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Abstract
We write down and characterize a large class of nonsingular multi-soliton solu-
tions of the defocusing Davey–Stewartson II equation. In particular we study
their asymptotics at space infinities as well as their interaction patterns in the
xy-plane, and we identify several subclasses of solutions. Many of these solu-
tions describe phenomena of soliton resonance and web structure. We identify a
subclass of solutions that is the analogue of the soliton solutions of the Kadomt-
sev–Petviashvili II equation. In addition to this subclass, however, we show that
more general solutions exist, describing phenomena that have no counterpart in
the Kadomtsev–Petviashvili equation, including V-shape solutions and soliton
reconnection.

Keywords: soliton resonance, web structure, Davey–Stewartson system,
Wronskian technique
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1. Introduction

Solutions of (2 + 1)-dimensional soliton equations have received renewed interest in recent
years, and several works have showed that the kind of behavior described by them is much
richer than for (1 + 1)-dimensional systems [7–9, 11, 14, 16, 28, 29, 33, 34, 38, 39,
43, 45]. In particular, the phenomenonof soliton resonance was first discovered for the Kadomt-
sev–Petviashvili (KP) equation [40] (see also references [41, 43, 45]). Recently, more general
resonant solutions possessing a web-like structure have been observed [7–9, 11, 33, 39]. It was
also conjectured in reference [11] that resonance and web structure are a generic feature of
(2+ 1)-dimensional integrable systems whose solutions can be expressed in determinant form.
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Indeed, resonant solutions with web structure have also recently been found in a coupled KP
system [28, 29], in the so-called DKP equation [34] and in the two-dimensional Toda lattice
and its fully discrete and ultra-discrete analogues [38].

In this paper we characterize a large class of soliton solutions of the Davey–Stewartson
(DS) equation, we show that these solutions display phenoma of resonance and web structure,
and we identify several subclasses. Line soliton solutions of the DSII equation were previously
discussed in references [4, 20, 51] and the phenomenon of soliton resonance in the DS equation
was also studied [21, 42]. It is also well-known that the DSII equation is in the KP hierarchy and
is related to the KPII equation [27, 30, 44, 46]. Since the soliton solutions of the DSII equation
are expressed by Wronskian or Grammian-type determinants [27, 44], once may expect that
solutions similar to those of the KP equation may be found for the DSII equation. Indeed, in
this work we show that an analogue to the solutions studied in references [7–9, 11, 33] exists
for the defocusing DSII equation, and that a similar type of resonant solutions with web-like
structure is produced as a result. To our knowledge, this is the first time that web structure
is observed in the DSII equation. These results confirm that soliton resonance and web-like
structures are general features of two-dimensional integrable systems whose solutions can be
expressed via the determinant formalism. We also show, however, that, in addition to these
solutions, there exist more general solutions of DSII, which describe phenomena that have no
counterpart in the KP equation.

The outline of this work is the following. In section 2 we introduce the Wronskian formalism
of solutions of the DS system and we give necessary conditions to obtain a large class of
nonsingular solutions of the defocusing DSII system. In section 3 we discuss basic properties
of multi-soliton solutions of the DSII system, which will be used in the remainder of the paper,
and we characterize a ‘restricted’ class of solutions that are a direct counterpart of the soliton
solutions of the KPII equation. In section 4 we begin to study unrestricted soliton solutions,
starting from the simplest case: ‘scalar’ solutions, and we show that these solutions already give
rise to novel behavior. In section 5 we discuss two further classes of solutions: non-resonant
and fully resonant solutions, and in section 6 we then characterize the most general case. In
section 7 we present further examples, and section 8 we end this work with a few concluding
remarks.

2. The Davey–Stewartson system and its Wronskian solutions

The DS equation is the system [3, 17]

iqt +
1
2
σqxx −

1
2

qyy + 2σqQ + 4σν|q|2q = 0, (2.1a)

Qxx + σQyy = −4ν(|q|2)xx , (2.1b)

where subscripts x, y and t denote partial derivatives, with Q = Q(x, y, t) and q = q(x, y, t)
being respectively a real-valued and a complex-valued function, and where σ = ±1 and
ν = ±1. The case σ = −1 identifies the DSI equation, the case σ = 1 the DSII equation;
ν = −1 identifies the focusing case and ν = 1 the defocusing case. (The reason for
this identification is that, for y-independent solutions, (2.1b) can be integrated to give
iσqt +

1
2 qxx − 4ν|q|2q = 0.) Equations of DS-type arise in a number of different mathemati-

cal and physical contexts, including water waves [17], plasma physics [42], optics [1, 2, 35]
and ferro-magnetics [36]. The solutions of the DS system depend crucially on the signs of σ
and ν. For the focusing DSI equation, exponentially localized solutions exist called dromions,
corresponding to appropriate non-vanishing boundary conditions at infinity for the mean field
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[13, 19, 22, 23]. The focusing DSII equation possesses line soliton solutions [51] which are
unstable, algebraically decaying rational solutions called lumps [37, 51], as well as combina-
tions of lumps and line solitons [18, 24]. For the defocusing DSII equation there are no lumps
solutions [6], but dark soliton solutions exist [4, 42, 51]. Finally, the periodic solutions of all
four variants were recently characterized in [10]. For these reasons, the DS system continues
to be intensely studied in the literature (e.g., see [5, 31, 32, 47] and references therein).

In this work we are interested in studying and classifying a large class of soliton solutions of
the defocusing DSII equation, that is, the system (2.1) with σ = ν = 1. Consider the dependent
variable transformation

q =
G
F

e4iq2
ot, Q = (log F)xx , (2.2)

where F is a real function of x, y and t. The defocusing DS system is transformed via (2.2) into
the bilinear forms [20, 51]

(2iDt + σD2
x − D2

y) G · F +
G
F

((σD2
x + D2

y) F · F + 8(σνGG∗ − q2
0F2)) = 0, (2.3a)

((σD2
x + D2

y) F · F + 8σνGG∗) = (xC1 + C2)F2. (2.3b)

As we are interested in bounded solutions we take C1 = 0. To simplify the system further we
let C2 = 8q2

0, thus obtaining

(2iDt + σD2
x − D2

y) G · F = 0, (2.4a)

(σD2
x + D2

y) F · F + 8σνGG∗ − 8q2
oF2 = 0, (2.4b)

where the asterisks denotes complex conjugation, and Dx, Dy, etc are the Hirota derivatives
[25]:

Dm
x f · g = (∂x − ∂x′ )

m f (x, y, t)g(x′, y, t)|x′=x

et simili. The real constant qo is related to the background amplitude of the solution, as is most
easily seen in the case of uniform fields, for which q(x, y, t) = qo e4iq2

ot. Owing to the scaling
invariance of (2.1), without loss of generality hereafter we set qo = 1. Now performing the
change of independent variables

x1 = σ′x + y, x−1 = σ(−σ′x + y), (2.5a)

x2 = −it, x−2 = it, (2.5b)

where σ′ =
√
−σ, one obtains [20, 44]

(Dx2 − D2
x1

) G · F = 0, (2.6a)

(Dx−2 + D2
x−1

) G · F = 0, (2.6b)

σDx1 Dx−1 F · F + 2G H − 2F2 = 0, (2.6c)

with H = G∗. Note that the DS equation is related to the two-dimensional Toda lattice
equation [26, 27, 44]; indeed, (2.6c) is the bilinear form of the two-dimensional Toda lattice
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(see also [38]). Note also that equation (2.6) with σ = 1 (DSI defocusing) are a reduction of the
two-component KP hierarchy [44]. Since in this work we are interested in studying solutions
the DSII equation, hereafter we set σ = 1, which implies σ′ = i and x−1 = x∗1.

Lemma 2.1. Solutions of the bilinear equation (2.6) can be obtained by the expressions

F = ζ τ (s)
N , G = ζ τ (s+1)

N , H = ζ τ (s−1)
N , (2.7)

where s ∈ Z and ζ ∈ C are arbitrary constants, with [20, 44]

τ (n)
N = Wrx1 ( f (n)

1 , f (n)
2 , . . . , f (n)

N ) = det

⎛
⎜⎜⎜⎝

f (n)
1 f (n+1)

1 . . . f (n+N−1)
1

f (n)
2 f (n+1)

2 . . . f (n+N−1)
2

...
...

. . .
...

f (n)
N f (n+1)

N . . . f (n+N−1)
N

⎞
⎟⎟⎟⎠ , (2.8)

and where f1(x1, x−1, x2, x−2), . . . , fN (x1, x−1, x2, x−2) is any set of N linearly independent
solutions of the linear equations

∂ f ( j)

∂x1
= f ( j+1),

∂ f ( j)

∂x−1
= f ( j−1), (2.9a)

∂ f ( j)

∂x2
= f ( j+2),

∂ f ( j)

∂x−2
= f ( j−2), (2.9b)

with f (0) = f .

As with the KP equation, lemma 2.1 is a consequence of the Plücker relations for the deter-
minants (2.8) [20]. It is crucial to realize, however, that these solution of equation (2.6) produce
solutions of the DS equation (2.1) only when the corresponding functions F, G and H obtained
from them via (2.7) satisfy the following two ‘reality constraints’: (i) F is real and (ii) H = G∗.
These requirements impose a restriction on admissible sets of functions f1, . . . , fN as well as
on the constants s and ζ. We next show how to satisfy the above-mentioned requirements and
thus obtain general line-soliton solutions of the defocusing DSII equation:

Lemma 2.2. Soliton solutions of the defocusing DSII equation can be obtained from
(2.7)–(2.9) by taking f1, . . . , fN to be arbitrary real linear combinations of exponentials:

fn =
M∑

m=1

an,m eξm , (2.10)

with an,m ∈ R, for n = 1, . . . , N and m = 1, . . . , M with M > N, and where the exponential
phases ξ1, . . . , ξM are linear functions of (x1, x−1, x2, x−2):

ξm = pmx1 + p−1
m x−1 + p2

mx2 + p−2
m x−2 + ξ0,m, (2.11)

with pm = e−iφm and φm ∈ R for m = 1, . . . , M, and by taking

ζ = 1/(2i)N(N−1)/2, s = −(N − 1)/2. (2.12)

In particular, the first and second equations of (2.12) ensure that the first and second reality
constraints are satisfied. The coefficients an,m define the N × M coefficient matrix A = (an,m).
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We will call the constantsφ1, . . . ,φM the phase parameters. In terms of the original coordinates
(x, y, t), the phases ξ1, . . . , ξM become

ξm(x, y, t) = 2 [x sin φm + y cos φm − t sin(2φm)] + ξ0,m. (2.13)

Without loss of generality we can take the phase parameters to be distinct and well-ordered,
namely we assume φ1 < · · · < φM. Also, since ξm(x, y, t) is a periodic function of φm, without
loss of generality we can restrict the phase parameters φ1, . . . ,φM to be in the interval [−π, π).
Note that an equivalent way to obtain the same functions F, G and G∗ from (2.7) and (2.10)
is to set s = 0 in (2.7) while at the same time multiplying each exponential term in (2.10) by
e−i(N−1)φm/2.

