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Abstract
We characterize initial value problems for the defocusing Manakov system
(coupled two-component nonlinear Schrödinger equation) with nonzero back-
ground and well-defined spatial parity symmetry (i.e., when each of the com-
ponents of the solution is either even or odd), corresponding to boundary value
problems on the half line with Dirichlet or Neumann boundary conditions at the
origin. We identify the symmetries of the eigenfunctions arising from the spa-
tial parity of the solution, and we determine the corresponding symmetries of
the scattering data (reflection coefficients, discrete spectrum and norming con-
stants). All parity induced symmetries are found to be more complicated than
in the scalar (i.e., one-component) case. In particular, we show that the discrete
eigenvalues giving rise to dark solitons arise in symmetric quartets, and those
giving rise to dark–bright solitons in symmetric octets. We also characterize
the differences between the purely even or purely odd case (in which both com-
ponents are either even or odd functions of x) and the ‘mixed parity’ cases (in
which one component is even while the other is odd). Finally, we show how, in
each case, the spatial symmetry yields a constraint on the possible existence of
self-symmetric eigenvalues, corresponding to stationary solitons, and we study
the resulting behavior of solutions.
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1. Introduction

In many physical contexts, the dynamics of multi-component nonlinear physical systems is
governed by coupled systems of evolution equations of nonlinear Schrödinger (NLS) type.
These include, for example, Bose–Einstein condensates (BECs) [31, 37] and nonlinear optics
[32, 36], among others. The special case of coupled two-component NLS equations in which
the strength of self-phase modulation terms equals that of cross-phase modulation terms is
referred to as the Manakov system. The Manakov system is also completely integrable and,
as such, its initial value problem (IVP) can in principle be solved by the inverse scattering
transform (IST), a nonlinear analogue of the Fourier transform. For these reasons, the Manakov
system continues to receive considerable attention from the research community.

The IVP for the scalar NLS equation and for the Manakov system with localized fields
(i.e., zero boundary conditions at infinity) was first formulated in 1972 and 1974, respectively
[34, 45], and was later generalized to multi-component and matrix NLS systems [6]. In
many physical situations, the typical spatial scales of the dynamical structures are much
narrower than those of the nonlinear medium in which they appear (for example, see
[8, 29, 30, 35, 43, 44] for BECs). These situations are appropriately modeled by fields with
finite (i.e., nonzero) background densities, which in turn are described mathematically by
nonzero boundary conditions (NZBC) at space infinities.

It is well known that the IST with NZBC is more challenging than with localized fields, even
for the scalar NLS equation (e.g., see [14, 16, 23, 24, 46]). The IST for the defocusing Manakov
system with NZBC was first formulated in [38], and later revisited in [15, 21], and the IST for
the focusing Manakov system with NZBC was formulated in [33]. The main motivation for
the present work is provided by recent analytical and numerical studies [39, 40] on repulsive
scalar and two-component BECs in which the initial system configurations possess a definite
parity symmetry. These kinds of configurations are the easiest ones to generate experimentally,
and they also give rise to a variety of interesting phenomena.

The two-component repulsive BECs mentioned above can be modeled, under appropriate
assumptions (e.g., the absence of a trapping potential), by the defocusing Manakov system.
The goal of the present paper is therefore to characterize the defocusing Manakov system with
spatial parity. We write the defocusing Manakov system in the form

iqt + qxx − 2(‖q‖2 − q2
o) q = 0, (1.1)

where q(x, t) = (q1, q2)T is a complex-valued column vector function, and subscripts x and t
denote partial differentiation. Here, the quantity qo > 0 is the background amplitude of the
medium (but its explicit presence in (1.1) can be removed by a simple gauge transformation).
Specifically, we study solutions of (1.1) satisfying the following NZBC at infinity:

lim
x→±∞

q(x, t) = q± = qo e±iθ, (1.2)

with qo = ‖qo‖ > 0. Note that we have restricted the boundary conditions q± to be parallel
to each other. Moreover, the asymptotic phases were chosen as θ+ = −θ− = θ, which can be
done without loss of generality thanks to the phase invariance of (1.1); the reflection symmetry
then allows us to restrict ourselves to the range 0 � θ � π/2.

The condition that q± be parallel does not preclude the possible presence of a relative phase
between the two components. Such a phase can always be removed using the invariance of
the Manakov system (1.1) under unitary transformations. In fact, hereafter we will often take
advantage of this invariance to set q± = (0, q±)T, i.e., we will restrict ourselves to the case in
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which the first component vanishes as x →±∞ while the second component satisfies NZBC,
which can always be done without loss of generality whenever (1.2) holds. In that case will then
refer to q1 and q2 respectively as the ‘bright’ and ‘dark’ components, since the soliton solutions
then comprise bright solitons in the first component and dark solitons in the second component.
(For consistency with the literature, however, we will still call these solutions ‘dark–bright’
solitons.)

When both components of the initial condition (IC) q(x, 0) have a well-defined spatial parity,
i.e., if qj(−x, 0) = ν jq j(x, 0) for all x ∈ R, with ν j = ±1 for j = 1, 2, this parity is preserved
by the time evolution, i.e., qj(−x, t) = ν jq j(x, t) for all x ∈ R, t > 0. (The constants ν1 and ν2

disappear from the term ‖q(x, t)‖2 in (1.1). As a result, qj,t(x, t) inherits the same symmetries
as qj(x, 0).) Note that ν1 and ν2 need not be the same. Accordingly, we can distinguish four
scenarios:

(a) Even ICs: ν1 = ν2 = 1.
(b) Odd ICs: ν1 = ν2 = −1.
(c) Even–odd ICs: ν1 = 1 and ν2 = −1.

(d) Odd–even ICs: ν1 = −1 and ν2 = 1.

Obviously the last two scenarios do not arise in the scalar NLS equation, and are therefore
novel features of the two-component setting. We will see that these ‘mixed parity’ cases are
not equivalent to cases (a) or (b), and yield different results.

We point out that in principle the mixed cases (c) and (d) could be viewed as equivalent
upon a simple switch of the components of the solution, which is of course allowed in general
for the Manakov system. However, the symmetry between the components is broken when one
requires the first component to vanish at infinity, i.e., when identifying q1 and q2 respectively
as the bright and dark components (as we will do through parts of section 3 and throughout
sections 4 and 5), since the choice of gauge breaks the unitary invariance of the system. Thus,
with this constraint, the two mixed cases are not equivalent, and must be therefore treated
separately.

Importantly, each of the above four types of ICs can be associated to a particular boundary
value problem (BVP) for the Manakov system on the half line 0 < x < ∞ with a specific
boundary condition (BC) at x = 0, with the equivalence obtained by extending the solution
of the BVP to the full line via the corresponding odd or even extension for each component.
Specifically:

(a) Even ICs are equivalent to BVPs with homogeneous Neumann BCs, i.e., qx(0, t) = 0.
(b) Odd ICs are equivalent to BVPs with homogeneous Dirichlet BCs, i.e., q(0, t) = 0.
(c) Even–odd ICs are equivalent to BVPs with homogeneous Neumann and Dirichlet BCs

for the first and second component, respectively, i.e., q1,x(0, t) = q2(0, t) = 0.
(d) Odd–even ICs are equivalent to BVPs with homogeneous Dirichlet and Neumann BCs

for the first and second component, respectively, i.e., q1(0, t) = q2,x(0, t) = 0.

Therefore, the results of the present work also provide for the first time a characterization
of certain BVPs for the Manakov system with NZBC at space infinity.

The connection between BVPs and IVPs with spatial parity via the IST was first explored
in [7], where the odd and even extensions to the full line were used to solve BVPs for the
scalar NLS equation with homogeneous Dirichlet and Neumann BC. Several researchers then
expanded on that first work to study BVPs for the scalar NLS equation with homogeneous
Robin BCs using a more general extension to the full line [9, 10, 13, 22, 28, 41]. Simi-
lar techniques were also generalized to study BVPs for the Manakov system with zero BC
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at infinity in [19, 20, 27, 42, 47]. In all the above cases, the spatial parity induces addi-
tional symmetries in the scattering data, and in the present work we will show that the same
is true for the Manakov system with NZBC. We should mention that much more general
kinds of BCs can be studied using the so-called Fokas method, or unified transform method
[12, 25, 26]. However, to the best of our knowledge, BVPs for the Manakov system with NZBC
at space infinity have not been considered with either approach before. The present work aims
at filling this gap.

The structure of this paper is the following. In section 2 we briefly review some essential
elements of the solution of the Manakov system with NZBC via the IST, which will be used
in the subsequent sections. In section 3 we identify the symmetries of the eigenfunctions and
scattering coefficients induced by the spatial parity of the initial conditions. In section 4 we
characterize the corresponding symmetries of the discrete spectrum and norming constants.
Finally, in section 5 we describe the resulting behavior of the solutions. Several calculations
and technical considerations are relegated to various appendices.

2. Essential elements of the IST for the Manakov system with NZBC

In this section we briefly review the essential elements of the IST for the Manakov system
with NZBC, in order to define the quantities that will be used in the later sections. We omit all
calculations, referring the reader to [15, 38] for all details (keeping in mind that here we use
the normalizations of [38], not those of [15]). Recall that the Lax pair for the Manakov system
is given by

vx = Xv, vt = Tv, (2.1)

where

X(x, t, k) = −ikJ + Q, T(x, t, k) = −2ik2J + iJ (Qx − Q2 + q2
o

)
− 2kQ, (2.2a)

J = diag(1,−1,−1), Q(x, t) =

(
0 qT

q∗ 02×2

)
, (2.2b)

and the superscript ∗ denotes complex conjugate throughout. Namely, q satisfies (1.1) if and
only if the overdetermined system (2.1) is compatible (i.e., vtx = vxt). The Jost eigenfunctions
are defined as

φ±(x, t, k) = Y±(k)eiΘ(x,t,k) + o(1), x →±∞, (2.3)

where

Θ = Λx −Ωt = diag(θ1, θ2,−θ1), (2.4a)

Λ = diag(−λ, k,λ), Ω = diag(2kλ,−(k2 + λ2),−2kλ), (2.4b)

and

λ2 = k2 − q2
o. (2.4c)

Here, Y±(k) are the matrices of asymptotic eigenvectors of the Lax pair, which can be chosen
as follows:

Y±(z) =

(
z 0 −q2

o/z

iq∗
± iq⊥

± −iq∗
±,

)
, (2.5)

4



J. Phys. A: Math. Theor. 55 (2022) 254001 A Abeya et al

where for any two-componentvector p = (p1, p2)T we write p⊥ = (p2,−p1)T. Like in the scalar
case, in order to remove the branching of the eigenfunctions in the spectral parameter k due to
their dependence on λ, it is convenient to introduce a uniformization variable z defined by the
conformal mapping

z = k + λ(k)

whose inverse is given by

k =
1
2

(z + ẑ∗), λ =
1
2

(z − ẑ∗),

with ẑ = q2
o/z∗, which maps the two sheets of the Riemann surface for k,λ into a single copy

of the complex z-plane.
If q(x, t) approaches q± sufficiently rapidly as x →±∞ for all t, the Jost eigenfunctions

are well-defined and continuous for all x, t, z ∈ R. Furthermore, since det Y±(z) = −2q2
oλ(z),

both φ+(x, t, z) and φ−(x, t, z) are fundamental matrix solutions of the Lax pair (2.1) for all
z ∈ R\{±qo}, and hence there exists a 3 × 3 invertible matrix A(z) such that

φ−(x, t, z) = φ+(x, t, z)A(z), z ∈ R\{±qo}. (2.6)

As usual, A(z) = (ai j(z)) is referred to as the scattering matrix. For future reference, we also
introduce the inverse matrix B(z) :=A−1(z) = (bi j(z)).

