
Letter Vol. 46, No. 10 / 15 May 2021 /Optics Letters 2481

Excitation of switching waves in normally
dispersive Kerr cavities
Jonathan Lottes,1 Gino Biondini,1 AND Stefano Trillo2,*
1Department ofMathematics, State University of NewYork at Buffalo, NewYork 14260, USA
2Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
*Corresponding author: stefano.trillo@unife.it

Received 22 March 2021; revised 25 April 2021; accepted 26 April 2021; posted 27 April 2021 (Doc. ID 425677); published 12 May 2021

A coherently pumped, passive cavity supports, in the normal
dispersion regime, the propagation of still interlocked fronts
or switching waves that form invariant localized temporal
structures. We address theoretically the problem of the
excitation of this type of wave packet. First, we map all the
dynamical behaviors of the switching waves as a function
of accessible parameters, namely, the cavity detuning and
input energy deficiency, using box-like excitation of the
intracavity field. Then we show how a good degree of control
can be obtained by applying a negative or positive external
pulsed excitation. ©2021Optical Society of America

https://doi.org/10.1364/OL.425677

The essential features of temporal cavity solitons of coher-
ently pumped passive Kerr resonators can be described by
means of a distributed model known as the Lugiato–Lefever
equation (LLE) [1,2]. The popularity of the LLE is due to its
simplicity and ability to account for the cavity dynamics in both
fiber loops [3,4] and microresonators [5,6]. In the anomalous
dispersion regime, solitons are of the bright type with finite
background and have attracted tremendous interest as bits for
all-optical storage in fiber rings [3,4], and in CW-pumped high-
Q microresonators as the key to form and shape highly coherent
frequency combs, where the comb lines can stably lock and
self-organize into an ultrashort soliton, whose Fourier transform
determines the spectral envelope of the comb [7,8]. Indeed,
localized LLE structures have a pivotal role in microcomb
stabilization [9].

Importantly, the LLE possesses localized structures of the
dark type also in the normal dispersion regime. Experimental
evidence for their formation is currently being investigated in
Kerr microcombs [10–15] and fiber-based resonators [16,17].
Theoretically, it is clear that such a type of localization finds its
main underlying mechanism in the possibility to form bound
states of frozen fronts (or switching waves as called in the pio-
neering work by Rozanov et al. [18]) that connect the coexisting
upper and lower branches of the bistable steady-state response.
Different theoretical aspects of this scenario have been analyzed
in a number of recent papers [17,19–27]. In particular, it has
been shown that the interlocking of fronts follows a complex
bifurcation scenario where states of different widths coexist
according to a picture known as collapsed snaking [24,25].
However, it is still not clear how the coexisting states could be

selectively excited and controlled. The aim of this Letter is to
analyze this aspect, starting back from the basic features of such
localized waves. In particular, we show that both negative and
positive pulsed excitation can be exploited, with modulation
instability (MI) [2] playing a role under appropriate conditions.
Such schemes are complementary to those used in microres-
onators, which range from the detuning sweep of the pump into
a resonance where MI can be assisted by mode-coupling [11], to
self-injection locking [15], or synchronous pulsed-pumping at
the free-spectral range of the cavity or its harmonics.

We start from the LLE, written in dimensionless units [1,2]:
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where q = q(z, t) is the intracavity field, and the key parameters
are the cavity detuning δ and driving power p . It is well known
that the steady cavity response, obtained from the LLE (1) when
all derivatives are zero in the form p = |q |2[1+ (δ − |q |2)2],
becomes bistable for δ >

√
3, giving rise to a lower branch

q− and an upper branch q+ of CW solutions, connected
by an intermediate negative-slope branch qi that is uncon-
ditionally unstable [see Fig. 1(c)]. In this regime, traveling
fronts, connecting the backgrounds q+ to q−, exist as solu-
tions q(t, z)= f (t − vz)≡ f (τ ) of the ordinary differential
equation −iv f ′ − f ′′/2+ f 3

= (δ − i) f + i
√

p = 0, with
boundaries at f (τ =±∞)= q± (here f ′ = d f /dτ ). Such
solutions exist in the range p lo < p < phi, where p = phi,lo
are the knees of the bistable response [Fig. 1(c)] given by
the extrema of p as a function of |q |2, located at the values
|q |2 = 1

3 [2δ ±
√
δ2 − 3]. We numerically computed the full

family of fronts and summarized their features in Figs. 1(a),
1(b). Generally, the fronts are moving, and Fig. 1(a) shows
how the velocity v depends on the parameters (δ,

