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The nonlinear stage of modulational instability in optical
fibers induced by a wide and easily accessible class of local-
ized perturbations is studied using the nonlinear
Schrodinger equation. It is shown that the development
of associated spatio-temporal patterns is strongly affected
by the shape and the parameters of the perturbation.
Different scenarios are presented that involve an auto-
modulation developing in a characteristic wedge, possibly
coexisting with breathers which lie inside or outside the
Wedge. © 2018 Optical Society of America
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The full nonlinear stage of modulational instability (MI) [1],
featuring the saturation of the modulation growth, has recently
attracted great interest [2—6], also due to its connection to
rogue wave formation [4], breather solitons [2,3], and recur-
rence phenomena [2,5,6], all suitably described in the frame-
work of the nonlinear Schrédinger equation (NLSE). In
particular nonlinear MI induced by localized perturbations is
still controversial, since two different main approaches have
been proposed to date. In the first one, nonlinear MI gives rise
to the onset of spontaneous oscillations (auto-modulation) that
expand in time over a characteristic spatio-temporal wedge,
smoothly connecting to the continuous-wave (CW) outside
the wedge [7-11]. This scenario was first studied in
Refs. [7,8] and later described in terms of the Whitham modu-
lation theory in Ref. [9]. Recently, however, it was finally put
on rigorous ground through asymptotic theory based on the
inverse scattering transform (IST) associated with the NLSE
[10-13]. As was shown in Refs. [14,15], the phenomenon is
driven by the continuum spectrum in the IST problem, and
is unrelated to breathers (i.e., breathing solitons on finite back-
ground, associated with a discrete IST spectrum). Moreover, it
is rather universal, being independent of the specific perturba-
tions or the integrable nature of the NLSE, and arising instead
for a broader class of dynamical models [16]. The phenomenon
has been recently observed in fiber experiments [17] and is
closely linked to other oscillating structures observed from
an evolving step in power [18].
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In the second approach, nonlinear MI was described in
terms of particular pairs of breathers with opposite velocities,
termed super-regular breathers (SRBs) [19,20], which super-
pose in input in such a way to yield a sufficiently small oscil-
lating perturbation of the CW. The observation of these types
of breather pairs has been recently reported both in optics and
hydrodynamics [21]. It must be noticed, however, that in both
experiments the input was designed to carefully fit the initial
theoretical datum for the breathers. Conversely, their excitabil-
ity under sufficiently generic perturbations is largely unknown,
though specific cases have been recently discussed [22-24].

Here our aim is to reconcile the two approaches and show
that, more generally, auto-modulations and breather pair
formation coexist. Importantly, we show that, while the wedge
velocities are fixed only by the CW, the breather velocities
depend on the perturbation and, hence, can set the pair outside
or inside the wedge. We also show that the excitation of
breathers from a small-amplitude perturbation requires a
proper decay (exponential) of its envelope. Perturbations that
decay faster give rise only to specific auto-modulations.

We start with the NLSE conveniently written in the form

iq, + q,, + 2(l4I* - 93)9 = 0, (1)
where the complex envelope of the real-world electric field, dis-
tance, and time, respectively, read as £(Z,T) = ¢q(z, )N/ P exp
(yPZ), Z =2z(22,), and T = t\/|p,|Z,;. Here Z, =
(yP)™! is the nonlinear length associated with reference power
P, y is the fiber nonlinear coefficient, and f, < 0 is the
dispersion. We consider Eq. (1) subject to the boundary con-
ditions g(r = +o0) = g, where |g, | = ¢, is the normalized
CW background. (In all examples, we take g, = 1, which
implies P to be the CW pump power.) In particular, we are
interested to describe the distinctive nature of the nonlinear
MI evolutions that develop from sufficiently generic localized
perturbation of the CW. To this end, we report the results of
the numerical integration of the NLSE (1) obtained with
standard split-step method, and initial conditions

q(z = 0,1) = gy + ad? f (/1) coslw(r - D], (2)

where the perturbation envelope f B has either Gaussian
shape f, = exp(-#2/t2) or hyperbolic secant (sech) shape
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f = sech(z/ty), ty denoting the width. This choice of even
envelopes f, is made for the sake of simplicity and leads to

symmetric breather pairs. We present cases with 7 = 0, since
7 is found to affect only the phase of the internal breathing of
solitons and not the overall dynamics.

