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Abstract

The initial /boundary value problem for the Burgers equation on the semiline is solved with a flux-type boundary
condition at the origin. Analytic solutions and asymptotic (large time) expansions are obtained for some cases of applicative
relevance.

Forced and semiline solutions of the Burgers equation have recently received much attention [1,2] due to
their applicative relevance. In particular, the existence and uniqueness of solutions for the initial /boundary
value problem on the semiline was proven in Ref. [3] for a quite general class of boundary conditions at the
origin.

In this Letter we obtain explicit solutions for the Burgers equation on the semiline with flux-type boundary
conditions at the origin. Namely, we consider the initial /boundary value problem on the semiline [0, %)

u,=u, +2uu,, u=u(x,t), (1a)

u(x,0)=f(x), 0O0<x<w=, (1b)

u?(0, 1) +u, (0, 1) =g(1), t20, (1c)
with

j:dxlf(x)l < oo, (1d)

Flux-type boundary conditions as (1c) arise in a natural way when dealing with non-hysteretic water infiltration
into non-swelling soils [4].
The above initial /boundary value problem is solved through the generalised Hopf-Cole transformation [1]

u( x, 1) =v(x, t)(C(t)+j:dx' v(x’,t))_ , (2a)
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v(x, 1) =C(t)u(x, 1) exp(f‘dx’ u( X', t)), (2v)
0

c(0)=1, (2c)
which maps Eq. (1a) into

D=0, (3a)
with the compatibility conditions

C(1) =0v,(0, 1). (3b)
Moreover, the transformation (2), together with (1b) and (ic), implies the relations

v(x, 0) = vo( x) =f( x) exp(fo dx f( x’)) (4a)
and

v,(0, 1) = C(1)[42(0, 1) +u, (0, 1)] = C(1) g(1). (4b)

The linear equation (3a) with the initial condition (4a) and the boundary condition (4b) can now be solved via
the cosine Fourier transform. The solution v( x, ¢) is given by

(x,1)= [ ax con(3] ( e S
v(x,t x' cos expt — Upgl X
o 2] 7% °
! 1 X2 .
— [ dr -——|¢(r), 5
ﬂmfo r,_,,exp( = 6O (sa)

where, due to (3b) and (4b), the function C(z) has the form
C(r) =exp[ dr g(). (5b)
0

The solution of problem (1) is then recovered from (2a) with (5a) and (5b).

In the following we turn our attention to the large ¢ asymptotic behaviour of the solution u( x, ) for some
particular choices of the boundary condition g(r). For simplicity, we shall restrict our considerations to the case
of a zero initial datum, f{x) =0.

We first consider the class of boundary conditions (1¢) characterized by

g(t) >k as t—><x (k a constant). (6)
When (6) is used, the large r asymptotic behaviour of (5a) is obtained as
v(x, 1) = - - expG(r)fﬂLac ds s~ ?g(t—x*/4s?) exp( —s* — x*/4s?) (72)
(1 large) w!/? x/z\/z'
with
!
G(r) = [drg(r). (7b)
0

When (7a), (7b) and (5b) are inserted into the right hand side of (2a), the large ¢ asymtotic behaviour of u(x, )
is obtained by

) Vi
—_ S t =~ — X
ulx (rlarge) 1 +exp[\/7c_x—kt—Gl(t)]

(8a)
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with

G,(1)=G(t) — k. (8b)
In the particular case of constant flux g(z) =k (G (r) = 0), (8a) reproduces exactly the *‘profile at infinity’’
obtained by Clothier, Knight and White [4] in experiments on constant-flux water infiltrations.

As a second example we consider periodic boundary conditions, i.e. we take

g(1) =Assin wr. 9)

From (5a) and (5b) we now obtain

2 1

___I_—y____ls : - v’ exp| —y* -5 s
U(y’t)—_('rrt)l/2e +2(1Tt)l/2[0d (1-5)"2 (1-5)" L=/t =alet,

(10a)
where y:=x/2Vt, and
C(t) =exp[( A/wt)(1 — cos wt)]. (10b)
We now expand C(r) in Fourier series in the interval [0, 27 /],
Cc(t)= ) a, cos nwt, (11)
n=0

where, via (10b), the Fourier coefficients a, can be expressed analytically in terms of hypergeometric functions.
When the above formulae are used, we obtain from (2a) the large ¢ asymptotic expansion [5]

N o~ 1 {(ao— 1)+ [am/4(cut)2](4y2 —12y* - ?))}t:_yZ
u(x )(: large) (w0)'? 1+ (a,— V)erfc y+ [am/2\/;(wt)2](2y3 ~3y)e ™’

(12a)
with
ay=exp( A/w) L ,( A/ w), (12b)

x

a, = Z an/nZ

n=1
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Fig. 1. Numerical solution of the Burgers equation with periodic boundary conditions and zero initial datum. Dashed line: the boundary
condition g{(r) sin r; solid line: the solution 10, ¢).

Fig. 2. A comparison between analytic and numerical solutions at different values of time, for Ax)}=0 and g(#) = sin #. Dashed line:
asymptotic expansion; solid line: numerical simulation.
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and

2 = :
erfc y=ﬁfy dze . (12¢)
In (12b) 1,(z) is the zero order Bessel function of imaginary argument [6].

The case of periodic boundary conditions has been studied numerically for a number of values of A and w.
The spatial part of the equation has been approximated by finite differences, using an integrable discretization of
Burgers equation. The integration in time has been performed with a backward-differentiation routine from the
NAG library. Fig. 1 displays the behaviour of the solution u(x, ¢) at the origin as a function of time for
Ax)=0and g(r)=sin t.

Fig. 2 shows a comparison between the numerical solution and the asymptotic expansion. We note that the
condition 1/t < y? <1 for the validity of the asymptotic expansion is translated into 2 << x << 2vr. The
results coming from the numerical simulations are in perfect agreement with the asymptotic expansion given by
(12) in all the cases examined.
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