The proof of lemma 2.2 (that is, the fact that (2.12) and (2.11) indeed generate soliton
solutions of the defocusing DSII equation via (2.2) and (2.7)) is an immediate consequence of
the following:

Lemma 2.3. Let f1, . . . , fN be given by (2.10), with ξ1, . . . , ξM given by (2.13). Then, for
1 � N � M − 1 the tau functions defined by (2.8) have the form

τ (n)
N,M = (2i)N(N−1)/2

∑
1�m1<···<mN�M

Δm1,...,mN A(m1, . . . , mN) eξm1,...,mN −i[n+(N−1)/2]φm1,...,mN ,

(2.14)

where

ξm1,...,mN = ξm1 + · · ·+ ξmN , φm1,...,mN = φm1 + · · ·+ φmN , (2.15a)

Δm1,...,mN =
∏

1� j<k�N

sin

[
1
2

(φm j − φmk )

]
, (2.15b)

and A(m1, . . . , mN) denotes the N × N minor of A

A(m1, . . . , mN) = det(A[m1, . . . , mN]). (2.15c)

Above and throughout this work, A[m1, . . . , mk] denotes the N × k matrix obtained by
selecting columns m1, . . . , mk of A, namely

A[m1, . . . , mk] =

⎛
⎜⎝

a1,m1 . . . a1,mk
...

...
aN,m1 . . . aN,mk

⎞
⎟⎠ . (2.16)

proof. Note first that, equations (2.9) and (2.11) allow us to write each of the columns
appearing in the determinant on the right-hand side of (2.8) as

( f (n)
1 , . . . , f (n)

N )t = A (eξ1−inφ1 , . . . , eξM−inφM )t,
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where the superscript t denotes matrix transpose. Combining all of these columns, we can
therefore write the tau functions (2.8) as

τ (n)
N,M = det

(
AΘK(n)

)
, (2.17)

where Θ = exp[ diag(ξ1, . . . , ξM)], and the M × N matrix K(n) is given by

K(n) =

⎛
⎜⎜⎜⎝

e−inφ1 e−i(n+1)φ1 . . . e−i(n+N−1)φ1

e−inφ2 e−i(n+1)φ2 . . . e−i(n+N−1)φ2

...
...

. . .
...

e−inφM e−i(n+1)φM . . . e−i(n+N−1)φM

⎞
⎟⎟⎟⎠ . (2.18)

Equation (2.14) then follows from (2.17) via the Binet–Cauchy theorem, as in [8, 11, 33, 38].
�

At this point it is useful to make several remarks:

(a) An immediate consequence of lemma 2.3 is that F is real-valued, and that G and H are
complex conjugates of each other. Thus, all of the solutions obtained from lemma 2.2 are
indeed solutions of the DSII equations, as anticipated earlier.

(b) If M < N, the functions f1, . . . , fN are linearly dependent, and hence they generate the
trivial solution of DS. Similarly, if rank A < N equation (2.14) produce trivial solutions
of DS. Finally, if M = N there is only one term in the summation in equation (2.14);
as a consequence, q is constant, and Q is identically zero. Hence for all non-trivial and
non-constant solutions it is M > N.

(c) Each term in the right-hand side of (2.14) contains combinations of N distinct phases
ξm1 , . . . , ξmN chosen from ξ1, . . . , ξM. However, a given phase combination ξm1,...,mN is
actually present in the tau functions if and only if the corresponding minor A(m1, . . . , mN)
is non-zero.

(d) The only (x, y, t)-dependence of the tau functions comes from the exponential phases
ξ1, . . . , ξM. Moreover,Δm1,..., mN is strictly positive for all 1 � m1 < m2 < · · ·< mN � M,
because φ1, . . . ,φM ∈ [−π, π). Hence, a sufficient condition to obtain non-singular solu-
tions is that all minors of the coefficient matrix A be non-negative. (Indeed, this is enough
to ensure that Q is positive definite, similarly as for the KP equation; cf reference [8].) It
is not clear at present, however, whether this condition is also necessary.

(e) The fact that all these solutions are soliton solutions is a consequence of the exponential
nature of f1, . . . , fN, and can be shown in a similar way as for the KP equation [8], as we
discuss in section 3.

(f) Transformations A → GA with G ∈ GL(N,R) (corresponding to performing elemen-
tary row operations on A, i.e., choosing N independent linear combinations of the
functions f1, . . . , fN in equation (2.10)) amount to an overall rescaling τ (n)

N,M(x, y, t) →
det(G) τ (n)

N,M(x, y, t), which leaves the solution of DS invariant. This GL(N,R) gauge free-
dom can be exploited to choose the coefficient matrix A to be in reduced row-echelon form
(RREF).

(g) In addition, the coefficient matrix A can be further reduced by normalizing each of its rows
if desired, since a positive overall multiplicative constant in each column of the coefficient
matrix A can be absorbed in the constants ξ0,1, . . . , ξ0,M.

In light of the above remarks, to avoid trivial and reducible cases from now on and through-
out this work we will assume that: (a) M > N and rank(A) = N, (b) all non-zero N × N minors
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of A are positive, (c) A is in RREF, (d) A is irreducible. We say that a matrix A of rank N is
irreducible if, in RREF:

(a) Each column of A contains at least one non-zero element.
(b) Each row of A contains at least one non-zero element in addition to the pivot.

If condition (a) is violated, one of the exponential phases does not appear in the tau func-
tions, which can then be rewritten in terms of linear combinations of M − 1 phases. Also, if
condition (b) is violated, one of the functions in (2.10) contains only one exponential term. That
term can then be factorized in (2.14) and, similarly to the KP equation [8], one can therefore
represent the solution in terms of N − 1 functions containing linear combinations of M − 1
phases.

3. Line solitons of the defocusing Davey–Stewartson II equation

Before studying general solutions displaying soliton resonance and web structure, it is use-
ful to look at simpler solutions. We do so next, starting from one-soliton solutions, and then
considering special subclasses of multi-soliton solutions.

3.1. One-soliton solutions

The simplest nontrivial solutions of the DS equation are obtained for N = 1 and M = 2. Choos-
ing τ (n)

1 = eξ1−inφ1 + eξ2−inφ2 , with ξ1 and ξ2 defined as in lemma 2.3, we have s = 0 and ζ = 1,
and (2.7) yield F = τ (0)

1 and G = τ (1)
1 . In turn, (2.2) then leads to the one-soliton solution:

Q(x, y, t) = (sin φ1 − sin φ2)2 sech2

[
1
2

(ξ1 − ξ2)

]
. (3.1)

In the xy-plane this solution describes a plane wave Q(x, y, t) = Φ(Ξi, j), with
Ξi, j(x, y, t) = 1

2 (ξi − ξ j) = k · x− ω t, where x = (x, y). The wavevector k = ki, j = (kx , ky)
and frequency ω = ωi, j are given by

ki, j = (sin φi − sin φ j, cos φi − cos φ j), (3.2a)

ωi, j = sin(2φi) − sin(2φ j). (3.2b)

These parameters satisfy the nonlinear dispersion relation

ω2 = (k2
x − k2

y )2

(
4

k2
x + k2

y
− 1

)
, (3.3)

where both signs are admissible forω. The above solution is localized around the (contour) line
ξ1 = ξ2 in the xy-plane, and is therefore referred to as a line soliton, like for the KP equation.
When discussing the pattern of soliton solutions in the xy-plane, we will refer to c = dx/dy as
the direction of the line soliton. That is, c = tan θ where θ is the angle between the line soliton
and the positive y-axis, counted clockwise. Denoting by c1,2 the direction of the solution (3.1),
it is

ci, j = −cos φi − cos φ j

sin φi − sin φ j
= tan(θi, j), (3.4)

θi, j =
1
2

(φi + φ j), (3.5)
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for all i, j such that θi, j �= ±π/2. When θi, j = ±π/2, the line soliton is parallel to the x-axis,
in which case we say that ci, j = ∞.

The dependent variable q(x, y, t) displays a similar type of behavior, namely:

q(x, y, t) =
(
eξ2−iφ2+4it + eξ1−iφ1+4it

)/ (
eξ2 + eξ1

)

=

(
cos

[
1
2

(φ1 − φ2)

]
− i sin

[
1
2

(φ1 − φ2)

]
tanh

[
1
2

(ξ1 − ξ2)

])
e−

1
2 i(φ1+φ2−8t).

(3.6)

In particular, |q(x, y, t)|2 is also a traveling wave, like Q(x, y, t), localized around the line
ξ1 = ξ2. There are important differences between the two components, however. The first dif-
ference is that q has dark-soliton behavior, while Q has bright-soliton behavior. For this reason
we refer to q and Q respectively as the dark and bright components of the solution. The sec-
ond difference is related to the dependence of the amplitude on the two solution components
on the soliton direction. Equations (3.1) and (3.6) yield the amplitude of the bright and dark
components of the solution respectively as

max Q = (sin φi − sin φ j)2, (3.7a)

1 − min |q|2 = sin2

[
1
2

(φi − φ j)

]
. (3.7b)

(Since q has dark-soliton type behavior, its amplitude is defined as the maximum dip from the
background value.) As in the KP equation we refer to the soliton amplitude and direction as
the soliton parameters. The amplitude of Q(x, y, t) vanishes whenever sinφi = sinφ j, i.e., for
horizontal solitons. More in general, it is easy to show that, for each value of θ, one can only
realize solitons whose bright component has amplitude 0 � max Q � 4 cos2 θ. On the other
hand, the amplitude of the dark component never vanishes. Indeed, one can realize solutions
where 1 − min |q|2 takes any value between 0 and 1, independently of θ. In particular, the
maximum amplitude is obtained for φi, j = θ ± π/2.