For a given initial condition, we assess the presence of
breathers and their properties on the basis of the IST with
non-zero boundary conditions [10,13]. To this end, we search
numerically for discrete eigenvalues of the following Zakharov—
Shabat scattering problem associated with Eq. (1) [10]:

ik g

¢t_M¢’ M_ |:_q* —ik:|, (3)
where £ is the spectral parameter, ¢ = (¢;, ¢,) is a matrix
solution, and ¢, are column vectors. Since the spectral data
are independent of z, it is sufficient to compute them at z = 0.
Thus, we search for discrete eigenvalues by letting ¢ = g(z =
0, ) [Eq. (2)]. The Jost functions ¢1 are solutions of Eq. (3)
whose columns tend to pure Fourier modes such as # — -o0
and 7 — oo, respectively, with a temporal dependence of the
type ¢ and frequency given by A(k) = \/k* + g} (see
Ref. [13] for details). The two sets of Jost solutions are not in-
dependent, and are related by he scattering matrix S(£) via the
scattering relation ¢_(z,2, k) = ¢, (¢, 2, k)S(k). The zeros of
the element sy, () of S define the discrete spectrum and give
the soliton content of the initial condition.

To calculate the scattering data numerically, we fix a
time window [-7, 7], outside of which the potential is
taken constant (g = ¢,). For a given k, we fix ¢, (T, k) as
the initial condition of Eq. (3) and integrate backwards
from T to -7, to get ¢ (-T', k) [25]. The other Jost function
¢_(-T,k) is known, and this allows us to find the
scattering matrix and, in particular, s,(%) = det(¢p1 (=T, k),
¢, (=T, k))/d(k), where d(k) = 2A/(k+ A) [12]. We map
525 (k) on a grid in the complex £-plane and use a root-finding
algorithm to find numerically the zeros of s5,,(£) in the
complex plane.

When the initial condition contains no discrete eigenvalues,
MI gives rise to a non-stationary auto-modulation, that is, a
slow modulation of the oscillating cn-oidal wave solution of
the NLSE. Such modulation spontaneously develops inside a
characteristic wedge-shaped region in the (z,z) plane (see
Fig. 1), delimited by asymptotic slopes d¢/dz = £V ,,, where
V., = 429, = max|dk/dw| [9,10,17]. The velocity V,,

is physically interpretable as the inverse linear group
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Fig. 1. False color plot of power |¢|* from the numerical solution of
the NLSE (1). Here the CW ¢, =1 is perturbed as in Eq. (2),
Gaussian shape, @ = 0, and parameters (a) 2 = 0.1, ¢ = 7/2, and
to=1; (b) a=1, ¢ ==, and ¢, = 1. The white lines indicate
the asymptotic wedge velocities £V, (slopes r = +44/22).
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velocity (dk/dw) of the slowest components that move away
from the initial perturbation [9,16]. Along such edges, the am-
plitude of the oscillations tends to vanish, smoothly connecting
to the CW, which remains unperturbed outside the wedge. In
Fig. 1, we contrast two different wedge-shaped evolutions, both
arising from Gaussian perturbations at zero frequency (@ = 0),
though with different amplitude z and phase ¢. In Fig. 1(a), the
perturbation is weak (2 = 0.1) causing the auto-modulation to
significantly develop only after a finite distance z =~ 1, while the
phase ¢ = /2 (though a similar pattern is obtained for
¢ = 0) is such that a central peak is present in r = 0, which
can be regarded locally in time as a soliton. Conversely, a neg-
ative perturbation (¢p = 7) gives rise to a central dip, as shown
in Fig. 1(b) [17], which also shows that the structure originates
at z~0 owing to the stronger amplitude (2 = 1) of the
perturbation.