Two of the columns of the Jost eigenfunctions cannot be analytically continued off the real
z-axis, so one needs to introduce auxiliary eigenfunctions to obtain a complete set of eigen-
functions which are analytic in either the upper or the lower z-plane. This is done by using the
formal ‘adjoint’ of the Lax pair (2.1):

ṽx = X∗ṽ, ṽt = T∗ṽ. (2.7)

One can define the adjoint Jost solutions as the simultaneous solutions φ̃±(x, t, z) of (2.7) such
that

φ̃±(x, t, z) = Ỹ±(z)e−iΘ(x,t,z) + o(1), x →±∞, (2.8)

with Ỹ±(z) = Y∗
±(z). Two additional solutions of the original Lax pair (2.1) can then be obtained

from the adjoint Jost solutions as:

χ(x, t, z) = −eiθ2(x,t,z)J[φ̃−,3(x, t, z) × φ̃+,1(x, t, z)], (2.9)

χ̄(x, t, z) = −eiθ2(x,t,z)J[φ̃−,1(x, t, z) × φ̃+,3(x, t, z)]. (2.10)

Moreover, one can show that, for z ∈ R\{±qo}:

χ(z) = 2λ(z)[b33(z)φ+,2(z) − b23(z)φ+,3(z)] = 2λ(z)
[
a11(z)φ−,2(z)− a21(z)φ−,1(z)

]
, (2.11a)

χ̄(z) = 2λ(z)[b21(z)φ+,1(z) − b11(z)φ+,2(z)] = 2λ(z)
[
a23(z)φ−,3(z)− a33(z)φ−,2(z)

]
, (2.11b)

where the (x, t)-dependence in the eigenfunctions was omitted for simplicity. One can now
define two complete sets of eigenfunctions Ψ±(x, t, z) for the system (2.1) as:

Ψ+(x, t, z) = (φ−,1(x, t, z), χ(x, t, z), φ+,3(x, t, z)), z ∈ C
+ ∪ R, (2.12a)

Ψ−(x, t, z) = (φ+,1(x, t, z), χ̄(x, t, z), φ−,3(x, t, z)), z ∈ C
− ∪ R, (2.12b)
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with Ψ±(x, t, z) analytic for z ∈ C±, respectively. Furthermore, one can show that

det Ψ+(x, t, z) = −4q2
oλ

2(z)a11(z)b33(z)eiθ2(x,t,z), C
+ ∪ R, (2.13a)

det Ψ−(x, t, z) = 4q2
o λ

2(z)a33(z)b11(z)eiθ2(x,t,z), C
− ∪ R, (2.13b)

where a11(z) and b33(z) are analytic in C+, while b11(z) and a33(z) are analytic in C−.
For the NLS equation and the Manakov system with NZBC, the Lax pair admits two sym-

metries, which in terms of the uniformization variable z can be expressed as follows. The first
symmetry corresponds to the mapping z 	→ z∗ (C+/C−), under which one has

A†(z) = Γ(z)B(z)Γ−1(z), z ∈ R, (2.14a)

Γ(z) = diag(−q2
o/z, 2λ(z), z), (2.14b)

where the superscript ‘†’ denotes the conjugate transpose. The symmetries for the analytic
entries of the scattering matrix are then extended off the real z-axis using Schwartz reflection
principle. The second symmetry corresponds to the mapping z 	→ q2

o/z, and the corresponding
symmetries for the eigenfunctions are:

φ±(x, t, z) = φ±(x, t, ẑ)Π, χ(x, t, z) = χ̄(x, t, ẑ), z ∈ R, (2.15a)

where

Π =

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ . (2.15b)

In turn, (2.15a) induce the following relations for the scattering coefficients:

A(̂z∗) = ΠA(z)Π−1, z ∈ R. (2.15c)

The columns of Ψ±(x, t, z) become linearly dependent at the zeros of a11(z) and b33(z) and
those of a33(z) and b11(z), respectively (cf (2.13)). These zeros are the discrete eigenvalues of
the scattering problem. In the following we assume that none of these zeros lie on the real
z-axis (i.e., we exclude spectral singularities/embedded eigenvalues). It is convenient to intro-
duce the circle Co := {z ∈ C : |z| = qo} and the open disk Do = {z ∈ C : |z| < qo} of radius
qo, respectively. Then we label ζn for n = 1, . . . , N1 the zeros of a11(z) on Co ∩C+, and zn for
n = 1, . . . , N2 the zeros of a11(z) in Do ∩ C+. For each pair ζn, ζ∗n of discrete eigenvalues on
the circle, one then has a11(ζn) = a33(ζ∗n ) = 0, and

φ−,1(x, t, ζn) = cnφ+,3(x, t, ζn), φ−,3(x, t, ζ∗n ) = c̄nφ+,1(x, t, ζ∗n ), n = 1, . . . , N1,

(2.16a)

with

c̄n = cn, c∗n =
ζ∗n
ζn

b′
11(ζ∗n )

a′
33(ζ∗n )

c̄n. (2.16b)

Similarly, for each quartet of eigenvalues zn, z∗n, ẑn, ẑ∗n off the circle, one has a11(zn) = b11(z∗n) =
a33(̂z∗n) = b33(̂zn) = 0, and

φ−,1(x, t, zn) = dnχ(x, t, zn) ≡ dnχ̄(x, t, ẑ∗n), χ̄(x, t, z∗n) = d̄nφ+,1(x, t, z∗n) ≡ −d̄nφ+,3(x, t, ẑn),

(2.17a)
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for all n = 1, . . . , N2, with

d̄∗
n = 2 ẑ∗n λ(̂z∗n)b11(̂z∗n) dn. (2.17b)

Discrete eigenvalues on the circle Co correspond to dark–dark (or simply dark) solitons (i.e.,
solitons that appear as localized dips of intensity on the background field qo in both compo-
nents), which we also refer to simply as dark solitons, while discrete eigenvalues off Co give
rise to dark–bright solitons (i.e., solitons that appear as dark solitons in one component and
bright solitons in the other component). The soliton velocity V j is determined by the real part
of the discrete eigenvalue z j. (Explicitly, Vj = −2 Re z j, cf reference [38] but note that (1.1) is
obtained by letting t 	→ −t in [38].) Purely imaginary eigenvalues correspond to stationary soli-
tons, and the special case of a stationary dark–dark soliton, produced by a discrete eigenvalue
at z = iqo, is called a ‘black’ soliton.

The starting point for reconstructing the solution q(x, t) from the scattering data is the scat-
tering relation (2.6), which yields a jump condition for a matrix Riemann–Hilbert problem.
One can then reduce the solution of the inverse problem to a set of integral equations for the
following three modified vector eigenfunctions:

M1(z) = φ+,3(z) eiθ1(z), z ∈ C
+, (2.18a)

M2(z) = φ+,1(z) e−iθ1(z), M3(z) =
χ̄(z)

2λ(z) b11(z)
e−iθ2(z), z ∈ C

−. (2.18b)

Note that χ̄(z)/(2λ(z) b11(z)) remains analytic also at the zeros of b11(z). Moreover, these
eigenfunctions satisfy the integral equations

M1(z) = −
(

ẑ∗

iq∗
+

)
+

N1∑
n=1

γ̄n e−2iθ(ζn)

z − ζ∗n
M2(ζ∗n ) −

N2∑
n=1

δ̄∗n ei(θ2(zn)−θ1(zn))

z − ẑ∗n
M3(̂z∗n)

+
1

2πi

∫ ∞

−∞

dζ
ζ − z

[
ρ1(ζ)M2(ζ) e2iθ1(ζ) − ρ2(ζ̂∗)M3(ζ) ei(θ2(ζ)+θ1(ζ))

]
, z ∈ C

+,

(2.19a)

M2(z) =

(
z

iq∗
+

)
+

N1∑
n=1

γnz e−2iθ1(ζn)

z − ζn
M1(ζn) −

N2∑
n=1

δ̄∗nz ei(θ2(zn)−θ1(zn))

ẑ∗n(z − zn)
M3(̂z∗n)

− z
2πi

∫ ∞

−∞

dζ
ζ(ζ − z)

[
ρ1(ζ̂∗) e−2iθ1(ζ)M1(ζ)+ ρ2(ζ)M3(ζ̂∗)ei(θ2(ζ)−θ1(ζ))

]
, z ∈ C

−,

(2.19b)

M3(z) =

(
0

iq⊥
+

)
−

N2∑
n=1

δ̄nz
(z − ẑn)(z − z∗n)

M2(z∗n)ei(θ1(z∗n)−θ2(z∗n))

− 1
2πi

∫ ∞

−∞

dζ
ζ − z

[
ρ̄2(ζ) ei(θ1(ζ)−θ2(ζ))M2(ζ)+ ρ̄2(ζ̂∗)M1(ζ)e−i(θ1(ζ)+θ2(ζ))

]
, z ∈ C

−,

(2.19c)

where, as before, the (x, t)-dependence was omitted for brevity. Note that: (i) γn and γ̄n are the
norming constants associated to the discrete eigenvalues ζn, ζ∗n as given in (2.21) below (the
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first symmetry can then be used to express γn in terms of γ̄n, see (2.22)); (ii) δn and δ̄n are
the norming constants associated to the discrete eigenvalues zn, z∗n given in (2.21) (the second
symmetry has been used to eliminate from the system the norming constants associated to the
other 2 eigenvalues in the quartet; moreover, the first symmetry allows one to express δ̄n in
terms of δn, cf (2.22) below); (iii) the reflection coefficients are given by

ρ1(z) =
b31(z)
b11(z)

, ρ2(z) =
a12(z)
a11(z)

, ρ̄2(z) =
b21(z)
b11(z)

. (2.20a)

Note that only two of the above three coefficients are independent, since using the first
symmetry we have

ρ̄∗2(z∗) =
q2

o

q2
o − z2

ρ2(z). (2.20b)

The norming constants are defined in terms of the coefficients in (2.17) and (2.16) as follows:

γn =
cn

ζna′
11(ζn)

, γ̄n =
c̄n

a′
33(ζ∗n )

, (2.21a)

δn =
dn

zna′
11(zn)

, δ̄n = − d̄n

z∗nb′
11(z∗n)

, (2.21b)

and they can be shown to satisfy the symmetries

γn = −γ̄n/ζ
∗
n , γ̄∗

n = −γ̄n, δ̄∗n = 2ẑ∗nλ(zn)b11(̂z∗n)δn. (2.22)

Note in particular that the first two conditions require γ̄n to be purely imaginary.
One can reconstruct the scattering coefficient a11(z) in terms of scattering data (discrete

eigenvalues, norming constants and reflections coefficients) via the so-called ‘trace formula’,
and also obtain as a byproduct the so-called ‘theta condition’ relating the scattering data to the
asymptotic phase difference of the potential, respectively given by:

a11(z) =
N1∏

n=1

z − ζn

z − ζ∗n

N2∏
n=1

z − zn

z − z∗n
exp

{
− 1

2πi

∫ ∞

−∞

log[1 − R(ζ)]
ζ − z

dζ

}
, (2.23a)

eiΔ θ =

N1∏
n=1

ζn

ζ∗n

N2∏
n=1

zn

z∗n
exp

{
− 1

2πi

∫ ∞

−∞

log[1 − R(ζ)]
ζ

dζ

}
, (2.23b)

with ρ1(z), ρ2(z) as in (2.20a) and

R(z) =
z2

q2
o
|ρ1(z)|2 + q2

o

(z2 − q2
o)
|ρ2(z)|2, z ∈ R. (2.24)

The trace formula (2.23a) and the symmetry b11(z) = a∗
11(z∗) (cf (2.14)) then allow to express

δn in terms of δ̄n (cf (2.22)) in the linear system (2.19). (Note that limz→±qo ρ2(z) = 0, so R(z)
remains finite at the branch points. This was shown in detail in [15], and the same result
holds with our choice of normalizations.) For future reference, we also observe that (2.23a)
yields
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a′11(α j) =
1

(α j − α∗
j )

N1+N2∏
′

n=1

α j − αn

α j − α∗
n

exp

{
− 1

2πi

∫ ∞

−∞

log[1 − R(ζ)]
ζ − α j

dζ

}
, j = 1, . . . , N1 + N2,

(2.25)

where αk = ζk when k = 1, . . . , N1 and αk = zk−N1 for k = N1 + 1, . . . , N1 + N2, and prime
indicates that the term with n = j is omitted from the product.

One can reconstruct the potential q(x, t) of the Manakov system from M1, M2, M3 by com-
paring their asymptotics to that of the eigenfunctions obtained from the direct scattering
problem, obtaining

q(x, t) = q+ + i
N1∑

n=1

γ̄n

ζn
M(dn,∗)

1 (x, t, ζn) e−2iθ1(x,t,ζn) − i
N2∑

n=1

δ̄n

ẑn
M(dn,∗)

3 (x, t, ẑ∗n)ei(θ1(x,t,z∗n )−θ2(x,t,z∗n ))

− 1
2π

∫ ∞

−∞

{
ρ∗1(ζ̂)M(dn,∗)

1 (x, t, ζ)e2iθ1(x,t,ζ) − ρ∗2(ζ)M(dn,∗)
3 (x, t, ζ̂)ei(θ1(x,t,ζ)−θ2(x,t,ζ))

} dζ
ζ

,

(2.26)

where the superscript ‘(dn)’ denotes the lower two components of the vector eigenfunctions,
and ‘(dn,∗ )’ their complex conjugate.

In the reflectionless case, the integral terms in (2.26) are absent, and one can obtain a closed-
form determinantal expression for the multi-soliton solutions of the Manakov system with
NZBC:

q(x, t) =
1

det R∗

(
det Naug

1
det Naug

2

)
, (2.27)

where the explicit expressions for the (N1 + N2) × (N1 + N2) matrix R and for the augmented
(N1 + N2 + 1) × (N1 + N2 + 1) matrices Naug

1 and Naug
2 are given in appendix A.4. A determi-

nantal expression for the multisoliton solutions of the Manakov system was first given in [15].
Since [15] used a different normalization for the eigenfunctions, however, for completeness
we present the derivation of (2.27) in appendix A.4.

3. Solutions with parity: eigenfunctions and scattering coefficients

We now begin our study of solutions of the Manakov system with spatial parity. In this section
we characterize the additional symmetries of eigenfunctions and scattering coefficients. In
sections 4 and 5 we will then use the results of this section to obtain several results about
the behavior of solutions of the Manakov system.