The above discussion indicates that, even in the more complicated multi-solutions discussed
later, all horizontal solitons will disappear from the bright component Q, but not from the dark
component q. This difference between the bright and dark components stems from the fact that
the bright component is obtained as a second logarithmic derivative of the tau function with
respect to x, as in the KP equation (and unlike the dark component). Indeed, the case c = ∞
does not have a counterpart in solutions of the KP equation, where no horizontal solitons exist.
As we will see in section 4.3, this feature gives rise to novel behavior compared to that of the
soliton solutions of the KP equation.

Plots of the bright and dark components of a one-soliton solution are shown in figure 1. Note
that each soliton direction can be realized with two possible values of θ in [−π, π), and there-
fore to two possible choices of φi and φ j (cf (3.4)). A similar statement holds for the soliton
amplitude. This redundancy can be eliminated in the direct problem (i.e., when constructing
a solution from a given set of soliton parameters, as in [7]), but not in the inverse problem
(i.e., the problem of identifying the solitons corresponding to a given coefficient matrix and
set of phase parameters). A related and important difference between the DSII equation and
the KP equation is the existence of solitons with the same amplitude and direction, but oppo-
site velocity. Equation (3.2) imply that the maps φn 	→ φ̃i, j = φn + π for n = i, j results in
ki, j 	→ k̃i, j = −ki, j, but leavesωi, j invariant: ω̃i, j = ωi, j. Therefore, the transformation produces
a soliton with same amplitude and direction as the original one, (i.e., ãi, j = ai, j and c̃i, j = ci, j)
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Figure 1. One-soliton solution of the defocusing DSII equation generated by τ (n)
1,2 at

t = 0 with (φ1,φ2) = (−2π/3, π). (Note one-soliton solutions are traveling wave solu-
tions, so the time dependence in this case amounts to a simple translation.) Left column:
|q(x, y, 0)|. Right column: Q(x, y, 0). Here, and in all other subsequent figures, the hor-
izontal and vertical axis are respectively the x-axis and y-axis, and the graph shows a
contour plot of the solution in the xy-plane. Insets: the corresponding three-dimensional
plots.

but opposite speed. As we will see in section 4.3, this feature also gives rise to novel behavior
compared to that of the soliton solutions of the KP equation.

3.2. Multi-soliton solutions: dominant phase combination and asymptotic line solitons

We now begin to investigate the behavior of more general solutions of the DS equation obtained
via lemma 2.2.

Definition 3.1. We say that an exponential term exp[ξm1,...,mN ] is dominant in some region
R ∈ R3 if, for all (x, y, t) ∈ R, exp[ξm1,...,mN ] � exp[ξm′

1,...,m′
N

] for all {m′
1, . . . , m′

N} appearing in
the tau function—that is, for all {m′

1, . . . , m′
N} such that A(m′

1, . . . , m′
N) �= 0. The region R is

called the dominant region of ξm1,...,mN .

The above definition is the same as for the KP equation [8]. Similarly to the KP equation,
we also have:

Lemma 3.2. The solution q(x, y, t) of the defocusing DSII equation generated by the tau
function (2.17) is constant up to exponentially small terms, and Q(x, y, t) is exponentially small,
at every point in the interior of every dominant region.

The proof of lemma 3.2 is essentially identical to that for the KP equation [8], and is there-
fore omitted. Lemma 3.2 implies that, like with the KP equation, the solution is localized at the
boundaries of the dominant regions, where a dominant balance exists, i.e., a balance between
exponential phase combinations that dominate over all others. These regions are characterized
by the following:

Theorem 3.3. Asymptotically as x2 + y2 →∞, and for generic values of the phase param-
eters φ1, . . . ,φM:

(a) At finite times, the set of dominant phase combinations is invariant.

9
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(b) In any two adjacent dominant regions, the dominant phase combinations contain N − 1
common phases.

The proof of theorem 3.3 is identical to that of theorem 2.5 in [8] and proposition 5 in
[15]. An important consequence of theorem 3.3 is that solutions obtained from lemma 2.2
are all solitonic in character. That is, asymptotically, as x2 + y2 →∞, the solution of the DS
system generated by lemma 2.1 is either locally constant or locally given by a suitable one-
soliton solution corresponding to the transition between two indices i and j identifying two
adjacent dominant phase combinations, i.e., the phases ξi and ξ j appearing in (3.1) and (3.6).
Accordingly, as in the KP equation [8, 33], we can introduce the following definition:

Definition 3.4. We call an asymptotic line soliton each local solution of the DS system
identified by an index pair [i, j] that labels the non-common phases between two adjacent
dominant phase combinations as x2 + y2 →∞.

Remark 3.5. It is straightforward to see that, if all phase parameters are shifted by a common
amount (mod 2π), i.e., if φ j 	→ φ j +Δφmod 2π, the new phase parameters generate a solution
in which all asymptotic line solitons are rotated by an angle Δφ.

3.3. Restricted solutions and one-to-one correspondence with the KP equation

Before studying the most general soliton solutions generated by the tau function (2.17), it is
instructive to first consider a subclass of solutions for which the phase parameters φ1, . . . ,φM

lie in the range

−π/2 � φ1 < · · · < φM < π/2. (3.8)

We call these restricted solutions of the defocusing DSII system. Note that horizontal solitons
are excluded from this class. Therefore, for these kinds of solutions we can unambiguously
divide all line solitons into two categories: we will call outgoing solitons those extending out
to infinity in any direction in the first and second quadrants of the xy-plane (i.e., as y →∞),
and incoming solitons those extending out in any direction in the third and fourth quadrants
(i.e., as y →−∞).

Moreover, when the phase parameters satisfy (3.8), if one lets x = cy + xo and considers the
asymptotic behavior as y →±∞with xo fixed, the transition direction c becomes an increasing
function of φi + φ j, as can be seen from (3.4). With the above definitions, one can then apply
to the class of restricted solutions the tools of analysis that were developed to study soliton
solutions of the KP equation [7, 8, 11, 33], including in particular the methods of reference
[8] for studying the asymptotics of the tau functions as y →±∞ as long as one takes into
account that the roles of y →∞ and y →−∞ are reversed compared to what happens in the
KP equation (e.g., compare the inequalities in lemma 6.1 with those in lemma 3.1 of [8].) Here
we just state the main result. (Further details will be given when we present the analysis for
more general solutions in section 6.) Let P[i, j] and Q[i, j] denote the sub-matrices obtained by
selecting the following columns, with i < j of A:

P[i, j] :=A[1, 2, . . . , i − 1, j + 1, . . . , M], Q[i, j] :=A[i + 1, . . . , j − 1]. (3.9)

Theorem 3.6. Let τ (n)
N,M(x, y, t) be the tau functions in (2.14) associated with a rank N, irre-

ducible coefficient matrix A with non-negative minors. If the phase parameters φ1, . . . ,φM

satisfy (3.8):

10
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(a) For each pivot index en there exists a unique asymptotic line soliton as y →−∞, identified
by an index pair [en, jn] with n = 1, . . . , N and 1 � in < jn � M.

(b) For each non-pivot index gn there exists a unique asymptotic line soliton as y →∞,
identified by an index pair [in, jn] with n = 1, . . . , M − N and 1 � in < gn � M.

(c) The index pairs that identify the asymptotic line solitons are uniquely determined by the
following necessary and sufficient conditions. Let rank(P[i, j]) = k and rank(Q[i, j]) = s.
Then:

1. The pair [i, j] identifies an asymptotic line-solitons as y →−∞ iff k � N − 1 and
rank(P[i+1, j]) = rank(P[i, j−1]) = rank(P[i+1, j−1]) = k + 1.

2. The pair [i, j] identifies an asymptotic line-soliton as y →∞ iff s � N − 1 and
rank(Q[i−1, j]) = rank(Q[i, j+1]) = rank(Q[i−1, j+1]) = s + 1.

A direct consequence of theorem 3.6 is that, if the phase parameters φ1, . . . ,φM satisfy
(3.8), the solution of DS generated by the coefficient matrix A via equation (2.14) has exactly
N− = M − N incoming line solitons and N+ = N outgoing line solitons. The proof of theorem
3.6 is exactly the same as for all the corresponding statements given in reference [8] for the
KP equation, and is therefore omitted for brevity.

4. Unrestricted multi-soliton solutions: scalar solutions

We now begin to lift the restriction (3.8) on the phase parameters φ1, . . . ,φM and allow them
to vary in the whole range [−π, π), subject only to the ordering

−π � φ1 < · · · < φM < π. (4.1)

We refer to solutions in this class as unrestricted solutions of the defocusing DSII system.

4.1. Transformation to radial coordinates

When the restriction (3.8) on the phase parameters φ1, . . . ,φM is removed, the asymptotic
behavior of the τ functions as y →±∞ is not an appropriate tool to describe the solution,
(unlike what happens with the KP equation and with restricted solutions of the DS system).
Correspondingly, the distinction between incoming and outgoing solitons loses relevance, and
must be abandoned. This complication is also related to the coming into play of new kinds of
solutions, as we show below. At this point we need to recall that the definition of asymptotic
soliton in section 3.2 allows for rays extending out to infinity in any direction in the xy-plane,
including that of the x-axis. To this end, and to allow for the possibility of horizontal rays,
hereafter it is convenient to convert from Cartesian coordinates to polar coordinates by letting

(x, y) = (r sin θ, r cos θ), r =
√

x2 + y2, θ = arctan x/y. (4.2)

We will then study the asymptotics of solutions as r →∞ for different values of θ, the angle
from the positive y-axis, increasing clockwise. Using (4.2), we can rewrite the phases ξm as

ξm = 2r cos(θ − φm) − 2 sin(2φm)t + ξ0,m. (4.3)

It will also be useful to write down explicitly the difference of two phases:

11
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ξm − ξm′ = 4

[
r sin(θ − 1

2
(φm + φm′ )) sin

(
1
2

(φm − φm′ )

)

− t cos(φm + φm′ ) sin(φm − φm′ )

]
+ (ξm,0 − ξm′ ,0). (4.4)

Anticipating the results of section 6, we will see that, in general, the tau functions τ (n)
N,M generate

solutions with a total of M asymptotic line solitons located along specific directions in the
xy-plane, identified by sweeping a 2π range of values of θ.

4.2. Scalar soliton solutions

We begin by discussing the simplest possible unrestricted solutions, which is that of solutions
obtained for N = 1. By analogy with the KP equation, we refer to this as the scalar case (since
in this case there is only one function f in each of the determinants (2.8)). Later on, we will
generalize the results to cases in which N is an arbitrary positive integer. However, we will see
that, even in the case N = 1, there are significant differences between the solutions of the DS
system and those of the KP equation.

