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Abstract

We study dark–bright soliton interactions in multi-component media such

as nonlinear optical media in the defocusing regime and repulsive Bose–

Einstein condensates. This is achieved using the recently developed formalism

of the inverse scattering transform for the defocusing multi-component non-

linear Schrödinger equation with non-zero boundary conditions. We show

that, generically, these interactions result in a non-trivial polarization shift

for the bright components. We compute such polarization shift analytically

and compare it to that in focusing two-component nonlinear Schrödinger

systems.

Keywords: nonlinear Schrödinger systems, solitons, integrable systems,

inverse scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Since their first experimental realization [1, 2], Bose–Einstein condensates (BECs) have

attracted considerable attention, and they continue to be the object of intense research.

In particular, experiments in multi-component BECs have demonstrated a variety of dark–

dark and dark–bright solitons [3–5]. The same kinds of solutions also appear in nonlinear

optical media with defocusing dispersion [6–9]. The purpose of this work is to study dark–
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bright soliton interactions in multi-component media of this kind. We show that such inter-

actions result in non-trivial polarization shifts, i.e., energy and phase exchanges between the

bright components of the interacting solitons, similar to those in focusing two-component

nonlinear Schrödinger systems [10]. To the best of our knowledge, this is the first time that

non-trivial soliton polarization interactions have been reported in a defocusing system.

Repulsive, cigar-shaped single-component BECs can be modeled by the defocusing

nonlinear Schrödinger (NLS) equation [14]. Similarly, multi-component BECs are modeled

by a vector NLS (VNLS) equation. In particular, the two-component case is referred to as the

Manakov system [10]. To model dark–bright soliton interactions, one must consider non-zero

boundary conditions (NZBC). Thus, here we study the three-component defocusing VNLS

equation

qq q q q 0i 2 , 1t xx o
2 2( ) ( )+ - - = 

where x t q q qq , , , T
1 2 3( ) ( )= , and with the NZBC

x tq qlim , , 2
x

( ) ( )=
¥



with qq 0o= >  . The term proportional to qo in equation (1) makes q independent of

time but can be removed by a simple gauge transformation. Importantly, multicomponent

VNLS equations such as equation (1) also arise in nonlinear optical media [11–13].

Therefore, the results of this work are applicable to both physical contexts.

Equation (1) is a completely integrable system, so its initial value problem can be solved

by means of an appropriate inverse scattering transform (IST) [15]. The IST for the case of

zero boundary conditions (ZBCs) was presented in [10] for the two-component case and is

easily extended to the multi-component case [16]. The IST for NZBC is much more chal-

lenging, however. The IST for the scalar defocusing case with NZBC was done in [14], but

the defocusing Manakov system with NZBC remained open for a long time and was recently

done in [17] (see also [18, 19]). A general formulation of the IST for the multi-component

defocusing case was then developed in [20, 21]. Here we employ the machinery of [20, 21] to

study the resulting soliton interactions.

The structure of this work is the following: in section 2 we briefly recall the essential

elements of the IST formalism developed in [20, 21] (referring the reader to those works

for all details). In section 3 we discuss the symmetries and discrete spectrum of the

scattering problem and use them to write exact expressions for general multi-soliton solutions.

In section 4 we then use these expressions to study the soliton interactions, including

the interaction-induced polarization shift. Section 5 concludes the work with some final

remarks.

2. Direct and inverse scattering for the multi-component VNLS equation with

NZBC

The VNLS equation (1) admits the following 4 × 4 Lax pair:

X T, , 3x t ( )f f f f= =

where

X x t k kJ Q a, , i , 4( ) ( )= - +

T x t k k J J Q Q q kQ b, , 2i i 2 , 4x o
2 2 2( )( ) ( )= - - + -
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and with

J
I

Q x t
O

c0

0

q

q

1 , ,
0

, 4
T

( ) ( )
†

⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟=

-
=

I and O denoting identity and zero matrices of appropriate size. That is, the VNLS

equation (1) is the zero curvature condition

X T X T, 0, 5t x [ ] ( )- + =

where A B AB BA,[ ] = - is the matrix commutator. In turn, equation (5) is the compatibility

condition tx xtf f= of the overdetermined linear system (3).