√
p) in the

existence domain of the fronts. It is noteworthy that, for fixed
detuning δ, a single value of driving power exists, which we
denote as po = po (δ), such that pinning of the front occurs,
yielding v = 0. In Fig. 1(b), we report typical profiles of the
pinned fronts, sampled along the locus p = po [thick yellow
line in Fig. 1(a)]. Note also the pinned fronts are always MI
stable [MI occurs only above the dashed black line in Fig. 1(a)].
Nevertheless, as we will show, MI can affect the formation of
interlocked fronts. The oscillating structure of the fronts near
q− allows for a still front and its specular image to be interlocked
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Fig. 1. (a) False color level plot with contour lines of the front veloc-
ity v in the existence domain of the parameter plane (δ,

√
p) delimited

by the knees of the bistable response phi, p lo. Dotted line: MI threshold
of the lower equilibrium q−; thick yellow line: locus of pinned (v = 0)
fronts. (b) Sampled profiles of pinned fronts corresponding to bullets
of the same color in (a). (c) Bifurcation structure (inset is a zoom) of
SWs for δ = 4, superimposed to the stationary response. Close to the
bottom, right turn of the bifurcation curve SWs becomes of the bright
type: the open circle stands for the case shown in Fig. 5, right column.
(d) Sampled profiles of stable SW (interlocked fronts) corresponding
to bullets of the same color in (c).

to form dark bound states of different widths according to
the number of interlocked oscillations [18]. Detailed studies
of their bifurcation structure [24,25] show that these waves
are organized in the collapsed snaking structure shown in
Fig. 1(c) (obtained here through the continuation package
AUTO). The profiles of these localized wave profiles are shown
in Figs. 1(c) and 1(d). We label them as “switching wave”
1, 2, . . . , n (or SW1, SW2, SWn for brevity) according to
the order in which they are encountered in the bifurcation
diagram in Fig. 1(c), i.e., in order of decreasing average energy
Ew = T−1

w

∫ Tw/2
−Tw/2

|q |2dt , with Tw being a fixed measuring
window (beyond which periodic boundary conditions are
enforced). Generally speaking, SWn will have 2n local minima
arising from the interlocked oscillations. The bifurcation struc-
ture implies—in the diagram Ew versus

√
p—successive twists

of decreasing amplitude that rapidly collapse into a vertical line
at p = po , which corresponds to front pinning. It turns out [25]
that these waves can be stable only over the branches highlighted
by the central colored circles, which in turn correspond to the
profiles shown in Fig. 1(d). It is, however, not clear how the
initial value problem affects the formation of one or another of
these coexisting SWs.

To explore this question, we first consider the evolution
of box-type initial profiles q(t, 0) in which q(t, 0)= q− for
|t|< T/2 and q(t, 0)= q+ for |t|> T/2, where q± denote
again the CW equilibria, and T is the temporal duration
(“width”) of this box-type profile. We also set p = po in force
of the collapsed snaking structure (only SW of lowest orders
can exist in a finite small range around p = po ). Figure 2 shows
a few representative cases illustrating the possible dynamical
outcomes depending on the width of the initial box-type pro-
file, computed by numerically solving (1). When the box has a

Fig. 2. Density plots showing the evolution of various box-type
initial profiles (dashed red curves at the top of each panel) of duration
T, with fixed δ = 6 and p = po (i.e., chosen on the curve of v = 0
fronts): (a) T = 1, resulting in decay to the uniform equilibrium state;
(b) T = 2, resulting in an oscillatory state; (c) T = 4, resulting in a
SW2; (d) T = 6, resulting in a SW3. The same color bar, shown in the
panel to the right, is also used in Figs. 4 and 5.

small width, the profile decays to a stable uniform equilibrium
[Fig. 2(a)]. Conversely, when the width of the initial box is suffi-
ciently large, the profile evolves into one of the stable coexisting
SWs [Figs. 2(c), 2(d)], depending on the width of the initial
box-type profile. Finally, intermediate cases also exist that give
rise to long-lived oscillatory structures [Fig. 2(b)].

To understand the transition from decay to switching
waves as a function of the initial profile, it is convenient
to introduce the “energy deficiency” of a wave profile as
1E = T−1

w

∫ Tw/2
−Tw/2

|q(t, 0)− q+|2dt . Note that 1E coin-
cides with the deficiency in the L2-norm. Each of the above
box-type initial profiles has a particularly simple associated
energy deficiency given by1E = |q+ − q−|2T.