Theorem 4.1. Let τ (n)
1 (x, y, t) be the tau functions in (2.14) associated with a 1 × M coef-

ficient matrix A with positive entries and with phase parameters φ1, . . . ,φM. As r →∞, the
corresponding solution of the defocusing DSII system generated via lemmas 2.1 and 2.2 com-
prises M asymptotic line solitons, M − 1 of which localized along the directions θ = θi, j, with
[i, j] given by the index pairs [1, 2], [2, 3], . . . , [M − 1, M], with θi, j given by (3.5), plus one
soliton localized along the direction θ = θi, j + π, with [i, j] = [M, 1].

proof. We begin by noting that, when N = 1 and M > 1, the entries of the coefficient matrix
A = (a1, a2, a3, . . . , aM) can be absorbed in the constants ξ0,m. Thus, without loss of generality,
we can simply write the tau-functions as

τ (n)
1,M(x, y, t) =

∑
m=1,...,M

eξm−inφm , n = −1, 0, 1. (4.5)

Using polar coordinates as discussed above to write the phases ξm as in (4.3), the ordering (4.1)
then allow us to find the dominant regions Rm corresponding to each of the dominant phases.

We first consider the case m = 2, . . . , M − 1. By the definition of Rm, we seek all values
0 � θ � 2π such that

cos(θ − φs) � cos(θ − φm) ∀ s = 1, . . . , M. (4.6)

Observe that cos(θ − φm) achieves its maximum at θ = φm. Moreover, the mth cosine
curve intersects the sth cosine curve at θ = (φm + φs)/2 in the interval φ1 � θ � φM

(e.g., see figure 2). Thus, the dominant region Rm is given by the following range of values of θ:

1
2

(φm−1 + φm) � θ � 1
2

(φm + φm+1), m = 2, . . . , M − 1. (4.7a)

The cases m = 1 and m = M are studied by taking advantage of the periodicity of the solution
with respect to θ. Following similar arguments as before, one can then show that the dominant
regions R1 and RM are respectively given by the ranges

12



J. Phys. A: Math. Theor. 55 (2022) 305701 G Biondini et al

Figure 2. Cosine curves cos(θ − φm) for φ1 = −4π/5 (red), φ2 = −π/2 (orange) and
φ3 = 5π/12 (purple) and their respective intersection points. The ranges of values of θ
corresponding to the dominant region for each phase are also shown (with corresponding
colors) at the bottom of the plot.

1
2

(φM + φ1) − π � θ � 1
2

(φ1 + φ2), (4.7b)

1
2

(φM−1 + φM) � θ � 1
2

(φM + φ1) + π. (4.7c)

Note the −π shift in the first inequality of (4.7b) and the π shift in the second inequal-
ity of (4.7c). These shifts arise because there are two values of θ such that cos(φ1 − θ) =
cos(φM − θ). Unlike what happens when m = 2, . . . , M − 1, however, the value at which φ1

and φM are the dominant phases occurs outside the range φ1 � θ � φM. This is the second
time we encounter such a π shift (the first one being the shift in the directions of the solitons
associated to the pivots in theorem 3.6), and a similar shift will reappear throughout this work
(e.g., see part (b) of theorem 5.3, parts (c) and (4) of lemma 6.1 and part (b) of theorem 6.6).

Once the dominant regions are known, the transition lines are easily identified. Specifi-
cally, each dominant region Rm corresponds to the range θm,− < θ < θm,+, with the angles
θm,± (in increasing order) identifying the transition lines between these regions (and therefore
their boundaries). In light of the above discussion, these angles are given by

θ1,− =
1
2

(φM + φ1) − π, (4.8a)

θm−1,+ = θm,− =
1
2

(φm−1 + φm), m = 2, . . . , M, (4.8b)

θM,+ =
1
2

(φM + φ1) + π. (4.8c)

In conclusion, as θ increases within a 2π range, the following dominant phase transitions
take place consecutively: 1 → 2 → · · · → M and M → 1. For m = 2, . . . , M, the angles
θm−1,+ = θm,− are within the range [−π, π). Moreover, θM,+ = θ1,− + 2π. Note however, that
only one between θ1,− and θM,+ is within the range [−π, π). For consistency, one needs to use
the value within this range in the discussion.

�

Remark 4.2. The scalar case of soliton solutions of the defocusing DSII system is analog to
the scalar case of the soliton solutions for the KP equation [39]. The crucial difference is the
fact for the KP equation one can distinguish between outgoing line solitons (i.e., asymptotic

13



J. Phys. A: Math. Theor. 55 (2022) 305701 G Biondini et al

solitons as y →∞) and incoming line solitons (i.e., asymptotic solitons as y →−∞). In the
DS system, in contrast, no such distinction is possible and one can have arbitrary numbers of
asymptotic solitons above or below the x-axis depending on the value of the phase parameters
(as will also be true in the general case N > 1), except for the following:

Lemma 4.3. When M > 2, the solution generated by any collection of phase parameters
φ1, . . . ,φM there is always at least one asymptotic soliton strictly above and at least one strictly
below the x-axis.

proof. We prove the result for the upper half-plane. By way of contradiction, suppose that
we have a collection of phase parameters such that the resulting soliton configuration only has
asymptotic line solitons in the lower half-plane (including the x-axis), thus implying that there
is a single dominant region Rm, for some m ∈ [1, M], containing all of the upper half-plane
(i.e., the whole range −π/2 � θ � π/2). Therefore, we must have that

−π � θm,− � −π/2, π/2 � θm,+ < π. (4.9)

If 2 � m � M − 1, recalling (4.8b), the conditions θm,− < π/2 and θm,+ � π/2 imply φm+1 −
φm−1 > 2π. But this is impossible, since φm ∈ [−π, π). Hence (4.9) can never be satisfied for
m = 2, . . . , M − 1.

It remains to exclude the possibility that m = 1 or m = M. If m = 1, (4.9) and (4.8a) together
imply 0 � φ1 + φM � π and π � φ1 + φ2 < 2π. Since φ2 < φM, however, it is impossible to
have φ1 + φ2 � π and φ1 + φM � π. Hence (4.9) can never be satisfied for m = 1. Finally,
if m = M, one can similarly show that (4.9) and (4.8c) imply φ1 + φM � −π and φM−1 +
φM � −π, which is impossible since φ1 < φM−1.

�

Figure 3 shows temporal snapshots of a scalar soliton solution of the defocusing DSII
equation, generated by N = 1 and M = 4. Note how, even though the direction and amplitude
of each asymptotic line soliton remain unchanged, the overall spatial pattern of the solution is
time dependent, demonstrating that, like in the KP equation, none of these are traveling wave
solutions when M > 2. Note also how the horizontal soliton is absent from Q(x, y, t) (i.e., the
amplitude of its bright component is zero, consistently with the discussion in section 3.1), but
is present in q(x, y, t).

Figure 4 shows three further scalar soliton solutions generated by N = 1 and M = 4: a first
one with three solitons in the upper-half plane and one in the lower-half plane (left), a second
one with two solitons in the upper-half plane and two in the lower-half plane (center), and a
third one with one soliton in the upper-half plane and three solitons in the lower-half plane
(right). (A soliton solution with three asymptotic solitons above the x axis and one below
can also be generated by simply adding or subtracting π to the phase parameters in the third
panel.) These examples demonstrate that solutions with arbitrary nonzero numbers of solitons
in the upper-half and lower-half plane, and therefore no statement stronger than lemma 4.3 is
possible. Note also that the condition M > 2 in lemma 4.3 is needed, since M = 2 yields one-
soliton solutions, which when φ1 + φ2 = 0 are horizontal, and therefore not strictly in either
the upper-half or lower-half plane.

4.3. Y-shape, V-shape and L-shape solutions and soliton reconnection

As shown in the central column of figure 3 and in figure 4, several solitons can intersect simul-
taneously at certain discrete values of time. However, the general interaction pattern between
the various solitons in all scalar solutions is a Y-shape vertex, in which exactly three solitons
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Figure 3. Temporal snapshots of a ‘scalar’ soliton solution of the defocus-
ing DSII equation, generated by N = 1 and M = 4 with (φ1,φ2,φ3,φ4) =
(−3π/5,−π/4, π/4, 3π/4). Top row: |q(x, y, t)|. Bottom row: Q(x, y, t). Left column:
t = −5. Center column: t = 0. Right column: t = 5.

Figure 4. Three further soliton solutions of the defocusing DSII equation with
N = 1 and M = 4 at t = 0. Here and in all subsequent figures, only the bright field
Q(x, y, t) is shown for brevity. Left: (φ1, . . . ,φ4) = (−π/2,−π/4, π/6, π/2), resulting
in three asymptotic solitons above the x-axis and one below. Center: (φ1, . . . ,φ4) =
(−5π/6,−3π/8, 0, π/3), resulting in two asymptotic solitons above the x-axis and two
below. Right: (φ1, . . . ,φ4) = (−5π/6,−π/2, 3π/8, 3π/4), resulting in one asymptotic
line soliton above the x-axis and three below. Note that like in figure 3, none of these are
traveling wave solutions of the DS system, and the relative positions of the individual
solitons change in time, similarly to what happens in figures 3 and 6 and so on.

merge. This is similar to what happens for the KPII equation [11, 39]. A Y-shape solution,
obtained with N = 1 and M = 3, is shown in the left panel of figure 5. This fundamental solu-
tion will be discussed more in detail in section 5.2, and the Y-shape interaction pattern makes
up the building block of all fully resonant solutions, which are also discussed in section 5.2.
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Figure 5. Soliton solutions with N = 1 and M = 3 displaying a Y-shape, a V-shape
and an L-shape pattern, respectively: left: (ϕ1,ϕ2,ϕ3) = (−π/2, π/2, π). Cen-
ter: (φ1, . . . ,φ3) = (π/4, π/2, 3π/4). Right: (φ1, . . . ,φ3) = (−π/4, π/4, 3π/4). As in
figure 4 and in all subsequent figures, only contour plots of Q(x, y, t) are shown for
brevity. And like one-soliton solutions, all of these are traveling wave solutions of the
DS system.

