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• Fully asymmetric non-zero boundary conditions are considered.
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• The inverse problem is formulated in terms of suitable Riemann–Hilbert problems.
• Different choices of branch cut in the spectral plane are discussed.

a r t i c l e i n f o

Article history:
Received 29 June 2015
Received in revised form
12 January 2016
Accepted 4 April 2016
Available online 26 April 2016

Keywords:
Inverse scattering transform
Nonlinear Schrödinger equation
Integrable systems
Non-zero boundary conditions

a b s t r a c t

We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS)
equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the
solution at space infinities have different non-zero moduli). The theory is formulated without making
use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of
the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the
Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their
discontinuous behavior across the branch cut arising from the square root behavior of the corresponding
eigenvalues. We pose the inverse problem as a Riemann–Hilbert Problem on an open contour, and we
reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we
present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value
problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value
problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of
the inverse scattering transform when a different choice is made for the location of the branch cuts.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Integrable nonlinear evolution equations are physically rele-
vant PDEs with a number of mathematically interesting proper-
ties (e.g., see [1,2] and references therein). For example, they are
completely integrable infinite-dimensional Hamiltonian systems;
they have an infinite number of conserved quantities; they may be
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written as the compatibility condition of a Lax pair; the associ-
ated initial value problem (IVP) is solvable by the inverse scatter-
ing transform (IST) [3,4]. One of the most notable examples is the
nonlinear Schrödinger (NLS) equation: it is a universal model for
the evolution of the complex envelope of weakly nonlinear disper-
sivewave trains, and it appears inmanydifferent physical contexts,
such as deepwaterwaves, optics, acoustics, Bose–Einstein conden-
sation, etc.

The aim of this work is to develop a consistent IST formalism for
the defocusing NLS equation

iqt + qxx − 2|q|2q = 0 (1.1)
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(where subscripts x, t denote partial differentiation) with fully
asymmetric non-zero boundary conditions (NZBC):

lim
x→±∞

q(x, t) = q±(t), (1.2)

with |q+(t)| ≠ |q−(t)|, and with no condition on arg q±(t).
Historically, most treatments of the NLS equation study the cases
of zero boundary conditions (ZBC, i.e., with q(x, t) → 0 as x →

±∞) or symmetric NZBC (i.e., q(x, t) → q±(t), with qo :=

|q+| = |q−| ≠ 0). In particular, see [2,5–9] and references
therein for the defocusing NLS with symmetric NZBC and [10,11]
for the focusing NLS with symmetric NZBC. However, in some
physical applications one can also consider situations where the
background amplitude is not the same in the two limits. For
example, in nonlinear optics, asymmetric boundary conditions
describe an input in which a continuous wave laser transitions
gradually from one power value to another. Unfortunately, such
situations are outside the scope of the traditional theory. A
notable exception is a work by Boiti and Pempinelli [12], where
the IST for the defocusing NLS with asymmetric NZBC was first
proposed.However, the problemwas formulated on a four-sheeted
Riemann surface, which unnecessarily complicates the study.
Moreover, no Riemann–Hilbert problem (RHP)was formulated and
no characterization of the spectral data or of the solutions was
given.

When the spatial derivatives of q(x, t) vanish as x → ±∞, (1.1)
implies |q±(t)| = |q±(0)|. Hence, without loss of generality we
write the boundary conditions (BC) as

q±(t) = A± eiα±−2iA2
±
t , (1.3)

with α± ∈ R and A± > 0. Moreover, thanks to the symmetry
x → −x of the NLS equation, we may take A− > A+ > 0 with-
out loss of generality. For comparison purposes, we note that the
BC considered in [12] included asymptotic plane-wave ‘‘carriers’’
eiξ±x as x → ±∞. Importantly, however, in [12] the asymptotic
carriers ξ± were the same (i.e., ξ+ = ξ− = ξ ), and in this case they
could trivially be removed using the Galilean invariance of the NLS
equation. Hence there is no loss of generality in setting ξ = 0 and
considering (1.3). Moreover, the BC considered in [12] did not in-
clude a phase shift, i.e., they were limited to the case α± = 0. Con-
sequently, the BC considered in [12] are effectively a subset of (1.3).

The main result of this work is a constructive formalism to
obtain the solution of the IVP for the defocusing NLS equation with
the given NZBC (1.3) in terms of the scattering eigenfunctions.
In turn, these eigenfunctions are obtained from the solution of
an appropriate Riemann–Hilbert problem defined in terms of the
scattering data. More precisely, the representation of the solution
is summarized in the following theorem:

Theorem 1. Let q(x, t) be the solution of the defocusing NLS
equation (1.1) with NZBC (1.3), and assume that (1 + | · |)(q(·, t) −

q±(t)) ∈ L1(R±) and ∂xq(·, t) ∈ L1(R) for all t > 0. Given the
solutions (2.8) of the first half of the Lax pair (2.1), let ρ(k, t) be
the corresponding reflection coefficient, determined for all t > 0 in
terms the initial datum q(x, 0) by (2.15) and (3.8); and let kj, for
j = 1, . . . , J be the discrete eigenvalues, determined by (2.40), with
associated norming constants Cj(t), determined for all t > 0 in terms
of the initial datum q(x, 0) by (2.41) and (3.10). Then

q(x, t) = −2i lim
k→∞

k(N(x, t, k)E+(k, t))1,2, (1.4)

where double subscripts denote the corresponding matrix entry,
E+(k, t) is defined in (2.7), and N(x, t, k) is the solution of the
following matrix Riemann–Hilbert problem:

(i) N(x, t, k) is analytic for k ∈ C \ (Σ+ ∪ K), where Σ+ =

(−∞, −A+] ∪ [A+, ∞) and K = {k1, . . . , kJ} ⊂ (−A+, A+);
(ii) N(x, t, k) = I + O(1/k) as k → ∞;
(iii) N(x, t, k) satisfies the jump condition

N+(x, t, k) = N−(x, t, k)Ṽ (x, t, k), k ∈ Σ+, (1.5)

where the jumpmatrix Ṽ (x, t, k) is defined in terms of ρ(k, t) in
(4.21), and is continuous ∀k ∈ Σ+.

(iv) For all j = 1, . . . , J , N(x, t, k) has a simple pole at k = kj and
satisfies the following residue conditions at k = kj:

Res
k=kj


N2(x, t, k) −

iq+(t)
k + λ+(k)

N1(x, t, k)


= 0, (1.6a)

Res
k=kj


N1(x, t, k) +

iq∗
+
(t)

k + λ+(k)
N2(x, t, k)


= Cj(t) ei(λ−,j−λ+,j)x

×


N2(x, t, kj) −

iq+

kj + λ+,j
N1(x, t, kj)


, (1.6b)

where single subscripts 1 and 2 denote the matrix columns,
λ±,j = λ±(kj) and λ±(k) are the unique, single-valued functions
defined for all k ∈ C \ Σ± by (2.5) with Im λ±(k) > 0;

(v) N(x, t, k) exhibits a square root singularity at k = ±A+, namely,
N(x, t, k) = O(k ∓ A+)1/2 as k → ±A+, and is non-singular at
k = ±A−.

The IST for the defocusing NLS equations with step initial data
was used in [13,14] to study the semiclassical limit and the short-
time asymptotics of the solutions, respectively. (Similar problems
for the focusing NLS equation were studied in [15,16], and the
long-time asymptotics of an initial–boundary value problem was
considered in [17].) Note however that the case studied in [14] was
with ZBC, and that the step initial condition (IC) considered in [13]
are a special case of the general IC studied here.

The outline of thiswork is the following. In Section 2we present
the direct problem. (In particular, in Sections 2.2–2.4 we discuss
respectively the symmetries, the behavior at the branch points and
the discrete spectrum.) In Section 3 we treat the time evolution. In
Section 4 we formulate the inverse problem as a RHP and derive
a representation for its solution in terms of scattering data. For
comparison purposes, in Appendix A we present a formulation
of the IST for the symmetric case with neither a uniformization
variable nor a two-sheeted Riemann surface. (In particular, in
A.3 we show how the reconstruction formula for the potential
reduces to the one obtained with the uniformization variable). In
Appendix B we present the solution of the same problem with
a different choice of branch cut for the eigenvalue parameter. In
Appendix C, as a further application of the methods presented in
this work, we develop the IST for the defocusing NLS equation
with one-sided NZBC. In Appendix D we report the computation
of the asymptotic behavior of the eigenfunctions as the scattering
parameter tends to infinity, and in Appendix E we prove that the
discrete eigenvalues are also simple in the case of asymmetric
NZBC, as in the case when symmetric NZBC.

2. Direct problem

Recall that Eq. (1.1) is the compatibility condition of the Lax pair

Φx = X(x, t, k) Φ, Φt = T (x, t, k) Φ (2.1)

(the first of which is commonly referred to as the ‘‘scattering
problem’’), where

X(x, t, k) = −ikσ3 + Q (x, t),

T (x, t, k) = −2ik2σ3 + iσ3(Qx − Q 2) + 2kQ ,
(2.2)
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the potential and the Pauli matrices (introduced for later use) are

Q (x, t) =


0 q(x, t)

q∗(x, t) 0


,

σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1


,

(2.3)

and the asterisk denotes complex conjugation. As x → ±∞, one
expects the solutions of the first of (2.1) to tend asymptotically to
those of

Φx = X±(k, t)Φ, (2.4)

where

X±(k, t) = −ikσ3 + Q±(t), Q±(t) =


0 q±(t)

q∗

±
(t) 0


.

The eigenvalues of X±(k, t) are ±iλ±(k), where

λ2
±

= k2 − A2
±
. (2.5)

As expected, the eigenvalues have branching. In the symmetric
case, λ := λ+ = λ−, and one can deal with this problem as in [4]
by introducing a two-sheeted genus-0 Riemann surface which can
be mapped back onto the complex plane via the uniformization
variable z = k+λ. In the asymmetric case (i.e., A+ ≠ A−) however,
λ+(k) ≠ λ−(k). The authors of [12] introduced a four-sheeted
Riemann surface. Here we avoid the introduction of a Riemann
surface altogether and define λ± as single-valued functions over
a single copy of the complex plane. Of course these functions are
discontinuous across their respective branch cuts, which affects
the whole development of the IST.

2.1. Eigenvalue branching, Jost solutions, analyticity and scattering
matrix

It will be useful in what follows to introduce the notations

Σ± = (−∞, −A±] ∪ [A±, ∞),

Σo = [−A−, −A+] ∪ [A+, A−].
(2.6a)

We will also make use of the corresponding interiors

Σ̊± = (−∞, −A±) ∪ (A±, ∞),

Σ̊o = (−A−, A+) ∪ (A+, A−).
(2.6b)

We uniquely define the eigenvalues iλ±(k) as single-valued
functions of k ∈ C using the same definition as [18]. Namely, we
take the branch cuts for λ±(k) on Σ± (see Fig. 1); for all k ∈ Σ±

we take λ±(k) to be the positive value of the real square root
k2 − A2

±, and for all k ∈ C \ Σ± we define λ±(k) as the single-
valued, analytic functions which are continuous as k approaches
Σ± from above (i.e., as Im k → 0+). Moreover, we emphasize
that all eigenfunctions and scattering coefficients (to be defined
below) that admit analytic extension from Σ± to the complex k-
plane will have continuous projection toΣ± from above. Note that
Σ− ⊂ Σ+, Im λ±(k) > 0 for all k ∈ C, and that both λ± are real-
valued on Σ−.

Similarly to [9,6], a convenient choice for the eigenvector
matrices of X±(k, t) is

E±(k, t) = I −
i

k + λ±(k)
σ3Q±(t). (2.7)

We may then write two fundamental matrix solutions of the
scattering problem as

Φ±(x, t, k) = E±(k, t) e−iλ±(k)xσ3(I + o(1)),

k ∈ Σ̊±, x → ±∞. (2.8)
Fig. 1. The branch cuts Σ− and Σ+ of the complex k-plane. The continuous
spectrum coincides with Σ− .

To emphasize, these Jost eigenfunctions are solutions of the
scattering problem only; they are not solutions to both parts of the
Lax pair. It will be useful to define

d±(k) =
1

det E±(k, t)
=

k + λ±(k)
2λ±(k)

, (2.9)

and to note that

E−1
±

(k, t) = d±(k)[I + iσ3Q±(t)/(k + λ±(k))].

It can be shown that the Jost eigenfunctions are well-defined for
k ∈ Σ−, including at ±A−. These values comprise the continuous
spectrum of the scattering problem; they are the values of k for
which both λ±(k) are real-valued.

As in the case with zero BC at infinity, we remove the
oscillations by introducing modified eigenfunctions

µ±(x, t, k) = Φ±(x, t, k) eiλ±(k)xσ3 . (2.10)

The (modified) eigenfunctions can be rigorously defined as the
unique solutions of the following integral equations:

µ−(x, t, k) = E−(k, t) +

 x

−∞

E−(k, t) e−iλ−(k)(x−y)σ3 E−1
−

(k, t)

× 1Q−(y, t) µ−(y, t, k) eiλ−(k)(x−y)σ3 dy, (2.11a)

µ+(x, t, k) = E+(k, t) −


∞

x
E+(k, t) e−iλ+(k)(x−y)σ3 E−1

+
(k, t)

× 1Q+(y, t) µ+(y, t, k) eiλ+(k)(x−y)σ3 dy, (2.11b)

where 1Q± := Q (x, t)−Q±(t), and analogously 1q± := q(x, t)−

q±(t).
It is convenient to consider these integral equations column-

wise, definingµ±,1(x, t, k) andµ±,2(x, t, k) to be the first and sec-
ond column of µ±(x, t, k), respectively. Using a Neumann series
for the integral equations for these columns, one can show that if
(1 + |x|)(q(x, t) − q−(t)) ∈ L1(R−) with respect to x for all t > 0,
then µ−,1(x, t, k) is well-defined on Σ− and analytic in C \ Σ−.
Similarly, if (1 + |x|)(q(x, t) − q+(t)) ∈ L1(R+) with respect to x
for all t > 0, then µ+,2(x, t, k) is well-defined on Σ+ and analytic
in C \ Σ+. Since the proof of these results is similar to the one in
the symmetric case [7,9], it is omitted here for brevity. We should
mention, however, that the condition (q(x, t)−q±(t)) ∈ L1(R±) is
sufficient to guarantee analyticity of µ−,1(x, t, k) and µ+,2(x, t, k)
in C \ Σ±, respectively, and that the extra decay of the potential
as x → ±∞ is only required in order for the eigenfunctions to
be well-defined at the branch points. Specifically, note that at the
branch points k = ±A±, one has λ±(k) = 0, and det E±(k, t) = 0,
which means that E±(k, t) have no inverse at k = ±A±. However,
if (1 + |x|)(q(x, t) − q±(t)) ∈ L1(R±), the integral equations have
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well-defined limits as λ±(k) → 0. To see this, observe that, for
λ−(k) ≠ 0,

E−(k, t)e−iλ−(k)(x−y)σ3E−1
−

(k, t)

=
1

λ−(k)
sin(λ−(k)(x − y))X−(k, t) + cos(λ−(k)(x − y))I.

As k → ±A−, the limit of the right hand side is (x−y)X−(±A−, t)+
I , implying

µ−(x, t, ±A−) = I ∓ σ3Q−(t)/A−

+

 x

−∞


(x − y)X−(±A−, t) + I


1Q−(y, t) µ−(y, t, ±A−) dy.

This is why the further condition that x1q−(x, t) ∈ L1(R−)

is needed in order for the above integral equation to admit a
solution. An analogous argument holds forµ+(x, t, k) at k = ±A+.
The integral equations (2.11) will also be used to compute the
asymptotics of the eigenfunctions for large k in Appendix D.

Since tr X(x, t, k) = 0, Abel’s formula implies that detΦ±(x, t, k)
is independent of x. Evaluating it in the limit x → ±∞, we obtain

detΦ±(x, t, k) = detµ±(x, t, k) = 1/d±(k).