Figure 3 classifies the outcomes resulting from an initial box-
type profile as a function of its width T, over a range of values of
the detuning δ. For each value of δ, we set the pump power to
the value po for which switching fronts with zero velocity exist
(cf. Fig. 1). For each fixed value of δ, there is a clear sequence of
thresholds that determines the dynamical outcome as a function
of the energy deficiency of the input profile. Below the lowest
threshold (pale blue region in Fig. 3), the initial profile decays
into the uniform background q+. Above this first threshold,
there is a range of values of1E for which, in a certain range of
values of δ, the initial profile evolves into a stable SW1 (pale
orange region). Above this range of values, second and third
thresholds exist, beyond which, for certain values of δ, the ini-
tial profile evolves, respectively, into a stable SW2 (pale green
region), a stable SW3 (pale red region), and so on.

No analytical expression is available for the dependence
of these threshold curves and the relative basin of attraction
of the different SWs as a function of δ. However, it is pos-
sible to gain a better understanding of these thresholds by
plotting the dynamical outcomes as a function of the L1-
norm deficiency (as opposed to the energy deficiency) defined
as 1L1 = T−1

w

∫ Tw/2
−Tw/2

|q(t, 0)− q+|dt , which reduces to
1L1 = |q+ − q−|T for box-type initial profiles. As shown in
Fig. 3(b), the dependence of the threshold values as a function
of 1L1 takes on a particularly simple form, becoming just a



Letter Vol. 46, No. 10 / 15May 2021 /Optics Letters 2483

Fig. 3. Top: classification of all outcomes resulting from the evolu-
tion of initial box-type profiles in terms of its (a) energy deficiency1E
or its (b) L1 norm deficiency, and detuning δ. Pale orange, green, red,
and purple regions give rise to a SW1, SW2, SW3, and SW4, respec-
tively. Pale blue and yellow regions denote input profiles that decay to
the uniform state q+ or give rise to oscillatory solutions, respectively.
Mixed (oscillatory or decay) behavior is found from point to point in
the gray (transition) regions. Bottom: linearized spectrum of (c) SW1
and (d) SW3 profiles (solid and dashed curves stand for even and odd
modes, respectively), demonstrating how the boundary of the stability
regions in (a) and (b) is related to instability of even modes.

linear function of δ. This phenomenon has a straightforward
explanation: the reason that all curves appear to collapse to the
same limiting value as the detuning decreases is that in that limit,
the difference q+ − q− between the equilibria vanishes. On the
other hand, the minimum box width needed to generate the
various switching waves diverges in the same limit, and it does
so in such a way that the product between the width and the
difference between the levels varies linearly with δ, as one can see
in Fig. 3(b).

Yet another feature evident in Figs. 3(a) and 3(b) is that each
SW profile can be reached for values of δ only up to a certain
maximum, beyond which the outcomes are either oscillations
or decay to q+. This phenomenon can be explained through
a linearized stability analysis of the SW profiles. Namely, one
looks for solutions in the form q(t, z)= qsw(t)+ εw(t, z),
where qsw(t) is one of the SW profiles. Inserting this ansatz
into (1), keeping only terms to leading order, and writing
w(t, z)= e λzwo (t), one obtains a linear eigenvalue problem,
which can be efficiently solved numerically. The real parts of
the corresponding eigenvalues are plotted in Fig. 3 for SW1 (c)
and SW3 (d) as a function of δ, where dashed and solid curves
correspond to eigenvalues associated with even and odd modes,
respectively. Clearly, a SW is stable when all eigenvalues have
negative real parts, whereas the existence of eigenvalues with
a positive real part leads to instability. Indeed, Fig. 3(c) clearly
shows that the boundary of the stability region for SW1 corre-
sponds precisely to the value of δ for which the real part of one of
the eigenvalues crosses zero. The situation is slightly more com-
plicated for higher-order SWn (e.g., SW3), since in this case,
both even and odd nontrivial unstable modes exist, as shown
in Fig. 3(d). Since the initial profile has even symmetry, in the
absence of noise, the odd mode is never excited in the dynamics,

Fig. 4. Generation of SWs from steady upper branch q+ at pump
power po = 8.37 (yielding v = 0), for δ = 6. A negative pump power
pulse p(t)= po − A exp[−(t/T)2], A= 7 is applied for 0< z< 40
in (1), and switched back off to p(t)= po for z> 40. Top row: CW
bistable response versus p (solid line indicates stable equilibria, dotted
unstable) with superimposed driving pulse p(t) (green). Middle
row: density plots for the evolutions. The green curve again shows
p(t). The dashed horizontal line at z= 40 indicates return to CW
driving at p = po . Bottom row: comparison of profiles of SW3/2/1
solutions (dashed orange curve) with |q(t, z= 40)| (dashed gray
curve), |q(t, z= 80)| (blue curve in left/middle); the blue curves in the
right panel show snapshots of the oscillatory wave with the highest and
lowest minimum. Left/middle/right column: T = 2/1.5/1.

and the onset of instability is determined by the value of δ at
which the first even mode reaches the instability threshold. The
noise, however, could excite odd modes, hence slightly lowering
the instability threshold as indicated by the dashed vertical line
in Fig. 3(d).