At the same time, recall that the amplitude of the bright component of any horizontal solitons
is zero, as we saw in section 3.1. We now show that this feature gives rise to novel behavior
in the solutions of the defocusing DSII system compared to the KP equation: V-shape and
L-shape solutions. Consider solutions of the defocusing DSII system with N = 1, M = 3. When
φi + φ j = π for any two indices i, j out of 1, 2 or 3, one of the three asymptotic line solitons
[1, 2], [2, 3] and [1, 3] will be aligned horizontally, and will therefore be absent from the bright
component. As a result, the bright component Q(x, y, t) of the resulting solution will exhibit
a V-shape pattern or an L-shape pattern (which the particular configuration depending on the
particular choice of angles). Figure 5 shows one examples of each type. (Of course the dark
field q(x, y, t), not shown, will still exhibit a Y-shape dark-soliton pattern, since the amplitude
of the dark field never vanishes.) When M = 3, it is not possible for more than one choice of
indices i and j to satisfy the condition φi + φ j = π. However, this is possible when M � 4.
Later on we will see examples of solutions in which the condition is satisfied by more than one
pair of indices.

Another novel phenomenon in the DSII system compared to the KP equation, partially
related to the above, is that of ‘soliton reconnection’, an example of which was first presented
by Nishinari et al [42]. This phenomenon occurs when there are two (or more) pairs of soli-
tons with the same amplitude and direction but opposite velocity. For example, the simplest
realization of this phenomenon occurs when there are solitons along directions θ = θ1 and
θ1 + π with the same amplitude but opposite velocity, and similarly at θ = θ2 and θ2 + π.
Based on the above discussion, this requires N = 1 and M = 4, together with φ3 = φ1 + π
and φ4 = φ2 + π. In this case the asymptotic line solitons identified by the index pairs
[1, 2], [3, 4], have the same amplitude and direction, but: (i) they are localized in opposite
quadrants of the xy plane (since θ3,4 = θ1,2 + π), and (ii) their velocity is opposite (since
k3,4 = −k1,2 but ω3,4 = ω1,2). The same is true for the asymptotic line solitons identified by
index pairs [2, 3] and [1, 4] (since the soliton corresponding to the index pair [1, 4] is local-
ized at a direction shifted by π, as per theorem 4.1, and again k1,4 = −k2,3 while ω1,4 = ω2,3).
The resulting solution shows each pair of opposite solitons getting closer, reconnecting, and
then separating from each other again, as shown in figure 6. Importantly, note that this is not
a two-soliton solution (in the sense of the definition that will be given in section 5), since the
asymptotic line soliton ray at a given value θ and the one localized at θ + π travel in opposite
directions as functions of t (as is evident in figure 6).
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Figure 6. Soliton solutions with N = 1, M = 4 and (φ1,φ2,φ3,φ4) =
(π/7, π/3, 8π/7, 4π/3), illustrating the phenomenon of soliton reconnection: from left
to right: t = −35, t = 0, t = 35.

5. Unrestricted solutions: fully non-resonant and fully resonant solutions

In section 6 we will show that the tau functions (2.17) generate solutions with M asymp-
totic line solitons as r →∞, independently of the value of N. Indeed, and similarly to the
KP equation [8], there is exactly one asymptotic soliton associated to each of the pivot and
non-pivot columns of the N × M coefficient matrix.

Remark 5.1. In what follows, it is convenient to deviate from the analysis for the KP
equation and differentiate the index pairs that identify the asymptotic line solitons depending on
whether they are associated to pivot or non-pivot indices. Specifically, we will use index pairs
[i, j] with i < j to label asymptotic line solitons associated to a non-pivot index j and index pairs
[i, j] with i > j label asymptotic line solitons associated to a pivot index i. In section 6 we will
then show that: (a) for each non-pivot index gn (n = 1, . . . , M − N) there is an asymptotic line
soliton identified by the index pair [in, gn], with in < gn, localized along the direction θ = θin,gn .
(b) For each pivot index en (n = 1, . . . , N) there is an asymptotic line soliton identified by an
index pair [ jn, en], with jn > en, localized along the direction θ = θen, jn + π.

By analogy with the KPII equation, we call N-soliton solutions those obtained when
M = 2N. This definition is not as consequential for the defocusing DSII system as for the
KP equation, because in the latter each N-soliton solution has exactly N solitons as y →∞
and N as y →−∞, whereas no such distinction exists for the former. However, there is a sub-
class of N-soliton solutions that has a precise analogy to the corresponding solutions of the
KPII equation: these are the elastic N-soliton solutions, which, similarly to the KP equation,
are defined as those N-soliton solutions such that, for each asymptotic line soliton along a
given direction θ, there is also an asymptotic line soliton along the direction θ + π, with the
same amplitude and velocity [8]. (Like with the KP equation, we call inelastic solutions those
N-soliton solutions for which the above conditions are not satisfied.)

It should be noted that in the KP equation, if two solitons have the same amplitude and
direction, they also have the same velocity. We have already seen, however, that in the DS
system this is not the case. Hence the need to also require that the velocities be the same, to
exclude phenomena like the soliton reconnection discussed in section 4.3. Based on the above
discussion, an equivalent way to characterize the elastic N-soliton solutions is as the solutions
with the property that, for any index pair [ j, i] associated to a pivot index i, there is also a
corresponding index pair [i, j] associated to a non-pivot index j, and vice versa.
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Before characterizing the most general multi-soliton solutions of the defocusing DSII sys-
tem in section 6, it is useful to discuss two simpler subclasses, which also provide two
particularly simple ways to generate elastic N-soliton solutions.

5.1. Non-resonant N-soliton solutions and reduction to the NLS equation

Apart from scalar solutions, the simplest soliton solutions of the DS system are generated when
M = 2N and the coefficient matrices have the smallest possible number of non-zero entries
compatible with the irreducibility condition. As in the KP equation, these matrices generate
fully non-resonant soliton solutions. The simplest such choice is

fn = eξ2n−1 + eξ2n , n = 1, . . . , N, (5.1)

By analogy with the KP equation, we will call these ordinary N-soliton solutions. In the sim-
plest case, N = 1, we recover the one-soliton solution. In the next simplest case, N = 2 and
M = 4, the tau functions have four phase combinations:

τ (n)
2,4 = 2(sin φ1 − sin φ3) eξ1,3−i(n+1/2)φ1,3

+ 2(sin φ1 − sin φ4) eξ1,4−i(n+1/2)φ1,4

+ 2(sin φ2 − sin φ3) eξ2,3−i(n+1/2)φ2,3

+ 2(sin φ2 − sin φ4) eξ2,4−i(n+1/2)φ2,4 . (5.2)

A corresponding solution will be shown in section 7.1. Similarly, figure 7 show an ordinary
soliton solution obtained from N = 3, corresponding to the coefficient matrix

A1 =

⎛
⎝1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1

⎞
⎠ . (5.3)

The resulting asymptotic line solitons are identified by the index pairs [1, 2], [3, 4], [5, 6] and
[2, 1], [4, 3], [6, 5], respectively. Even though the spatial pattern of the solution is not stationary,
all the soliton interactions are non-resonant. That is, like with the corresponding solutions for
the KP equation, none of the interacting solitons satisfy the resonance condition discussed in
section 5.2, with the result that each interaction vertex is X-shaped instead of Y-shaped (like
the solutions presented in sections 4.2 and 5.2).

However, (5.1) is not the only possible way to generate non-resonant soliton solutions.
Another family of nonresonant solutions is obtained by choosing

fn = eξn + (−1)N−n eξ2N−n+1 , n = 1, . . . , N. (5.4)

Figure 8 shows one such solution obtained with N = 3, corresponding to the coefficient matrix

A2 =

⎛
⎝1 0 0 0 0 1

0 1 0 0 −1 0
0 0 1 1 0 0

⎞
⎠ . (5.5)

The corresponding asymptotic solitons are identified by the index pairs [1, 6], [2, 5], [3, 4]
and [6, 1], [5, 2], [4, 3]. The choice of functions in (5.4) is important because it allows as a
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Figure 7. An ordinary three-soliton solution of the defocusing DSII equation
generated with N = 3, M = 6, coefficient matrix A1 from (5.3) and
(−16π/17,−5π/17,−π/17, 8π/17, 11π/17). From left to right: t = −15, t = 0,
and t = 15.

Figure 8. A non-resonant three-soliton solution of the defocusing DSII gen-
erated with N = 3, M = 6, coefficient matrix A3 from (5.7) and parameters
(−3π/4,−4π/7, 0, π/5, 2π/5, 5π/6). From left to right: t = −4, t = 0, and t = 3.

special case the reduction to y-independent solutions, that is, to dark soliton solutions of the
defocusing NLS equation. Indeed, by taking φn = −φN−n+1, we obtain

fn = e2y cos φn

[
eξ̃n+ξ0,n + (−1)N−n e−ξ̃n+ξ0,2N−n+1

]
, n = 1, . . . , N,

where ξ̃n = 2(x sin φn − t sin 2φn). The only dependence of the resulting tau functions on y
is then via the overall exponential factor exp[ cosφ1 + · · ·+ cosφM], which however cancels
out of (2.2). As a result, q and Q are both independent of y, and one recovers the well-known
dark-soliton solutions of the NLS equation [52].

Still further ways to generate non-resonant N-soliton solutions exist. The general case is
obtained by considering a subset of the partitions of the integers 1, . . . , 2N into two disjoint
sets of N elements each. It is straightforward to see that from any such partition one can define
a set {in, jn}N

n=1 of N index pairs such that 1 � i1 < i2 < · · · < iN < 2N and in < jn for all
n = 1, . . . , N. One can generate a non-resonant N-soliton solution of the DS equation corre-
sponding to any choice of index pairs which satisfies the condition ( jn < in′) ∨ ( jn > jn′ ) for
all 1 � n < n′ � N. This is done by choosing

fn = eξin + (−1)σneξ jn , n = 1, . . . , N, (5.6)
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Figure 9. A non-resonant three-soliton solution of the defocusing DSII gen-
erated with N = 3, M = 6, coefficient matrix A2 from (5.5) and parameters
(−3π/4,−π/6, 0,π/5,π/3, 5π/6). From left to right: t = −4, t = 0, and t = 4.

where σn is the number of values n′ = n + 1, . . . , N such that jn′ < jn. All of these choices
yield coefficient matrices A with only 2N nonzero entries, implying that the tau function has
only 2N nonzero corresponding terms. Also, all nonzero minors are equal to one. As a further
example, figure 9 shows an additional nonresonant soliton solution obtained with N = 3 and
coefficient matrix

A3 =

⎛
⎝1 0 0 0 0 −1

0 1 1 0 0 0
0 0 0 1 1 0

⎞
⎠ . (5.7)

The resulting asymptotic line solitons are identified by the index pairs [2, 3], [4, 5], [1, 6] as
well as [3, 2], [5, 4], [6, 1]. Further examples of nonresonant solutions will be presented in
section 7.1.