For simplicity, we consider the case in which the asymptotic vectors q at x  ¥ are

parallel. In this case, thanks to the U(N) invariance of equation (1), without loss of generality

they can be chosen in the form qq 0,0, T( )=  , with q q eo
i= q


 and q arbitrary real

constants.

As in the scalar case, the scattering problem (i.e., the first equation in the Lax pair (3)) is

self-adjoint, but the continuous spectrum q q,o o⧹( ) - exhibits a gap, and the Jost solutions

are expressed in terms of k q
o

2 2 1 2( )l = - [14]. To deal effectively with the branching of λ,

one introduces a Riemann surface by gluing two copies of the complex k-plane in which

λ takes on either value of the square root. One then defines a uniformization variable

z k l= + such that the first/second copy of the complex k-plane are mapped into the

upper/lower half of the z-plane [22]. The original variables are k z q z
o

1

2

2( )= + and

z q z
o

1

2

2( )l = - . Expressing all functional dependence on k and λ in the IST in terms of z

then eliminates the branching.

For all z Î one defines the Jost solutions x t z, ,( )f as the simultaneous solutions of

both parts of the Lax pair with the free-particle asymptotic behavior

x t z E o x, , e 1 , , 6i( ) ( ) ( )f = +  ¥ 
Q

with x t z x t, , diag ,...,1 4( ) ( )q qQ = = L - W , where

z k k

z k k k k

i i diag , , , ,

i i diag 2 , , , 22 2 2 2( )
( ) ( )

( )

l l

l l l l

L = -

- W =- - + +

are respectively the eigenvalue matrices of X Xlimx= ¥ and T Tlimx= ¥ , and

E z I J Q zi 7( ) ( ) ( )= + 

is the corresponding eigenvector matrix, with Q Qlimx= ¥ .

Note det e kx k t2i 2 2[ ( ) ]f g= l


- + , where E q zdet 1
o
2 2g = = - , so for z qo⧹ }Î 

one can introduce the scattering matrix A z ai j,( ) ( )= via

x t z x t z A z, , , , , 8( ) ( ) ( ) ( )f f=- +

with A zdet 1( ) = . Also, since the Jost solutions solve the t-part of the Lax pair as well, all

entries of the scattering matrix A(z), which will enter in the definition of the scattering data,

are time-independent.

Unlike the scalar case [14, 22], only two of the columns of each of f admit analytic

continuation onto the complex z-plane, specifically the first and the last columns ,1f and

,4f . This is major obstruction in the development of the IST, since the solution of the inverse

problem requires complete sets of analytical (or, more generally, meromorphic) eigenfunc-

tions. This problem was circumvented in [20], where a fundamental set of meromorphic

eigenfunctions x t z, ,( )X in each half plane was constructed using an appropriate extension
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of the scattering problem to higher-dimensional tensors. (Hereafter, subscripts± denote

normalization as x  ¥, whereas superscripts± denote analyticity or meromorphicity in

the upper/lower half of the complex z-plane. Also, a subscript j in a matrix will be used to

refer to the jth column of the matrix.)

For z Î , the meromorphic eigenfunctions can be written in terms of the Jost eigen-

functions as follows:

x t z x t z z x t z z a, , , , , , , 9( ) ( ) ( ) ( ) ( ) ( )f a f bX = =+
- +

x t z x t z z x t z z b, , , , , , , 9( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )f b f aX = =-
- +

where α and ã are upper triangular matrices, while β and b̃ are lower triangular ones. (In

particular, the diagonal entries of α and b̃ are all unity.) Then equation (8) yields triangular

decompositions of the scattering matrix A z z z z z1 1
( ) ( ) ( ) ˜ ( ) ˜ ( )b a a b= =- -

, similarly to the

N-wave interactions [23]. In turn, these decompositions allow one to express the entries of

, , ,˜ ˜a b a b in terms of the minors of A, denoted as

A

a a

a a
det

...

,i i

k k

i k i k

i k i k

,...,

,...,

p

p

p

p p p

1

1

1 1 1

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟⎛

⎝
⎜

⎞

⎠
⎟
=   



where i i1 4p1 < < and similarly for k k,..., p1 . In particular, the upper and lower

principal minors of A are, respectively, determinants of the form

A A A A, ,p p

p

p N p

p

1 ,..., 1 ,...,

1 ,...,

,..., ,..., 4

,..., 4

[ ] [ ]⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= =

for p1 4  . Importantly, equation (9) allow one to obtain the analyticity properties of the

minors of A. The upper principal minors A A A, ,1 1,2 1,2,3[ ] [ ] [ ] are analytic in the upper half plane

(UHP), while the lower principal minors A A A, ,2,3,4 3,4 4[ ] [ ] [ ] are analytic in the lower half plane

(LHP). In addition, the following minors are also analytic:

A A z

A A z

, : Im 0;

, : Im 0.