For k ∈ Σ̊−, both Φ±(x, t, k) are fundamental matrix solutions of
the scattering ODE, and there exists a matrix S(k, t), independent
of x, such that

Φ−(x, t, k) = Φ+(x, t, k) S(k, t), k ∈ Σ−, (2.12)

with

det S(k, t) = d+(k)/d−(k). (2.13)

Importantly, note that det S(k, t) ≠ 1, unlike the case of ZBC
and symmetric NZBC. Note also that the scattering relation (2.12)
also holds at k = ±A−, because Φ−(x, t, ±A−) is well-defined
and Φ+(x, t, ±A−) is still a fundamental matrix solution of the
scattering problem. On the other hand, det S(±A−, t) = 0. (See
Section 2.3 for further details.) The scattering coefficients, i.e., the
entries si j(k, t) of the scattering matrix S(k, t), may be expressed
as Wronskians:

s11(k, t) = d+(k)Wr(Φ−,1, Φ+,2)(x, t, k),
s12(k, t) = d+(k)Wr(Φ−,2, Φ+,2)(x, t, k),

(2.14a)

s21(k, t) = d+(k)Wr(Φ+,1, Φ−,1)(x, t, k),
s22(k, t) = d+(k)Wr(Φ+,1, Φ−,2)(x, t, k).

(2.14b)

The reflection coefficients we will use in the inverse problem are

ρ(k, t) := s21(k, t)/s11(k, t),
ρ̄(k, t) := s12(k, t)/s22(k, t), k ∈ Σ−.

(2.15)

Using the Wronskian definitions (2.14), we may analytically
continue s11(k, t) off the continuous spectrum. Specifically,
s11(k, t) is analytic for k ∈ C \ Σ+. Moreover, since Φ−,1(x, t, k)
may be analytically extended to C\Σ− andΦ+,1(x, t, k) is defined
on Σ+, we may extend the definition of s21(k, t) pointwise to Σ̊+.
In fact, the first columnof the scattering relation (2.12) continues to
hold on Σ̊+. However, in Section 2.3 we will show that generically
s11(k, t) and s21(k, t) are singular at k = ±A+ (where d+(k) has a
square root singularity). On the other hand, we will also show that
ρ(k, t) has finite limits as k → ±A+.
2.2. Symmetries

We now consider the symmetries of the eigenfunctions and
scattering data. There are two kinds of symmetries, corresponding
to the involutions k → k∗ and λ±(k) → −λ±(k), respectively.
First symmetry. The first symmetry, corresponding to the involution
k → k∗, is analogous to the one in the case of ZBC. If a 2 × 2
matrix v(x, t, k) solves the scattering problem, so does v̂(x, t, k) :=

σ1 v∗(x, t, k∗) σ1, where the asterisk denotes complex conjugation
and not matrix adjoint. Considering the above relation for k ∈ R
and comparing asymptotic behaviors as x → ±∞, we have:

Φ±(x, t, k) = σ1 Φ∗

±
(x, t, k) σ1, k ∈ Σ±. (2.16)

(To avoid any possible confusion, we emphasize that the above
relation is evaluated pointwise for k ∈ Σ± ⊂ R, where the
corresponding eigenfunctions are defined. In other words, the
matrix Φ∗

±
(x, t, k) appearing in the right hand side does not equal

limk→R Φ∗
±
(x, t, k∗). In fact, since only one of the columns of the

matrix Φ±(x, t, k) can be analytically extended off the real axis,
the Schwarz conjugate inside the above limit does not exist in
general.) Substituting the previous equations into (2.12), we have
S(k, t) = σ1S∗(k, t)σ1 for k ∈ Σ−. That is,

s11(k, t) = s∗22(k, t), s21(k, t) = s∗12(k, t), k ∈ Σ−, (2.17)

which in turn implies

ρ̄(k, t) = ρ∗(k, t), k ∈ Σ−. (2.18)

Note also that (2.13) implies

|s11(k, t)|2 − |s21(k, t)|2 = d+(k)/d−(k), k ∈ Σ−. (2.19)

Since d+(k)/d−(k) > 0 for k ∈ Σ̊−, we conclude that s11(k, t) has
no zeros on Σ̊− (recall Σ̊± and Σ̊o were defined in (2.6)). We will
also show in Section 2.3 that at k = ±A− one has |s11(±A−, t)| =

|s21(±A−, t)| ≠ 0. For future reference, we note that (2.19) can
also be written in terms of the reflection coefficient as follows:

|s11(k, t)|2 = (1 − |ρ(k, t)|2)−1d−(k)/d+(k), k ∈ Σ−. (2.20)

We also consider k → k∗ for k ∉ Σ+. Again, if v(x, t, k) is
a vector solution to the scattering problem, then σ1v

∗(x, t, k∗) is
as well. Looking at the asymptotic behavior of σ1Φ

∗

−,1(x, t, k
∗) as

x → −∞ for k ∉ Σ+, we have

σ1Φ
∗

−,1(x, t, k
∗) =

−iq−(t)
k − λ−(k)

Φ−,1(x, t, k), k ∉ Σ+. (2.21a)

Similarly, looking at the behavior as x → ∞,

σ1Φ
∗

+,2(x, t, k
∗) =

iq∗
+
(t)

k − λ+(k)
Φ+,2(x, t, k), k ∉ Σ+. (2.21b)

Finally, using theWronskian expressions (2.14) wemay determine
s∗11(k

∗, t) when k ∉ Σ+:

s∗11(k
∗, t) =

q−(t)
q+(t)

k − λ+(k)
k − λ−(k)

s11(k, t), k ∉ Σ+. (2.22)

Second symmetry. The second symmetry corresponds to the invo-
lution λ±(k) → −λ±(k). To derive this symmetry, note that in
defining λ±(k), we could have taken the opposite sign of the com-
plex square roots. The integral equations for the Jost eigenfunctions
are formally independent of this choice. However, the resulting
eigenfunctions do depend on the choice of sign. With some abuse
of notation, let us temporarily express the dependence of the Jost
eigenfunctions on the choice of sign explicitly. From the above dis-
cussion we have that ifΦ±(x, t, k, λ±(k)) solves the first of the Lax
pair (2.2), then so does Φ̃±(x, t, k) := Φ±(x, t, k, −λ±(k)).
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Alternatively, one could introduce the eigenfunctions Φ̃±(x, t, k)
without considering the change λ±(k) → −λ±(k) by defining
them as the solution of the scattering problem such that

Φ̃±(x, t, k) =


I −

i
k − λ±(k)

σ3Q±(t)

eiλ±(k)xσ3(1 + o(1))

x → ±∞. (2.23)

SinceΦ±(x, t, k) and Φ̃±(x, t, k) are fundamental matrix solutions
of the scattering problem for all k ∈ Σ̊±, one can express one set
of solutions in terms of the other via a matrix independent of x.
Comparing asymptotics as x → ±∞, we have:

Φ̃±(x, t, k) = Φ±(x, t, k)
−i

k − λ±(k)
σ3Q±(t), k ∈ Σ̊±, (2.24a)

Φ±(x, t, k) = Φ̃±(x, t, k)
−i

k + λ±(k)
σ3Q±(t), k ∈ Σ̊±. (2.24b)

Denoting by S̃(k, t) the scattering matrix for Φ̃±(x, t, k), we have

S(k, t) =
k − λ−(k)
k − λ+(k)

σ3Q+(t)S̃(k, t)Q−1
−

(t)σ3, k ∈ Σ−. (2.25a)

Or, componentwise,

s22(k, t) =
q∗
+
(t)

q∗
−(t)

k − λ−(k)
k − λ+(k)

s̃11(k, t),

s21(k, t) = −
q∗
+
(t)

q−(t)
k − λ−(k)
k − λ+(k)

s̃12(k, t), k ∈ Σ−.

(2.25b)

As we show next, these relations will be useful when considering
the limits of the analytic columns of the Jost solutions as k
approaches the branch cuts from below.
Limits of the eigenfunctions and scattering coefficients from below
the branch cuts. Recall that λ±(k) are analytic in C \ Σ± and
discontinuous across their respective branch cuts. In particular,
λ±(k) were defined to be continuous as k → Σ± from above,
namely

λ+

±
(k) := lim

ϵ↓0
λ±(k + iϵ) = λ±(k). (2.26)

Conversely, we have the following limits as k approaches Σ± from
below:

λ−

±
(k) := lim

ϵ↑0
λ±(k + iϵ) = −λ±(k), k ∈ Σ−, (2.27a)

whereas

λ−

−
(k) := lim

ϵ↑0
λ−(k + iϵ) = λ−(k), k ∈ Σo, (2.27b)

λ−

+
(k) := lim

ϵ↑0
λ+(k + iϵ) = −λ+(k), k ∈ Σo. (2.27c)

Similarly, Φ−,1(x, t, k) is analytic for k ∈ C \Σ− and is continuous
to Σ− from above, and Φ+,2(x, t, k) is analytic for k ∈ C \ Σ+ and
is continuous toΣ+ from above. Conversely, we have the following
limits as k → Σ± from below:

Φ−

−,1(x, t, k) := lim
ϵ↑0

Φ−,1(x, t, k + iϵ)

= Φ̃−,1(x, t, k), k ∈ Σ−, (2.28a)
Φ−

+,2(x, t, k) := lim
ϵ↑0

Φ+,2(x, t, k + iϵ)

= Φ̃+,2(x, t, k), k ∈ Σ−, (2.28b)
Φ−

−,1(x, t, k) := lim
ϵ↑0

Φ−,1(x, t, k + iϵ)

= Φ−,1(x, t, k), k ∈ Σo, (2.28c)
Φ−

+,2(x, t, k) := lim
ϵ↑0

Φ+,2(x, t, k + iϵ)

= Φ̃+,2(x, t, k), k ∈ Σo. (2.28d)
In other words, the above columns of Φ̃±(x, t, k) evaluated on
the branch cuts coincide with the limit of the analytic columns
of Φ±(x, t, k) as they approach the branch cuts from below. In
particular, using the symmetry relations (2.24), we have

Φ−

−,1(x, t, k) =
iq∗

−
(t)

k − λ−

Φ−,2(x, t, k), k ∈ Σ−, (2.29a)

Φ−

+,2(x, t, k) =
−iq+(t)
k − λ+

Φ+,1(x, t, k), k ∈ Σ+. (2.29b)

Since Φ−,1(x, t, k) and Φ+,2(x, t, k) may be analytically extended
in k to C \ Σ+, s11(k, t) may be extended as well using the
Wronskian definitions (2.14). We can then use the above relations
to compute the limits of s11(k, t) as k approaches Σ± from below:

s−11(k, t) := lim
ϵ↑0

s11(k + iϵ, t) =
q+(t)
q−(t)

k + λ−(k)
k + λ+(k)

s22(k, t),

k ∈ Σ− (2.30a)

s−11(k, t) := lim
ϵ↑0

s11(k + iϵ, t) = −
iq+(t)

k + λ+(k)
s21(k, t),

k ∈ Σ̊o. (2.30b)

The limits to the branch cuts from below of µ−,1(x, t, k) and
µ+,2(x, t, k), which will be used in the inverse problem, are
obtained from (2.27), (2.28), and (2.29) using the definition (2.10).

2.3. Behavior of the scattering coefficients at the branch points

In the IVP with symmetric NZBC, each of the scattering
coefficients has a square root singularity at each of the two
branch points, and at the same time all the scattering coefficients
become proportional (since the determinant of the scattering
matrix vanishes in the limit). In the IVP with asymmetric NZBC, as
we have seen, there are two sets of branch points, ±A− and ±A+,
and these features are decoupled in general.

We have seen in Section 2.1 that, at k = ±A−, both Φ+(x, t, k)
and Φ−(x, t, k) are well defined and the scattering relation (2.12)
still holds, since Φ+(x, t, ±A−) is still a fundamental matrix
solution. As a consequence, all entries of the scattering matrix
S(k, t) are well defined at k = ±A−. Since 1/d−(k) → 0 as
k → ±A−, however, the columns of Φ−(x, t, ±A−) are linearly
dependent, so det S(±A−, t) = 0, and the scattering coefficients
at k = ±A− are therefore not independent from each other.
Specifically, comparing the asymptotics of Φ−,1(x, t, ±A−) and
Φ−,2(x, t, ±A−) as x → −∞, we have

s11(±A−, t) = ±ie−iα−+2iA2
−
ts12(±A−, t),

s21(±A−, t) = ±ie−iα−+2iA2
−
ts22(±A−, t),

(2.31)

with α− defined in (1.3). Note also that from (2.17) and (2.31) it
follows that

|s11(±A−, t)| = |s21(±A−, t)| ≠ 0. (2.32)

(This is because, if one of the scattering coefficients were zero,
they would all be zero due to their symmetries, implying
Φ−(x, t, ±A−) ≡ 0 ∀x ∈ R, in contradiction with (2.8)). Thus, it
follows that

|ρ(±A−, t)| = 1. (2.33)

Note that, unlike the case of symmetric NZBC, (2.33) is consistent
with the fact that s11(±A−, t) is finite, thanks to the factor d−(k) in
(2.20).

The situation is different at k = ±A+, since the Jost eigenfunc-
tionsΦ+(x, t, k) are continuous there, but only one of the columns
of Φ−(x, t, k) (namely, Φ−,1(x, t, k)) is defined there. Also recall
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that only the scattering coefficients s11(k, t) and s21(k, t) are de-
fined for k ∈ Σ̊o. To compute their limits as k → ±A+, note first
that

d+(k) =
(±A+)1/2

2
√
2(k ∓ A+)1/2

+
1
2

+ O(k ∓ A+)1/2,

k → ±A+. (2.34)

The Wronskian relations (2.14) then imply that, generically,
s11(k, t) and s21(k, t) have square root singularities, since

s11(k, t) = d+(k)

Wr(Φ−,1, Φ+,2)(x, t, ±A+) + o(1)


,

k → ±A+, (2.35a)
s21(k, t) = d+(k)


Wr(Φ+,1, Φ−,1)(x, t, ±A+) + o(1)


,

k → ±A+. (2.35b)

On the other hand, the reflection coefficient ρ(k, t), which is
still defined for all k ∈ Σ̊o via (2.15), remains finite as k →

±A+. Indeed, comparing the asymptotics of Φ+,1(x, t, ±A+) and
Φ+,2(x, t, ±A+) as x → ∞, we have

lim
k→±A+

ρ(k, t) = ∓ie−iα++2iA2
+
t , (2.36)

implying |ρ(±A+, t)| = 1, as with the behavior as k → ±A−.

2.4. Discrete spectrum

We have seen that values of k ∈ Σ− constitute the continuous
spectrum of the scattering problem. Any values of k ∉ Σ− for
which L2 eigenfunctions exist will constitute the discrete spectrum
of the scattering problem. Since the scattering operator is self-
adjoint, any discrete eigenvalues must be real, and must therefore
lie in the segment (−A−, A−). In addition, in the development of
the inverse problem one must also take into account any so-called
‘‘spectral singularities’’, namely, values of k for which the jump
matrix of the Riemann–Hilbert problem is singular. Such values
correspond to zeros of one of the scattering coefficients. Next we
discuss the possible locations of such zeros.