It is convenient for what follows to introduce the matrices Dν1ν2ν3 = diag(ν1, ν2, ν3). For
example, with this notation one has J = D+−− = diag(1,−1,−1). Explicitly, we will use
D++− = diag(1, 1,−1) and D+−+ = diag(1,−1, 1).

3.1. Even initial conditions

Here we assume the IC q(x, 0) to be an even function of x, which, as mentioned above, implies
Q(x, t) = Q(−x, t) for all x, t ∈ R, as well as q+ = q−. In this case, one can show that if
v(x, t, k) is any solution of the Lax pair, then so is w(x, t, k) = Jv(−x, t,−k).
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Moreover, if k 	→ −k andλ 	→ −λ, then z 	→ −z, and if (x, t, z) 	→ (−x, t,−z), then ei(Λx−Ωt)

remains invariant. As to the asymptotic eigenvectors, if q+ = q−, then Y+(−z) = −JY−(z).
Therefore, comparing the boundary conditions of the Jost eigenfunctions one can verify that

φ±, j(−x, t,−z) = −Jφ∓, j(x, t, z), j = 1, 2, 3. (3.1)

Or, in matrix form:

φ∓(−x, t,−z) = −Jφ±(x, t, z). (3.2)

The adjoint Jost eigenfunctions satisfy the same symmetry (3.1) as φ±, and therefore from
(2.9) it follows that

χ̄(−x, t,−z) = −Jχ(x, t, z). (3.3)

Now, from φ−(x, t, z) = φ+(x, t, z)A(z) and φ−(−x, t,−z) = φ+(−x, t,−z)A(−z) we then find

A(−z) = A−1(z) (3.4)

or, entry-wise, ai j(−z) = bi j(z).
Next, we compute the symmetries of the reflection coefficients. Recall that the parity sym-

metry of the scattering coefficients for even ICs is ai j(−z) = bi j(z) for i, j = 1, 2, 3 (cf (3.4)).
Using the first and the second symmetry of the scattering matrix, one can obtain the following
induced parity symmetry of the reflection coefficients:

ρ1(−z) = −q2
o

z2

a11(̂z∗)
a11(z)

ρ∗1(̂z), ρ2(−z) = −a11(z)a11(̂z∗)
a∗

11(z)

[
ρ2(z) − z2

q2
o
ρ∗1(z∗)ρ2(̂z∗)

]
, z ∈ R,

(3.5)

with a11(z) as in (2.23a). Note that the parity-induced symmetry of the reflection coefficients
involves the discrete eigenvalues through a11(z). Note that, even though it was not explicitly
noted in earlier works, this is not a novel feature of the problem for the Manakov system,
since it also arises the scalar NLS equation, both with zero background [9, 13] and nonzero
background (see [18, 41] and appendix A.1).

3.2. Odd initial conditions

Now we assume the IC q(x, 0) is an odd function of x for all x ∈ R, and as a consequence
q+ = −q−. Direct computation shows that if v(x, t, k) is any solution of the Lax pair, then so
is w(x, t, k) = v(−x, t,−k).

As to the asymptotic eigenvectors, if q+ = q−, then Y+(−z) = −Y−(z). Therefore, com-
paring the boundary conditions of the Jost eigenfunctions it follows that

φ±, j(−x, t,−z) = −φ∓, j(x, t, z), j = 1, 2, 3, (3.6)

or, in matrix form

φ∓(−x, t,−z) = −φ±(x, t, z). (3.7)

The adjoint eigenfunctions satisfy the same symmetry (3.6) as φ±, and therefore from (2.9) it
follows

χ̄(−x, t,−z) = −χ(x, t, z). (3.8)
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Now, from φ−(x, t, z) = φ+(x, t, z)A(z) and φ−(−x, t,−z) = φ+(−x, t,−z)A(−z) we then find

A(−z) = A−1(z) (3.9)

or, entry-wise, ai j(−z) = bi j(z) where again bi j(z) denote the entries of A−1(z). As before,
one can easily verify the above symmetries are consistent with the representations of the
supplemental analytic eigenfunctions χ, χ̄ in terms of the Jost eigenfunctions on the real axis.

Importantly, although the parity-induced symmetries for the eigenfunctions are different for
even or odd initial conditions, the scattering matrix A(z) satisfies the same symmetry in both
cases. Therefore, the symmetries of the reflection coefficients in the odd case are also the same
as in the even case, namely (3.5). This may appear surprising, since the reflection coefficients
are the nonlinear analogue of the Fourier transform, and the symmetries of the Fourier trans-
forms of even and odd functions are different. In fact, even the reflection coefficient in the case
of BVPs with Neumann or Dirichlet BCs (corresponding to even or odd ICs, respectively) with
zero BC at infinity are different [7, 9, 13]. The fact that the situation is different in the case of
NZBC stems from the choice of normalization for the eigenfunctions.

3.3. Even–odd initial conditions

Next, we assume the IC q(x, 0) consists of components with mixed parities. We begin with the
case of an even first component and an odd second component w.r.t. x, i.e., q1(−x, 0) = q1(x, 0)
and q2(−x, 0) = −q2(x, 0) for all x ∈ R, which we call an even–odd IC. In vector form, one
has:

q(x, 0) = σ3 q(−x, 0). (3.10)

Equation (3.10) implies a more complicated symmetry for the matrix potential compared to
the case of even or odd ICs, namely:

Q(x) = D++−Q(−x)D++−. (3.11)

Then one can show that if v(x, t, k) is any solution of the Lax pair (2.1), then so is w(x, t, k) =
D+−+v(−x, t,−k).

As to the asymptotic eigenvectors, one can easily verify that if q± = σ3q∓, then

Y±, j(−z) = −D+−+Y∓, j(z), j = 1, 3, Y±,2(−z) = D+−+Y∓,2(z). (3.12)

Therefore, comparing the boundary conditions we find that the eigenfunctions satisfy the
following symmetry:

φ∓(−x, t,−z) = −D+−+φ±(x, t, z) D+−+. (3.13)

Now, from the scattering relation (2.6) evaluated at (x, t, z) and (−x, t − z), we find

A(−z) = D+−+A−1(z)D+−+ (3.14)

or entry-wise

a11(−z) = b11(z), a22(−z) = b22(z), a33(−z) = b33(z), (3.15a)

a12(−z) = −b12(z), a23(−z) = −b23(z), a31(−z) = b31(z), (3.15b)

a21(−z) = −b21(z), a32(−z) = −b32(z), a13(−z) = b13(z), (3.15c)
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where again bi j(z) denote the entries of A−1(z). The supplemental analytic eigenfunctions
satisfy

χ̄(−x, t,−z) = D+−+χ(x, t, z), (3.16)

which again on the real k-axis are consistent with equation (2.11).
Recall that the parity symmetry of the scattering coefficients for even–odd ICs is given by

equation (3.15). Using the first and the second symmetry of the scattering matrix, one can
obtain the following induced parity symmetry of the reflection coefficients,

ρ1(−z) = −q2
o

z2

a11(̂z∗)
a11(z)

ρ∗1(̂z), ρ2(−z) =
a11(z)a11(̂z∗)

a∗
11(z)

[
ρ2(z) − z2

q2
o
ρ∗1(z∗)ρ2(̂z∗)

]
, z ∈ R,

(3.17)

with a11(z) as in (2.23a).
In order for (3.10) to be compatible with the requirement (1.2) that q± be parallel, one

of the components of q± needs to be zero. (Even though the direct problem carries through
when q± are not parallel, the formulation of the inverse problem require this assumption.)
Without loss of generality, we can take q±,1 = 0, implying q+ = −q−. Importantly, note
q±,1 = 0 does not imply q1(x, t) ≡ 0. Nonetheless, requiring q±,1 = 0 means that q1(x, t)
and q2(x, t) are respectively the bright and dark components of the solution. With the addi-
tional constraint q+ = −q−, the symmetry (3.12) for the asymptotic eigenvectors simplifies
to Y+(−z) = −Y−(z), namely, the same symmetry as in the case of odd ICs. We emphasize,
however, that the symmetries of the eigenfunctions φ±(x, t, z) are still given by (3.13), because
they are determined by the relation between v(x, t, z) and w(x, t, z) above. In turn, the latter
is determined by the relation between Q(x, t) and Q(−x, t) for all x (i.e., (3.11)), not just its
limiting value as x →±∞. As a result, the symmetries with even–odd ICs do not coincide with
those for purely odd ICs, even when q±,1 = 0.

3.4. Odd–even initial conditions

Finally, we consider initial conditions corresponding to an odd first component and an even
second component w.r.t. x, i.e.,

q(x, 0) = −σ3 q(−x, 0), (3.18)

which we call an odd–even IC, and for which Q(x, t) = D+−+Q(−x, t)D+−+. In this
case, one can show that if v(x, t, k) is any solution of the Lax pair (2.1), then so is
w(x, t, k) = D++−v(−x, t,−k).

Also, the asymptotic eigenvectors are such that

D++−Y±, j(−z) = −Y∓, j(z), j = 1, 3, D++−Y±,2(−z) = Y∓,2(z),

(3.19)

i.e., Y+(z) = −D++−Y−(z)D+−+, and therefore the eigenfunctions satisfy the symmetry

φ∓(x, t, z) = −D++−φ±(−x, t,−z)D+−+. (3.20)

The adjoint eigenfunctions satisfy the same symmetry (3.20) as φ±, and therefore from (2.9)
it follows that

χ̄(−x, t,−z) = D++−χ(x, t, z). (3.21)
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Now, from φ−(x, t, z) = φ+(x, t, z)A(z) and φ−(−x, t,−z) = φ+(−x, t,−z)A(−z) we then find

A(−z) = D+−+A−1(z)D+−+. (3.22)

As before, one can check that the above symmetries are consistent with the representations
of the supplemental analytic eigenfunctions χ, χ̄ in terms of the Jost eigenfunctions on the
real axis. Note that the scattering matrix satisfies the same symmetry in both even–odd and
odd–even ICs. Therefore, the symmetries of the reflection coefficients in the odd–even case
are also the same as in the even–odd case, namely (3.17).

Restricting ourselves to parallel BCs, in combination with (3.18), requires one of the compo-
nents of q± to be zero. As before, we assume q±,1 = 0 and hence q+ = q−. With this constraint
on the boundary conditions, the symmetry in the asymptotic eigenvectors (3.19) simplifies to
Y+(−z) = JY−(z), i.e., the same asymptotic symmetry satisfied in the case of even ICs. Again,
we stress that the symmetries of the eigenfunctions φ±(x, t, z) are different in the two cases,
and therefore the symmetries with odd–even ICs and q±,1 = 0 do not coincide with those with
purely even ICs.

4. Solutions with parity: discrete spectrum and norming constants

In this section we use the symmetries of the eigenfunctions and scattering coefficients that
we derived in section 3 to characterize the symmetries of the discrete spectrum and norming
constants. Then in section 5 we will use all these results to characterize the solutions of the
Manakov system.

4.1. General considerations

Theorem 4.1. If the ICs for the Manakov system have a well-defined spatial parity, the
discrete eigenvalues of the scattering problem come in symmetric quartets {ζ j,−ζ∗j , ζ∗j ,−ζ j}
on the circle Co, with two in each half plane, and in symmetric octets off the circle
Co, with a quartet {z j,−z∗j , q2

o/z∗j ,−q2
o/z j} in the upper half-plane and a symmetric one

{z∗j ,−z j, q2
o/z j,−q2

o/z∗j} in the lower half-plane.

Proof. Recall from section 2 that the discrete eigenvalues are zeros of the scattering coef-
ficients a11(z), a33(z), b11(z) and b33(z). Also recall that in all four parity cases consid-
ered in section 3 we have a11(−z) = b11(z). Finally, recall that the first symmetry yields
b11(z) = a∗

11(z∗), and the second symmetry yields a33(z) = a11(̂z∗), and similarly for the other
analytic coefficients. Combining the above symmetries, we then have

a11(−z) = a∗
11(z∗). (4.1)

Hence any zero zo of a11(z) in the right half plane is accompanied by a corresponding zero
−z∗o in the left half plane. The same holds for the other analytic scattering coefficients, namely
a33(z), b11(z), b33(z).

Remark 4.2. If an eigenvalue z j = iZ j is purely imaginary (i.e., Z j ∈ R), then −z∗j =
iZ j = z j. Accordingly, we refer to discrete eigenvalues on the imaginary axis as self-symmetric.
Importantly, the relation between the location of the discrete eigenvalue and the speed and the
amplitudes (for both the bright and the dark component) of the associated soliton (cf section 2
and [38]) implies that the soliton generated by a symmetric eigenvalue has opposite speed but
equal amplitudes (in each component) as the original soliton. The relation between eigenvalues
and soliton speed then also implies that self-symmetric eigenvalues correspond to stationary
solitons.

13



J. Phys. A: Math. Theor. 55 (2022) 254001 A Abeya et al

Figure 1. A symmetric quartet and a symmetric octet of discrete eigenvalues result-
ing from the symmetries of the eigenfunctions and scattering data. The norming con-
stants associated with ζ±j , ζ̄±j are γ±

j , γ̄±
j , while those associated with z±j , ẑ±j , z̄±j , ˆ̄z±j are

respectively δ±j , δ̂±j , δ̄±j , ˆ̄δ±j .