More generally, however, the auto-modulation in the wedge
can coexist with breather pairs, whenever the initial condition
turns out to contain discrete IST eigenvalues. A typical case
corresponding in Eq. (2) to the unstable frequency @ = 1,
and a weak (#=0.2) and wide (#y) = 10) sech-shaped
envelope, is reported in Fig. 2. The numerical integration of
the NLSE [see Fig. 2(a)] shows that, while an auto-modulation
still develops inside the wedge at finite distance, a pair of sym-
metric breathers, namely, SRBs according to Refs. [19-21],
clearly emerge since the early stage. The SRBs propagate with
opposite velocities =V and are fasr compared with the
asymptotic wedge velocity (i.e., V> V), thus propagating
externally to the wedge. This is also supported by the outcome
of our IST analysis of Eq. (3) displayed in Fig. 2(b), where we
show log [s,] in the complex plane. The two deep minima in
Fig. 2(b) constitute a good numerical approximation of a
pair of eigenvalues (zeros of s,;), which we find at k=
+0.0285 + 0.8707. Their symmetric location around the
imaginary axis indicates that the two breathers are identical,
except for their opposite velocities, given by the expression [13]

RN
ml[A(k)]

For Fig. 2(a), Eq. (4) gives V, = £17.35, which is fully
consistent with the simulation (see the red line). We refer
the interested reader to Refs. [13,19-21] for explicit expres-
sions for these breathers. The eigenvalue in Refs. [19-21] is

m=4m®+mw
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Fig. 2. (a) Numerical solution of the NLSE (1) with input (2);
the sech-shaped perturbation of the CW ¢, = 1, with parameters
a=02,¢=mn/2,ty =10, and @ = 1. The red solid line indicates
the velocity V| of the right breather. (b) IST analysis of initial con-
dition: false color plot of log(|s,,(%)|) in the complex plane, showing
a pair of discrete eigenvalues found at 4 = £0.0285 4+ 0.870:
(R =1.059, a = 0.519), giving a soliton velocity V| = 17.35. The

cross marks &£ = 17 (Peregrine soliton).
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given in polar form through the parameters (R, a), which are
casily linked to our parameters as Re(k) = %(R - R Ysin a
and Im(k) =3(R+ R")cos a, whereas the velocity in
Eq. (4) can be cast in the form V,=2[(R*+1)/
R(R? - D)]sin a.

For small and wide modulated perturbations, we have found
that SRBs such as those in Fig. 2 emerge only from sech-shaped
envelopes. This can be explained by an insightful (though
heuristic) argument based on the MI amplification process.
We recall that purely periodic modulations grow exponentially
until temporal peaks are formed at a characteristic distance,
beyond which the power flow reverses [4,5]. When a localized
envelope weighs the modulation as in Eq. (2), these peaks are
expected to emerge at non-uniform distances owing to the local
weight (in time) of the perturbation. Indeed, we can assume
that the perturbation generally grows like f',(z) exp(gz), where

g = g(w) = ov4 - @ is the MI gain. When this argument is
specialized to f () = sech(z/#)), the growth over the tails
proceeds approximately as explg(w)z £ £/r]. The peaks
emerge for a uniform growth, ie., constant argument
g(w)z £ £/, which implies a distance z that scales linearly
with time #, with V; = dt/dz = £g(w)ty, giving a reasonable
approximation of the velocities of the pair (V' ~ +17.32 for
Fig. 2). In other words, the breathers are sustained by the usual
MI amplification process, with their constant velocities being
intimately related to the correct (exponential) decay of the
perturbation envelope.