5.2. Fully resonant soliton solutions

Another distinguished class of solutions is that of fully resonant soliton solutions of the defo-
cusing DSII equation. These are obtained when all minors of the coefficient matrix A are
nonzero, and therefore the tau function has the maximum possible number of terms, which
is
(M

N

)
. One way to realize these solutions is to choose

fn = f (−n+1), n = 1, . . . , N (5.8)

(with f (0) = f ), which yields the analog of the solutions of the KP equation that also satisfy
the finite Toda lattice hierarchy [11]. When f1, . . . , fN are chosen according to (5.8), the tau
functions τ (n)

N,M in (2.8) are given by Toeplitz determinants:

τ (n)
N = det

⎛
⎜⎝

f (n) . . . f (n+N−1)

...
. . .

...
f (n−N+1) . . . f (n)

⎞
⎟⎠ . (5.9)

In general, a N × 2N coefficient matrix A with all nonzero minors contains N2 free parame-
ters after reduction to RREF. Equation (5.8) yields one particular choice of these parameters.
Indeed, choosing f1, . . . , fN according to equation (5.8) amounts to setting A =

(
K(0)

)t
. We
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then have A(m1, . . . , mN) = Δm1,...,mN �= 0 for all 1 � m1 < m2 < · · · < mN � M, implying

τ (n)
N,M = (2i)N(N−1)/2

∑
1�m1<...<mN�M

Δ2
m1,...,mN

eξm1,...,mN +i[n+(N−1)/2]φm1,...,mN , (5.10)

by virtue of lemma 2.3. All of these are nonsingular solutions of the DSII system which, when
N > 1 and M > 2, describe fully resonant behavior between line solitons.

The simplest such solution is the Y-shape soliton solution, which is obtained when N = 1
(scalar case) and M = 3. The corresponding tau functions are given by

τ (n)
1 = eξ1−inφ1 + eξ2−inφ2 + eξ3−inφ2 . (5.11)

The corresponding Y-shape solution describes a resonant interaction of three line solitons,
identified by the index pairs [1, 2], [1, 3] and [3, 1]. The resonance condition among three line
solitons with wavevectors ks j and frequencies ωs j , for j = 1, 2, 3, is

ks1 + ks2 = ks3 , ωs1 + ωs2 = ωs3 , (5.12)

and it is trivial to verify that this condition is satisfied for the three solitons generated by (5.11).
An example of the traveling-wave Y-shaped solution generated by (5.11) is shown in the left
plot of figure 5.

Similarly to what happens with the KP equation, the Y-shape solution is also a singular
limit of the ordinary two-soliton solutions of the DS equation. As mentioned earlier, ordinary
two-soliton solutions are given by the N = 2 tau functions obtained from (5.1). If φ2 = φ3,
one can factorize the exponential term exp[ξ(n)

1 + ξ(n)
2 + ξ(n)

4 ] from the tau functions (5.2). The
term then gives zero contribution to the solution, and the remaining part of the tau functions
are equivalent to the tau function τ (n)

1 in (5.11) up to a change of signs in two phases. Note
also that the condition φ2 = φ3 is nothing else but the resonance condition among two soli-
tons, and it describes the limiting case of an infinite phase shift in the ordinary two-soliton
solution.

In more complicated solutions (M > 3), the relative spatial arrangement of the solitons in
the finite xy-plane is not stationary (i.e., such solutions are not traveling wave solutions of the
DS system), and a number of intermediate segments appear (e.g., as in figures 3–6 above as
well as figures 10 and 11 below). Nonetheless, all of these solutions have in common the fact
that each of these segments is described by the same soliton solution expression (3.1) and (3.6),
in which the parameters (k,ω) satisfy the nonlinear dispersion relation (3.3). Hence, these line
segments are also true line solitons, even though that their spatial extension is finite. Moreover,
each interaction vertex (i.e., each point in the xy-plane at which different solitons are joined)
is locally Y-shaped, i.e., composed by three solitons whose parameters satisfy the resonance
condition (5.12), similarly to what happens for the KPII equation [11]. This is the reason why
solutions in which all minors of the coefficient matrix are called fully resonant.

In this work we are primarily concerned with characterizing the asymptotic line solitons,
i.e., solitons that extend to infinity in some direction. For the fully resonant solutions, we begin
with the following:

Lemma 5.2. If all minors of the coefficient matrix A are nonzero, for each value of θ the
dominant phase combination as r →∞ always contains consecutive phases (mod M).

proof. The proof is constructive. Consider a dominant region R corresponding to some
dominant phase combination ξm1,...,mN . Fix a value of θ such that (r, θ) ∈ R for r large
enough and consider the function f (φ) = cos(φ− θ). Observe that f achieves its maximum at
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Figure 10. A fully resonant solution of the defocusing DSII equation generated with
N = 2, M = 5 and (−5π/7,−4π/7, 0, π/5, 10π/13). Left to right: t = −20, t = 0, and
t = 10.

Figure 11. A fully resonant elastic three-solution of the defocusing DSII equation
generated with N = 3, M = 6 and (−3π/4,−π/2,−π/4, 0,π/4, 3π/4). Left to right:
t = −10, t = 0, and t = 8.

θ = φ. Then if φ j is the closest to θ (mod 2π) among all phases {φ1,φ2, . . . ,φM}, we have that
f (φ j) � f (φk) for all k = 1, . . . , j − 1, j + 1, . . . , M. Next, by the same argument, the phase
φm with the next largest value of f (φ) will be either j − 1 mod M or j + 1 mod M. Suppose it is
φ j−1. Once this phase is selected, the one with the next largest value of f (φ) will be labeled by
either j − 2 mod M or j + 1 mod M, and similarly if it is φ j+1. Proceeding in this way, we keep
choosing the next phase by always picking the largest possible value of f . We can continue this
process recursively until we have collected N phases {φi, . . . ,φi+N−1} (possibly with indices
modulo M due to periodicity) for some i such that f (φ j) < f (φk) for all φ j ∈ {φi, . . . ,φi+N−1}
and for all φk /∈ {φi, . . . ,φi+N−1}. Thus we have shown that the dominant region R corresponds
to the dominant phase combination ξi,...,i+N−1.

�

Theorem 5.3. If all minors of the coefficient matrix A are nonzero, the tau function (2.17)
generates a solution with a total of M asymptotic line solitons as r →∞. Specifically:

(a) There are M − N asymptotic line solitons identified by the index pairs [m, m + N] for
m = 1, . . . , M − N and localized along the direction θ = θm,m+N.

(b) There are N asymptotic line solitons identified by the index pairs [m, m + N − M] for
m = M − N + 1, . . . , M and localized along the direction θ = θm,m+M−N + π.

Proof. To prove part (a), we begin by choosing θ so that the corresponding dominant region
is R1,...,N. Note that such a value of θ can always be found, since all minors of A are nonzero.
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As θ increases clockwise, we must eventually cross the boundary of R1,...,N. Since the adjacent
dominant region must differ by only one phase and contain consecutive phase combinations,
we then know that the adjacent dominant region must be R2,...,N+1. By the same reasoning as
in the scalar case, we then also know that the boundary line must be given by θ = θ1,N+1 =
1
2 (φ1 + φN+1). Proceeding in the same fashion, namely steadily increasing θ, we will encounter
M − N boundary crossings, each located at an angle θ = θm,m+N = 1

2 (φm + φm+N ). Thus we
have identified M − N asymptotic line solitons labeled by the index pairs [m, m + N] for
m = 1, . . . , M − N.

To prove part (b), we again begin by choosing a particular value of θ. This time however
we take θ so that the corresponding dominant region is RM−N+1,...,M. As θ increases, we find
that a phase transition between φM−N+1 and φ1 takes place at θ = 1

2 (θM−N+1 + θ1) + π, where,
similarly to what happens in the proof of theorem 4.1, the π shift occurs because phases φ1

and φM−N+1 are among the dominant phases when θ is outside the range φ1 � θ � φM−N+1.
Therefore we have an asymptotic line soliton identified by the index pair [M − N + 1, 1].
Increasing θ progressively, consider the dominant region in which the N indices in the dominant
phase combinations are m, . . . , M and 1, . . . , m + N − M − 1, for some m = M − N, . . . , M.
As θ increases, we have a phase transition when cos(φm − θ) = cos(φm+N−M − θ). By sim-
ilar arguments as before, we know that this transition, identified by the indices m and
N − M + m, occurs when θ = 1

2 (φm + φm+N−M) + π. There are N such phase transitions. Thus
we have identified N asymptotic line solitons labeled by the index pairs [m, m + N − M] for
m = 1, . . . , N.

�

Remark 5.4. Since all minors of A are nonzero, the pivot indices and non-pivot indices of
A are respectively 1, . . . , N and N + 1, . . . , M. Thus, the indices i + N for i = 1, . . . , M − N in
part (a) of theorem 5.3 are precisely the non-pivot indices of A, while the indices i + N − M for
i = M − N + 1, . . . , M in part (b) are precisely the pivot indices. Note also that for the index
pairs [i, j] in part (a) we have i < j, while for the index pairs [i, j] in part (b) we have i > j, in
agreement with the labeling convention introduced earlier.

As an illustration of theorem 5.3, figures 10 and 11 show fully resonant solutions with N = 2
and M = 5 and with N = 3 and M = 6, respectively, generated by the coefficient matrices

A4 =

(
1 0 −1 −1 −1
0 1 3 2 1

)
, A5 =

⎛
⎝1 0 0 1 3 6

0 1 0 −1 −2 −3
0 0 1 1 1 1

⎞
⎠ . (5.13)

The asymptotic solitons of the first resulting solution are identified by the index pairs [1, 3],
[2, 4], [3, 5] (corresponding to the non-pivot indices) and [4, 1], [5, 2] (corresponding to the
pivot indices). Those of the second solution by the index pairs [1, 4], [2, 5], [3, 6] and [4, 1],
[5, 2], [6, 3] for the non-pivot and pivot indices, respectively. The second solution also provides
an example of a fully resonant elastic three-soliton solution. An example of a fully resonant
two-solution will be given in section 7.1, where all solutions obtained when N = 2 and M = 4
will be presented.

6. Unrestricted solutions: general case

We now turn to the most general case of unrestricted soliton solutions. Remarkably, after per-
forming the change from Cartesian coordinates to polar coordinates, one can follow exactly
the same analysis developed for the KP equation in [8]. For this reason, we limit ourselves
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to stating the results, only presenting those parts of the proofs that differ appreciably from
[8]. Note however that, even though the mathematical formalism carries over, the different
parametric dependence of the solution yields very different physical behavior for the resulting
solutions—as we already saw in the preceding sections.