Specifically, recall that in the previous sections we have shown
that s11(k, t) ≠ 0 ∀k ∈ Σ−, which ensures that no spectral
singularities can arise in this region (similarly to the case of
symmetric NZBC, but now also including the points k = ±A−). For
k ∉ Σ−, either or both ofλ±(k) are not real, and the solutions of the
scattering problemare in general unboundedover thewhole real x-
axis. As in the casewith ZBC, bounded solutions exist when the Jost
eigenfunction that vanishes as x → −∞ (namely, Φ−,1(x, t, k))
is proportional to an eigenfunction that vanishes or is bounded
as x → ∞; namely, Φ+,1(x, t, k) for k ∈ Σ̊o or Φ+,2(x, t, k) for
k ∈ [−A−, A−]. The Wronskian relations (2.14) imply that this
occurs when s21(k, t) = 0 or s11(k, t) = 0, respectively.
Non-existence of discrete eigenvalues in Σ̊o. For k ∈ Σ̊o, one has
λ−(k) ∈ iR+ but λ+(k) ∈ R. Thus, even if Φ−,1(x, t, ko) and
Φ+,2(x, t, ko) were proportional for some ko in this region (cor-
responding to s11(ko) = 0), one would not obtain a bound state,
since Φ+,2(x, t, ko) does not tend to zero as x → ∞. Nonetheless,
any such zeros would need to be taken into account in the inverse
problem. Importantly, however, we next show that

s11(k, t)s21(k, t) ≠ 0 ∀k ∈ Σ̊o. (2.37)

To prove (2.37), note first that, for any two solutions u(x, t, k) and
v(x, t, k) of the scattering problem,

∂

∂x


uĎ σ3 v


= 0, (2.38)

where Ďdenotes conjugate transpose. Recalling the pointwise sym-
metry (2.16) we have, ∀k ∈ Σ+, Φ+,1(x, t, k) = σ1Φ

∗

+,2(x, t, k)
and Φ+,2(x, t, k) = σ1Φ
∗

+,1(x, t, k). Then, setting u = v =

Φ+,1(x, t, ko) or u = v = Φ+,2(x, t, ko) for arbitrary ko ∈ Σ̊o, using
the above symmetries and evaluating uĎσ3v as x → ∞ we obtain

Φ
Ď
+,j(x, t, ko)σ3Φ+,j(x, t, ko) = 1/d+(ko)

∀x ∈ R, ko ∈ Σ̊o, j = 1, 2. (2.39)

Now suppose that s11(ko) = 0 or s21(ko) = 0. The Wronskian rela-
tions (2.14) imply, respectively, Φ+,2(x, t, ko) = coΦ−,1(x, t, ko)
or Φ+,1(x, t, ko) = coΦ−,1(x, t, ko) for some non-zero constant
co ∈ C. On the other hand, Φ−,1(x, t, k) → 0 as x → −∞ ∀k ∈

(−A−, A−) ⊃ Σ̊o. Therefore, the left-hand side of (2.39) also tends
to 0 as x → −∞, resulting in a contradiction, since 1/d+(ko) ≠

0 ∀ko ∈ Σ̊o. Thus s11(k, t) and s21(k, t) must both be non-zero for
all k ∈ Σ̊o.

Importantly, it follows from (2.37) that ρ(k, t) and 1/ρ(k, t) (as
defined in (2.15)) have no zeros or poles in Σ̊o, which will ensure
that the jump matrix of the RHP is always non-singular. Also, the
same result implies that it is impossible to have ρ(k, t) ≡ 0 for all
k ∈ Σ̊o, i.e., no pure reflectionless solutions are possible in the IVPwith
asymmetric NZBC. Of course one could still have situations inwhich
ρ(k, t) ≡ 0 for all k ∈ Σ−. Such cases do not lead to pure soliton
solutions, however, because the inverse problem would still have
a contribution arising from the jump across k ∈ Σ̊o.
Discrete eigenvalues in (−A+, A+). As we have shown above,
s11(k, t) ≠ 0 ∀k ∈ Σ̊+. Also, as shown in Section 2.3, generically
s11(k, t) has a square root singularity at k = ±A+. Thus, any
zeros of s11(k, t) lie in (−A+, A+), for which λ±(k) are both purely
imaginary. Throughout the rest of this work, we will assume that
there are a finite number of such zeros. A sufficient condition
for this to happen is that s11(±A+, t) ≠ 0. (Recall that s11(k, t)
is analytic in a region containing (−A+, A+). If s11(k, t) had an
infinite number of zeros in that interval, there would be an
accumulation point of zeros in the closure of the interval. Such
an accumulation point cannot be in the interior of the interval,
however, because otherwise s11(k, t) would be identically zero.
Thus, the only possibility for s11(k, t) to have an infinite number of
zeros is if either s11(A+, t) or s11(−A+, t) are zero. In the symmetric
case, the situation when s11(k, t) = 0 at either branch point
is called a virtual level [8].) Note, however, that the condition
s11(±A+, t) ≠ 0 is sufficient but not necessary to ensure a finite
number of zeros. (E.g., all reflectionless solutions of the symmetric
case correspond to virtual levels.)

Denoting by k1, . . . , kJ the zeros of s11(k, t) in (−A+, A+), we
write λ±,j := λ±(kj). At k = kj, we have

Φ−,1(x, t, kj) = bj(t) Φ+,2(x, t, kj), j = 1, . . . , J, (2.40)

for some scalar quantities bj independent of x and k. In the inverse
problem we make use of the norming constants

Cj(t) = bj(t)/s′11(kj, t), (2.41)

where prime denotes differentiation with respect to k. Note that,
as in the case of symmetric NZBC [8], one can show that any zeros
of s11(k, t) are simple, i.e., s11(kj, t) = 0 implies s′11(kj, t) ≠ 0 (see
Appendix E for a proof).

Recalling (2.21) produces the relation

bj(t) = −
q∗
+
(t)

q−(t)
kj − λ−,j

kj − λ+,j
b∗

j (t), j = 1, . . . , J,

and applying (2.22), we may write

[s′11(kj, t)]
∗

=
q−(t)
q+(t)

kj − λ+,j

kj − λ−,j
s′11(kj, t), j = 1, . . . , J. (2.42)

Thus the norming constants satisfy the constraint

C∗

j (t) = −Cj(t)[q+(t)/q∗

+
(t)], j = 1, . . . , J.
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3. Time evolution

Recall that in the symmetric case (where A+ = A− = qo) the
time dependence of the boundary conditions can be eliminated by
performing the rescaling q(x, t) = q̃(x, t) exp(−2iq2ot)which adds
the term +2q2oq to (1.1). This has the advantage that one can easily
define the Jost eigenfunctions to be simultaneous solutions of both
parts of the Lax pair, which in turn makes the scattering data
independent of time and therefore allows one to take into account
the time evolution of the problem in a simpler way (e.g., see [6]).

In the asymmetric case, such a rescaling is not possible. In light
of this, the asymptotic behavior for the Jost solutionswas chosen to
be fixed and independent of time (apart from a trivial parametric
dependence via E±(k, t)). As a result, Φ−(x, t, k) and Φ+(x, t, k)
are not solutions of the second half of the Lax pair. Nevertheless
the NLS equation is the compatibility condition of the Lax pair, so
simultaneous solutionsΨ (x, t, k) of both parts of the Lax pairmust
exist. Since Φ±(x, t, k) are both fundamental matrix solutions of
the scattering problem for all k ∈ Σ̊±, we can express Ψ (x, t, k) in
terms of Φ±(x, t, k) via matrices C±(k, t) independent of x. That is,

Ψ (x, t, k) = Φ±(x, t, k) C±(k, t), k ∈ Σ̊±. (3.1)

Differentiating (3.1) with respect to time, we have

(C±)t = R±C±, k ∈ Σ̊±, (3.2)

with

R±(k, t) = Φ−1
±

[TΦ± − (Φ±)t ], k ∈ Σ̊±. (3.3)

Since R±(k, t) and C±(k, t) are independent of x, we may evaluate
them in the limit as x → ±∞ via (2.8):

R±(k, t) = lim
x→±∞

Φ−1
±


TΦ± − (Φ±)t


= if±(k)σ3, k ∈ Σ̊±,(3.4)

where f±(k) = A2
±

+2kλ±(k). Conversely, from (3.3) we can obtain
the time evolution of the Jost solutions as

(Φ±)t = TΦ± − Φ±R±, k ∈ Σ±. (3.5)

(Note (3.5) can be extended to the corresponding branch
points since all quantities involved admit a continuous limit.)
Differentiating the scattering relation (2.12) and using (3.4) we
then obtain the evolution equation for the scattering matrix S:

St = R+S − SR−, k ∈ Σ̊−. (3.6)

Substituting (3.4) into (3.6) yields the time evolution of the
scattering coefficients. In particular, we have

s11(k, t) = s11(k, 0) exp[it(f+(k) − f−(k))], k ∈ Σ̊−, (3.7a)

s21(k, t) = s21(k, 0) exp[−it(f+(k) + f−(k))], k ∈ Σ̊−. (3.7b)

As before, (3.7a)may be extendedwhere s11(k, 0) is analytic, while
(3.7b) can similarly be extended to k ∈ Σ̊+ using (3.5) and the
Wronskian definition (2.14) of s21(k, t). As a result, the reflection
coefficient satisfies

ρ(k, t) = ρ(k, 0) exp[−2itf+(k)], k ∈ Σ+. (3.8)

Moreover, (3.7a) also implies that, at the discrete eigenvalues,

s′11(kj, t) = s′11(kj, 0) exp[it(f+(kj) − f−(kj))], j = 1, . . . , J, (3.9)

where again prime denotes differentiation with respect to k.
It now remains to determine the time evolution of the norming

constants. To this end, note that (3.5) yields

(Φ−,1)t = TΦ−,1 − if−(k)Φ−,1,

(Φ+,2)t = TΦ+,2 + if+(k)Φ+,2, k ∈ Σ̊−.
Importantly, since all the terms involved admit analytic continu-
ation off Σ̊−, the above equations remain valid even for k off Σ̊−.
Substituting these into (2.40) and simplifying gives the evolution
of bj(t):

bj(t) = bj(0) exp[−i(f+(kj) + f−(kj))t], j = 1, . . . , J.

Combining the previous equation with (3.9) gives the evolution of
the norming constants:

Cj(t) = Cj(0) exp[−2if+(kj)t], j = 1, . . . , J. (3.10)

We emphasize that, unlike the case of ZBC and symmetric
NZBC, here s11(k, t) is not independent of time. Note also that
Im [f±(k)] ≠ 0 for all k ∉ Σ−. This affects the behavior of s11(k, t)
as t → ∞. That is, for any fixed value of k one may have sectors
where s11(k, t) → 0 and others where s11(k, t) → ∞ as t → ∞.
It is also important to note, however, that the asymptotic behavior
of s11(k, t) as k → ∞ for any fixed value of t is not affected by this
time dependence. This is because

λ±(k) = k −
A2

±

2k
+ O(1/k3), k → ∞,

which implies

f+(k) − f−(k) = A2
+

− A2
−

+ 2k(λ+(k) − λ−(k))

= O(1/k2), k → ∞.

As a consequence, the normalization of the RHP (which is obtained
by considering the limit k → ∞ with t fixed) is unaffected by the
time dependence. Still, the limit as t → ∞ with k fixed and the
limit as k → ∞ with t fixed do not commute, and one can expect
that the non-uniformity of the behavior of s11(k, t) may affect the
calculation of the long time asymptotics of the solutions.

4. Inverse problem

As usual, the inverse problem consists of reconstructing the
eigenfunctions and the potential in terms of the scattering data
(i.e., the reflection coefficient, the discrete spectrum, and the
norming constants). We first formulate the inverse problem in
terms of an RHP on an open contour. We then reduce the RHP to
a standard set of linear integral equations (coupled to an algebraic
system in the case of a non-empty discrete spectrum).

4.1. Formulation of the Riemann–Hilbert problem

The jump matrix for the RHP in the asymmetric case has
a different expression in each of the regions that compose the
jump, according to the cuts of λ±. More precisely, we need to
distinguish the ranges k ∈ Σ− and k ∈ Σo. The first of these
ranges corresponds to the continuous spectrum of the scattering
problem, allowing us to take advantage of the scattering relation
in obtaining the jump matrix. Recalling the analyticity properties
of the Jost eigenfunctions and scattering coefficients, we introduce
the meromorphic matrix

M(x, t, k) =

µ−,1(x, t, k)
s11(k, t)

, µ+,2(x, t, k)

, k ∉ Σ+. (4.1)

Note that, unlike the cases of ZBC and symmetric NZBC with a
uniformization variable, the jumps of the RHP occur on an open
contour. Therefore, in this case the meromorphic matrix has a
unique representation over the whole cut plane. What is different
are the projections of M(x, t, k) to the cut from above/below.
Specifically,

M+(x, t, k) := lim
ϵ↓0

M(x, t, k + iϵ)

=

µ−,1(x, t, k)
s11(k, t)

, µ+,2(x, t, k)

, k ∈ Σ+, (4.2a)
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whereas

M−(x, t, k) := lim
ϵ↑0

M(x, t, k + iϵ)

=

µ−

−,1(x, t, k)

s−11(k, t)
, µ−

+,2(x, t, k)

, k ∈ Σ−, (4.2b)

M−(x, t, k) := lim
ϵ↑0

M(x, t, k + iϵ)

=

µ−,1(x, t, k)
s−11(k, t)

, µ−

+,2(x, t, k)

, k ∈ Σo, (4.2c)

where all of the above limits are assumed to be non-tangential,
and where the continuity properties of the various columns of
µ±(x, t, k) in the various ranges of k follow trivially from those
of Φ±(x, t, k). In other words, the projection of M(x, t, k) from
above is the same for both ranges of k, but the projection from
below changes when moving from Σ− to Σo because µ−,1(x, t, k)
is continuous across Σo, but not across Σ−. Correspondingly, we
need to write conditions that express the jump ofM(x, t, k) across
the two ranges of k, namely:

M+(x, t, k) = M−(x, t, k) V (x, t, k), k ∈ Σ+, (4.3)

with

V (x, t, k) =


VΣ−

(x, t, k) k ∈ Σ−,
VΣo(x, t, k) k ∈ Σo.

(4.4)

It should be clear from (4.1) and the properties of the eigenfunc-
tions and scattering coefficients (discussed in Section 2.3) that on
one hand M(x, t, k) is continuous as k → ±A−, but on the other
hand M(x, t, k) has a square root singularity as k → ±A+. That is,

M(x, t, k) = O(1) k → ±A−, (4.5a)

M(x, t, k) =


O(k ∓ A+)1/2, O(1)


, k → ±A+. (4.5b)

We next compute the jump matrices VΣ−
and VΣo separately.

Importantly, we will show that V (x, t, k) is continuous both as
k → ±A− and as k → ±A+.

Jump matrix for k ∈ Σ−. Recall that this range corresponds to the
continuous spectrum of the scattering problem. Thus we begin by
looking at (2.12) columnwise.What is not standard is that only half
of the eigenfunctions appearing in these relations are analytic. We
need to modify the above equations to obtain relations between
the limits of the analytic Jost eigenfunctions from above and below
the branch cut. Explicitly, we use (2.29) to expressΦ−,2(x, t, k) and
Φ+,1(x, t, k) in terms of Φ̃−,1(x, t, k) and Φ̃+,2(x, t, k), so that

Φ−,1(x, t, k) = s11(k, t)
iq∗

+
(t)

k + λ+(k)
Φ̃+,2(x, t, k)

+ s21(k, t)Φ+,2(x, t, k), k ∈ Σ−,

−
iq−(t)

k + λ−(k)
Φ̃−,1(x, t, k) = s12(k, t)

iq∗
+
(t)

k + λ+(k)
Φ̃+,2(x, t, k)

+ s22(k, t)Φ+,2(x, t, k), k ∈ Σ−.