For the discrete eigenvalues on the circle Co, the only possible self-symmetric eigenvalue is
at z = iqo, together with its counterpart at z = −iqo. More generally, for any quartet{±ζ j,±ζ∗j }
of eigenvalues on the circle Co, we will denote ζ+j = ζ j and ζ−j = −ζ∗j the eigenvalues in C+,
and ζ̄+j = ζ∗j and ζ̄−j = −ζ j those in C−, with a similar notation for the associated propor-
tionality constants. Similarly, for any octet {±z j,±z∗j ,±q2

o/z j,±q2
o/z∗j} of eigenvalues off the

circle Co, we will use the notation

z+j = z j, z−j = −z∗j , ẑ+j = q2
o/z∗j , ẑ−j = −q2

o/z j, (4.2a)

z̄+j = z∗j , z̄−j = −z j, ˆ̄z+j = q2
o/z j, ˆ̄z−j = −q2

o/z∗j , (4.2b)

where the overbar identifies the eigenvalues in C− (see figure 1). A similar notation will be

used for the associated proportionality constants, denoted, correspondingly, as d±
j , d̂±

j , d̄±
j , ˆ̄d±

j .
For the self-symmetric eigenvalues (i.e. eigenvalues on the imaginary axis), one has z+j = z−j ,
ẑ+j = ẑ−j , z̄+j = z̄−j and ˆ̄z+j = ˆ̄z−j , which then implies that d+

j = d−
j and similarly for all the other

proportionality constants. Moreover, to fix the notation we will order the discrete eigenvalues
on the circle as {ζ±1 , . . . , ζ±N1

} on Co ∩ C+, with the first m1 being self-symmetric, with m1 = 0
or 1 (implying ζ+1 = ζ−1 = iqo when m1 = 1). Similarly, we will order the discrete eigenvalues
off the circle as {z±1 , . . . , z±m2

, z±m2+1, . . . , z±N2
} in Do ∩ C+, with the first m2 of them being self-

symmetric eigenvalues (implying arg z±n = π/2, or, equivalently, z+n = z−n ).
As we will show below, the symmetries of the eigenfunctions obtained in section 3 imply

that the norming constants associated with symmetric eigenvalues ζ j and −ζ∗j are related, and
similarly for those associated to eigenvalues z j and −z∗j . Moreover, we will also show that the
norming constant associated to self-symmetric eigenvalues must satisfy an extra constraint,
resulting from the fact that in this case the norming constant associated with z j and the one
associated with −z∗j are one and the same, and the same is true for the pair of self-symmetric
eigenvalues in C−.

For the scalar defocusing NLS equation, discrete eigenvalues are confined to the circle Co,
and they can be shown to always be simple [24]. In the Manakov system, however, one can

14
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have eigenvalues off the circle Co, associated to zeros of a11(z) inside the disk Do and their
symmetric counterparts in the quartet (see [38] for details). Furthermore, discrete eigenvalues
off the circle can have higher multiplicity (examples of solutions corresponding to multiple
zeros were given in [15]), and eigenvalues on the circle Co could also in principle have higher
multiplicity if the solution is not a trivial ‘vectorization’ of a solution of the scalar NLS equation
(e.g., see appendices A.2 and A.3). For simplicity, in this work we assume that all discrete
eigenvalues are simple. We then have:

Lemma 4.3. If the ICs of the Manakov system have a well-defined spatial parity, the function
R(z) defined in (2.24) is even:

R(−z) = R(z), z ∈ R. (4.3)

Moreover, the asymptotic phase difference Δθ of the solution is related to the numbers m1 and
m2 of self-symmetric eigenvalues on and off the circle as follows:

eiΔθ = (−1)m1+m2 . (4.4)

Proof. The symmetry (4.3) for the function R(z) can be obtained using the extra symmetry
of the scattering coefficients derived in section 3 and the cofactor expansion for both A(z) and
B(z) along with the first symmetry (cf appendix A.5). Accounting for the parity symmetry of
the eigenvalues, the ‘theta condition’ (2.23b) becomes

eiΔθ = (−1)m1+m2 exp

{
− 1

2πi

∫ ∞

−∞

log[1 − R(ζ)]
ζ

dζ

}
. (4.5)

As a result of the symmetry of R(z), the integrand in (4.5) is odd, which implies that the radia-
tion does not contribute to the asymptotic phase difference of the potential. Consequently, (4.5)
reduces simply to (4.4).

Remark 4.4. Lemma 4.3 implies that, for ICs with spatial parity, the only spectral data that
contribute to the asymptotic phase difference of the potential are the self-symmetric eigenvalues
(i.e., stationary solitons) on or inside the circle Co. This is in contrast to solutions without
spatial parity, for which it is known that the radiation can produce a nonzero contribution to
the asymptotic phase difference even for the scalar NLS equation [16].

For later reference, it is also convenient to evaluate the trace formula (2.23a) at the self-
symmetric eigenvalues. After straightforward manipulations, one finds (see appendix A.5)

a11(̂z+j ) =

(
qo − Z j

qo + Z j

)m1 m2∏
n=1

q2
o − ZnZ j

q2
o + ZnZ j

(N1+m1)/2∏
n=m1+1

×
(
|̂z+j |2 − q2

o

)2
+
(
2|̂z+j |Re(ζ+n )

)2

|(̂z+j − ζ̄+n )(̂z+j − ζ̄−n )|2

×
(N2+m2)/2∏
n=m2+1

(
|̂z+j |2 − |z+n |2

)2
+
(
2|̂z+j |Re(z+n )

)2

|(̂z+j − z̄+n )(̂z+j − z̄−n )|2

× exp

{
− q2

o

Z jπ

∫ ∞

0

Z j log[1 − R(ζ)]
Z jζ2 + q2

o
dζ

}
,

j = 1, . . . , m2, (4.6a)
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where we denoted the self-symmetric eigenvalues off the circle by zn = iZn with 0 < Zn < qo

for n = 1, . . . , m2. Similarly, from (2.25) with m1 = 1 evaluated at ζ+1 ≡ iqo we have:

a′
11(iqo) =

1
2iqo

m2∏
n=1

qo − Zn

qo + Zn

(N1+1)/2∏
n=2

× (2qoRe(ζ+n ))2

|(iqo − ζ̄+n )(iqo − ζ̄−n )|2

×
(N2+m2)/2∏
n=m2+1

(
q2

o − |z+n |2
)2

+
(
2qo Re(z+n )

)2

|(iqo − z̄+n )(iqo − z̄−n )|2 × exp

{
−qo

π

∫ ∞

0

log[1 − R(ζ)]
ζ2 + q2

o
dζ

}
.

(4.6b)

Next we discuss the parity symmetries of the norming constants for eigenvalues on and off the
circle.

4.2. Symmetries of the norming constants for the eigenvalues on the circle

Recall that eigenvalues on the circle arise in symmetric quartets. For the associated eigenfunc-
tions, one has:

φ−,1(x, t, ζ±n ) = c±n φ+,3(x, t, ζ±n ), φ−,3(x, t, ζ̄±n ) = c̄±n φ+,1(x, t, ζ̄±n ), (4.7)

γ±
n =

c±n
ζ±n a′

11(ζ±n )
, γ̄±

n =
c̄±n

a′
33(ζ̄±n )

. (4.8)

Using the parity symmetries of the eigenfunctions one finds:

φ−,1(x, t, ζ+n ) = c+n φ+,3(x, t, ζ+n ) ⇔ φ+,1(−x, t,−ζ+n ) = c+n φ−,3(−x, t,−ζ+n )

⇔ φ+,1(x, t, ζ̄−n ) = c+n φ−,3(x, t, ζ̄−n ) (4.9)

and comparing with (4.7) we obtain

c±n c̄∓n = 1. (4.10)

(The symmetry corresponding to the upper sign is obtained directly from the above equations;
the one for the lower sign is obtained in a similar way.) Using the extra symmetries we obtained
in (4.10), as well as a′

33(z) = −q2
oa′

11(q2
o/z)/z2, we find from (2.21) the following symmetries

for the norming constants:

γ±
n γ̄

∓
n =

1
ζ±n a′

11(ζ±n )a′
33(ζ̄∓n )

=
1

ζ∓n a′
11(ζ±n )a′

11(ζ∓n )
. (4.11)

As mentioned above, an extra symmetry applies for self-symmetric eigenvalues. Recall that
there can only be at most one self-symmetric eigenvalue on the upper-half of the circle Co,
which we have chosen to correspond to m1 = 1, i.e., ζ+1 = iqo. Using (4.7) and the fact that
ζ+1 = ζ−1 and ζ̄+1 = ζ̄1

−, we obtain the constraints c+1 = c−1 and c̄+1 = c̄−1 . Consequently, it
follows from (2.21) that γ+

1 = γ−
1 and γ̄+

1 = γ̄−
1 , which yield

γ+
1 γ̄+

1 =
1

ζ+1 (a′
11(ζ+1 ))2

. (4.12a)
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On the other hand, the first two symmetries (2.22) imply

γ̄+
1 = ζ+1 γ+

1 , (4.13)

and combining two equations above finally yields

γ̄+
1 = ± 1

a′
11(ζ+1 )

. (4.14)

To obtain a regular solution, one must pick the appropriate sign in (4.14) to make Im γ̄+
1 > 0.

Indeed, we can see using (4.6b) that a′
11(ζ+1 ) is purely imaginary, with a negative imaginary

part.
Therefore, to have regular solutions we take

γ̄+
1 =

1

a′
11(ζ+1 )

. (4.15)

4.3. Symmetries of the norming constants for the eigenvalues off the circle

Recall that eigenvalues off the circle arise in symmetric octets, labeled as in (4.2). For the
associated eigenfunctions, one has

χ̄(x, t, z̄±n ) = d̄±
n φ+,1(x, t, z̄±n ), φ−,1(x, t, z±n ) = d±

n χ(x, t, z±n ), (4.16)

δ±n =
d±

n

z±n a′
11(z±n )

, δ̄±n = − d̄±
n

z̄±n b′
11(̄z±n )

. (4.17)

Next, we derive the parity induced symmetries of the norming constants. Unlike the case of
eigenvalues on the circle, however, here we need to consider separately the case of purely even
or purely odd ICs, and the case of ICs with mixed parity.

Case 1. Purely odd or purely even ICs. Using (3.2) and (3.7) we have

φ1,−(x, t, zn) = d+
n χ(x, t, zn) ⇔ φ+,1(−x, t,−zn) = d+

n χ̄(−x, t,−zn)

⇔ φ+,1(x, t, z̄−n ) = d+
n χ̄(x, t, z̄−n ) (4.18)

and comparing with (4.16) we obtain

d±
n d̄∓

n = 1. (4.19)

(The symmetry corresponding to the upper sign is obtained directly from (4.18); the one for the
lower sign is obtained in a similar way.) From (4.19) and (4.17), using a′

11(z±n ) = (b′
11(̄z±n ))∗,

one obtains

δ±n δ̄
∓
n = − 1

z±n z̄∓n a′
11(z±n )b′

11(̄z∓n )
= − 1

z±n z̄∓n a′
11(z±n )(a′

11(z∓n ))∗
. (4.20)

We now discuss self-symmetric eigenvalues off the circle, i.e., eigenvalues on the imaginary
axis. Using (4.16) and the fact that z+j = z−j and z̄+j = z̄−j , for j = 1, . . . , m2, we obtain

d+
j = d−

j , d̄+
j = d̄−

j . (4.21)
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Thus the norming constants of self-symmetric eigenvalues satisfy the additional symmetry

δ+j = δ−j , δ̄+j = δ−j , j = 1, . . . , m2, (4.22a)

which, combined with (4.20), yields

δ+j δ̄
+
j = − 1

|z+j a′
11(z+j )|2 . (4.22b)

Now (2.22) implies

δ̄+j = 2ẑ+j λ(̄z+j )a11(̂z+j )(δ+j )∗, (4.22c)

and therefore the norming constants associated with the self-symmetric eigenvalues must be
such that

|δ+j |2 = − 1
2ẑ+j λ(̄z+j )a11(̂z+j ) |z+j a′

11(z+j )|2 , j = 1, . . . , m2. (4.23)

One can now use (4.6a) to examine a11(̂z+j ). It is straightforward to show that, for any ICs
with defined spatial parity, a11(z) > 0 for all z ∈ iR+. But this implies that the rhs of (4.23) is
always negative! We therefore conclude that purely even and purely odd ICs cannot admit any
self-symmetric eigenvalues off the circle. That is, m2 = 0 in those cases.

Since self-symmetric eigenvalues off the circle correspond to dark–bright solitons with zero
velocity (recall that the velocity of the a dark–bright soliton is given by the real part of the
discrete eigenvalue [38]), we can also state the above result by saying that for even or odd ICs
no pure stationary dark–bright soliton solution can exist. Importantly, this results holds for all
even or odd solutions of the Manakov system, not just for pure soliton solutions. That is, the
result applies independently of whether or not the reflection coefficients are zero.