In contrast, the same argument applied to a Gaussian
envelope leads to the law g(w)z - #* /£ = const., which implies
the peaks to emerge along a parabolic locus in (#, z) plane. The
simulation in Fig. 3(a) shows that this is indeed the case. Note
that in Fig. 3(a) the Gaussian modulation has the same param-
eters (w, a, and width at half-maximum) of the sech-case shown
in Fig. 2(a), and the two input Fourier spectra compared in
Fig. 3(b) are quite similar, except for their asymptotic slopes.
Nethertheless, the evolution differs completely from Fig. 2(a)
since, in Fig. 3(a), no breathers emerge (as also confirmed by
IST analysis), and the dynamics is asymptotically confined in
the wedge. At variance also with the cases shown in Fig. 1 (where
@ = 0), in this case, the spatio-temporal structure follows the
parabolic locus dictated by the MI amplification mechanism,
as clearly shown by the red dashed line in Fig. 3(a).

A key point to understand is that the CW background ¢,
uniquely fixes the asymptotic velocity V', whereas the velocity
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Fig. 3. (a) As in Fig. 2(a), input Gaussian envelope, 2 = 0.2,
¢ =0, ¢, = 16.5,and @ = 1. The red dashed curve indicates a locus
of peaks due to MI amplification: g(w)z - #2 /3 = const. (see the text;
here a constant is used as the best-fit parameter). (b) Input power
spectrum (log scale, CW suppressed for clarity) for Gaussian (solid
blue curve) and the sech shape of Fig. 2 (dashed red curve).
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V', of the emerging breathers is also affected by the perturbation
parameters. In order to better understand the interplay between
these two velocities, we show in Fig. 4 a level plot of velocity V;
in Eq. (4) in the complex £-plane. We report only the right
half semi-plane Re(#) > 0, since a mirror symmetry applies
for Re(#) < 0. Importantly, the contour line corresponding
to the wedge velocity V', (red curve in Fig. 4) divides the plane
into a central domain where breathers are slow (V, < V) and
two disjoint, left and right, domains where they are fast
(V, > V,). In the domain to the right, breathers are not excit-
able via M1, i.e., with small perturbations of unstable frequen-
cies. In contrast, the domain to the left contains SRBs that are
generated via MI and propagate externally to the wedge, as in
the example in Fig. 2 (see the red dot in Fig. 4). When changing
the parameters of the perturbation, the eigenvalue moves and
the velocity changes. We have found that the approximate
relation V| = g(w)zr, constitutes a simple rule of thumb to
predict the velocity of emergent breathers. Indeed, the velocity
turns out to be nearly independent on amplitude 4, and grows
larger by increasing the width 7y or the frequency @ (up to peak
MI gain 0 = +/2). On one hand, there is no upper bound to
V. (V, = o as the imaginary axis is approached, which re-
quires very wide perturbations, i.e., a quasi-periodic case.)
On the other hand, such breathers continue to exist also when
crossing into the central region with V, <V, and, hence,
could be expected to interact with the auto-modulation,
internally to the wedge.