Rearranging, using (2.28) and putting in matrix form, we haveΦ−,1(x, t, k)
s11(k, t)

, Φ+,2(x, t, k)


=

Φ−

−,1(x, t, k)

s−11(k, t)
, Φ−

+,2(x, t, k)


×
1

i(k + λ+(k))
σ3Q+(t)Vρ(k, t), (4.6)

where

Vρ(k, t) =


1 − |ρ(k, t)|2 −ρ∗(k, t)

ρ(k, t) 1


, k ∈ Σ−, (4.7)
and where we used the fact that ρ̄(k, t) = ρ∗(k, t) for k ∈ Σ−

(cf. (2.18)). Writing the jump condition in terms of the modified
eigenfunctions, we obtain (4.3) with (4.4) and

VΣ−
(x, t, k) =


E+(k, t) − I

 
e−iλ+(k)x 0

0 eiλ−(k)x


× Vρ(k, t)


eiλ−(k)x 0

0 e−iλ+(k)x


, (4.8)

with E+(k, t) defined in (2.7), and where we used the fact that

− iσ3Q+(t)/(k + λ+) = E+(k, t) − I. (4.9)
Jumpmatrix for k ∈ Σo.Wewish towriteΦ−,1(x, t, k)/s11(k, t) and
Φ+,2(x, t, k) in terms of Φ−,1(x, t, k)/s−11(k, t) and Φ̃+,2(x, t, k)
(note that Φ−,1(x, t, k) is analytic across Σo). Using (2.30b) gives
Φ−,1(x, t, k)
s11(k, t)

=
Φ−,1(x, t, k)
s−11(k, t)

q+(t)
i(k + λ+(k))

ρ(k, t), k ∈ Σ̊o.

To determine the other entries of the jumpmatrix, we use the first
column of the scattering relation, (2.12), extended to Σo. Applying
(2.29b) and rearranging, we again obtain (4.6), but where now
Φ−

−,1(x, t, k) = Φ−,1(x, t, k), and

Vρ(k, t) =


0 −1/ρ(k, t)

ρ(k, t) 1


, k ∈ Σo. (4.10)

As before, we rewrite the jump condition in terms of the modified
eigenfunctions and consider the limits as k to Σo from below,
obtaining (4.3) with

VΣo(x, t, k) =

E+(k, t) − I

 
e−iλ+(k)x 0

0 e−iλ−(k)x


× Vρ(k, t)


eiλ−(k)x 0

0 e−iλ+(k)x


. (4.11)

One could write an expression for Vρ(k, t) that is valid over the
whole range of values of k as

Vρ(k, t) =


1 − ρ(k, t)ρ̄(k, t) −ρ̄(k, t)

ρ(k, t) 1


, k ∈ Σ+, (4.12)

by formally defining
ρ̄(k, t) = 1/ρ(k, t), k ∈ Σo. (4.13)
Again, recall the symmetry relation (2.18) for the reflection
coefficients, namely ρ̄(k, t) = ρ∗(k, t) for k ∈ Σ−. Eq. (4.13)
provides a relation that supplements (2.18) in the region k ∈ Σo.
Moreover, since |ρ(±A−, t)| = 1 by (2.33), then at k = ±A−

we have ρ∗(±A−, t) = 1/ρ(±A−, t). Therefore, the extended
ρ̄(k, t) thus defined is continuous at k = ±A−. In fact, recalling
(2.36) we have that ρ(k, t) and ρ̄(k, t) (and therefore Vρ(k, t)) are
continuous for all k ∈ Σ+, including at the four branch points
k = ±A±.

Summarizing, the jump ofM(x, t, k) acrossΣ+ is given by (4.3),
with VΣ−

(x, t, k) as in (4.8), and VΣo(x, t, k) as in (4.11), and with
Vρ(k, t) given by (4.12). We can then write the RHP problem for
M(x, t, k) as
M+(x, t, k) = M−(x, t, k)


E+(k, t) − I


[I − Vo(x, t, k)] ,

k ∈ Σ+ (4.14a)
where
Vo(x, t, k)

=




1 − e−i(λ+(k)−λ−(k))x(1 − |ρ(k, t)|2) e−2iλ+(k)xρ∗(k, t)

−e2iλ−(k)xρ(k, t) 1 − e−i(λ+(k)−λ−(k))x


,

k ∈ Σ−,
1 e−2iλ+(k)x/ρ(k, t)

−ρ(k, t) 1 − e−i(λ+(k)+λ−(k))x


,

k ∈ Σo.

(4.14b)
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4.2. Residue conditions, solution of the RHP and reconstruction
formula

To complete the formulation of the RHP, one must provide a
normalization condition as k → ∞, as well as residue conditions
on the discrete spectrum. In the RHP for the case with ZBC,
M(x, t, k) → I as k → ∞. In that case, one subtracts both
the contributions from the discrete spectrum and the asymptotic
behavior and applies Cauchy projectors. In our case, however, the
asymptotic behaviors ofM(x, t, k) as k → ∞ in the twohalf planes
do not match. The main reason for this mismatch is that

λ−(k) =


k −

A2
−

2k
+ o(1/k), k → ∞ ∧ Im k > 0,

−k +
A2

−

2k
+ o(1/k), k → ∞ ∧ Im k < 0.

(4.15)

As a result, (see Appendix D for details):

M(x, t, k)

=


I + O(1/k), k → ∞ ∧ Im k > 0,

−
i

k + λ+(k)
σ3Q+(t) + O(1), k → ∞ ∧ Im k < 0.

(4.16)

(Or equivalently M(x, t, k) = E+(k, t) + O(1) as k → ∞ in the
LHP, cf. (4.9).) To overcome this problem, it is convenient to first
consider a toy RHP for a matrix M∗(x, t, k) with the simpler jump
condition

M+

∗
(x, t, k) = M−

∗
(x, t, k)(E+(k, t) − I), k ∈ Σ+. (4.17)

Eq. (4.17) expresses the jump that one would obtain in the
symmetric NZBC case with reflectionless potential. In this case,
there is no ‘‘middle’’ region Σo. (See (A.19) for details.) By
inspection, one sees that a solution to this problem is given by
M∗(x, t, k) = E+(k, t), namely

E+(k, t) = E−

+
(k, t)


E+(k, t) − I


. (4.18)

Moreover, the asymptotics of M(x, t, k) given in (4.16) are the
same as those of E+(k, t).

With these observations in mind, we perform a change of
variable on our original RHP by introducing the new matrix
N(x, t, k) defined as

M(x, t, k) = N(x, t, k)E+(k, t). (4.19)

Thus N(x, t, k) = I + O(1/k) as k → ∞ in both the upper and
lower half planes. The transformation (4.19) results in the new
jump condition

N+(x, t, k) = N−(x, t, k)Ṽ (x, t, k), k ∈ Σ+, (4.20)

where Ṽ (x, t, k) = E−

+ (k, t)V (x, t, k)E−1
+ (k, t) (recall that

E+

± (k, t) = E±(k, t) for all k ∈ R). Taking into account (4.18), (4.3)
and (4.14) we then find

Ṽ (x, t, k) = E+(k, t)

I − Vo(x, t, k)


E−1

+
(k, t), k ∈ Σ+ (4.21)

where Vo(x, t, k) is given by (4.14). Note that (4.5) imply
N(x, t, k) = O(1) as k → ±A− and N(x, t, k) = O(k ∓ A+)1/2

as k → ±A+.
As mentioned above, we must also specify appropriate residue
conditions which provide the contribution from the discrete
spectrum. From (2.40) we have µ−,1(x, t, kj) = bj(t)µ+,2(x, t, kj)
ei(λ−,j+λ+,j)x for j = 1, . . . , J . Since the zeros of s11(k, t) are simple
(cf. Appendix E),

Res
k=kj


µ−,1(x, t, k)
s11(k, t)


=

µ−,1(x, t, kj)
s′11(kj, t)

= Cj(t)ei(λ−,j+λ+,j)xµ+,2(x, t, kj), j = 1, . . . , J,

where Cj(t) is the norming constant associatedwith the eigenvalue
kj and λ±,j = λ±(kj) (as defined in Section 2.4). Thus,

Res
k=kj

[M(x, t, k)] = Cj(t)ei(λ−,j+λ+,j)x

M2(x, t, kj), 0


,

j = 1, . . . , J. (4.22)

Moreover, since E+(k, t) is analytic for k ∉ Σ+ and invertible for
all k ≠ ±A+, we have

Res
k=kj

[N(x, t, k)] = Res
k=kj

[M(x, t, k)]E−1
+

(kj, t)

= Cj(t)ei(λ−,j+λ+,j)x

M2(x, t, kj), 0


E−1

+
(kj, t),

j = 1, . . . , J. (4.23)

Explicitly, the residue conditions for N(x, t, k) are given by (1.6).
To formally solve the RHP for N(x, t, k), we subtract the

asymptotic behavior as k → ∞ and the residues obtained from
the discrete spectrum; thus we consider thematrixN(x, t, k)− I−J

j=1 Resk=kj [N(x, t, k)]/(k−kj), which is analytic offΣ+ and goes
to zero as k → ∞ in both half planes. The solution of this RHP is
then formally given by

N(x, t, k) = I +

J
j=1

1
k − kj

Res
k=kj

[N(x, t, k)]

−
1

2π i


Σ+

[N−(I − Ṽ )](x, t, ζ )

ζ − k
dζ , k ∈ C \ Σ+. (4.24)

Recalling again (4.18), (4.19) and (4.21), straightforward algebra
yields the following expression forM(x, t, k):

M(x, t, k) = E+(k, t)

+

J
j=1

1
k − kj

Res
k=kj

[M(x, t, k)]E−1
+

(kj, t)E+(k, t)

−
1

2π i


Σ+

[M−

E+ − I


VoE−1

+ ](x, t, ζ )

ζ − k

× E+(k, t) dζ , k ∈ C \ Σ+, (4.25)

where (4.23) was used to express Resk=kjN(x, t, k) in terms of
Resk=kjM(x, t, k). In order to close the system and to evaluate
the reconstruction formula we need to supplement (4.25) with
appropriate conditions for these residues. Even though the second
column of M(x, t, k) is analytic at k = kj, the second column
of N(x, t, k) is not, since multiplication by E+(k, t) mixes the
columns, as seen from (4.23). Thus, some care must be taken in
evaluating the above expression. Nonetheless, taking into account
(4.23) and evaluating the limit of the second column of (4.25) as
k → kj yields
1 −

iq+

2λ2
+,j

Cj(t)ei(λ+,j+λ−,j)x

M2(x, t, kj)

=


I −

1
2π i


Σ+

[M−

E+ − I


VoE−1

+ ](x, t, ζ )

ζ − kj
dζ
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+

J
′

j′=1

1
kj − kj′

Cj′(t)e
i(λ

+,j′+λ
−,j′ )x

×

M2(x, t, kj′), 0


E−1

+
(kj′ , t)


E+,2(kj, t),

j = 1, . . . , J, (4.26)

where the prime in the summation symbol denotes that the term
j′ = j is absent. As usual (4.25) and (4.26) (together with (4.23))
comprise a mixed linear system of algebraic–integral equations
that provides the solution of the RHP.

We can now derive the reconstruction formula for the potential
by looking at the asymptotic behavior of the solution of the RHP as
k → ∞. Indeed, the asymptotic behavior of the eigenfunctions
computed from the direct problem (see Appendix D, specifically
(D.2)), together with (4.1), yields

q(x, t) = 2i lim
k→∞

Im k>0

kM12(x, t, k). (4.27)

Moreover, from (4.25) we have

M(x, t, k) = E+(k, t)

+
1
k

J
j=1

Cj(t)ei(λ−,j+λ+,j)x

M2(x, t, kj), 0


E−1

+
(kj, t)

+
1

2π ik


Σ+

[M−

E+ − I


VoE−1

+
](x, t, ζ ) dζ

+O(1/k2), k → ∞ ∧ Im k > 0. (4.28)

Computing the 1, 2 component of (4.28) and using (4.27) then
yields the reconstruction formula for the solution of the defocusing
NLS equation with asymmetric NZBC:

q(x, t) = q+(t)

1 −

J
j=1

Cj(t)
λ+,j

ei(λ−,j+λ+,j)xM12(x, t, kj)


+
1

2π i


Σ−∪ Σo

1
λ+(k)


iq+(t)

k + λ+(k)
Vo,21(x, t, k)

+ Vo,22(x, t, k)

q+(t)M−

11(x, t, k)

−


iq+(t)

k + λ+(k)
Vo,11(x, t, k) + Vo,12(x, t, k)


× q∗

+
(t)M−

12(x, t, k)

dk, (4.29)

where the entries of Vo(x, t, k) for k ∈ Σ− and k ∈ Σo are given by
(4.14).

5. Discussion and final remarks

As is usually the case, the IST has been formulated under
the assumption of existence (i.e., assuming the solution q(x, t)
of the IVP for the defocusing NLS equation with the given IC
and asymmetric NZBC exists and satisfies the same regularity
conditions as the IC). On the other hand, as usual one can then
look at the representation formula as a definition of q(x, t), and use
it to prove that the function thus defined is the unique solution
of the IVP in some appropriate functional space. The precise
characterization of the admissible functional class, however, as
well as that of the regularity properties of the scattering data and
the issue of existence and uniqueness of the solution of the inverse
problem, are left for future investigation. In this respect we should
remark that this is a difficult problem even for the focusing NLS
with ZBC [19,20].
We should also mention that the formalism presented in this
work could be extended in a relatively straightforward way to
the case of BC which include non-zero and unequal asymptotic
carriers, namely

q(x, t) = A± eiα±−iξ±x−i(ξ2
±

+2A2
±

)t
+ o(1), x → ±∞. (5.1)

The main difference in that case is that, when the NZBC (5.1) are
given, the Jost eigenfunctions Φ±(x, t, k) are defined over Σ± =

(−∞, ξ± − A±] ∪ [ξ± + A±, ∞), respectively. It is then clear that,
depending on the relative values of A± and ξ±, the ranges Σ± are
not necessarily simply nested as in this work, but could also have
more complicated overlap. Specifically, the ‘‘discrete spectrum’’
region R \ (Σ+ ∪ Σ−) could be empty, while one could have a
non-empty second ‘‘dispersive shock wave’’ region Σ− \ Σ+. The
jump matrix in that case should be constructed using the opposite
procedure as in the region Σo; namely, by expressing the analytic
column of Φ+ as a linear combination of the columns of Φ− and
using the symmetries.

We expect that the IST formalism developed in this work will
be instrumental for the calculation of the long-time asymptotic
behavior of the solutions. Recall that, in the focusing case with
ZBC, the problem was first studied in [21,22] and then later
revisited using the Deift–Zhou nonlinear steepest descent method
[23,24]. (See also [25] for the problem in the presence of real
spectral singularities.) In the case of symmetric NZBC, the long-
time asymptotic behavior was first studied in [26], and was later
revisited and made more rigorous in [27,28] using the Deift–Zhou
method. We should mention that the special case of a pure step
IC was recently studied in [13], and that similar methods were
used in [14] to study the short-time asymptotic behavior in the
defocusing case with ZBC and discontinuous IC. For the focusing
NLS equation with NZBC, the general theory of inverse scattering
was developed in [29,11], and the long-time asymptotics in the
symmetric case and the case of one-sided step IC were studied
respectively in [15,16]. We should also mention that the IST for
the focusing NLS equation with the same kind of asymmetric NZBC
considered in this work was recently studied in [30].

The results of this work also open up a number of interesting
problems. Among them, one is the characterization of the
scattering problem for specific classes of initial conditions, along
the lines of what was done in [31] for the focusing NLS with ZBC,
and in [32,6] for the focusing and defocusing cases with symmetric
NZBC, respectively. Another interesting problem is whether there
exist potentials with an infinite number of discrete eigenvalues,
i.e., zeros for the analytic scattering coefficient, accumulating at
one of the branch points. In this respect, recall that scattering
problem for the Korteweg–deVries equation (which is the time-
independent Schrödinger equation) always has a finite number
of discrete eigenvalues, and that, for the defocusing NLS with
symmetric NZBC, sufficient conditions can be formulated on the
potential that guarantee that at most a finite number of zeros are
present [7]. On the other hand, potentials with an infinite number
of zeros are known to be allowed for the focusing NLS equation
with ZBC [24].