1,2

1,3

1,3

1,2

2,4

3,4

3,4

2,4

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

>

<

Using these results, one can write a fundamental set of analytic eigenfunctions in either half

plane as

x t z x t z D z, , , , , 10( ) ( ) ( ) ( )c = X  

where

D A A A

D A A A

diag 1, , , ,

diag , , , 1 .

1 1,2 1,2,3

2,3,4 3,4 4

( )
( )

[ ] [ ] [ ]

[ ] [ ] [ ]

=

=

+

-

Note ,1 1
f c=-

+ and ,4 4
f c=+

+ are analytic in the UHP, while ,1 1
f c=+

- and ,4 4
f c=-

- are in

the LHP.

The inverse problem is formulated in terms of a Riemann–Hilbert problem (RHP) for the

sectionally meromorphic matrix M x t z M, ,( ) =  for zIm 0 , with
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M
A A

A

A A A

M
A A

A

A A A

, , , e ,

, , , e .

,1

1

2

1,2

1,3

1,2
3

1,2 1,2,3

3

1,2,3
,4

i

,1
2

2,3,4

3

3,4

2,4

3,4
2

3,4 2,3,4

,4

4

i

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

f c
c

c
f

f
c c

c
f

= -

= -

+ -
+

+
+

+
- Q

-
+

- -
-

- - Q

Indeed, manipulating the scattering relation (8), one obtains the jump condition

M M I L ze e , , 11K Ki i( ) ( )= - Î+ - - Q Q

where K diag 1, 1, 1, 1( )= - - and L(z) is explicitly determined in terms of the reflection

coefficients of the problem: z a a1 21 11( )r = , z a a2 31 11( )r = and z a a3 41 11( )r = .

Since M x t z I, ,( )  as z  ¥, one can use Cauchy projectors to reduce the RHP to a

system of linear integral equations. In addition, if a nontrivial discrete spectrum is present, as

usual one must supplement the system with appropriate algebraic equations, obtained by

computing the residues of M x t z, ,( ) at the discrete eigenvalues. Finally, computing the

asymptotic behavior of the solution of the RHP as z  ¥ and comparing with the asymptotic

behavior obtained from the direct problem allows one to write down a reconstruction formula

for the solution of the VNLS equation (1):

q x t zM x t z j, i lim , , , 1, 2, 3. 12j
z

j 1,1( ) ( ) ( )= - =
¥

+

As usual, in the reflectionless case [ z 0j ( )r º ] the RHP reduces to a linear algebraic system

and one obtains the pure soliton solutions.

3. Symmetries, discrete spectrum, and reflectionless potentials

The richness of the three-component VNLS equation compared to the Manakov system

comes from the discrete spectrum and symmetries. In turn, these features result in a larger

variety of soliton solutions, as we discuss next.

Symmetries. Similarly to the scalar case [14, 22], the Lax pair admits two involutions:

z z* , mapping the UHP into the LHP and viceversa, and z q z
o
2 mapping the exterior

of the circle C z q:o o∣ ∣ = into the interior and viceversa. The behavior of the analytic

eigenfunctions under these symmetries is different, however, and is obtained by first noting

that, for z Î ,

x t z J x t z C x t q z, , , , , , , 13
o

1 2( )( ) ( ) ( )†⎡⎣ ⎤⎦f f f= = P 
-

 

with z JQ zdiag 0, 1, 1, 0 i( ) ( ) *P = -  and C z diag , 1, 1,( ) ( )g g= - - - . One then

expresses the non-analytic Jost eigenfunctions in equations (13) in terms of the columns of

c via equations (9) and (10) and uses the Schwarz reflection principle to lift the resulting

relations off the real axis. In particular, wherever the eigenfunctions are analytic

x t z
A A

JL a, ,
e

, , , 14
,1

2i

1,2 1,2,3
2 3 ,4

2

( ) ( )
[ ] [ ]