Lemma 6.1. As r →∞ along the direction θ = θi, j =
1
2 (φi + φ j), with i < j, the following

inequalities hold for ξo = ξi = ξ j:

(a) If m ∈ {i + 1, . . . , j − 1}, then ξm > ξo.
(b) If m ∈ {1, . . . , i − 1, j + 1, . . . , M}, then ξm < ξo.

Similarly, as r →∞ along the direction θ = θi, j + π, with i < j, the following inequalities
hold ξo = ξi = ξ j:

(c) If m ∈ {i + 1, . . . , j − 1}, then ξm < ξo.
(d) If m ∈ {1, . . . , i − 1, j + 1, . . . , M}, then ξm > ξo.

proof. To prove the result, we express the difference of two phases ξm − ξm′ in polar
coordinates using (4.4) along the direction θ = θi, j. We take r large enough so that the term
proportional to r dominates, and we let m′ = i, which yields θi, j − 1

2 (φm + φi) = 1
2 (φ j − φm).

For m ∈ {i + 1, . . . , j − 1} we then have the inequalities 0 < 1
2 (φm − φi) < π and

0 < 1
2 (φ j − φm) < π, from which it follows that ξm − ξm′ > 0 as r →∞ along θ = θi, j.

By the same reasoning one may prove all remaining cases.
�

Similarly to the KP equation, it is useful to use the two submatrices P[i, j] and Q[i, j] with i < j
of the coefficient matrix A that were introduced in (3.9), which we rewrite here for convenience:

P[i, j] = A[1, 2, . . . , i − 1, j + 1, . . . , M], Q[i, j] = A[i + 1, . . . , j − 1]. (6.1)

Indeed, as with the restricted solutions discussed in section 3.3 and with the KP equation, P[i, j]

and Q[i, j] are instrumental in identifying the asymptotic line solitons of general line soliton
solutions of the defocusing DSII system. Specifically:

Lemma 6.2 (Vanishing minor conditions). Suppose that the index pair [i, j] with
i < j identifies an asymptotic line soliton along the direction θ = θi, j or θ = θi, j + π. Denote
the two dominant phase combinations along the corresponding direction by ξi,p1,...,pk ,q1,...,qs

and ξ j,p1,...,pk ,q1,...,qs , and let A(i, p1, . . . , pk, q1, . . . , qs) and A( j, p1, . . . , pk, q1, . . . , qs) be the
corresponding nonzero minors, with A[p1], . . . , A[pk] ∈ P[i, j] and A[q1], . . . , A[qs] ∈ Q[i, j].

(a) If [i, j] identifies an asymptotic line soliton as r →∞ along θ = θi, j + π, then:

1. All N × N minors obtained by replacing one of the columns
A[i], A[ j], A[q1], . . . , A[qs] from either A[i, p1, . . . , pk, q1, . . . , qs] or
A[ j, p1, . . . , pk, q1, . . . , qs] with any column A[p] ∈ P[i, j] are zero;

2. All N × N minors obtained by replacing one of the columns A[q1], . . . , A[qs] from
either A[i, p1, . . . , pk, q1, . . . , qs] or A[ j, p1, . . . , pk, q1, . . . , qs] with either A[i] or A[ j],
are zero.

(b) If [i, j] identifies an asymptotic line soliton as r →∞ along θ = θi, j, then:

1. All N × N minors obtained by replacing one of the columns
A[i], A[ j], A[p1], . . . , A[pk] from either A[i, p1, . . . , pk, q1, . . . , qs] or
A[ j, p1, . . . , pk, q1, . . . , qs] with any column A[q] ∈ Q[i, j], are zero;
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2. All N × N minors obtained by replacing one of the columns A[p1], . . . , A[pk] from
either A[i, p1, . . . , pk, q1, . . . , qs] or A[ j, p1, . . . , pk, q1, . . . , qs] with either A[i] or A[ j],
are zero.

proof. We prove part (a). Along the line θi, j + π the dominance of ξ∗ implies that
ξ∗ − ξm > 0 for all m ∈ {1, . . . , M} − {i, j}. However, by part (d) of lemma 6.1 we have
ξm − ξ∗ > 0. A contradiction unless the corresponding minors are zero. This proves part (1.)
of (a). To prove part (2.) of (a), note that, if any of A[q1], . . . , A[qs] are replaced by A[i] or
A[ j], then the phase combinations corresponding to the resulting minors are greater than the
dominant phase combinations along the direction θi, j + π. This is a contradiction unless the
corresponding minors are zero. Part (b) can be proved in a similar way using the first half of
lemma 6.1.

�

Lemma 6.3 (Span). Let A[p1], . . . , A[pk] ∈ P[i, j] and A[q1], . . . , A[qs] ∈ Q[i, j] be the
columns in the minors associated with the dominant pair of phase combinations of lemma
6.2.

(a) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along θ = θi, j + π, the
columns A[p1], . . . , A[pk] form a basis for the column space of the matrix P[i, j].

(b) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along θ = θi, j, the
columns A[q1], . . . , A[qs] form a basis for the column space of the matrix X−[i, j].

proof. We prove part (b). The proof of part (a) is similar and can be found in [8].
Since [i, j] identifies a line soliton along θi, j then the minors A[i, p1, . . . , pk, q1, . . . , qs] and
A[ j, p1, . . . , pk, q1, . . . , qs] are non-zero. So {A[q1], . . . , A[qs]} is a linearly independent set.
Thus any A[q] ∈ Q[i, j] can be written as

A[q] = aA[i] +
∑

1�m�k

bm A[pm] +
∑

1�m�s

cm A[qm]. (6.2)

By part (1.) of (b) of lemma 6.2 replacing any of A[i], A[pm] with A[q′] yields a zero minor.
Thus a, bm = 0 and the set {A[q1], . . . , A[qs]} is a basis for Q[i, j]

�

Lemma 6.4 (Rank conditions). Let r be the number of columns from P[i, j] and let s be
the number of columns from Q[i, j] in the minors associated with the dominant pair of phase
combinations of lemma 6.1.

(a) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along
θ = θi, j + π, with i < j, then rank(P[i, j]) = k � N − 1 and rank(P[i+1, j]) =
rank(P[i, j−1]) = rank(P[i+1, j−1]) = k + 1.

(b) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along θ = θi, j, with i < j,
then rank(Q[i, j]) = s � N − 1 and rank(Q[i−1, j]) = rank(Q[i, j+1]) = rank(Q[i−1, j+1]) =
s + 1.

Proof. We prove part (b), similarly to lemma 6.3. The rank of Q[i, j] is s � N − 1.
Since {A[i], A[p1], . . . , A[pk], A[q1], . . . , A[qs]} is a basis for RN then rank(Q[i−1, j]) =
rank(Q[i, j+1]) = s + 1. To see that rank(Q[i−1, j+1]) = s + 1 observe that

A[ j] = aA[i] +
∑

1�m�k

bmA[pm] +
∑

1�m�s

cmA[qm]. (6.3)
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Replacing any of A[i], A[pm] with A[q] results in a zero minor. Hence we can say a = 0 and
bm = 0 and rank(Q[i−1, j+1]) = s + 1.

�

Lemma 6.5. Consider an index pair [i, j] with 1 � i < j � M.

(a) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along the direction
θ = θi, j + π, the index i labels a pivot column of the coefficient matrix A. That is A[i] =
A[en] with 1 � n � N.

(b) If [i, j] with i < j identifies an asymptotic line soliton as r →∞ along the direction
θ = θi, j, the index j labels a nonpivot column of the coefficient matrix A. That is, A[ j] =
A[gn] with 1 � n � M − N.

We are now ready to state the main result of this section, which provides the analogue for
the defocusing DSII system of the characterization of the asymptotic line solitons of the KP
equation in [8]. We do so by restoring the labeling convention that was introduced in remark
5.1 and that was already adopted in all the examples presented in sections 4 and 5, whereby
index pairs [i, j] with i < j are used to label asymptotic line solitons associated to a non-pivot
index and index pairs [i, j] with i > j are used to label asymptotic line solitons associated to a
pivot index.

Theorem 6.6 (Asymptotic line solitons). Let τ (n)
N,M(x, y, t) be the tau functions in (2.14)

associated with a rank N, irreducible coefficient matrix A with non-negative minors.

(a) For each pivot index en, with n = 1, . . . , N, there exists a unique asymptotic soliton as
r →∞ along the direction θ = θi, j + π, and identified by the index pair [en, jn] 1 � en <
jn � M.

(b) For each nonpivot index gn, with n = 1, . . . , M − N, there exists a unique asymptotic soli-
ton as r →∞ along the direction θ = θi, j, and identified by the index pair [in, gn] with
1 � in < gn � M.

All the indices jn for n = 1, . . . , N and in for n = 1, . . . , M − N are uniquely determined by
the rank conditions in lemma 6.4.

We should point out that when all phase parameters φ1, . . . ,φM are restricted to the range
[−π/2, π/2), one also has θi, j ∈ [−π/2, π/2) for all i, j = 1, . . . , M. In that case, the predic-
tions of theorem 6.6 then reduce to those of theorem 3.6 for the restricted class of soliton
solutions discussed in section 3.3. Unlike theorem 3.6, however, theorem 6.6 also holds when
the restriction is lifted, and therefore applies to the full class of solutions presented in this
work.

7. Further examples

The general results of section 6 were already illustrated through the various examples provided
in sections 4 and 5. However, we now further elucidate those results by presenting several
additional examples of soliton solutions of the defocusing DSII equation.

7.1. Elastic and inelastic soliton solutions with N = 2 and M = 4

The next simplest class of solutions after the scalar case (i.e., N = 1, which was discussed in
section 4.2) is N = 2. Taking M = N = 2 generates solutions with q constant and Q identically
zero (cf the remarks in section 2). It is also straightforward to see that solutions generated with
N = 2 and M = 3 can be mapped into solutions generated with N = 1 and M = 3, since only
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three phase combinations appear in the tau function in both cases. Therefore, the first novel
case is N = 2 and M = 4, which is the subject of this section.