A further problem is the generalization of these results to the
Manakov system (i.e., the two-component vector NLS equation)
with asymmetric NZBC. Here we note that, while the IST for
the Manakov system with ZBC was formulated in 1974 [33],
and can be generalized to an arbitrary number of components
in a straightforward way [34], the case of NZBC is much more
challenging, due to the defect of analyticity of some of the Jost
eigenfunctions. The IST for the defocusing Manakov system with
symmetric NZBC was finally formulated in [18] and rigorously
revisited in [9], while the IST for the focusing Manakov system
with NZBC was only recently formulated in [35]. On the other
hand, the generalization to larger number of components in the
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case of NZBC is even more challenging due to the corresponding
increase of the analyticity defect and the degeneracy of the
scattering eigenvalues [36,37]. One could therefore expect that the
development of the IST for coupled NLS systems with asymmetric
NZBC will require significant further work.

In conclusion, we should reiterate that even though in thiswork
we have taken the branch cuts for the eigenvalues λ±(k) along
the half lines Σ± = (−∞, −A±] ∪ [A±, ∞) (i.e., ‘‘outside’’), one
can equivalently formulate the IST when the branch cut for the
eigenvalues is taken along the segments [−A±, A±] (i.e., ‘‘inside’’)
instead. For comparison purposes, in Appendix B we present the
formulation of the IST in the symmetric case with the branch
cut inside. Each choice has its advantages and disadvantages. The
analyticity properties of the Jost eigenfunctions are more standard
when the branch cut is taken inside, since half of the columns are
analytic in the upper half plane and the other half in the lower
half plane. This simplifies the formulation of the inverse problem.
On the other hand, with the branch cut inside, the RHP acquires
an additional jump along the segment [−A±, A±]. This introduces
the further complication that the discrete eigenvalues are located
along this jump. Thus, no choice seems to be clearly preferablewith
regard to the pure IST. At the same time, choosing the branch cut
inside seems to be more convenient in the study of the long-time
asymptotics [15,13].
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Appendix A. IVP for symmetric NZBC without uniformization

It is instructive to compare the formulation of the IST in the
asymmetric case to the IST without uniformization in the case of
symmetric NZBC, namely A+ = A− = qo ≠ 0. In the symmetric
case it is convenient to perform a change of variables to remove
the time dependence of the BC, which can be done by introducing
the rescaled field q(x, t) = q̃(x, t) e−2iq2o t which satisfies amodified
NLS equation

iq̃t + q̃xx + 2(q2o − |q̃|2)q̃ = 0. (A.1)

In what follows, we will omit the tildes as well as the term
‘‘modified’’ for brevity. Eq. (A.1) is the compatibility condition of
the Lax pair (2.1) where T (x, t, k) is replaced by

T (x, t, k) = −2ik2σ3 + iσ3Qx(x, t)

+ i(q2o − |q|2(x, t))σ3 + 2kQ (x, t). (A.2)

The NZBC (1.3) then simplify to q(x, t) → q± as x → ±∞, with
q± independent of time. (Also, without loss of generality we can
take q± = qoe±iα .) As a result, by defining the Jost solutions to
be simultaneous solutions of both parts of the Lax pair, all of the
scattering datawill be time-independent. However, because of this
change, the framework in this section is not merely a reduction
λ± → λ andΣ± → Σ . The formulation of the IST that follows can
also be compared to the classical formulation of the IST for the case
of symmetric NZBC, as presented in [8] (see also [6,7]).
A.1. Direct problem

Jost eigenfunctions and scatteringmatrix. As x → ±∞, the solutions
of the Lax pair tend asymptotically to the solutions of

Φx = X±Φ, Φt = T±Φ,

X± = −ikσ3 + Q±, T± = −2ik2σ3 + 2kQ±.

The eigenvalues of the x-part and t-part are respectively ±iλ,
±2ikλ, where λ2

= k2 − q2o . As before, we take the branch cut on
Σ = (−∞, −qo] ∪ [qo, ∞), which coincides with the continuous
spectrum. We define λ as a single-valued function of k ∈ C, such
that λ(k) is continuous as k approaches the branch cut from above.
A convenient choice for the eigenvector matrices is

E±(k) = I −
i

k + λ(k)
σ3Q±, (A.3)

where we emphasize that here Q± are independent of time. For all
k ∈ Σ , one can then introduce two fundamental matrix solutions
Φ±(x, t, k) to both parts of the Lax pair such that

Φ±(x, t, k) = E±(k) e−iθ(x,t,k)σ3(I + o(1)), x → ±∞,

with

θ(x, t, k) = λx + 2kλt,
d(k) = 1/ det E±(k) = [k + λ(k)]/[2λ(k)].

(A.4)

Also, we introduce the modified eigenfunctions as

µ±(x, t, k) = Φ±(x, t, k) eiθ(x,t,k)σ3 . (A.5)

As before, µ±(x, t, k) are rigorously defined in terms of integral
equations:

µ−(x, t, k) = E−(k) +

 x

−∞

E−(k) e−iλ(k)(x−y)σ3 E−1
−

(k)

× 1Q−(y, t) µ−(y, t, k) eiλ(k)(x−y)σ3 dy, (A.6a)

µ+(x, t, k) = E+(k) −


∞

x
E+(k) e−iλ(k)(x−y)σ3 E−1

+
(k)

× 1Q+(y, t) µ+(y, t, k) eiλ(k)(x−y)σ3 dy. (A.6b)

where 1Q± = Q − Q±. Like in the case of asymmetric NZBC, if
(1 + | · |)(q(·, t) − q±) ∈ L1(R±) for all t ∈ R+, a Neumann
series expansion for the above integral equations can be used to
rigorously define the eigenfunctions and the analytic continuation
of the appropriate columns off Σ , as well as to determine the
asymptotics of the eigenfunctions as k → ∞. In particular, (when
the branch cut is outside), µ−,1 and µ+,2 are analytic in the whole
complex plane except the branch cut.

Note that detΦ±(x, t, k) = detµ±(x, t, k) = det E±(k) =

1/d(k), independent of x and t , which only vanishes when λ = 0
(i.e., at the branch points k = ±qo). Thus, for all k ∈ R \ [−qo, qo],
Φ±(x, t, k) are fundamental matrix solutions of both parts of the
Lax pair (2.1), and one can define the scattering matrix S(k) by

Φ−(x, t, k) = Φ+(x, t, k) S(k), k ∈ Σ . (A.7)

Since Φ±(x, t, k) are simultaneous solutions of both parts of the
Lax pair, the scattering matrix S(k) is independent of both space
and time. Moreover, det S(k) = 1. The entries of the scattering
matrix may be written in terms of Wronskians as

s11(k) = d(k)Wr(Φ−,1, Φ+,2)(x, t, k),
s12(k) = d(k)Wr(Φ−,2, Φ+,2)(x, t, k), (A.8a)
s21(k) = d(k)Wr(Φ+,1, Φ−,1)(x, t, k),
s22(k) = d(k)Wr(Φ+,1, Φ−,1)(x, t, k). (A.8b)

The reflection coefficients appearing in the inverse problem are
ρ(k) = s21(k)/s11(k) and ρ̄(k) = s12(k)/s22(k). The scattering
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coefficients then inherit analyticity properties from the eigenfunc-
tions via the Wronskian relations (A.8). In particular, s11(k) is ana-
lytic in C \ Σ .
Symmetries. As in the case of ZBC and asymmetric NZBC, if v(x, t, k)
solves the scattering problem, then sodoesσ1v

∗(x, t, k∗)σ1. For k ∈

Σ , s11(k) = s∗22(k) and s21(k) = s∗12(k). Thus, since det S(k) = 1,
we have that |s11(k)|2 ≥ 1 onΣ , and thus s11(k) has no zeros there.

Moreover, for k ∉ Σ , we have the following:

σ1Φ
∗

−,1(x, t, k
∗) =

−iq−

k − λ(k)
Φ−,1(x, t, k),

σ1Φ
∗

+,2(x, t, k
∗) =

iq∗
+

k − λ(k)
Φ+,2(x, t, k),

(A.9a)

s∗11(k
∗) = (q−/q+) s11(k). (A.9b)

The above relations are derived using similar arguments as in the
asymmetric case.

To derive the second symmetry, for k ∈ Σ we introduce another
set of eigenfunctions as

Φ̃±(x, t, k) =


I −

i
k − λ(k)

σ3Q±


eiθ(x,t,k)σ3(1 + o(1))

as x → ±∞. (A.10)

We now have two fundamental matrix solutions to the Lax pair.
Thus they are related by amatrix independent of x and t , which we
may determine by letting x → ±∞:

Φ̃±(x, t, k) = Φ±(x, t, k)

−

i
k − λ(k)

σ3Q±


,

Φ±(x, t, k) = Φ̃±(x, t, k)

−

i
k + λ(k)

σ3Q±


, k ∈ Σ .

(A.11)

Defining S̃(k, λ(k)) = S(k, −λ(k)), we have

s22(k) = (q−/q+) s̃11(k), s21(k) = −(q∗

+
/q−) s̃12(k). (A.12)

Limits of the eigenfunctions and scattering coefficients from below the
branch cut. Recall λ(k) is discontinuous across the branch cut, and
specifically, λ → −λ across Σ . Φ−,1(x, t, k) and Φ+,2(x, t, k) are
analytic for k ∈ C \ Σ and are continuous to the branch cut from
above. Then as k → Σ from above or below, we have

Φ−

−,1(x, t, k) := lim
ϵ↑0

Φ−,1(x, t, k + iϵ) = Φ̃−,1(x, t, k),

k ∈ Σ, (A.13a)
Φ−

+,2(x, t, k) := lim
ϵ↑0

Φ+,2(x, t, k + iϵ) = Φ̃+,2(x, t, k),

k ∈ Σ . (A.13b)

We again use the tilde to denote both the alternate eigenfunctions
and the limits of a function as it approaches the branch cut from
below. Comparing with (A.11), we find

Φ̃−,1(x, t, k) =
i

k − λ
q∗

−
Φ−,2(x, t, k),

Φ̃+,2(x, t, k) = −
i

k − λ
q+Φ+,1(x, t, k), k ∈ Σ .

(A.14)

Since s11(k) may be expressed as a Wronskian of functions which
admit analytic continuation, wemay determine its limit as k → Σ

from below:

s−11(k) := lim
ϵ↑0

s11(k + iϵ) =
k − λ

−2λ
Wr(Φ̃−,1, Φ̃+,2)

=
q+

q−

s22(k) = s̃11(k), k ∈ Σ . (A.15)
Finally, we observe that limϵ↑0 θ(k + iϵ) = −θ(k), so

µ−

−,1(x, t, k) = lim
ϵ↑0

µ−,1(x, t, k + iϵ)

= Φ̃−,1(x, t, k) e−iθ(x,t,k), (A.16a)
µ−

+,2(x, t, k) = lim
ϵ↑0

µ+,2(x, t, k + iϵ)

= Φ̃+,2(x, t, k) eiθ(x,t,k). (A.16b)
Note also that all eigenfunctions remain finite at the branch points
but, for generic potentials, all scattering coefficients have square
root singularities as k → ±qo, and they all become proportional to
each other in this limit.
Discrete eigenvalues. The discrete spectrum is the set of values
kj ∈ C for which s11(kj) = 0. Since the scattering operator is self-
adjoint, its eigenvalues lie on the real k-axis. On the other hand, the
first symmetry implies s11(k)has no zeros for k ∈ Σ , so the discrete
spectrum must be contained in the segment (−q0, q0). The zeros
of s11(k) are simple (see [8] and Appendix E), and we assume there
are only a finite number J of them; we write λj for λ(kj). Using the
Wronskian expressions (A.8), we may write
Φ−,1(x, t, kj) = bjΦ+,2(x, t, kj), j = 1, . . . , J, (A.17)
for some constants bj. The norming constants are Cj = bj/[s′11(kj)]
at each of the eigenvalues kj. Starting from the relation (A.17), and
using the properties of the first symmetry yields

bj = −(q∗

+
/q−) b∗

j , [s′11(kj)]
∗

= (q−/q+) s′11(kj),

C∗

j = −(q+/q∗

+
) Cj.

(A.18)

A.2. Inverse problem

As usual, we begin by looking at (A.7) columnwise. We then
rewrite these equations to obtain a relation between the limits of
the analytic Jost eigenfunctions and analytic scattering coefficients
from above and below the branch cut (similarly to what was done
for k ∈ Σ− in the asymmetric NZBC). Explicitly, after rearranging
terms, we obtain the matrix jump condition
M+(x, t, k) = M−(x, t, k)(E+(k) − I)[I − Vo(x, t, k)],

k ∈ Σ, (A.19)
where the analogue of (4.9) was used (namely, E+(k) − I =

−iσ3Q+/(k + λ(k))), with

M(x, t, k) =


µ−,1(x, t, k)

s11(k)
, µ+,2(x, t, k)


, k ∈ C \ Σ, (A.20)

implying M+(x, t, k) = M(x, t, k) and where M−(x, t, k) is
obtained from (A.14)–(A.16), and

Vo(x, t, k) = e−iθ(x,t,k)σ3


|ρ(k)|2 ρ̄(k)
−ρ(k) 0


eiθ(x,t,k)σ3 ,

k ∈ Σ . (A.21)
Similarly to the problem with asymmetric NZBC, the eigenfunc-
tions are continuous as k → ±qo (under the same regularity as-
sumptions for the potential), but the scattering coefficients (and
therefore M(x, t, k)) have square root singularities in those limits.
In particular,

M(x, t, k) =

O(k ∓ qo)1/2, O(1)


, k → ±qo. (A.22)

On the other hand, the reflection coefficients (and therefore
Vo(x, t, k)) remain finite as k → ±qo, and in particular, |ρ(±qo)| =

1. As in the problem with asymmetric NZBC, the asymptotics of
M(x, t, k) as k → ∞ in each half plane do not match, since

M(x, t, k) =


I + O(1/k), k → ∞ ∧ Im k > 0,

−
i

k + λ
σ3Q+ + O(1), k → ∞ ∧ Im k < 0.
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To circumvent this problem, we again consider a toy RHP with the
jump condition

M+

o (x, t, k) = M−

o (x, t, k)[−i/(k + λ(k))]σ3Q+,

(which is the RHP obtained from a reflectionless potential with
no discrete spectrum). By inspection, a solution to this problem
is given by Mo(x, t, k) = E+(k). That is, recalling that λ(k) (and
therefore E+(k)) is continuous from above the cut,

E+(k) = E−

+
(k)(E+(k) − I), k ∈ Σ . (A.23)

With this in mind, we define N(x, t, k) as

M(x, t, k) = N(x, t, k)E+(k), k ∈ C \ Σ . (A.24)

Substituting into (A.19), we obtain the jump condition N+
=

N−E−

+ ( E+− I )( I−Vo )E−1
+ for k ∈ Σ , or equivalently, using (A.23),

N+(x, t, k) = N−(x, t, k)(I − E+(k)Vo(x, t, k)E−1
+

(k)),

k ∈ Σ, (A.25a)

together with the standard asymptotics

N(x, t, k) = I + O(1/k), k → ∞. (A.25b)

Thus, the asymptotics in each half-plane now match, which will
allow us to subtract the asymptotic behavior at infinity and apply
Cauchyprojectors as in the case of ZBC and symmetricNZBC. Before
we do so, however, we need to consider the contribution from the
discrete spectrum. From (A.17) we have

µ−,1(x, t, kj) = bjµ+,2(x, t, kj) e2iθ(x,t,kj).

The zeros of s11(k) are simple, so

Res
k=kj


µ−,1(x, t, k)

s11(k)


=

µ−,1(x, t, kj)
s′11(kj)

= Cjµ+,2(x, t, kj)e2iθ(x,t,kj),

where Cj is the norming constant (A.18) associatedwith eigenvalue
kj. Since E+(k) is analytic off the cut,

Res
k=kj

[M(x, t, k)] =


µ−,1(x, t, kj)

s′11(kj)
, 0


= Res

k=kj
[N(x, t, k)] E+(kj).