Case 2. Mixed parities: even–odd or odd–even ICs. Using (3.13) and (3.20) we have

φ1,−(x, t, zn) = d+
n χ(x, t, zn) ⇔ φ+,1(−x, t,−zn) = −d+

n χ̄(−x, t,−zn)

⇔ φ+,1(x, t, z̄−n ) = −d+
n χ̄(x, t, z̄−n ) (4.24)

and comparing with (4.16) we obtain

d±
n d̄∓

n = −1. (4.25)

(As before, the symmetry corresponding to the upper sign is obtained directly from (4.24);
the one for the lower sign is obtained in a similar way.) From (4.19) and (4.17), using
a′

11(z±n ) = (b′
11(̄z±n ))∗, we obtain

δ±n δ̄
∓
n =

1
z±n z̄∓n a′

11(z±n )(a′
11(z∓n ))∗

. (4.26)

The norming constants of self-symmetric eigenvalues must satisfy
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δ+j = δ−j , δ̄+j = δ̄−j , j = 1, . . . , m2, (4.27a)

and the latter, combined with (4.27), in this case yield

δ+j δ̄
+
j =

1
|z+j a′

11(z+j )|2 . (4.27b)

Equation (2.22) still requires (4.22c) to hold, and therefore the norming constants associated
with the self-symmetric eigenvalues in the case of mixed parity ICs must be such that

|δ+j |2 =
1

2ẑ+j λ(̄z+j )a11(̂z+j ) |z+j a′
11(z+j )|2 , j = 1, . . . , m2. (4.28)

As before, one can now use (4.6a) to show that a11(̂z+j ) > 0 and therefore the rhs of (4.28)
is positive. Therefore, contrary to the case of purely even or purely odd ICs, we conclude
that in the case of mixed parities (even–odd or odd–even) ICs, self-symmetric eigenvalues
(i.e., stationary dark–bright solitons) are allowed. The associated norming constants satisfy
the constraint (4.28).

5. Solutions with parity: solution behavior

Having derived the symmetries of the eigenfunctions and scattering data in sections 3 and 4,
we now use those results to characterize the behavior of the corresponding solutions.

We distinguish three cases: (i) solutions with only eigenvalues on the circle (i.e., with only
dark solitons and without dark–bright solitons), (ii) solutions with only eigenvalues off the
circle (i.e., with only dark–bright solitons and without dark solitons), and (iii) solutions a com-
bination of eigenvalues on and off the circle (i.e., with both dark and dark–bright solitons). For
clarity, we find it convenient to discuss these three cases separately.

5.1. Solutions with only dark–dark solitons

We first consider the case in which only eigenvalues on the circle Co appear (i.e. N2 = 0). In
other words, we look at the case in which only dark–dark solitons are present in the solution.

Theorem 5.1 (Even ICs without dark–bright solitons). If the ICs are even and no
discrete eigenvalues off the circle are present, no black soliton (i.e., a self-symmetric eigenvalue
at z = iqo) can be present in the solution. Moreover, the reflection coefficients obey the parity
symmetry (3.5) and the norming constants of the non-self-symmetric eigenvalues satisfy the
parity symmetry (4.11).

Proof. For even ICs we have q+ = q−, which implies eiΔθ = 1. Since N2 = 0, we have
m2 = 0. Then (4.4) becomes (−1)m1 = 1, which yields m1 = 0 (since m1 can only be either
0 or 1). The symmetries for the reflection coefficients and norming constants were derived in
sections 3.1 and 4.2, respectively.

One could also exclude the existence of a black soliton with even ICs by looking at the
constraint (4.14) for the norming constants associated to the self-symmetric eigenvalue iqo (as
was done for the NLS equation with zero background in [13]). Here, however, the result is also
a direct consequence of the relation between discrete eigenvalues and the asymptotic phase
difference of the solution.

Theorem 5.2 (Odd ICs without dark–bright solitons). If the ICs are odd and no dis-
crete eigenvalues off the circle are present, the solution always contains a black soliton (i.e., a
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Figure 2. Soliton solutions of the Manakov system with even ICs and only dark solitons.
Left: ζ+1 = eiπ/3, γ̄+

1 = 1 − i, right: ζ+1 = eiπ/3, ζ+2 = eiπ/6, γ̄+
1 = e−5i, γ̄+

2 = e5i. Here
and in figure 3 we only plot |q2(x, t)|, since q1(x, t) is identically zero in these cases.

self-symmetric eigenvalue at z = iqo), whose norming constant satisfies the constraint (4.14),
while the reflection coefficients obey the parity symmetry (3.5) and the norming constants of
all other eigenvalues satisfy the parity symmetry (4.11).

Proof. We have m2 = 0, as above. Since the IC is odd, we have q+ = −q− and hence eiΔθ =
−1. Then (4.4) yields −1 = (−1)m1 and therefore m1 = 1, which implies that the solution
always exhibits a black soliton. The constraint (4.14) and the symmetry (4.11) for the norming
constants were derived in section 4, while the symmetries for the reflection coefficients and
norming constants were derived in sections 3.2 and 4.2, respectively.

Theorem 5.3 (Mixed-parity ICs without dark–bright solitons). If the ICs are
odd–even with q±,1 = 0, and no discrete eigenvalues off the circle are present, the same con-
clusions as in theorem 5.1 apply, except that the reflection coefficients now satisfy the parity
symmetries (3.17). On the other hand, if the ICs are even–odd, the same conclusions as in
theorem 5.2 apply, except that the reflection coefficients now satisfy the parity symmetries
(3.17).

Proof. Recall that even–odd and odd–even ICs imply that the BCs satisfy q+ = ±σ3q−,
and in section 3 we took the first component of both q± to be zero to maintain compatibility
with the case of parallel BCs. Therefore, the constraints on the self-symmetric eigenvalues
with odd–even ICs coincide with those for purely even ICs and follow theorem 5.1, whereas
the constraints for even–odd ICs coincide with those for purely odd ICs and follow theorem
5.2. The constraints on the norming constants of the non-self-symmetric eigenvalues are the
same in all four cases. On the other hand, the symmetries of the reflection coefficients, derived
in sections 3.3 and 3.4, differ from those for even and odd ICs (derived in sections 3.1 and 3.2).

Remark 5.4. We emphasize that all the results of theorems 5.1–5.3 apply independently of
whether or not the solution is purely solitonic. In other words, all of these results also hold for
solutions containing nontrivial dispersive components i.e., solutions with contributions arising
from nonzero reflection coefficients. Importantly, the fact that the symmetries of the reflection
coefficients in the cases of mixed-parity ICs differ from those in the case of even or odd ICs
demonstrates that these mixed parity cases are not simply reducible to odd or even ICs, even
when one of the components of the potential vanishes asymptotically. The same considerations
also imply that the results of the mixed-parity cases are a novel feature of the Manakov system
compared to the scalar NLS equation.
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Figure 3. Soliton solutions of the Manakov system with odd ICs and only dark solitons.
Left: ζ+1 = i, right: ζ+1 = i, ζ+2 = eiπ/3, γ̄+

2 = i. Note that since q1(x, t) is identically
zero here, we only plot |q2(x, t)|.

Examples. We illustrate the above results by presenting explicit solutions. For simplicity we
restrict ourselves to showing pure soliton solutions, since in this case one can obtain solution
of the Manakov system in closed form via the determinantal expression (2.27). (On the other
hand, when the reflection coefficients are not zero one must solve a mixed system of algebraic-
integral equations. See section 2 for details.)

Figure 2 shows two pure soliton solutions corresponding to even ICs. The first solution (left)
is generated by a single discrete eigenvalue plus its symmetric counterpart, while the second
one (right) is generated by two dark solitons plus their symmetric counterparts. Figure 3 shows
two pure soliton solutions corresponding to odd ICs. The first solution (left) is generated by
a single (self-symmetric) black soliton, while the second solution (right) is generated by the
black soliton, a dark soliton and its symmetric counterpart.

Since the solutions presented are reflectionless, q1(x, t) is identically zero in both cases (and
is thus not shown for brevity). Therefore, q2(x, t) is actually a solution of the scalar defocus-
ing NLS equation. (To the best of our knowledge, explicit soliton solutions of the defocusing
NLS equation parity symmetry and NZBC were first presented in [18].) For the same reason,
for reflectionless solutions with q±,1 = 0 and only dark–dark solitons, there is no difference
between the case of even ICs and that of odd–even ICs, or between the case of odd ICs and
that of even–odd ICs.

It is important to realize that, with any parity symmetry, the moduli |q1(x, t)| and |q2(x, t)| of
each component are always even, and it is the parity symmetries of the phases arg q1(x, t) and
arg q2(x, t) that determine whether the full, complex-valued solution is even or odd. Recall that,
when traversing a soliton generated by an eigenvalue ζ j, the phase of the solution experiences a
jump of 2 arg ζ j, and, in particular, a black soliton contributes a phase jump of π to the solution,
i.e., it changes the solution’s overall sign. Interestingly, even though each non-self-symmetric
eigenvalue gives the same contribution to the local phase both in the case of even and that
of odd ICs, the difference between even and odd ICs is that the additional sign change due
to the black soliton with odd ICs effectively changes the direction of the local phase change
generated by the non-self-symmetriceigenvalues. This phenomenon is markedly different from
what happens in the focusing case with zero background, where the parity of the solution is
determined by the sign of the norming constants [13]. Similarly, the fact that q2(0, t) = 0 with
odd and even–odd ICs is a consequence of the fact that the symmetries of the norming constants
ensure that the black soliton is always centered at x = 0.
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Figure 4. Soliton solutions of the Manakov system with even ICs and only dark–bright
solitons. Top row: z+1 = (1 + i)/2, δ+1 = 1 − i, bottom row: z+1 = (1 + i)/2, z+2 = (3 +
2i)/6, δ+1 = 10 + 10i, δ+2 = 10 − 10i. Hereafter, the left column shows |q1(x, t)|, the
right column |q2(x, t)|.

5.2. Solutions with only dark–bright solitons

Next we consider the case in which only eigenvalues off the circle Co are present (i.e., N1 = 0),
implying that only dark–bright solitons (i.e., no dark–dark solitons) are present in the solution.
Recall that these eigenvalues come in symmetric octets, labeled as in (4.2).

Theorem 5.5 (Even ICs without dark–dark solitons). If the ICs are even and no
discrete eigenvalues on the circle are present, the solution cannot contain any stationary
dark–bright solitons. That is, the number m2 of self-symmetric eigenvalues off the circle is
zero. The reflection coefficients obey the symmetry (3.5), and the norming constants of the
non-self-symmetric eigenvalues obey the symmetry (4.20).

Proof. In section 4.3 we showed that no self-symmetric eigenvalues off the circle can exist
(implying m2 = 0) when the ICs are odd or even, because their norming constants cannot sat-
isfy the self-consistency constraint (4.23), and we also derived the symmetry (4.20) of the
norming constants of the non-self-symmetric eigenvalues. The symmetry (3.5) of the reflection
coefficients was derived in section 3.1.

Theorem 5.6 (Odd ICs without dark–dark solitons). No odd solutions of Manakov
system (1.1) without discrete eigenvalues on the circle can exist.

Proof. If the solution does not contain dark–dark solitons, the number m1 of self-symmetric
eigenvalues on the circle is necessarily zero. However, the results of section 4.3 imply that
when the ICs are odd or even, no self-symmetric eigenvalues off the circle can exist, and
therefore m2 is also zero. Thus the relation (4.4) in lemma 4.3 (which ties the overall num-
ber of self-symmetric eigenvalues to the asymptotic phase difference of the potential) implies
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Figure 5. Soliton solutions of the Manakov system with odd–even ICs and only
dark–bright solitons. Top row: z+1 = i/2, z+2 = i/4, (δ+1 ) = π/6, arg(δ+2 ) = π/3,
bottom row: z+1 = i/2, z+2 = i/4, z+3 = (1 + i)/2, arg(δ+1 ) = π/3, arg(δ+2 ) = π/2,
δ+3 = 1 + i.

exp[iΔθ] = 1. But odd ICs require Δθ = π. Thus the constraint the can never be satisfied,
which means that no odd solutions without dark–dark solitons can exist.

Theorem 5.7 (Mixed parity ICs without dark–dark solitons). If the ICs are
odd–even, q±,1 = 0, and no discrete eigenvalues on the circle are present, the number m2

of self-symmetric eigenvalues off the circle must be even. On the other hand, if the ICs are
even–odd, m2 must be odd. In both cases, the norming constants of the self-symmetric
eigenvalues satisfy the constraint (4.23), those of the non-self-symmetric eigenvalues the
symmetry (4.20) and the reflection coefficients the symmetry (3.17).

Proof. Recall that, for ICs with mixed parity, q+ = ±σ3q−, and to satisfy the requirement
that q± are parallel we took q±,1 = 0. As before, the constraint on the number of self-symmetric
eigenvalues off the circle then arises from the constraint (4.4). The norming constants of the
non-self-symmetric eigenvalues off the circle must satisfy the symmetry (4.26), derived in
section 4.3. However, self-symmetric eigenvalues off the circle (corresponding to stationary
dark–bright solitons) are now possible, as long as the associated norming constants satisfy
the parity symmetry (4.27). As before, the symmetry (3.17) of the reflection coefficients was
derived in sections 3.3 and 3.4.