First of all, we note that the case N = 2 and M = 4 cannot be reduced to the case N = 1
and M = 4, since up to six distinct phase combinations can appear in the tau functions in the
former, whereas only four arise in the latter. (At the same time, the case N = 2 and M = 4 is also
inequivalent to the case N = 1 and M = 6 even though the same number of phase combinations
appear in the tau function, because the former gives rise to only four asymptotic line solitons,
compared to six asymptotic line solitons in the latter.) In light of this discussion, we classify
all the solutions obtained with N = 2 and M = 4 on the basis of the number of nonzero minors
(and therefore distinct phase combinations) appearing in the tau function as a result on the
particular entries of the coefficient matrix. Since the smallest number of nonzero minors for an
irreducible 2 × 4 matrix is 4, there are only three possibilities: 4, 5 or 6 nonzero minors. We
discuss each of them in turn.

The cases of four and six nonzero minors give rise to three inequivalent classes of elastic
two-soliton solutions, identified by the following three coefficient matrices:

Aord =

(
1 1 0 0
0 0 1 1

)
,

Aasym =

(
1 0 0 −1
0 1 1 0

)
,

Ares =

(
1 0 −1 −1
0 1 a2,3 a2,4

)
,

(7.1)

with a2,3 > a2,4 > 0. In particular, Aord and Aasym give rise to tau functions with four phase
combinations, with A(1, 2) = A(3, 4) = 0 for Aord and A(1,4) = A(2, 3) = 0 for Aasym. The cor-
responding asymptotic line solitons for these two solutions are identified by the index pairs
[1, 2], [3, 4] (as well as [2, 1] and [4, 3]) and [1, 4], [2, 3] (as well as [4, 1] and [3, 2]),
respectively, where in each case the first two index pairs identify the solitons associated to the
nonpivots and the last two index pairs those associated to the pivots. (Recall elastic N-soliton
solutions are those for which the index pairs associated to the pivots coincide with those associ-
ated to the non-pivots.) In contrast, Ares gives rise to tau functions with six phase combinations,
and the corresponding asymptotic line solitons are identified by the index pairs [1, 3], [2, 4]
(as well as [3, 1] and [4, 2]). These three classes of solutions are the analogue of the ‘ordinary’,
‘asymmetric’ and ‘resonant’ elastic two-soliton solutions of the KP equation [7, 33]. Examples
of the corresponding solutions are displayed in figures 12 and 13, respectively. Note that the
solutions generated by Aord and Aasym are non-resonant, and are traveling wave solutions of the
DS equation, and therefore only a single snapshot for each solution is presented in figure 12.
On the other hand, the resonant solution is not a traveling wave solution, and therefore figure 13
shows three temporal snapshots.

Solutions with five non-zero minors in the tau functions give rise to four inequivalent classes
of inelastic two-soliton solutions, identified by the following coefficient matrices:

AI =

(
1 1 0 −a
0 0 1 1

)
, AII =

(
1 0 −a −a
0 1 1 1

)
, (7.2a)

AIII =

(
1 0 0 −a
0 1 1 1

)
, AIV =

(
1 0 −a −1
0 1 1 0

)
, (7.2b)
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Figure 12. Soliton solutions of the defocusing DSII equation generated by N = 2 and
M = 4 with (−11π/13, −π/2, π/2, 3π/4). Left: ‘ordinary’ solution generated by the
matrix Aord in (7.1). Right: ‘asymmetric’ solution generated by the matrix Aasym in (7.1).

Figure 13. Resonant soliton solution of the defocusing DSII equation generated by
N = 2 and M = 4 with (−12π/13,−π/4, π/3, 7π/9) and coefficient matrix Ares in (7.1).
Left: t = −10. Center: t = 0. Right: t = 10.

with a > 0. The corresponding zero minors are, respectively, A(1, 2), A(3, 4), A(2, 3) and
A(1, 4). Examples of the corresponding solutions are displayed in figures 14–17. The resulting
asymptotic line solitons are:

AI : [1, 2], [2, 4], [3, 1], [4, 3],

AII : [1, 3], [3, 4], [2, 1], [4, 2],

AIII : [2, 3], [1, 4], [3, 1], [4, 2],

AIV : [1, 3], [2, 4], [4, 1], [3, 2],

where in all four cases, the first two index pairs listed label the asymptotic line solitons associ-
ated with the pivots and the last two index pairs those associated with the nonpivots. As can be
seen either from the above lists of index pairs or from figures 14–17, all four of these cases yield
inelastic two-soliton solutions, i.e., two-soliton solutions for which the index pairs associated
to the two pivot indices do not all coincide with those associated to the nonpivot indices, and
in which, as a result, no symmetry is present between asymptotic line solitons along directions
θ and θ + π.
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Figure 14. Inelastic two-soliton solution of the defocusing DSII equation generated
by N = 2, M = 4 and coefficient matrix AI in (7.2) with a = 1 and phase parameters
(−11π/13, π/2,π/11, 3π/4). Left to right: t = −3, t = 0, t = 3.

Figure 15. Same as figure 14, but for the coefficient matrix AII in (7.2).

Figure 16. Same as figure 14, but for the coefficient matrix AIII in (7.2).

7.2. Partially resonant solutions

As our final set of examples, we present solutions that do not fall in any of the various cate-
gories discussed earlier: partially resonant solutions. These are defined as any solutions that
are neither completely non-resonant (such as the solutions presented in section 5.1) nor fully
resonant (such as the solutions presented in section 5.2). An equivalent characterization of
partially resonant solutions is as the class of soliton solutions that are generated by coefficient
matrices with more than 2N nonzero minors but less than the maximum possible number

(M
N

)
.

We have already seen examples of partially resonant solutions in the inelastic 2 × 4 solu-
tions shown figures 14–17, for which one can indeed see that some of the interaction vertices
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Figure 17. Same as figure 14, but for the coefficient matrix AIV in (7.2).

Figure 18. An inelastic solution of the defocusing DSII equation generated by N = 3
and M = 6 with (−16π/19,−10π/19,−π/19, 0, 10π/19, 17π/19) and matrix A3×6,I in
(7.3a). Left to right: t = −12, t = 0, and t = 8.

Figure 19. An elastic solution of the defocusing DSII equation generated by N = 3 and
M = 6 with (−5π/6,−π/3, 0, π/6, π/2, 4π/6) and matrix A3×6,II in (7.3b). Left to right:
t = −16, t = 0, and t = 16.

are X-shapes and some are Y-shapes. In a similar vein, figures 18–20 show three different
partially resonant solutions with N = 3 and M = 6 generated by the following coefficient
matrices:

A3×6,I =

⎛
⎝1 1 1 0 0 0

0 0 0 1 0 −1
0 0 0 0 1 2

⎞
⎠ , (7.3a)
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Figure 20. An inelastic solution of the defocusing DSII equation generated by N = 3
and M = 6 with (−5π/6,−π/3, 0, π/6, π/2, 4π/6) and matrix A3×6,III in (7.3c). Left to
right: t = −10, t = 0, and t = 13.

A3×6,II =

⎛
⎝1 0 0 1 1 1

0 1 0 −2 −2 −1
0 0 1 2 1 0

⎞
⎠ , (7.3b)

A3×6,III =

⎛
⎝1 0 −1 −1 0 2

0 1 2 1 0 −1
0 0 0 0 1 1

⎞
⎠ . (7.3c)

The corresponding asymptotic line solitons are:

A3×6,I : [1, 2], [2, 3], [4, 6], [3, 1], [5, 4], [6, 5],

A3×6,II : [1, 4], [3, 5], [2, 6], [4, 1], [6, 2], [5, 3],

A3×6,III : [1, 3], [2, 4], [3, 6], [4, 1], [5, 2], [6, 5].

The solution produced by A3×6,I, depicted in figure 18, is a non-interacting nonlinear superpo-
sition of 2 Y-shape solutions, resulting in an inelastic collection of six solitons. The solution
produced by A3×6,II, depicted in figure 19, is a partially resonant elastic three-soliton solution.
Finally, the solution produced by A3×6,III, depicted in figure 20, is another example of an inelas-
tic interactions between six solitons. In all three of these cases, the local interaction patterns
display a mix of Y-shape and X-shape vertices. For example, for the elastic solution produced
by A3×6,II, the pairwise interaction among solitons [1, 4] and [2, 6] and that among solitons
[1, 4] and [3, 5] are both resonant, but the pairwise interaction among solitons [2, 6] and [3, 5]
is nonresonant.

8. Concluding remarks

In this work we studied the multi-soliton solutions of the defocusing DSII equation. In partic-
ular, we classified a large class of soliton solutions obtained from the Wronskian formalism.
The classification is based on a relatively small number of key ‘ingredients’: (i) the Wronskian
representation of the solutions, (ii) the transformation to polar coordinates, and (iii) the use of
the methodology originally developed for the KP equation in [8]. We showed that a restricted
class of solutions are in direct correspondence with the soliton solutions of the KPII equation.
At the same time, we showed that there exist a large class of solutions of the defocusing DSII
system that have no counterpart in the KP equation. In this sense, the solitonic sector of the
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defocusing DSII equation can therefore be said to be richer than that of the KP equation. Still,
once a determinant form for the solution has been obtained, and once appropriate coordinates
have been identified (in our case polar coordinates), one finds a similar structure of solutions
across many different systems, such as the KP equation [7, 8, 11, 14, 15], a coupled system
of KP-type [28, 29], the DKP equation [34], and the two-dimensional Toda lattice [12, 38],
demonstrating the existence of a universal structure for these solutions.

It might be worthwhile to point out that, even though the calculation of all the rank condi-
tions that are necessary to identify the asymptotic line solitons produced by a given coefficient
matrix might be a somewhat tedious task, it is nonetheless a task that is easily automatized and
that can therefore be performed via a suitable symbolic computer software.

The classification framework presented in this work should make it possible to investigate
in detail further properties of the multi-soliton solutions. For example, an open question is
whether for N > 1 one can identify subclasses of solutions for which precise statements about
the number of solitons in the upper-half plane and the lower-half plane. An obvious but impor-
tant open question is whether these solutions are stable with respect to localized perturbations.
A further open problem is the analogue of the so-called ‘direct’ problem for the KP equation
[7], namely, the problem of identifying whether it is possible to construct multi-soliton solu-
tions with a given, specified choice of soliton directions and amplitudes. In the case of the
defocusing DSII equation, this problem is made more difficult by the more complicated depen-
dence of the amplitude and direction on the phase parameters compared to the KP equation.
Finally, a challenging problem will be that of characterizing the time evolution of ‘essentially
non-solitonic’ initial conditions, i.e., initial conditions that are not simply a localized pertur-
bation of an exact multi-soliton solution, such as a single ‘bent’ soliton, for example. Recent
results for the KP equation indicate that Whitham modulation theory can be an effective tool
to study this last problem [48–50]. We hope that the results of this work will motivate further
study on these and other related questions.
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