Thus we consider N(x, t, k)− I −
J

j=1 Resk=kj [N(x, t, k)]/(k−kj),
which is analytic for k ∉ Σ , and which goes to 0 as k → ∞ in both
half planes. After some algebra, the solution of this RHP is given by

N(x, t, k) = I +

J
j=1

1
k − kj

Res
k=kj

[N(x, t, k)]

−
1

2π i


Σ


N−E+ Vo E−1

+


(x, t, ζ )

ζ − k
dζ ,

and we have the solution of the original RHP (A.19)

M(x, t, k) =


I +

J
j=1

1
k − kj

Res
k=kj

[N(x, t, k)]

−
1

2π i


Σ


M−(E+ − I)VoE−1

+


(x, t, ζ )

ζ − k
dζ


E+(k). (A.26)

Taking the limit of the second column as k → kj, we obtain the
algebraic relations that complete the linear system for the solution
of the RHP:
1 −

iq+

2λ2
j
Cj e2iθ(x,t,kj)


M2(x, t, kj)

=


I −

1
2π i


Σ

[M−

E+ − I


VoE−1

+ ](x, t, k)
k − kj

dk

+

J
′

j′=1

1
kj − kj′

Cj′e2iθ(x,t,kj)

M2(x, t, kj′), 0


E−1

+
(kj′)


E+,2(kj),

j = 1, . . . , J, (A.27)

where λj = λ(kj) for j = 1, . . . , J .

Reconstruction formula. As in the asymmetric case, q(x, t) is
obtained from M(x, t, k) via (4.27). The asymptotic behavior of
(A.26) as k → ∞ in the UHP is

M(x, t, k) = E+(k)

+
1
k

J
j=1

Cje2iθ(x,t,kj)

M2(x, t, kj), 0


E−1

+
(kj)

+
1

2π ik


Σ

[M−(E+ − I)VoE−1
+

](x, t, ζ )dζ

+O(1/k2).

Computing the 1, 2 component of the above expression (using sim-
ilar steps as in the asymmetric case) then yields the reconstruction
formula for the solution of the defocusing NLS equation:

q(x, t) = q+


1 −

J
j=1

Cj

λj
e2iθ(x,t,kj)M12(x, t, kj)



+
1

2π i


Σ

1
λ(k)


iq2

+

k + λ(k)
Vo,21(x, t, k)M−

11(x, t, k)

− q∗

+


iq+

k + λ(k)
Vo,11(x, t, k) + Vo,12(x, t, k)


×M−

12(x, t, k)

dk. (A.28)

Alternatively, q(x, t) can be expressed in terms of the Jost
eigenfunctions. From the definition of M(x, t, k), the limits from
below the cut and the symmetries one can check that

M−(x, t, k)

=

i(k + λ)µ−,2(x, t, k)/(q+(t)s22(k, t)), iq+(t)µ+,1(x, t, k)/(k − λ)


,

k ∈ Σ . (A.29)

Also, (A.5) and the scattering relation (A.7) imply

µ−,1(x, t, k) = s12(k, t)µ+,1(x, t, k)

+ e−2iθ(x,t,k)s2,2(k, t)µ+,2(k, t), k ∈ Σ . (A.30)

Straightforward algebra then yields:

q(x, t) = q+ − q+

J
j=1

Cj

λj
µ+,12(x, t, kj)e2iθ(x,t,kj)

+
1
2π


Σ

1
λ(k)


e−2iθ(x,t,k)(k + λ(k))ρ̄(k)µ+,11(x, t, k)

−iq+e2iθ(x,t,k)ρ(k)µ+,12(x, t, k)

dk. (A.31)
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A.3. Comparison between the reconstruction formulae with and
without uniformization

We next show how the reconstruction formula (A.31) obtained
from the IST formulated without the use of a uniformization
variable agrees with the reconstruction formula derived using the
uniformization variable.We first discuss the casewhen no discrete
eigenvalues are present, in which case the reconstruction formula
obtained using the uniformization variable is [6,8]

q(x, t) = q+ +
1
2π


R
e−2iθ(x,t,z)ρ̄(z)µ+,11(x, t, z) dz, (A.32)

where the uniformization variable is z = k + λ(k). (Recall that
the transformation k → z is inverted by k =

1
2 (z + q2o)/z and

λ =
1
2 (z−q2o/z).) Breaking the integral (A.32) into an integral over

Σ and one over R \ Σ , we see that
Σ

e−2iθ(x,t,z)ρ̄(z) µ+,11(x, t, z) dz

=


Σ

e−2iθ(x,t,k)ρ̄(k)
k + λ(k)

λ(k)
µ+,11(x, t, k) dk, (A.33)

where we performed the change of variables z = k + λ(k) and
with some abuse of notation we write ρ(k) for ρ(z(k)), θ(x, t, k)
for θ(x, t, z(k)) etc., and vice versa. The range z ∈ [−qo, qo] can
also be obtained by taking k ∈ Σ , but with the opposite sign for
λ(k) and the opposite orientation for the contour. In other words,
the appropriate change of variables in this case is z = k−λ(k), and
some care must be taken in evaluating the integrand. In particular,
dropping the explicit dependence on k, and again with some abuse
of notation, using the symmetries of the problem we have:

µ+,11(x, t, k, −λ) =
iq∗

+

k − λ
µ+,12(x, t, k, λ),

ρ̄(k, −λ) = −
q+

q∗
+

ρ(k, λ), e−2iθ(x,t,k,−λ)
= e2iθ(x,t,k,λ).

Thus
R\Σ

ρ̄(z)e−2iθ(x,t,z)µ+,11(x, t, z) dz

= −


Σ

iq+

λ(k)
ρ(k)e2iθ(x,t,k)µ+,12(x, t, k) dk. (A.34)

Combining (A.33) and (A.34) then confirms that indeed (A.32)
coincides with (A.31).

One can also check that the formulations of the problem with
and without uniformization are equivalent by deriving the one-
soliton solution from the IST without uniformization. Considering
the reflectionless case (i.e., ρ(k) = 0 for all k ∈ Σ) with just
one discrete eigenvalue at k = k1, we may use (A.27) to solve for
µ+,12(x, t, k1)

µ+,12(x, t, k1) = −
iq+

k1 + λ1


1 −

iq+

2λ1
C1e2iθ(k1)


.

When formulated for the uniformization variable, the norming
constant may be written as

Cunif =
2iλ1(k1 + λ1)

q+

e−2iλ1ζ1 ,

with ζ1 ∈ R. Then

C1 = Cunif


dz
dk

(k1) = Cunif
λ1

k1 + λ1
=

2iλ2
1

q+

e−2iλ1ζ1 .

The reconstruction formula becomes

q(x, t) = q+ −
2q+λ1

k1 + λ1


e−2iθ(k1)+2iλ1ζ1 + 1


.

Setting k1 = cosα, λ1 = i sinα, we recover the familiar dark
soliton solution of the defocusing NLS equation with symmetric
NZBC, namely:

q(x, t) = q+e−iα
cosα + i sinα tanh


|λ1|(x − ζ1 + 2k1t)


.

Appendix B. IST for symmetric NZBC: branch cut inside

We next show how the IST can equivalently be formulated
when the branch cut for the eigenvalues λ±(k) is taken along
the segments [−A±, A±] instead of along the half lines Σ± =

(−∞, −A±] ∪ [A±, ∞). For brevity, we present the IST only in
the case of symmetric NZBC (i.e., the limit A+ = A− = qo), but
it should be clear that the formalism generalizes to asymmetric
NZBC. Indeed, as a further example in Appendix C we present the
IST in the opposite limit, namely A+ = 0, corresponding to one-
sided NZBC.
Direct problem. As in the case with the branch cut outside, we de-
fine λ(k) on the branch cut [−qo, qo] to be continuous from above.
The continuous spectrum is still the setΣ = (−∞, −qo]∪[qo, ∞).
Namely for all k ∈ Σ , we can define the Jost solutions Φ±(x, t, k)
and the modified eigenfunctions µ±(x, t, k), using the same re-
lations as in Appendix A. (That is, µ±(x, t, k) again satisfy (A.6).)
For all k ∈ Σ̊ , we can also define the scattering matrix S(k) via
(A.7). The analyticity properties of the eigenfunctions and scatter-
ing coefficients, however, are very different from the case with
the branch cut outside. Namely, using the same integral equations
(A.6), one can show that nowµ−,1(x, t, k) andµ+,2(x, t, k) are ana-
lytic in the UHP, whileµ−,2(x, t, k) andµ+,1(x, t, k) are analytic in
the LHP, exactly as in theproblemwith ZBC, andunlike theproblem
with NZBC and the branch cut outside. Since the scattering coeffi-
cientsmay be defined using theWronskian relations, s11(k)may be
analytically continued to the UHP, and s22(k) to the LHP, again as in
the problemwith ZBC, and unlike the problemwith the branch cut
outside. The difference from the case of ZBC is of course the pres-
ence of the branch cut [−qo, qo], and the fact that the continuous
spectrum is only the subset Σ of the real k-axis.
Symmetries. If v(x, t, k) solves the first of (2.1), then so does
v̂(x, t, k) = σ1 v∗(x, t, k∗) σ1. Comparing asymptotics at x = ±∞,
we have that

Φ±(x, t, k) = σ1 Φ∗

±
(x, t, k) σ1, k ∈ Σ .

Importantly, since all of the columns of Φ±(x, t, k) are analytic,
each column of the above relation can also be extended to k ∉ Σ

(and in particular evaluated for k ∈ (−qo, qo)) by considering the
Schwarz extension of each column. Substituting into (A.7), we have

S(k) = σ1S∗(k)σ1, k ∈ Σ,

which implies

s11(k) = s∗22(k
∗), Im k > 0, s12(k) = s∗21(k), k ∈ Σ,

where the symmetry for the analytic scattering coefficients was
extended via the Schwarz reflection principle. For the second
symmetry, we again define two new matrix solutions Φ̃±(x, t, k)
as in (A.10), which again satisfy (A.11), and the scattering matrix
S̃(k), which satisfies (A.12).

In particular, the symmetries (A.11) of the eigenfunctions yield

Φ̃+,1(x, t, k) =
iq∗

+

k − λ
Φ+,2(x, t, k),

Φ̃−,2(x, t, k) = −
iq−

k − λ
Φ−,1(x, t, k), k ∈ (−qo, qo).

(B.1)

In turn, these imply s̃22(k) = s11(k)(q−/q+) for all k ∈ (−qo, qo).
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Limits of the eigenfunctions and scattering coefficients from below the
branch cut. The limits of Φ+,1, Φ−,2 as they approach the branch
cut from below are

Φ−

+,1(x, t, k) := lim
ϵ↑0

Φ+,1(x, t, k + iϵ)

= Φ̃+,1(x, t, k), k ∈ (−qo, qo),

Φ−

−,2(x, t, k) := lim
ϵ↑0

Φ−,2(x, t, k + iϵ)

= Φ̃−,2(x, t, k), k ∈ (−qo, qo).

The limit of s22(k) as k approaches the branch cut from below is

s−22(k) := lim
ϵ↑0

s22(k + iϵ)

= −Wr(Φ̃+,1(x, t, k), Φ̃−,2(x, t, k))
k − λ(k)
2λ(k)

=
q−

q+

s11(k), k ∈ (−qo, qo). (B.2)

Taking into account that limϵ↑0 θ(x, t, k+ iϵ) = −θ(x, t, k) for k ∈

(−qo, qo) and the definition (A.5) of the modified eigenfunctions,
and in preparation for the inverse problem, we combine the limits
to the branch cut from below of the functions analytic in the LHP
into the matrix expression

µ−,1(x, t, k)
s11(k)

, µ+,2(x, t, k)


=


µ−

+,1(x, t, k),
µ−

−,2(x, t, k)

s−22(k)


−i

k + λ(k)
σ3Q+,

k ∈ (−qo, qo). (B.3)

Importantly, the combination of the two symmetries of the analytic
scattering coefficients results in a constraint on the values of s11(k).
Indeed, noting that s̃22(k) = s−22(k), we have

s∗11(k) = s11(k)
q−

q+

, k ∈ (−qo, qo). (B.4)

Thus (B.4) implies that for k ∈ (−qo, qo), we have arg s11(k) =

arg q+ or arg s11(k) = arg q+ + π . This relation will result in a
constraint on the norming constants.
Discrete eigenvalues. The number and location of discrete eigenval-
ues in the case of symmetric NZBC were discussed in Appendix A.
At any such value kj ∈ (−qo, qo) for which s11(kj) = 0 for j =

1, . . . , J , (A.17) holds. Moreover, using the symmetries (B.1) of the
scattering coefficients, we know that zeros of s11(k) are also zeros
of s22(k). Combining (B.1) with (A.17) we then have

Φ̃−,2(x, t, kj) = −
q∗
+

q−

bjΦ̃+,1(x, t, kj), j = 1, . . . , J.

This relation will be needed in order to subtract the residues from
the RHP.

We will also need to relate s′11(kj) to s′22(kj), where the
derivatives are taken in upper and lower half neighborhoods of
kj, respectively. Indeed, when the branch cut is taken inside, the
zeros of s11(k) and s22(k) lie on the boundary of their domains of
analyticity. On the other hand, one can show that, just like the
condition q(x, t) − q± ∈ L1(R±) guarantees analyticity of s11(k)
and s22(k) in C± as well as continuity up to the real axis away from
the branch points, the condition (1 + |x|)(q(x, t) − q±) ∈ L1(R±)
(which was already required in order for the eigenfunctions to be
well defined at the branch points) guarantees that the derivatives
of s11(k) and s22(k) are also continuous up to the boundary, away
from the branch points. Eq. (B.1) then implies

s′22(kj) = [s′11(kj)]
∗, j = 1, . . . , J.
Moreover, since the complex derivative is independent of direc-
tion, we can also differentiate s22(k) along the real k-axis. Using
the relation (B.2), we obtain

s′22(kj) =
q−

q+

s′11(kj), j = 1, . . . , J. (B.5)

Using (B.5), we may write

µ̃−,2(kj)
s′22(kj)

= −
iq+

kj − λj

µ−,1(kj)
s′11(kj)

, j = 1, . . . , J, (B.6)

which is the relation that we will need to regularize the RHP.
Inverse problem. We now formulate the RHP, and show that the
problem reduces to the RHP that we derived when the branch cut
was taken outside. For k ∈ Σ , the Jost eigenfunctions are related to
each other by the scattering matrix via (A.7). We therefore define

M(x, t, k) =




µ−,1(x, t, k)
s11(k)

, µ+,2(x, t, k)


, Im k > 0,
µ+,1(x, t, k),

µ−,2(x, t, k)
s22(k)


, Im k < 0.

(B.7)

Using the scattering relation (A.7), it is then straightforward to
show that

M+(x, t, k) = M−(x, t, k)

I − Vo(x, t, k)


, k ∈ Σ, (B.8)

where Vo(x, t, k) has the same expression as in (A.21). (Indeed, the
expression for the jumpmatrix in this range of values of k is exactly
the same as in the case of ZBC, regardless of whether the branch
cut is taken outside or inside.) Now, however, we must take into
account the jump ofM(x, t, k) across the branch cut, which is given
by (B.3). Thus we may write

M+(x, t, k) = M−(x, t, k)V (x, t, k), k ∈ R, (B.9)

where

V (x, t, k) =


I − Vo(x, t, k), k ∈ Σ,
E+(k) − I, k ∈ (−qo, qo).

Wemay subtract off the residues using the relationship (B.6). Then,
as in the case with the branch cut outside, we use a rescaling,
defining N(x, t, k) as in (A.24). This gives the new jump condition
N+(x, t, k) = N−(x, t, k)Ṽ (x, t, k) where

Ṽ (x, t, k) =


I − E+(k) Vo(x, t, k) E−1

+
(k), k ∈ Σ,

I, k ∈ (−qo, qo).

This, however, is precisely the RHP obtained by taking the branch
cut outside, which is what we would expect. (Note that the two
values of λ(k) obtained with the different choice of branch cut
agree on the real axis—in fact, they agree on the closure of the
upper half plane.)