In Fig. 5, we show that, indeed, SRBs can also be excited
inside the wedge. The phenomenon can be more easily recog-
nised by contrasting the case in Fig. 5(a), where we launch the
exact breather pair (exactly as in Refs. [20,21], with parameters
R=1.15 a=0.25, y;, =0, and 0;, = 0) with the case,
shown in Fig. 5(b), of a sech-shaped perturbation. It is clearly
seen that, in the former case, the propagation is dominated by a
breather pair that exhibits a long period. In this case, since the
initial condition ideally contains only discrete spectrum, the
auto-modulation is seeded only by the numerical error and
appears at very large distances. In Fig. 5(b), we tuned the
parameter of the sech-shaped perturbation in order to produce
the same pair of breathers (as can be verified with our IST
analysis; see the blue dot in Fig. 4). Multiple collisions between
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Fig. 4. False color plot and contour lines of breathers velocity V,
from Eq. (4) in the right half complex £ plane. The red solid line stands
for the asymptotic wedge velocity V,, = 44/2 = 5.66, ¢, = 1. The
right panel shows a zoom around point # = 7 (cross mark, correspond-
ing to Peregrine rational soliton [2]). The dots indicate the breathers
obtained via IST for the other figures: red dot (¢ = 0.029 + 0.8707),
SRBs with V| >V, Fig. 2; blue dot (k£ = 0.0374 + 0.9784:), SRBs
with V, <V, Fig. 5; black dot (# = 1.46787), KM soliton in
Fig. 6(a); green dot (£ = 0.6386 + 1.483/), a breather pair of Fig. 6(b).
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Fig. 5. Numerical solution of the NLSE (1) with the initial condi-
tions (a) exact breather pair with eigenvalues # = 40.0374 + 0.9784:
(R=1.15, a = £0.25); (b) as in Eq. (2), sech-shaped parameters
a=0543, ¢ =x/2, ty =4, and w = 0.545. In (a) and (b),
go =1, and the solid red line marks the right soliton velocity
V, = 3.668.
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Fig. 6. Numerical solution of the NLSE (1), input as in Eq. (2),
go = 1: (a) Gaussian shape with parameters 2 =10.9, ¢ =0,
to=1, and w=0. (b) Sech shape with parameters 2 =5,
¢ =1/2, ty = 0.4, and @ = 4. The IST analysis gives (a) a single
cigenvalue k = 1.4687/ (R = 2.54, a = 0), i.e., a KM soliton with
period z, = 0.998; (b) a pair £#= £0.639 + 1.483i (R = 3.035,
a = 0.492), i.e., V, = +3.252 (dashed red line).
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the breathers and the modulated structure can be clearly seen.
Such collisions are elastic and produce temporal shifts on both
the modulation [the central maximum of Fig. 5(a) is no longer
present in Fig. 5(b)] and the breathers which, however, retain
their solitary structures.

Returning to Fig. 4, it is clear that the central region of slow
breathers include Kuznetsov—Ma (KM) solitons, which stand
on the imaginary axis with Im(#) > 1, where V, — 0 [3,4].
In general, KM or quasi-KM pairs with opposite small veloc-
ities can be excited with relatively large perturbations. In Fig. 6,
we illustrate two different examples, showing that such breath-
ers also undergo interaction with the auto-modulation. In
Fig. 6(a), we show the evolution of a positive (¢ = 0)
Gaussian perturbation with @ =0, 2 = 0.9, and #; = 1 for
which our IST analysis yields a KM breather with
k = 146787, V, =0 (see also the black dot in Fig. 4). Its
signature in Fig. 6(a) is the initial breathing which, however,
soon evolves due to the interaction with the central peak of
the emerging auto-modulation into periodic cycles of attraction
and repulsion (similar to the bound state of two solitons in the
case of zero background). We point out that such dynamics
persists also for substantially weaker perturbations, though
the period rapidly increases due to the shift of the eigenvalue
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towards # = 17 (cross in Fig. 4), thus making it more difficult
to recognize the breather signature in the dynamics. To excite
the non-degenerate case of quasi-KM breather pairs, we need to
consider non-vanishing frequencies @. In the example shown in
Fig. 6(b), a sech-shaped envelope modulating the frequency
@ = 4 gives a pair of breathers. In this regime, the approximate
relation V; =~ g(w)#, no longer holds valid, and the velocity
must be obtained from IST analysis, which yields eigenvalues
k = £0.6386 + 1.483i (see the green dot in Fig. 4), in turn,
from Eq. (4), a velocity V; < V. As a consequence, the pair is
observed to collide elastically with the peaks of the auto-
modulation inducing mutual temporal shifts at each collision.

In summary, we have illustrated several new scenarios of
nonlinear MI which are readily observable in fiber experiments.
We have shown how the control of the perturbation can dra-
matically change the existence condition for breathers and their
interplay with the omnipresent auto-modulation.
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