq; + qux + 2mog, + miq = 0. (23)

The exact solution for g can now be obtained. Expand-
ing g(x,t) in Fourier series

+00

g(x,0) = Y gu(ne, (24)
n=—0oC

yields

ign — (k2 — m3 — 2imgk,) gy = 0, (25)

and the same result follows for the growth rate of the
Fourier modes follows,

qn(1) = qu(0) exp[ —i(ki — md)t — 2mok,t], (26)

implying that Eq. (23) is ill-posed. Therefore, from
(26) and (22) we see that, in fact, the periodic Eck-
haus equation itself is ill-posed.

As a special case we consider the situation in which
the initial condition for g contains only a finite number
of modes, that is g,(0) = 0 for [n| > N. In this case
the Fourier series for g reduces to a finite sum,

g(x,t)

N
= > Ouexp{ilknx — (kg — m§)t] — 2moknt},
n=—N
(27)

and the solution of the Eckhaus equation can be
found via Egs. (14), (22) and (27). Namely, we use
(14), (19) and (27) to get C(¢) and the integral
of |g(x,t)|? exp(—2mox). This in turn allows us to
write the denominator of ¢ in Eq. (22) as

X

ci(n + 2/ dx’ e [g(x', 1)|?
X0

N

— Z QnQ;z
» 2mo +iCky — kn)

nm=-—

x exp{il (ky — kp)x — (K2 — k2)1]
+ 2mox — 2mo(k, + kn )t} + c.c. (28)

Then, from (22), (27) and (28) we find for ¢ (x, 1)
the following asymptotic behavior,

o 2 O_n
TS o
x exp{—ilknx + (k3 — md)t1}. (29)

That is, asymptotically in time the energy contained
in the initial Fourier spectrum is all transferred to the
lowest Fourier mode and the solution ¢ (x,t) of the
periodic Eckhaus equation reduces to a pure mode.
However, if any broadband perturbation is added to
q(x,1t), all the Fourier modes will be excited, and, no
matter how small the initial perturbation is, g(x,?)
and ¢ (x,t) will break down instantaneously, i.e. the
problem is ill-posed.

A linear stability analysis for the Eckhaus equation
can also be done on the infinite line, either by taking
the limit L — oo of the periodic case, or by directly
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considering the reduction to the Schrodinger equation
via Egs. (11), (12). In both ways it is found that,
if the unperturbed solution (® belongs to L2(RR),
then it is linearly stable, in contrast to the periodic
case! This fact can be seen directly from the linearized
equation (23), noting that mg — 0 as L — oc if
¥(x,0) € L2(R). That is, if the unperturbed solution
is square integrable, the equation for g reduces, in
the limit L — oo, to the linear Schrddinger equation.
Hence the problem is stable and well-posed. Thus we
are led to the conclusion that the Eckhaus equation (1)
represents a PDE for which the periodic problem and
the problem on the infinite line display an intrinsically
different behavior.

On the other hand note that, if # (x, 0) does not van-
ish at both ends on the infinite line, the problem may
still be ill-posed. For example, if ¢ (x,0) — const as
|x| — oo, it satisfies lim; o, mg # 0. The last state-
ment includes, among the others, all the soliton so-
lutions of the Eckhaus equation. A direct verification
can also be done by performing the linear stability
analysis on the solutions. For instance, a soliton for
Y (x,t) is obtained when ¢(x,t) has the form

B (x,1) = AV T (30)

(cf. Ref. [3]). If a small perturbation is added, to
d(x, 1), le. if

d(x, 1) = (x,1)[1 + €(x,1)], (31)
the following equation is found for €(x, 1),
i€, + €,y +2pe, =0, (32)

Again, if Fourier transforms are introduced

+oc

é(k,t) = / dx ¥ e(x, 1) (33)
-0

the result is

e(k,t) = &(k,0)eK =Pk (34)

That is, the solitons are dramatically unstable.

To verify our analysis the behavior of the Eckhaus
equation was also investigated numerically. The initial
datum was takentobe ¢/ (x,0) = a;+a;cos(kx),and
the finite precision of the computer was used as the
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Fig. 1. The solution of the Eckhaus equation as computed
by the finite difference scheme in the interval (—, ), for
W(x,0) = a1 + axcos(kx), with ) = 0.5, a; = 0.05, k =1,
tmax = 30 and N = 64.

source of external perturbation. Two different integra-
tion techniques were used. The first is a standard finite
difference scheme, in which Eq. (1) is converted into

L .l/’n+l - 2(//11 + l/fn—l
{//H =1 (A.X)z
W —
+21Tl//n Sl ZIN (35)

The second choice is a pseudo-spectral approach, in
which, at each time step, the spatial derivatives are
computed in Fourier space. Namely,

Yn = —1F, [KEF[9(0)])
+ 2F U Fu L (O P11 + i, (36)

where
+Lj2
] .
R0 =1 / dx fx)e b,
—L/2
Ff =D e (37)

represent the Fourier transform on the finite interval
(—=L/2,4L/2) and its inverse, respectively. The sys-
tem of coupled, nonlinear ordinary differential equa-
tions obtained from either method was integrated in
time using an adaptive fourth-order Runge-Kutta rou-
tine (DO2BBF) from the NAG library.
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Fig. 2. The solution of the Eckhaus equation with
Y(x,0) = aexp(—xz) and a = 0.5 over the interval (—, )
computed by the finite difference scheme with N = 64,

Fig. 3. The solution of the Eckhaus equation with the same initial
condition as in Fig. 2 over the interval (—107r, 107r) computed
by the finite difference scheme with N = 512.

The result of these simulations is that, though the
details of the solutions computed by the two schemes
differ somewhat, the same qualitative picture arises:
after a short time characterized by regular behavior,
the solution breaks up into seemingly chaotic oscilla-
tions (see for example Fig. 1). Moreover, as the pre-
cision of the simulation is increased (by increasing the

number of modes N, for the pseudo-spectral code and
the number of grid points N, for the finite difference
one), the onset of the instability occurs sooner and
sooner, implying that, in the limit N — oo, it would
occur immediately (i.e. as soonas ¢t # 0). Again, this
is the trademark of ill-posedness.

In Figs. 2, 3 we compare the results obtained when
the same initial datum is considered over different do-
mains. The initial datum was taken to be ¢ (x,0) =
aexp(—x?), with @ = 0.5. In Fig. 2 the integration is
carrted out over the interval ( —, ), with N = 64,
while Fig. 3 shows the same initial datum over an in-
terval ten times as large: (—10a, 1077) and N =512,
It is evident that, in the second case, the solution is
much more well-behaved, suggesting that, in the limit
L — oo, the instabilities would disappear altogether,
as demonstrated analytically earlier in this paper.
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