Appendix C. IST for thedefocusingNLS equationwithone-sided
NZBC

As a further application of the methods presented in the main
text, herewe consider the IVP for the defocusingNLS equation (A.1)
with the following one-sided NZBC:

lim
x→−∞

q(x, t) = qo, lim
x→∞

q(x, t) = 0, (C.1)

with qo > 0, and where without loss of generality we have set
the asymptotic phase to zero using the phase invariance of the NLS
equation. Of course one could also use the scaling invariance of the
NLS equation to set qo = 1, but we will not do so, as we want
to allow for the possibility of taking the limit qo → 0. As in the
case of symmetric NZBC, the extra term proportional to qo in (A.1)
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was added so that the BC (C.1) as x → −∞ is independent of
time, which also makes it possible to introduce the Jost solutions
as simultaneous solutions of both parts of the Lax pair.

The Lax pair for the above defocusing NLS equation (A.1) is still
given by (2.1) with T (x, t, k) replaced by (A.2). As a special case, we
will consider the following step IC:

q(x, 0) =


qo, x < 0,
0, x > 0. (C.2)

We should mention that the BC (C.1) also allows the introduction
of a uniformization variable, similarly to the case of symmetric
NZBC [8] and unlike the case of asymmetric NZBC.

C.1. Direct problem

Jost eigenfunctions. As usual, the Jost eigenfunctions Φ±(x, t, k)
are the solutions of (2.1) with prescribed asymptotic behavior as
x → ±∞. We first discuss the limit x → ∞. Since q(x, t) → 0
as x → ∞, we have limx→∞ X(x, t, k) = X+(k) = −ikσ3 and
limx→∞ T (x, t, k) = T+(k) = −(2k2 − q2o)σ3. We can then define
Φ+(x, t, k) as the matrix solution of both parts of the Lax pair such
that

Φ+(x, t, k) = e−iθ+(x,t,k)σ3 + o(1), x → ∞, (C.3a)

where

θ+(x, t, k) = kx + (2k2 − q2o)t. (C.3b)

Obviously Φ+(x, t, k) is well-defined ∀k ∈ R. Moreover, using
standard arguments one can show that its columns Φ+,1(x, t, k)
and Φ+,2(x, t, k) admit analytic continuation to Im k < 0 and
Im k > 0, respectively.

The limit x → −∞ is slightly more involved, since limx→−∞

X(x, t, k) = X−(k) = −ikσ3 + Q− and limx→−∞ T (x, t, k) =

T−(k) = 2kX−(k), where Q− = limx→−∞ Q (x, t) as before. The
eigenvalue–eigenvector relations for X− and T− are

X−E− = E−(−iλσ3), T−E− = E−(−2ikλσ3),

where λ2
= k2 − q2o and

E−(k) = I −
i

k + λ
σ3Q−.

Note, for future convenience, that

det E−(k) =
2λ

k + λ
= 1 −

q2o
(k + λ)2

=: 1/d−(k),

E−1
−

(k) = d−(k)

I +

i
k + λ

σ3Q−


.

(C.4)

As before, λ(k) is a multi-valued function with branching. Here
we will take the branch cut to be the real line segment [−qo, qo],
we take the principal branch of λ(k), such that sign[Im λ] =

sign[Im k], and we will define λ(k) on k ∈ [−qo, qo] so that it is
continuous from above. Note λ(k) is real-valued for k ∈ Σ , with
Σ = R \ (−qo, qo) = (−∞, −qo] ∪ [qo, ∞). We then define
Φ−(x, t, k) as the matrix solution of both parts of the Lax pair such
that

Φ−(x, t, k) = E−(k)e−iθ−(x,t,k)σ3 + o(1), x → −∞, (C.5a)

where

θ−(x, t, k) = λx + 2kλt. (C.5b)

Obviously Φ−(x, t, k) is well-defined ∀k ∈ Σ . Moreover, using
standard arguments one can show that its columns Φ−,1(x, t, k)
and Φ−,2(x, t, k) admit analytic continuation to Im k > 0 and
Im k < 0, respectively.
Importantly, one can also define Φ−,1(x, t, k) and Φ−,2(x, t, k)
on the branch cut k ∈ (−qo, qo) by taking the limit from
the UHP and the LHP, respectively. As a result, all four column
eigenfunctions (i.e., Φ±,1(x, t, k) and Φ±,2(x, t, k)) are defined
∀k ∈ R. Note however that, while the limit of Φ−,1(x, t, k) to
k ∈ (−qo, qo) from the UHP is straightforward (because it is
continuous from above), the evaluation of the limit of Φ−,2(x, t, k)
to k ∈ (−qo, qo) from the LHP requires some care as a result of
the discontinuity of λ(k) when taking the limit to (−qo, qo) from
below. This has important consequences in the development of the
IST, so we take a closer look at such limits.
Auxiliary eigenfunctions. Note that for k ∈ (−qo, qo), limϵ↓0 λ(k ±

iϵ) = ±λ(k). As in the asymmetric case, for k ∈ Σ one could just
as well choose the opposite sign for λ(k). To make this statement
more precise, we introduce a set of auxiliary eigenfunctions
Φ̃−(x, t, k) such that

Φ̃−(x, t, k) = Ẽ−(k) e−iθ̃−(x,t,k)
+ o(1), x → −∞,

where θ̃−(x, t, k) = −λ (x + 2kt) = −θ−(x, t, k) and Ẽ−(k) =

I − i/(k − λ) σ3Q−. It should then be clear that: (i) The regions
of analyticity for the columns of Φ̃−(x, t, k) are the opposite of
those of Φ−(x, t, k). (ii) In particular, for k ∈ [−qo, qo], Φ̃−,2 is
continuous from above. (iii) Importantly,
lim
ϵ↑0

Φ−,2(x, t, k + iϵ) = Φ̃−,2(x, t, k), k ∈ [−qo, qo].

Our next task is to express Φ̃−,2(x, t, k) in terms of known
eigenfunctions. To this end, we note that, for all Im k > 0, we
have Φ̃−,2(x, t, k) = (−iq−/(k − λ), 1)T e−iθ−(x,t,k)

+ o(1) as
x → −∞. On the other hand, Φ−,1(x, t, k) = (1, −iq∗

−
/(k +

λ), 1)T e−iθ−(x,t,k)
+ o(1) as x → −∞ for all Im k > 0.

Moreover, Φ−,1(x, t, k) and Φ̃−,2(x, t, k) are both solutions of
the scattering problem, and they have the same exponential
dependence; furthermore, Im λ(k) > 0 for all k ∈ (−qo, qo) and
therefore e−iθ−(x,t,k)

→ 0 as x → −∞. Therefore,Φ−,1(x, t, k) and
Φ̃−,2(x, t, k) must be proportional. Indeed, (−iq−/(k − λ), 1) =

c (1, −iq∗
−
/(k + λ), 1) for c = −iq−/(k − λ). Combining these

results, we finally obtain:
Φ−,2(x, t, k) = lim

ϵ↑0
Φ−,2(x, t, k + iϵ)

= −
iq−

k − λ
Φ−,1(x, t, k), k ∈ (−qo, qo). (C.6)

Scattering matrix. Recall that all of the Jost eigenfunctionsΦ±,1 and
Φ±,2 are defined ∀k ∈ R. Since tr X = tr T = 0, the determinant
of any matrix solution of the Lax pair is independent of x and t . For
the Jost eigenfunctions, this determinant is most easily evaluated
in the limit x → ±∞. In this way one obtains detΦ+(x, t, k) = 1
for all k ∈ R. Also, for k ∈ Σ we have detΦ−(x, t, k) = 2λ/(k +

λ) ≡ 1/d−(k). On the other hand, for k ∈ (−qo, qo) (C.6) implies
detΦ−(x, t, k) = 0.

However, since Φ+(x, t, k) is a fundamental matrix solution of
the Lax pair ∀k ∈ R, one can express the columns of Φ−(x, t, k) as
a linear combinations of those of Φ+(x, t, k):

Φ−(x, t, k) = Φ+(x, t, k) S(k), ∀k ∈ R. (C.7)
As in the symmetric case, the scattering matrix S(k) thus
defined is independent of time, owing to the fact that Φ±(x, t, k)
are simultaneous solutions of the Lax pair. Moreover, since
detΦ+(x, t, k) = 1 ∀k ∈ R we have det S(k) = detΦ−(x, t, k)
for all k ∈ R. That is,

det S(k) =


1/d−(k), k ∈ Σ,
0, k ∈ (−qo, qo).

In column form (C.7) is, for all k ∈ R,
Φ−,1(x, t, k) = s11(k)Φ+,1(x, t, k) + s21(k)Φ+,2(x, t, k), (C.8a)

Φ−,2(x, t, k) = s12(k)Φ+,1(x, t, k) + s22(k)Φ+,2(x, t, k). (C.8b)
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In turn, using (C.8), one can also express the individual scattering
coefficients as Wronskians. Explicitly, for all k ∈ R,

s11(k) = Wr(Φ−,1(x, t, k), Φ+,2(x, t, k)),
s12(k) = Wr(Φ−,2(x, t, k), Φ+,2(x, t, k)),

(C.9a)

s21(k) = Wr(Φ+,1(x, t, k), Φ−,1(x, t, k)),
s22(k) = Wr(Φ+,1(x, t, k), Φ−,2(x, t, k)).

(C.9b)

For future convenience, we also introduce the reflection coeffi-
cients

ρ1(k) = s21(k)/s11(k), ρ2(k) = s12(k)/s22(k), k ∈ R. (C.10)

Finally, we note that unlike the case of symmetric NZBC, all Jost
eigenfunctions and scattering coefficients remain finite at the
branch points.

It is worthwhile to note that (C.7) is usually referred to as the
scattering relation from the right, and, as in the case of ZBC and
symmetric NZBC, one can equivalently define a scattering relation
from the left as

Φ+(x, t, k) = Φ−(x, t, k) R(k). (C.11)

The corresponding reflection coefficients are r1(k) = s12(k)/s22(k)
and r2(k) = s12(k)/s11(k). Unlike the case of ZBC and symmetric
NZBC, however, the formulations from the left and from the right
are not equivalent. In particular, while detΦ+(x, t, k) = 1 ∀k ∈ R,
detΦ−(x, t, k) = 0 for all k ∈ [−q0, qo]. Thus (C.11) only holds for
k ∈ Σ (because it is only there that Φ−(x, t, k) is a fundamental
matrix solution of the Lax pair). Nonetheless, one can use the
Wronskian relations

r11(k) = d−(k)Wr(Φ+,1(x, t, k), Φ−,2(x, t, k)),
r12(k) = d−(k)Wr(Φ+,2(x, t, k), Φ−,2)(x, t, k),
r21(k) = d−(k)Wr(Φ−,1(x, t, k), Φ+,1(x, t, k)),
r22(k) = d−(k)Wr(Φ−,1(x, t, k), Φ+,2(x, t, k)),

which hold for k ∈ Σ , as a definition of all scattering coefficients
rij for all k ∈ (−qo, qo). Of course, for the analytic scattering
coefficients r11(k) and r22(k) this definition coincides with the
value obtained by their analytic continuation. Note however that,
even though all the entries of R(k) in (C.11) are also defined for
k ∈ (−qo, qo), the scattering relation is not valid there. Obviously,
R(k) = S−1(k) for all k ∈ Σ . Entrywise, one has:

r11(k) = d−(k) s22(k), r12(k) = −d−(k) s12(k),
r21(k) = −d−(k) s21(k), r22(k) = d−(k) s11(k), k ∈ Σ .

(C.12)

As usual, these relations can be extended to the UHP/LHP for the
analytic scattering coefficients.
Symmetries. As before, the scattering problem admits a symmetry
under the map k → k∗. The symmetry of Φ±(x, t, k) is the same as
in the case of ZBC:

Φ+(x, t, k) = σ1Φ
∗

+
(x, t, k∗) σ1. (C.13)

In matrix form, (C.13) holds only where all columns are defined,
i.e., k ∈ R. However, its first and second columns can be extended
to the UHP and LHP, respectively. A similar symmetry holds for
Φ−(x, t, k):

Φ−(x, t, k) = σ1Φ
∗

−
(x, t, k∗) σ1. (C.14)

Here, however, the situation is complicated by the fact that
Φ−(x, t, k) is only defined as a matrix for k ∈ Σ , and, more
importantly, that λ(k) is discontinuous across k ∈ (−qo, qo). In
other words, the relation λ(k∗) = λ∗(k) (which is needed to derive
(C.14)) only holds for k ∈ C\(−qo, qo). Thus, (C.14) does not hold for
k ∈ (−qo, qo). Indeed, we have already seen that for k ∈ (−qo, qo)
the correct symmetry is (C.6).
The corresponding symmetries of the scattering coefficients can
be obtained from (C.7):

S(k) = σ1S∗(k∗)σ1. (C.15)

Of course, as a matrix equation (C.15) only holds for k ∈ Σ , where
both (C.13) and (C.14) apply. In particular,

s12(k) = s∗21(k
∗), k ∈ Σ .

However, one can use the Schwartz reflection symmetry to extend
the diagonal entries:

s11(k) = s∗22(k
∗), k ∈ Σ ∪ C+.

On the other hand, for k ∈ (−qo, qo) one must replace (C.14) with
(C.6). Then, comparing the first and the second of (C.8) one obtains

(s12(k), s22(k)) = −
iq−

k − λ
(s11(k), s21(k)), k ∈ (−qo, qo). (C.16)

Recalling the definition (C.10) of the reflection coefficients one
then obtains

ρ1(k) = ρ∗

2 (k), k ∈ Σ, (C.17a)
ρ1(k)ρ2(k) = 1, k ∈ (−qo, qo). (C.17b)

Asymptotic behavior as k → ∞. First of all, note λ(k) = k −

q2o/(2k) + O(1/k2) as k → ∞. Let us remove the exponential
oscillations by introducing as usual modified eigenfunctions as

µ±(x, t, k) = Φ±(x, t, k) eiθ±(x,t,k)σ3 .

The asymptotics of Φ+(x, t, k) are of course identical to the case of
ZBC. Similarly, the asymptotics of Φ−(x, t, k) is the same as that of
the case of symmetric NZBC. Overall, we have:

µ±(x, t, k) = I ∓
1
2ik

σ3Q (x, t) + h.o.t., k → ∞,

where ‘‘h.o.t.’’ denotes O(1/k) diagonal terms and O(1/k2) off-
diagonal terms. In particular,

q(x, t) = −2i lim
k→∞

kµ+,12(x, t, k).

This relation will provide the key for reconstructing the potential
from the solution of the RHP. Also, from theWronskian definitions
(C.9) of the scattering coefficients, it follows

s11(k) = 1 + O(1/k), s21(k) =
iq∗

−

2k
+ O(1/k2) k → ∞. (C.18)

Discrete spectrum. It is straightforward to show that, as in the case
of symmetric NZBC, no zeros of s11(k) can occur in the continuous
spectrum k ∈ Σ . Moreover, similar arguments as in the fully
asymmetric case show that no zeros of s11(k) and s12(k) can lie in
the ‘‘dispersive shock wave’’ spectrum k ∈ (−qo, qo). As a result,
we obtain that no discrete spectrum can be present in the problem
with one-sided NZBC.
Step IC. We now consider the IC (C.2). In this case we can solve
the scattering problem exactly at t = 0. And since the scattering
matrix is independent of time, this is all is needed for the IVP.