Remark 5.8. The fact that self-symmetric eigenvalues off the circle (i.e., stationary
dark–bright solitons) are allowed for mixed-parity ICs (i.e., even–odd or odd–even) is an
important difference between these cases and those of purely even or odd ICs. Another impor-
tant difference is the fact that even–odd and odd–even solutions without dark–dark solitons
can exist even though purely odd solutions without dark–dark solitons cannot. Finally, like
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Figure 6. Soliton solutions of the Manakov system with even–odd ICs and
only dark–bright solitons. Top row: z+1 = i/3, z+2 = 2i/3, z+3 = i/2, arg(δ+1 ) = π/3,
arg(δ+2 ) = π/2, arg(δ+3 ) = π/6, bottom row: z+1 = i/3, z+2 = 2(1 + i)/3, arg(δ+1 ) =
π/3, δ+2 = 1 + i.

in section 5.1, all of the results of this sections hold both for pure soliton solutions and for
solutions with non-trivial dispersive components.

Examples. As before, we illustrate the above results by presenting some explicit soliton
solutions of the Manakov system. Figure 4 shows two pure soliton solutions corresponding to
even ICs. The first one (top row) is generated by a single non-self-symmetric eigenvalue plus its
symmetric counterpart; the second one (bottom row) by two non-self-symmetric eigenvalues
plus their symmetric counterparts. Figure 5 shows two pure soliton solutions corresponding to
odd–even ICs. The first one (top row) is generated by two self-symmetric eigenvalues plus their
symmetric counterparts; the second one (bottom row) by two self-symmetric eigenvalues and
two non-self-symmetric ones, plus their symmetric counterparts. Finally, figure 6 shows two
pure soliton solutions corresponding to even–odd ICs. The first one (top row) is generated by
three self-symmetric eigenvalues plus their symmetric counterparts; the second one (bottom
row) by one self-symmetric eigenvalue and two non-self-symmetric eigenvalues, plus their
symmetric counterparts. No odd solutions are presented here because no such solutions without
a black soliton (and thus an eigenvalue on the circle) can exist.

5.3. Solutions with combinations of dark–dark and dark–bright solitons

Now we consider the most general case, in which both dark–dark and dark–bright solitons are
simultaneously present in the solution, i.e., the case in which both N1 and N2 are nonzero. All
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Figure 7. Soliton solutions of the Manakov system with even ICs a combination of
dark–dark and dark–bright solitons: ζ+1 = eiπ/3, γ̄+

1 = i, z+1 = (1 + i)/2, δ+1 = 1 + i.

Figure 8. Soliton solutions of the Manakov system with odd ICs a combination of
dark–dark and dark–bright solitons: ζ+1 = i, z+1 = (1 + i)/2, δ+1 = 1 + i.

the results in this section can be obtained in a similar way as those in sections 5.1 and 5.2.
Therefore, for brevity we omit the proofs.

Theorem 5.9. (Even ICs with both dark–dark and dark–bright solitons.) If the
ICs are even and both eigenvalues on and off the circle are present, no self-symmetric eigenval-
ues are present (i.e., m1 = m2 = 0, all eigenvalues have non-zero real part, and the solution
has no stationary solitons). The norming constants of the eigenvalues on and off the circle
satisfy the symmetries (4.11) and (4.20), respectively, and the reflection coefficients obey the
symmetry (3.5).

Theorem 5.10 (Odd ICs with both dark–dark and dark–bright solitons). If the
ICs are odd, the solution always contains a black soliton (self-symmetric eigenvalue at z = iqo)
and no self-symmetric eigenvalues off the circle. The norming constants of the eigenvalues on
and off the circle satisfy the symmetries (4.11) and (4.20), respectively, with the extra con-
straint (4.14) for the norming constant of the black soliton, and the reflection coefficients obey
the symmetry (3.5).
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Figure 9. Soliton solutions of the Manakov system with even–odd ICs and combination
of dark and dark–bright solitons. Top row: ζ+1 = eiπ/6, γ̄+

1 = i, z+1 = i/3, arg(δ+1 ) =
π/3. Bottom row: ζ+1 = i, z+1 = i/2, z+2 = i/3, arg(δ+1 ) = π/6, arg(δ+2 ) = π/3.

Theorem 5.11 (Even–odd ICs with both dark–dark and dark–bright solitons).
If the ICs are even–odd, q±,1 = 0, and both eigenvalues on and off the circle are present,
the following situations can arise:

(a) m1 = 1 and m2 is zero or even; that is, there is a black soliton (self-symmetric eigenvalue
at z = iqo) and an even ( possibly zero) number of self-symmetric eigenvalues off the circle.

(b) m1 = 0 and m2 > 0 is odd; that is, all eigenvalues on the circle have non-zero real parts,
and there is an odd number of self-symmetric eigenvalues off the circle.

In all cases, the norming constants satisfy the symmetries (4.11) and (4.26), with the extra
constraints (4.14) and (4.28) for the norming constants of the self-symmetric eigenvalues (if
present), and the reflection coefficients satisfy the symmetry (3.17).

Theorem 5.12 (Odd–even ICs with both dark–dark and dark–bright solitons).
If the ICs are odd–even, q±,1 = 0, and both eigenvalues on and off the circle are present,
the following situations can arise:

(a) m1 = m2 = 0; that is, no self-symmetric eigenvalues are present (i.e., all eigenvalues have
non-zero real parts, and the solution has no stationary solitons).

(b) m1 = 0 and m2 > 0 is even; that is, all eigenvalues on the circle have non-zero real parts,
and there is an odd number of self-symmetric eigenvalues off the circle.

(c) m1 = 1 and m2 > 0 is odd; that is, there is a black soliton (self-symmetric eigenvalue at
z = iqo) and an odd number of self-symmetric eigenvalues off the circle.

In all cases, the norming constants satisfy the symmetries (4.11) and (4.26), with the extra
constraints (4.14) and (4.28) for the norming constants of the self-symmetric eigenvalues (if
present), and the reflection coefficients satisfy the symmetry (3.17).

26



J. Phys. A: Math. Theor. 55 (2022) 254001 A Abeya et al

Figure 10. Soliton solutions of the Manakov system with odd–even ICs and combina-
tion of dark and dark–bright solitons. Top row: ζ+1 = eiπ/6, γ̄+

1 = i, z+1 = i/2, z+2 = i/3,
arg(δ+1 ) = π/3, arg(δ+2 ) = π/6. Bottom row: ζ+1 = i, z+1 = i/2, z+2 = i/3, z+3 = i/4,
arg(δ+1 ) = π/3, arg(δ+2 ) = π/6, arg(δ+3 ) = π/2.

Remark 5.13. Like in sections 5.1 and 5.2, all of the results of this section hold both for
reflectionless (i.e., pure soliton) solutions and for solutions with nonzero reflection coefficients
(i.e., with non-trivial dispersive components).

Examples. As in sections 5.1 and 5.2, we illustrate the above results by presenting a few
explicit soliton solutions combining both dark–dark and dark–bright solitons. Figure 7 shows
an even soliton solution that combines a non-stationary dark soliton and a non-stationary
dark–bright soliton, plus their symmetric counterparts. Note how, even though only one bright
soliton (plus its symmetric counterpart) is present, there is a nontrivial interaction between the
bright soliton and the dark soliton in the other component. Figure 8 shows an odd soliton solu-
tion that combines a black soliton and a non-stationary dark–bright soliton, plus its symmetric
counterpart. Note how q1(0, t) = 0, consistently with the odd parity (while q2(0, t) = 0 because
of the black soliton centered at x = 0). Figure 9 shows two even–odd soliton solutions. The
first one (top row) is generated by a single self-symmetric eigenvalue off the circle (stationary
dark–bright soliton) and a non-self-symmetric dark soliton plus its symmetric counterpart. The
second one (bottom row) is generated by a black soliton plus two self-symmetric eigenvalues
off the circle (corresponding to two stationary dark–bright solitons). Finally, figure 10 shows
two odd–even soliton solutions. The first one (top row) is generated by two self-symmetric
eigenvalues off the circle (stationary dark–bright soliton), and a non-self-symmetric eigen-
value on the circle (moving dark soliton), plus its symmetric counterpart. The second one
(bottom row) is generated by a black soliton (self-symmetric eigenvalue on the circle) plus
three self-symmetric eigenvalues off the circle (stationary dark–bright solitons).
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6. Final remarks

In this work we investigated IVPs for the defocusing Manakov system with NZBC in which
the initial conditions possess a well-defined spatial parity symmetry. These problems are in
one-to-one correspondence with BVPs on the half line with Dirichlet or Neumann boundary
conditions at the origin.

In particular, we used the IST to identify the symmetries of the eigenfunctions arising from
the spatial parity of the solution, and we determined the corresponding symmetries of the scat-
tering data, which are more complicated than in the scalar NLS equation. In particular, we
showed that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets,
and those giving rise to dark–bright solitons in symmetric octets. We also characterized the
differences between the purely even or purely odd case and the ‘mixed parity’ (even–odd or
odd–even) cases. Finally, we showed how, in each case, the spatial symmetry yields a constraint
on the possible existence of self-symmetric eigenvalue, corresponding to stationary solitons,
and we studied the resulting behavior of solutions.

We note that solutions exhibiting parity-time (PT) symmetry, i.e., q(−x, t) = q∗(x, t) have
also received considerable attention in recent years (e.g., see [2, 3, 5] and references therein).
However, PT symmetry induces very different symmetries for the eigenfunctions and scattering
data compared to those arising from pure spatial symmetry (e.g., see [4] for the scalar NLS
equation). Therefore, the study of PT-symmetric solutions requires a different kind of analysis,
and leads to very different conclusions for the behavior of solutions. For those reasons, PT
symmetry was not considered in this work.

It is straightforward to show using (3.10) and (3.18) that the mixed parity cases satisfy
σ3qo = ±exp[iΔθ]qo, which means that qo is an eigenvector of σ3 with eigenvalue±exp[iΔθ]
(with the plus and minus signs for the even–odd and the odd–even case, respectively). Choos-
ing q±,1 = 0 is then equivalent to taking qo to always be the eigenvector associated to the
eigenvalue −1. In principle, one could restore the symmetry between the two components and
formulate the results in a unified way by discussing just one mixed case which covers both of
the current odd–even and even–odd cases. The current two cases would then correspond to
whether qo is an eigenvector associated with the eigenvalue +1 or −1. However, the resulting
nominal simplification would likely be negated by the subtleties associated to which particular
eigenvalue is selected. At the same time, the reason for our choice is that taking q±,1 = 0 allows
one to identify the first component of the solution with a bright field and the second one with
a dark field. This identification reflects a physical difference, and therefore makes our results
more directly applicable to describe actual experiments. For this reason, we believe that our
presentation of the results is more useful for practical purposes.

We anticipate that an interesting direction for further study could be the effort to extend the
results of the present work to the case of non-parallel BCs, i.e., the case when q†

+q− < ‖q±‖2.
The IST for the IVP with non-parallel BCs was recently presented in [1]. There are several
complications arising in that case, however. Some of these complications are of a mathemat-
ical nature, and require one to deal with various new technical issues. In turn, some of these
difficulties reflect a fundamental difference in the properties of the problem, namely the fact
that no reflectionless (i.e., purely solitonic) solutions exist in that problem. (The same phe-
nomenon arises for the defocusing NLS equation with asymmetric BCs [11, 17].) On the other
hand, the case of parallel BCs is also the easiest one to generate experimentally.