Although the charts in Fig. 3 clarify how the stable excitation
of the interlocked fronts critically depend on both the detuning
and the initial width of the intracavity field excitation, in real
experiments, one should rather act on the external pump p .
Below we show that, starting with the cavity initially driven at a
fixed detuning on a homogeneous state with constant p = po ,
by turning on top of it a suitable pulse shape p(t) for a limited
number of round trips (here in the range 0< z< 40), one can
easily generate the localized waves with adjustable widths. Two
possible scenarios involve either a negative pulse (dip) in a cavity
driven on the upper branch q+ of the bistable CW response, or a
positive pulse for a cavity standing on the lower branch q−.

Figure 4 illustrates the first scenario, with δ = 6 as
an example. Here we assume a negative Gaussian pulse
p(t)= po − A exp[−(t/T)2] (see green curves in Fig. 4),
though similar results are obtained with other shapes (box,
sech, etc.,). What is important is that the pulse passes the
lower knee, i.e., that A> po − p lo [po − p lo quantifies the
distance between the yellow line and the bottom boundary in
Fig. 1(a) and hence is relatively small for any δ], to induce down-
switching, whereas control on the generated SW can be achieved
by acting only on the duration T. In particular, the longer the
duration, the broader the excited SW n (or equivalently, the
higher the order n). An example for T = 2 is reported in the
left column in Fig. 4, which shows the excitation of a SW3.
By decreasing the duration to T = 1.5, which is analogous to
decreasing the input deficiency in Fig. 3, the cavity switches to
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Fig. 5. Same as Fig. 4, but with δ = 4 and for a positive pump power
pulse p(t)= po + A exp[−(t/1.5)2]. The shaded region in the first
row indicates MI. Left/middle/right column: A= 5/5.5/7.

SW2 (middle column in Fig. 4). In both cases, the long term
(z= 80) intracavity profiles are shown to be in perfect agree-
ment with the SW stationary solutions (see comparison between
orange and blue curves in the last row of Fig. 4). However, at
δ = 6, Fig. 3 also suggests that lower energy deficiencies do not
result in stable excitation of SW1, but rather into an oscillatory
state. This is indeed what we observe by further decreasing the
width to T = 1 (see right column in Fig. 4). Conversely, numeri-
cal simulations (not shown) indicate that the stable excitation
up to the lowest branch SW 1 can be achieved at lower detunings
(e.g., δ = 4), again in full agreement with the results in Fig. 3.

When the cavity is set on the lower equilibrium q−, the gener-
ation of localized waves can be induced through a positive pulse,
e.g., p(t)= po + A exp[−(t/w)2], whose amplitude, however,
must be large enough to induce up-switching. In Fig. 5, we
compare three cases with constant narrow duration (T = 1.5)
and variable amplitude A. The left column in Fig. 5 shows the
case of insufficient amplitude A, which results in simple decay.
The right column shows the case where A> phi − po [the
amplitude A exceeds the distance between the upper boundary
and the yellow curve in Fig. 1(a)], which leads to up-switching
and stable formation of a localized wave. The final profile |q(t)|
appears to be a narrow bright pulse with oscillating tails when
referring to the central peak of p(t). However, due to peri-
odic boundary conditions, this is fully equivalent to a broad
dark waveform that can be explicitly obtained by shifting the
temporal window by its half width. Therefore, in this case, a
narrow pulsed excitation leads to a broad SWn of high order
n. Interestingly enough, in this case, the formation of local-
ized waves can be assisted by MI. Indeed, when the peak of the
driving pulse is reduced below phi − po but still above the MI
threshold (dotted portion of lower branch, shaded area in the
first row in Fig. 5), transient dynamics occur where it is indeed
the onset of MI that drives the up-switching [26] and then the
formation of the localized wave, as clearly shown by the middle
column in Fig. 5.

In summary, we have discussed how the excitation of local-
ized waves, ruled by the LLE in the normal dispersion regime,
is affected by the main parameters (detuning and input defi-
ciency). This gives important indications on the values of the
parameters that lead to stable excitation of SW by means of

pulsed excitation, when the cavity operates at a fixed detuning.
This analysis can be extended to address extended families of
localized waves that can be stabilized by higher-order dispersion
[27,28]. These results will help to find alternative routes that can
be implemented to realize these structures experimentally.
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