The scattering problem at time t = 0 has the form: vx = X± v
for x ≷ 0, with piecewise constant coefficients

X± = −ikσ3 + Q±, Q− =


0 q−

q∗

−
0


, Q+ = O. (C.19)

One can easily find exact solutions which yield explicit, simple
representations for the Jost solutions at time t = 0 over half of
the real x-axis:

Φ−(x, 0, k) = E−(k) e−iθ−(x,t,k)σ3 x < 0, (C.20a)

Φ+(x, 0, k) = e−iθ+(x,t,k)σ3 x > 0, (C.20b)
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with θ±(x, t, k) and E−(k) as before. The form of the Jost solution
beyond these domains can then be obtained by writing each Jost
solution as an appropriate linear combination of the fundamental
matrix solution of the scattering problem in each region and then
imposing continuity at the boundary. On the other hand, for the
purpose of determining the scattering data,we can simply evaluate
(C.7) at (x, t) = (0, 0), obtaining

S(k) =


E−(k), k ∈ Σ,
Eo(k), k ∈ (−qo, qo)

where the matrix

Eo(k) = E−,1(k)

1, −iq−/(k − λ)


=


1 −iq−/(k − λ)

iq∗

−
/(k + λ) 1


was obtained using (C.6). The reflection coefficients are then

ρ1(k) = iq∗

−
/(k + λ), k ∈ R, (C.21a)

ρ2(k) =


−iq−/(k + λ), k ∈ Σ,
−iq−/(k − λ), k ∈ (−qo, qo).

(C.21b)

Once can verify that, since s11(k) = s22(k) = 1, there are no
discrete eigenvalues.

C.2. Inverse problem

We introduce a sectionally meromorphic matrix similarly to
(B.7) in the case of symmetric NZBC, namely:

M(x, t, k)

=




µ−,1

s11
, µ+,2


=


Φ−,1

s11
, Φ+,2


eiΘ , Im k > 0,

µ+,1,
µ−,2

s22


=


Φ+,1,

Φ−,2

s22


eiΘ̃ , Im k < 0,

(C.22)

where

Θ(x, t, k) = diag(θ−(x, t, k), −θ+(x, t, k)),

Θ̃(x, t, k) = diag(θ+(x, t, k), −θ−(x, t, k)),
(C.23)

with θ±(x, t, k) given by (C.3b) and (C.5b). It is easy to verify
from the asymptotic of the eigenfunctions that a canonical
normalization condition at infinity holds forM(x, t, k), i.e.,

M(x, t, k) = I + O(1/k) k → ∞.

The goal is then to determine a jump condition similar to (B.8),
where M±(x, t, k) are the limiting values of M(x, t, k) as Im k →

0±. The starting point is, as always, the scattering relation (C.7).
Separating the eigenfunctions analytic in the UHP from those
analytic in the LHP one obtains

Φ−,1(x, t, k)
s11(k)

, Φ+,2(x, t, k)


=


Φ+,1(x, t, k),

Φ−,2(x, t, k)
s22(k)


Ṽ (k), k ∈ R,

where the ‘‘core’’ jump matrix Ṽ (k) is

Ṽ (k) =


1 − ρ1(k)ρ2(k) −ρ2(k)

ρ1(k) 1


, k ∈ R.

Note that the expression for Ṽ (k) is formally the same for k ∈ Σ

and k ∈ (−qo, qo). The difference is in the symmetries of the
scattering coefficients. Indeed, recalling (C.17) and letting ρ(k) =

ρ1(k) for all k ∈ R we have

Ṽ (k) =



1 − |ρ(k)|2 −ρ∗(k)

ρ(k) 1


, k ∈ Σ,

0 −1/ρ(k)
ρ(k) 1


, k ∈ (−qo, qo).

The jump condition is then given by M+(x, t, k) = M−(x, t, k)
V (x, t, k), where the full jump matrix V (x, t, k) is obtained from
Ṽ (k) as

V (x, t, k) = (lim
ϵ↑0

eiΘ̃(x,t,k+iϵ))−1Ṽ (k) lim
ϵ↓0

eiΘ(x,t,k+iϵ).

Explicitly, recalling (C.23) and the discontinuous behavior of λ(k)
on (−qo, qo) from below, we have

V (x, t, k)

=




ei(θ−(x,t,k)−θ+(x,t,k))(1 − |ρ(k)|2) −e−2iθ+(x,t,k)ρ∗(k)

e2iθ−(x,t,k)ρ(k) ei(θ−(x,t,k)−θ+(x,t,k))


,

k ∈ Σ,
0 −e−2iθ+(x,t,k)/ρ(k)

ρ(k) e−i(θ−(x,t,k)+θ+(x,t,k))


,

k ∈ (−qo, qo).

Importantly, the full jump matrix is not unimodular, unlike the
case of ZBC or symmetric NZBC. Explicitly,

det V (x, t, k) =


e2i(θ−(x,t,k)−θ+(x,t,k)), k ∈ Σ,

e−2iθ+(x,t,k), k ∈ (−qo, qo).

However, det V (x, t, k) → 1 as k → ∞—as it must in order
to be consistent with the normalization (C.2) in both the UHP
and LHP. The RHP can now be formally solved by subtracting the
asymptotic behavior at infinity applying Cauchy projectors. We
omit the details since they are similar to the cases previously
presented.

C.3. Conversion between RHP from the left and from the right

Recall that one can equivalently write the scattering relation
as Φ−(x, t, k) = Φ+(x, t, k) S(k), (like we did in this work) or as
Φ+(x, t, k) = Φ−(x, t, k) R(k). Correspondingly, one can formu-
late two different RHPs: one ‘‘from the right’’, which is the one we
employed in this work, and one ‘‘from the right’’. The choice breaks
the left/right symmetry of theNLS equation. On the other hand, it is
possible to convert from one RHP to the other, as we discuss next.
The issue is relevant in our case because, unlike the case of ZBC and
symmetric NZBC, with asymmetric NZBC the Jost eigenfunctions
from the left and from the right possess different domains of ana-
lyticity. This in turn determines where it is possible to define the
reflection coefficients appearing in the jump condition for the RHP.

Recall that the sectionally meromorphic matrix M±(x, t, k) for
the RHP in Section 4was defined in (C.22). On the other hand, in the
RHP from the left is constructed using the sectionallymeromorphic
matrix

M̌(x, t, k) =




µ−,1(x, t, k),
µ+,2(x, t, k)

r22(k)


, Im k > 0,

µ+,1(x, t, k)
r11(k)

, µ−,2(x, t, k)


, Im k < 0.

We have M(x, t, k) = M̌(x, t, k)D(k), where

D(k) =


diag


1/s11(k), r22(k)


, Im k > 0,

diag

r11(k), 1/s22(k)


, Im k < 0.
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Correspondingly, M̌(x, t, k) satisfies the jump condition

M̌+(x, t, k) = M̌−(x, t, k)V̌ (x, t, k), k ∈ R,

where

V̌ (x, t, k) = D−(k)V (x, t, k) (V+(x, t, k))−1, k ∈ R.

Recalling the relations (C.12) between the entries of S(k) and R(k),
straightforward algebra yields V̌ (0, 0, k). The matrix V̌ (x, t, k) is
then obtained from V (0, 0, k) by conjugating with the appropriate
matrix exponentials.

Appendix D. Asymptotic behavior of eigenfunctions and scat-
tering data as k → ∞

As usual, in order to normalize the RHP one must evaluate
the asymptotic behavior of the eigenfunctions and scattering data
as k → ∞. Below we show that, if q(x, t) is differentiable
with respect to x and qx(·, t) ∈ L1(R), the analytic columns of
the modified Jost eigenfunctions exhibit the following asymptotic
behavior as k → ∞ in each half plane:

µ−,11(x, t, k) = 1 + O(1/k),

µ−,21(x, t, k) =
iq∗(x, t)

2k
+ O(1/k2), k → ∞, Im k > 0,

(D.1a)

µ−,11(x, t, k) =
q(x, t)
q−(t)

+ O(1/k),

µ−,21(x, t, k) =
2ik

q−(t)
+ O(1), k → ∞, Im k < 0.

(D.1b)

Moreover,

µ+,12(x, t, k) = −
iq(x, t)

2k
+ O(1/k2),

µ+,22(x, t, k) = 1 + O(1/k), k → ∞, Im k > 0,
(D.2a)

µ+,12(x, t, k) = −
2ik

q∗
+(t)

+ O(1),

µ+,22(x, t, k) =
q∗(x, t)
q∗
+(t)

+ O(1/k), k → ∞, Im k < 0.
(D.2b)

We present the calculations for µ−,1(x, t, k) in detail; those for
µ+,2(x, t, k) are similar. We already know that the first column
of µ−(x, t, k) admits a uniformly convergent Neumann series
representation in the UHP for its integral equation, which we
rewrite as:

µ−,1(x, t, k) =

 1
iq∗

−
(t)

k + λ−(k)


+

 x

−∞

G(x − y, t, k) 1Q−(y, t) µ−,1(y, t, k) dy, (D.3)

where

G(ξ , t, k) = E−(k, t)

1 0
0 e2iλ−(k)ξ


E−1

−
(k, t)

=
1
2
(1 + e2iλ−(k)ξ )I +

1
2λ−(k)

× (1 − e2iλ−(k)ξ )

kσ3 + Q−(t)


. (D.4)
It is also convenient to separate (D.3) into its components,
obtaining:

µ−,11(x, t, k) = 1 +
iq−(t)
2λ−(k)

 x

−∞

1q∗

−
(y, t)µ−,11(y, t, k) dy

−
iq−(t)
2λ−(k)

 x

−∞

e2iλ−(k)(x−y)

× 1q∗

−
(y, t)µ−,11(y, t, k) dy

+
k + λ−(k)
2λ−(k)

 x

−∞

1q−(y, t)µ−,21(y, t, k) dy

−
k − λ−(k)
2λ−(k)

 x

−∞

e2iλ−(k)(x−y)

× 1q−(y, t)µ−,21(y, t, k) dy, (D.5a)

µ−,21(x, t, k) =
iq∗

−
(t)

k + λ−(k)
+

iq∗
−
(t)

2λ−(k)

×

 x

−∞

1q−(y, t)µ−,21(y, t, k) dy

−
iq∗

−
(t)

2λ−(k)

 x

−∞

e2iλ−(k)(x−y)

× 1q−(y, t)µ−,21(y, t, k) dy

−
k − λ−(k)
2λ−(k)

 x

−∞

1q∗

−
(y, t)µ−,11(y, t, k) dy

+
k + λ−(k)
2λ−(k)

 x

−∞

e2iλ−(k)(x−y)

× 1q∗

−
(y, t)µ−,11(y, t, k) dy. (D.5b)

By the Riemann–Lebesgue lemma, the second integral in the
right-hand side (RHS) of (D.5a) always vanishes faster than the first
one as k → ∞, and similarly for the third and fourth integrals.
The same argument applies to the first two integrals in the RHS
of (D.5b), but not to the last two (since k − λ−(k) = O(1/k) as
k → ∞ in the UHP). Also, the first integral in the RHS of (D.5a)
always vanishes faster than the left-hand side (LHS) of (D.5a) as
k → ∞, and the same holds for the first integral in the RHS
of (D.5a) compared to its LHS. Substituting (D.5b) in the RHS of
(D.5a) and (D.5a) in the RHS of (D.5b) we then obtain µ−,11(x, t, k)
= 1 + O(1/k) + O(µ−,21(x, t, k)/k) and µ−,21(x, t, k) =

O(1/k) + O(µ−,11(x, t, k)/k) as k → ∞ in the UHP, implying
µ−,11(x, t, k) = 1 + O(1/k) and µ−,21(x, t, k) = O(1/k), as ex-
pected.

The first of (D.1) is thus proved. We now note that, if the
distributional derivative ∂xq(x, t) is in L1(R), integration by parts
and the Riemann–Lebesgue lemma yield x

−∞

e2iλ−(k)(x−y)(q(y, t) − q−(t)) dy

=
1

2iλ−(k)
(q(x, t) − q−(t)) + o(1/k), k → ∞. (D.6)

Replacing (D.5a) in the last integral of (D.5b) and using
(D.6) then finally yields the second of (D.1).

The calculations of the asymptotic behavior as k → ∞ in the
LHP are slightly more complicated by the fact that k+ λ = O(1/k)
in that limit (since λ(k) = −k + O(1/k) as k → ∞ in the LHP).
Nonetheless, one can follow a similar logic to obtain (D.1b) and
(D.2b).

Asymptotic expansions up to O(1/kn) can also be iteratively
obtained under the assumption that ∂

j
xq(x, t) ∈ L1(R) for j =

1, . . . , n. It should also be noted that ∂xq(x, t) ∈ L1(R) implies
that q(x, t) is absolutely continuous as a function of x, which is
consistent with the second of (D.1).

The asymptotic behavior of the modified eigenfunctions can
now be used to derive the asymptotic behavior of s11(k, t) via
(2.14). Explicitly:
s11(k, t) = 1 + O(1/k), k → ∞ ∧ Im k > 0, (D.7a)
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s11(k, t) =
q+(t)
q−(t)

+ O(1/k), k → ∞ ∧ Im k < 0. (D.7b)

Combining these expressions with (D.1) and (D.2) we obtain
the asymptotic behavior of the meromorphic matrix in the RHP,
namely (4.16).

In the case of symmetric NZBC, the calculations are similar,
with a couple of caveats. The first is that in the symmetric case
a phase rotation was applied to the NLS equation to simplify the
boundary conditions. This affects the time evolution of the Jost
eigenfunctions. Also, in the symmetric case the Jost eigenfunctions
were defined to be simultaneous solutions of both parts of the Lax
pair, which makes all scattering coefficients independent of time.
Finally, in the symmetric case we have λ± = λ. On the other hand,
the asymptotic behavior of M(x, t, k) as k → ∞ turns out to be
still given by (4.16), with λ+(k) replaced by λ and Q+(t) replaced
by Q+.

Appendix E. Proof that the discrete eigenvalues are simple

Here we provide an explicit proof of the fact that, even in the
case of asymmetric NZBC, s11(k) can have only simple zeros. Recall
that the prime denotes differentiation with respect to k. Using
(2.14) we have that

s′11(kj, t) = d+(kj)[Wr(Φ ′

−,1, Φ+,2)(x, t, kj)

+Wr(Φ−,1, Φ ′

+,2)(x, t, kj)].

Since Φ± solve the scattering ODE, (Φ±)′x = −iσ3Φ± + XΦ±, and:

∂xWr(Φ ′

−,1, Φ+,2)(x, t, k)

= −iWr(σ3Φ−,1, Φ+,2) + Wr(XΦ ′

−,1, Φ+,2)

+Wr(Φ ′

−,1, XΦ+,2). (E.1)

We use that −X = X−1 det X , so Wr(Xu, v) = −Wr(u, Xv). Thus
(E.1) reduces to

∂xWr(Φ ′

−,1, Φ+,2) = −iWr(σ3Φ−,1, Φ+,2),

and similarly

∂xWr(Φ−,1, Φ ′

+,2) = iWr(σ3Φ+,2, Φ−,1).

Evaluating at k = kj, and recalling (2.40) yields:

∂xWr(Φ ′

−,1, Φ+,2)(x, t, kj) = −ibj(t)Wr(σ3Φ+,2, Φ+,2)(x, t, kj),

∂xWr(Φ−,1, Φ ′

+,2)(x, t, kj) = ibj(t)Wr(σ3Φ+,2, Φ+,2)(x, t, kj).

Using the symmetry (2.21b) we haveWr(σ3Φ+,2, Φ+,2)(x, t, kj) =

−iq+(t)∥Φ+,2(x, t, kj)∥2/[kj + λ+,j], where ∥Φ+,2(x, t, kj)∥2
=

|Φ+,12(x, t, kj)|2 + |Φ+,22(x, t, kj)|2. Thus

Wr(Φ ′

−,1, Φ+,2)(x, t, kj) =
ibj(t)q+(t)
kj + λ+,j


∞

x
∥Φ+,2(y, t, kj)∥2dy,

Wr(Φ−,1, Φ ′

+,2)(x, t, kj) =
ibj(t)q+(t)
kj + λ+,j

 x

−∞

∥Φ+,2(y, t, kj)∥2dy.

The above equations show that ∂kWr(Φ−,1, Φ+,2)(x, t, kj) is non-
zero, implying that s′11(kj, t) is non-zero.
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