We also expect that the results of this work will be useful to further characterize recent ana-
lytical and numerical studies [39, 40] on repulsive scalar and two-component BECs in which
the initial system configurations possess a definite parity symmetry. We also anticipate that
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the behavior of solutions characterized in this work can be observed experimentally in suitable
realizations of repulsive two-component BECs.
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Appendix A

A.1. Boundary value problems for the scalar defocusing NLS equation with NZBC

For completeness, in this appendix we discuss the reduction of the Manakov system to the
scalar defocusing NLS equation:

iqt + qxx − 2(|q|2 − q2
o)q = 0 (A.1)

with the following NZBC at infinity:

lim
x→±∞

q(x, t) = q± = qo e±iθ, (A.2)

and we derive all the symmetries in the scattering data induced by spatial parity of the ICs. The
Lax pair for the scalar NLS equation is a reduction of (2.1), given by

vx = X v, vt = T v, (A.3a)

where

X(x, t, k) = −ikσ3 + Q, T(x, t, k) = −2ik2σ3 + iσ3(Qx − Q2 + q2
o) + 2kQ, (A.3b)

Q(x, t) =

(
0 q
q∗ 0

)
, σ3 =

(
1 0
0 −1

)
. (A.3c)

The Jost eigenfunctions are defined as

φ±(x, t, z) = W±(k)eiθ(x,t,k) + o(1), x →±∞,

where θ = −λx − 2kλt, λ2 = k2 − q2
o, and W±(k) are the matrices of asymptotic eigenvectors,

which can be chosen as reductions of (2.5):

W±(z) =

(
z −q2

o/z
iq∗

± −iq∗
±

)
. (A.4)

Since φ±(x, t, z) are two fundamental solution of the Lax pair for any z �= qo, there exists a
2 × 2 scattering matrix A(z) such that
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φ−(x, t, z) = φ+(x, t, z)A(z), z ∈ R\ ± qo. (A.5)

Using the symmetries derived in [23], we have

A(z) =

(
a(z) eiΔθb∗(z)q2

o/z2

b(z) eiΔθa∗(z)

)
, (A.6a)

B(z) :=A−1(z) =

(
a∗(z) −b∗(z)q2

o/z2

−e−iΔθb(z) e−iΔθa(z)

)
, (A.6b)

where Δθ = θ+ − θ−. One can define two complete sets of analytic eigenfunctions for the
system (A.3a):

Φ+(x, t, z) = (φ−,1(x, t, z),φ+,2(x, t, z)), z ∈ C
+, (A.7a)

Φ−(x, t, z) = (φ+,1(x, t, z),φ−,2(x, t, z)), z ∈ C
−, (A.7b)

and show that

det Φ+(x, t, z) = −2iq∗
+λ(z)a(z), z ∈ C

+ ∩ R, (A.8a)

det Φ−(x, t, z) = −2iq∗
+ λ(z)a∗(z∗)eiΔθ, z ∈ C

− ∩ R, (A.8b)

where a(z) is analytic in C
+. For the scalar defocusing NLS equation, discrete eigenvalues are

confined to the circle Co{z ∈ C : |z| = qo}, and they can be shown to always be simple [24].
If one considers a pair of eigenvalues ζn, ζ∗n on the circle Co, such that a(ζn) = 0, then the
columns of both Φ+(x, t, ζn) and Φ−(x, t, ζ∗n ) become linearly independent, and one has

φ−,1(x, t, ζn) = cnφ+,2(x, t, ζn), φ−,2(x, t, ζ∗n ) = c̄nφ+,1(x, t, ζ∗n ). (A.9)

The norming constants are defined in terms of the coefficients in (A.9) as follows:

γn =
cn

ζna′(ζn)
, γ̄n =

c̄n

eΔθ(a′(ζn))∗
. (A.10)

Moreover, like in the Manakov case, the asymptotic phases and the scattering data are related
by the theta condition:

eiΔ θ =

N∏
n=1

ζn

ζ∗n
exp

{
− 1

2πi

∫ ∞

−∞

log[1 − q2
o|ρ(ζ)|2/ζ2]
ζ

dζ

}
, (A.11)

where ρ(z) = b(z)/a(z). Furthermore, the scattering coefficient a(z) can be recovered using the
scattering data via the trace formula:

a(z) =
N∏

n=1

z − ζn

z − ζ∗n
exp

{
− 1

2πi

∫ ∞

−∞

log[1 − q2
o|ρ(ζ)|2/ζ2]

ζ − z
dζ

}
. (A.12)

Next we discuss the symmetries induced in the scattering data by the spatial parity of the IC.
As we did before for the Manakov system, one can show that the Jost solutions and scattering
matrix satisfy an additional symmetry for both even and odd ICs. For even ICs, namely, when
q(x, 0) = q(−x, 0) for all x ∈ R, we obtain

φ∓(x, t, z) = −σ3φ±(−x, t,−z), A(z) = A−1(−z), z ∈ R, (A.13)
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and odd ICs (i.e., q(x, 0) = −q(−x, 0)) give

φ∓(x, t, z) = −φ±(−x, t,−z), A(z) = A−1(−z), z ∈ R. (A.14)

Equations (A.13) and (A.14) imply the following induced parity symmetry of the reflection
coefficient:

ρ(−z) = −e−iΔθ a(z)
a∗(z)

ρ(z), z ∈ R. (A.15)

Moreover,using the Schwartz reflection principle, we also have a(z) = a∗(−z∗) for any z ∈ C+.
Thus the eigenvalues appear in symmetric quartets, {±ζ j,±ζ∗j } on the circle Co. As before, it
will be convenient to denote these eigenvalues as ζ+j = ζ j and ζ−j = −ζ∗j in C+, and ζ̄+j = ζ∗j
and ζ̄−j = −ζ j in C−, with corresponding notation for the associated proportionality constants
and norming constants.

As before, we refer to self-symmetric eigenvalues as those eigenvalues for which ζ+j =

ζ−j and ζ̄+j = ζ̄−j . In the scalar, the only self-symmetric eigenvalues are ±iqo. Let m1 be the
number of self-symmetric eigenvalues (m1 = 0 or m1 = 1), and N1 be the number of non-self
symmetric eigenvalues on the circle Co. Then (A.11) becomes

eiΔ θ = (−1)m1 exp

{
− 1

2πi

∫ ∞

−∞

log[1 − q2
o|ρ(ζ)|2/ζ2]
ζ

dζ

}
. (A.16)

Moreover, using the parity symmetry (A.15) of the reflection coefficient we obtain

|ρ(−z)| = |ρ(z)|, z ∈ R. (A.17)

As a result, the contribution of the radiation to the theta condition vanishes because the
reflection coefficient is even, and therefore one simply has

eiΔθ = (−1)m1 . (A.18)

Next we show that the norming constants of the symmetric eigenvalues are related. Indeed,
one has

φ−,1(x, t, ζ+n ) = c+n φ+,2(x, t, ζ+n ) ⇔ φ+,1(−x, t,−ζ+n ) = c+n φ−,2(−x, t,−ζ+n )

⇔ φ+,1(x, t, ζ̄−n ) = c+n φ−,3(x, t, ζ̄−n ), (A.19)

and comparing with (A.9) we obtain

c±n c̄∓n = 1. (A.20)

(The symmetry corresponding to the upper sign is obtained directly from the above equations;
the one for the lower sign is obtained in a similar way.) Using the extra symmetries we obtained
in (4.10) it follows that

γ±
n γ̄

∓
n =

1
eΔθζ±n a′(ζ±n )(a′(ζ̄∓n ))∗

. (A.21)

As in the Manakov case, an extra symmetry holds for the self-symmetric eigenvalues ±iqo.
Using (A.9) and the fact that ζ+1 = ζ−1 and ζ̄+1 = ζ̄1

− we obtain

c+1 = c−1 , c̄+1 = c̄−1 . (A.22)
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Thus the associated norming constants satisfy an additional symmetry

γ+
1 = γ−

1 , γ̄+
1 = γ̄−

1 , (A.23a)

which in turn yields

γ+
n γ̄−

n =
1

eΔθζ+n |a′(ζ+n )|2 . (A.23b)

We next use the resulting parity symmetries to investigate the behavior of the corresponding
soliton solutions.

Lemma A.1. (Even ICs). In the case of even ICs, no stationary dark soliton (black
solitons) can be present in the solution.

Proof. For even ICs, we have q+ = q−, which implies eiΔθ = 1. Then (A.18) becomes

1 = (−1)m1 ,

and then necessarily m1 = 0, which yields the desired result. Moreover, in this case the norming
constants satisfy the parity symmetry (A.21).

Lemma A.2 (Odd ICs). In the case of odd ICs, the solution necessarily contains a black
soliton, i.e., a self-symmetric eigenvalue pair at z = ±iqo.

Proof. For odd ICs, we have q+ = −q− and eiΔθ = −1. Again (A.18) yields

−1 = (−1)m1 ,

and therefore m1 = 1, which implies the solution necessarily contains a black soliton. Similar
to even ICs, the norming constants satisfy the parity symmetry (A.21) and the norming con-
stants associated with the self-symmetric eigenvalues ±iqo follows an additional symmetry
(A.23).

In summary, the above results imply that for even potentials no black solitons can exist,
whereas for odd potentials a black soliton must always exist. To the best of our knowledge,
these results were first presented in [18].

A.2. Invariances of the Manakov system

It is a well known fact that, if q(x, t) is any solution of the Manakov system and α, v, xo, and
to are any real constants, q̄(x, t) = eiαq(x, t) and q̂(x, t) = q(x − xo, t − to) are solutions of the
Manakov system as well. Finally, for any constant unitary 2 × 2 matrix U (i.e., UU† = U†U =
I2), q̌(x, t) = Uq(x, t) is also a solution. We next show how each transformation affects the IST.

Lemma A.3. Let φ̄±(x, t, z) and Ā(z) be the Jost solutions and scattering matrix correspond-
ing to q̄(x, t). We have

φ̄±(x, t, z) = ei(α/2)Jφ±(x, t, z)diag(e−iα/2, e3iα/2, e−iα/2), (A.24a)

Ā(z) = diag(eiα/2, e−3iα/2, eiα/2)A(z)diag(e−iα/2, e3iα/2, e−iα/2). (A.24b)

Proof. One can show by the direct computation that e−i(α/2)Jφ̄±(x, t, z) solves the asymp-
totic scattering problem. Then since e−i(α/2)Jφ̄± and φ± are both fundamental matrix solutions
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of the asymptotic scattering problem, there exists an invertible 3 × 3 matrix C̄(z) such that
φ±(x, t, z) = e−i(α/2)Jφ̄±(x, t, z)C̄(z). Comparing the asymptotics as x →±∞ of φ± with those
of e−i(α/2)Jφ̄±C̄ yields C̄(z) = diag(eiα/2, e−3iα/2, eiα/2). Combining (A.24a) with the fact that
φ̄− = φ̄+Ā yields (A.24b).

The proofs of the remaining lemmas in this section are omitted since they are similar to the
proof of lemma A.3.

Lemma A.4. Let φ̂±(x, t, z) and Â(z) be the Jost solutions and scattering matrix correspond-
ing to q̂(x, t). We have

φ̂±(x, t, z) = φ±(x, t, z)e−iΘ(xo,to ,z), (A.25a)

Â(z) = eiΘ(xo,to,z)A(z)e−iΘ(xo,to ,z). (A.25b)

Lemma A.5. Let φ̌±(x, t, z) and Ǎ(z) be the Jost solutions and scattering matrix correspond-
ing to q̌(x, t). We have

φ̌±(x, t, z) = diag(1, U∗)φ±(x, t, z)diag(1, eiu, 1), (A.26a)

Ǎ(z) = diag(1, e−iu, 1)A(z)diag(1, eiu, 1), (A.26b)

where det U = eiu, with u ∈ R.

A.3. Scalar reductions of the Manakov system

There are several ways in which solutions of the Manakov system can reduce to ‘scalar’
solutions, i.e., solutions of the scalar NLS equation. Indeed, if q(x, t) is any solution of the
scalar defocusing NLS equation (A.1), q(x, t) = (0, q(x, t))T as well as q̃(x, t) = (q(x, t), 0)T and
q̌(x, t) = pq(x, t), where p is any complex unit-length vector (i.e., p†p = 1), are all solutions
of the defocusing defocusing Manakov system (1.1). Note that q̃(x, t) = σ1 q(x, t). Therefore
if one can find the symmetries of the IST induced by the first reduction, then the effect of the
second reduction will immediately follow from lemma A.5.

Next we find the reductions of the Jost solutions and the scattering matrix with respect to
the first reduction, in which case the first component of q(x, t) is identically zero. As a direct
consequence, we have q± = (0, qo e±iθ)T.

Let φ±,nls(x, t, z) and Anls(z) = (aij,nls(z)) denote the 2 × 2 Jost solutions and the scattering
matrix for the scalar case, respectively. Using (2.5) and the scattering relation we have

φ±(x, t, z) =

⎛
⎝φ±,11,nls 0 φ±,12,nls

0 iqo eiθ± eiθ2(x,t,z) 0
φ±,21,nls 0 φ±,22,nls

⎞
⎠ , (A.27a)

A(z) =

⎛
⎝a11,nls(z) 0 a12,nls(z)

0 ei(θ−−θ+) 0
a21,nls(z) 0 a22,nls(z)

⎞
⎠ , (A.27b)

where θ2(x, t, z) = kx + (k2 + λ2)t and for the scalar case we used the normalization in
appendix A.1. Moreover, the cofactor representation of B(z) = A−1(z) yields

AT(z) =

⎛
⎝ ei(θ+−θ−) b33(z) 0 −ei(θ+−θ−)b31(z)

0 b11(z)b33(z) 0
−ei(θ+−θ−)b13(z) 0 ei(θ+−θ−)b11(z)

⎞
⎠ . (A.28)
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Recall from (2.20a) we have ρ2(z) = 0.
We next show how to account for the second reduction in the IST by using lemma A.5.

Recall that, q̃(x, t) = σ1q(x, t) and detσ1 = −1. Then one can show by the direct computation
that

φ̃±(x, t, z) = diag(1, σ1)φ±(x, t, z)diag(1,−1, 1), (A.29a)

Ã(z) = A(z). (A.29b)

Finally, note that q̌ is related to q simply by the unitary transformation q̌ = Uq, with U =
((p⊥)∗, p). Therefore changes to the IST caused by the third reduction will follow from lemma
A.5 as a direct consequence.

Odd and even potentials for the scalar reductions. For odd and even ICs we have
an additional symmetry for the scattering matrix, namely, component-wise bi,j(−z) = ai,j(z)
where i, j = 1, 2, 3. Using (A.28) and the above mentioned extra symmetry along with the first
symmetry yields

|ρ1(−z)| =
∣∣∣∣b31(−z)
b11(−z)

∣∣∣∣ =
∣∣∣∣a31(z)
a11(z)

∣∣∣∣ =
∣∣∣∣−ei(θ+−θ−) b31(z)

b∗
11(z∗)

∣∣∣∣ = |ρ1(z)|, z ∈ R. (A.30)

As before, this symmetry in the reflection coefficient implies that the radiation does not
contribute to the theta-condition. Using the symmetries of the discrete spectrum, it is easy to
see that one recovers the results given in appendix A.1.

A.4. Determinantal formula for the multi-soliton solutions of the Manakov system with NZBC

Here we derive the expression (2.27) for the multi-soliton solutions of the defocusing Manakov
system with NZBC. We start from the reconstruction formula (2.26) in the reflectionless case,
in which case the integral term is absent. First of all we define the following quantities:

d(1)
n, j =

γ̄ j

ζn − ζ∗j
e−2iθ1(ζ j), d(2)

n, j =
γ jζ

∗
n

ζ∗n − ζ j
e−2iθ1(ζ j), (A.31a)

d(3)
n,� = − δ̄∗�

ζn − ẑ∗�
ei(θ2(z�)−θ1(z�)), d(4)

n,� = − δ̄∗� ζ
∗
n

ẑ∗� (ζ
∗
n − z�)

ei(θ2(z�)−θ1(z�)), (A.31b)

for n, j = 1, 2, . . . , N1 and � = 1, 2, . . . , N2, as well as

d(5)
n,� =

γ�z∗n
z∗n − ζ�

e−2iθ1(ζ�), d(6)
n, j = −

δ̄∗j z
∗
n

ẑ∗j(z∗n − z j)
ei(θ2(z j)−θ1(z j)), (A.31c)

d(7)
n, j =

δ̄ jẑ∗n
(̂z∗n − ẑ j)(̂z∗n − z∗j)

ei(θ1(z∗j )−θ2(z∗j )), (A.31d)

for n, j = 1, 2, . . . , N2 and � = 1, 2, . . . , N1. As before, the x, t-dependence in the exponen-
tials has been omitted for brevity. Now using the above defined quantities we can rewrite the
equation (2.19) as follows
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M(dn)
1 (ζn) = −iq∗

+ +

N1∑
j=1

d(1)
n, jM

(dn)
2 (ζ∗j ) +

N2∑
j=1

d(3)
n, jM

(dn)
3 (̂z∗j), (A.32a)

M(dn)
2 (ζ∗n ) = iq∗

+ +

N1∑
j=1

d(2)
n, jM

(dn)
1 (ζ j) +

N2∑
j=1

d(4)
n, jM

(dn)
3 (̂z∗j), (A.32b)

M(dn)
2 (z∗n) = iq∗

+ +

N1∑
j=1

d(5)
n, jM

(dn)
1 (ζ j) +

N2∑
j=1

d(6)
n, jM

(dn)
3 (̂z∗j), (A.32c)

M(dn)
3 (̂z∗n) = iq⊥

+ −
N2∑
j=1

d(7)
n, jM

(dn)
2 (z∗j). (A.32d)

Substituting (A.32c) into (A.32d) yields

M(dn)
3 (̂z∗n) +

N2∑
�=1

⎛
⎝ N2∑

j=1

d(7)
n, jd

(6)
j,�

⎞
⎠M(dn)

3 (̂z∗� ) +
N1∑
�=1

⎛
⎝ N2∑

j=1

d(7)
n, jd

(5)
j,�

⎞
⎠M(dn)

1 (ζ�) = iq⊥
+ − iq∗

N2∑
j=1

d(7)
n, j,

(A.33a)

and similarly using (A.32a) and (A.32b) we have

M(dn)
1 (ζn) −

N1∑
�=1

⎛
⎝ N1∑

j=1

d(1)
n, jd

(2)
j,�

⎞
⎠M(dn)

1 (ζ�) −
N2∑
j=1

d(3)
n, jM

(dn)
3 (̂z∗j) −

N2∑
�=1

N1∑
j=1

d(1)
n, jd

(4)
j,�M(dn)

3 (̂z∗� )

(A.33b)

= −iq∗
+ + iq∗

+

N1∑
j=1

d(1)
n, j. (A.33c)

First, we introduce Y = (Y1, Y2, . . . , YN1+N2 )T and V = (V1, V2, . . . , VN1+N2 )T where

Yn =

⎧⎨
⎩
(
Mdn

3 (̂z∗n)
)T

n = 1, 2, ..., N2,(
Mdn

1 (ζN2−n)
)T

n = N2 + 1, ..., N2 + N1,
(A.34a)

Vn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i(q⊥
+)T − i(q∗

+)T
N2∑
j=1

d(7)
n, j n = 1, 2, . . . , N2,

−i(q∗
+)T + i(q∗

+)T
N1∑
j=1

d(1)
N2−n, j n = N2 + 1, . . . , N2 + N1.

(A.34b)

Note that both Y and V are (N1 + N2) × 2 matrices. Now we write the closed system (A.33)
for M(dn)

1 (ζ j) and M(dn)
3 (̂z∗j) in matrix form as

RY = V, (A.35)
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where R = (Rn,k) with n, k = 1, 2, . . . , N1 + N2, with

Rn,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δn,k +

N2∑
j=1

d(7)
n, jd

(6)
j,k , n, k = 1, 2, . . . , N2,

N2∑
j=1

d(7)
n, jd

(5)
j,N2−k, n = 1, 2, . . . , N2, k = N2 + 1, . . . , N2 + N1,

−d(3)
n−N2,k −

N1∑
j=1

d(1)
n−N2, j d(4)

j,k , k = 1, 2, . . . , N2, n = N2 + 1, . . . , N2 + N1,

δn−N2,k−N2 −
N1∑
j=1

d(1)
n−N2, jd

(2)
j,k−N2

, n, k = N2 + 1, . . . , N2 + N1,

(A.36)

and where δn,k is the Kronecker delta. We can also rewrite the system (A.35) as

RY1 = V1, RY2 = V2, (A.37)

where we now express Y and V as Y = (Y1, Y2) and V = (V1, V2), and where Yj and Vj

for j = 1, 2 are (N1 + N2)-component column vectors. The solution to (A.37) gives, for each
component of the vectors Y1 and Y2,

Yn,1 =
det R̂ext

n

det R
, Yn,2 =

det Řext
n

det R
n = 1, 2, . . . , N1 + N2,

where

R̂ext
n = (R1, R2, . . . , Rn−1, B1, Rn+1, . . . , RN), (A.38a)

Řext
n = (R1, R2, . . . , Rn−1, B2, Rn+1, . . . , RN). (A.38b)

It then follows that

M(dn)
3 (̂z∗n) =

1
det R

(
det R̂ext

n

det Řext
n

)
, n = 1, 2, . . . , N2, (A.39)

and

M(dn)
1 (ζn) =

1
det R

(
det R̂ext

N2+n

det Řext
N2+N

)
, n = 1, 2, . . . , N1. (A.40)

Finally, upon substituting Y1, . . . , YN into (2.26) in the reflectionless case, the resulting
expression for the potential can be written compactly as (2.27), where the augmented
(N1 + N2 + 1) × (N1 + N2 + 1) matrices are given by

Naug
j =

(
q+, j −ivT

V∗
j R∗

)
, j ∈ {1, 2},

with

v = (v1, v2, . . . , vN1+N2 )T, (A.41a)
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and

vn =

⎧⎪⎪⎨
⎪⎪⎩
− δ̄n

ẑn
ei(θ1(z∗n))−θ2(z∗n) n = 1, 2, . . . , N2,

γ̄n−N2

ζ∗n−N2

e−2iθ1(ζn−N2
) n = N2 + 1, . . . , N2 + N1.

(A.41b)

A.5. Symmetries of the discrete spectrum, norming constants and trace formula

First, we show that the function R(z) defined as in (2.24) is an even function for all parity ICs.
Using parity symmetries for all the cases we considered and b11(z) = a∗

11(z∗), we have

R(−z) =
z2

q2
o
|ρ1(−z)|2 + q2

o

z2 − q2
o
|ρ2(−z)|2 = z2

q2
o

∣∣∣∣a31(z)
b11(z)

∣∣∣∣
2

+
q2

o

z2 − q2
o

∣∣∣∣b12(z)
a11(z)

∣∣∣∣
2

, z ∈ R.

(A.42)

Applying the co-factor transformation along with the first symmetry yields,

a31(z)
b11(z)

=
b21(z)b32(z) − b31(z)b22(z)

b11(z)
= −q2

o

z2
a∗

23(z)ρ∗2(z) − ρ1(z)a∗
22(z), z ∈ R, (A.43a)

b12(z)
a11(z)

=
a13(z)a32(z) − a12(z)a33(z)

a11(z)
= − z2

q2
o

(
q2

o

z2
a33(z)ρ2(z) + ρ∗1(z)a32(z)

)
, z ∈ R.

(A.43b)

Now employing (A.43a) and (A.43b) on the equation for R(−z), we obtain for z ∈ R,

R(−z) =
z2

q2
o

∣∣∣∣q2
o

z2
a∗

23(z)ρ∗2(z) + ρ1(z)a∗
22(z)

∣∣∣∣
2

+
z4

q2
o(z2 − q2

o)

∣∣∣∣q2
o

z2
a33(z)ρ2(z) + ρ∗1(z)a32(z)

∣∣∣∣
2

,

=
q2

o

z2 − q2
o
|ρ2(z)|2

(
z2 − q2

o

q2
o

|a23|2 + |a33(z)|2
)
+

z2

q2
o
|ρ1(z)|2

(
|a22|2 +

z2

z2 − q2
o
|a32(z)|2

)

+ 2 Re

{
ρ1(z)ρ2(z)

(
a23(z)a∗

22(z) +
z2

(z2 − q2
o)

a33(z)a∗
32(z)

)}
,

=
q2

o

z2 − q2
o
|ρ2(z)|2 (a23(z)b32(z) + a33(z)b33(z)) +

z2

q2
o
|ρ1(z)|2 (a22(z)b22(z) + a32(z)b23(z))

+ 2 Re{ρ1(z)ρ2(z) (a23(z)b22(z) + a33(z)b23(z))}. (A.44a)

Using the fact that B(z)A(z) = A(z)B(z) = I3×3, we have, when z ∈ R,

a23(z)b32(z) + a33(z)b33(z) = 1 − b31(z)a13(z), (A.44b)

a22(z)b22(z) + a32(z)b23(z) = 1 − b21(z)a12(z), (A.44c)

a23(z)b22(z) + a33(z)b23(z) = −b21(z)a13(z). (A.44d)

Collecting all together and simplify further yields,

R(−z) =
q2

o

z2 − q2
o
|ρ2(z)|2 + z2

q2
o
|ρ1(z)|2 = R(z), z ∈ R, (A.45)
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i.e., (4.3).
Next we show that the scattering coefficient a11(z) simplifies considerably when z becomes

purely imaginary. The trace formula (2.23a) yields

a11(z) =

(
z − iqo

z + iqo

)m1 m2∏
n=1

z − iZn

z + iZn

(N1+m1)/2∏
n=m1+1

× (z − ζ+n )(z − ζ−n )
(z − ζ̄+n )(z − ζ̄−n )

(N2+m2)/2∏
n=m2+1

× (z − z+n )(z − z−n )
(z − z̄+n )(z − z̄−n )

× exp

{
− 1

2πi

∫ ∞

−∞

log[1 − R(ζ)]
ζ − z

dζ

}
, z ∈ C

+. (A.46)

Using (A.45), the following identities can be obtained by direct computation:

(z − ζ+n )(z − ζ−n )
(z − ζ̄+n )(z − ζ̄−n )

=

(
|z|2 − q2

o

)2
+
(
2|z|Re(ζ+n )

)2

|(z − ζ̄+n )(z − ζ̄−n )|2 , n = m1

+ 1, . . . , (N1 + m1)/2, z ∈ iR+, (A.47a)

(z − z+n )(z − z−n )
(z − z̄+n )(z − z̄−n )

=

(
|z|2 − |z+n |2

)2
+
(
2|z|Re(z+n )

)2

|(z − z̄+n )(z − z̄−n )|2 , n

= m2 + 1, . . . , (N2 + m2)/2, z ∈ iR+, (A.47b)

∫ ∞

−∞

log[1 − R(ζ)]
ζ − z

dζ = 2z
∫ ∞

0

log[1 − R(ζ)]
ζ2 − z2

dζ, z ∈ iR+. (A.47c)

Hence we have

a11(z) =

(
z − iqo

z + iqo

)m1 m2∏
n=1

z − iZn

z + iZn

(N1+m1)/2∏
n=m1+1

(
|z|2 − q2

o

)2
+
(
2|z|Re(ζ+n )

)2

|(z − ζ̄+n )(z − ζ̄−n )|2

×
(N2+m2)/2∏
n=m2+1

(
|z|2 − |z+n |2

)2
+
(
2|z|Re(z+n )

)2

|(z − z̄+n )(z − z̄−n )|2

× exp

{
− z
πi

∫ ∞

0

log[1 − R(ζ)]
ζ2 − z2

dζ

}
, z ∈ iR+, (A.48)

from which (4.6a) and (4.6b) follow.
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