⎡⎣ ⎤⎦* *f c c f= -
q

+

-
+ +

+

x t q z z q b, , i , 14
o,1
2

,4( ) ( ) ( )f f=  
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x t z
A

JL c, ,
e

, , , 14
2

2i

4
,1 3 ,4

2

( ) ( )
[ ]

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦* *c
g

f c f= -
q

+
-

+
-

-

x t q z
A

A A d, ,
e

, 14
o2
2

i

3,4
4 2 3,4

2,4
3( ) ( )

[ ]
[ ]

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟⎛

⎝
⎜

⎞

⎠
⎟

c c c= +
q

+
D

- -

and similarly for the other columns of c. Here

L

u u u u
v v v v
w w w wu v w

e e e e

, , det

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

[ ]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

is the multilinear and totally antisymmetric operator which generalizes the familiar cross-

product to four dimensions, and q q qD = -+ -. Corresponding symmetries exist for the

scattering data. In particular, wherever the minors are analytic,

A z A z A q z ae , 15
o1 2,3,4

i
4

2( )( )( ) ( )[ ] [ ] [ ]* *= = qD

A z A z A z A z b, , 151,2 3,4 1,2,3 4( ) ( )( ) ( ) ( )[ ] [ ] [ ] [ ]* * * *= =

A z A z A q z ce , 15
o1,2

1,3
3,4

2,4

i
2,4

3,4

2( )( )( ) ( )⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

* *= - = qD

A z A z d. 151,3

1,2
2,4

3,4

( )( ) ( )⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎜

⎞

⎠
⎟

* *= -

Moreover

A z A q z A z A z A z A z ee . 15
o

i
1,2 1,2

2
1 1,2,3 1,2

1,3

1,3

1,2

( )( ) ( ) ( ) ( ) ( ) ( )[ ] [ ] [ ] [ ] ⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

* * = +qD

These symmetries play a crucial role in the characterization of the discrete spectrum. Indeed,

it is the presence of L [ · ] and the non-principal analytic minors in equations (14), (15e)

and M x t z, ,( ) that make the discrete spectrum and the corresponding soliton solutions

of the three-component case much richer and more complex than those of the Manakov

system.

Discrete spectrum and reflectionless solutions. The discrete spectrum is comprised of the

values of z Î for which the columns of c are linearly dependent. Equations (9)–(10) yield

A A A adet e , 16i
1 1,2 1,2,3

2 2 ( )[ ] [ ] [ ]c g= q+

A A A bdet e . 16i
4 3,4 2,3,4

2 2 ( )[ ] [ ] [ ]c g= q-

We therefore see from equation (16) that the zeros of the upper/lower principal minors of the

scattering matrix A A A, ,1 1,2 1,2,3[ ] [ ] [ ] and A A A, ,2,3,4 3,4 4[ ] [ ] [ ] play the role of discrete

eigenvalues of the scattering problem. The scattering problem is self-adjoint, so bound

states can only occur for k Î [i.e., z qo∣ ∣ = ]. As in the scalar case [14], these give rise to

dark solitons. On the other hand, the analytic principal minors in equation (16) can have zeros

for z qo∣ ∣ ¹ . As in the Manakov system [17], such zeros yield dark–bright solitons [6–9, 24].

This is not a contradiction, as such solutions do not lead to bound states for the

eigenfunctions [17, 18].
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The symmetries of the scattering problem imply that, as in the scalar and two-component

case [17, 22], the discrete eigenvalues appear in symmetric quartets Z z z z z, , ,n n n n n{ ˆ ˆ }* *= ,

where z q z
o
2ˆ *= . When the non-principal analytic minors are identically zero, each

quartet yields a dark–bright soliton in which the bright component is aligned exclusively with

either the first or the second component of x tq ,( ), while the dark part is along the

third component of x tq ,( ) [21]. Here we discuss the novel case in which some of

the extra analytic minors are non-zero. Specifically, for each quartet Zn we consider

the following configuration of simple zeros for the analytic minors: A z 0n1 ( )[ ] = and

A z A z 0n n1,2 1,2,3( ) ( )[ ] [ ] ¹ , as well as

A z A z0, 0.n n1,2

1,3

1,3

1,2

( ) ( )⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= ¹

The eigenfunctions can then be shown to be related as follows:

x t z b x t z a, , , , , 17n n n,1 2
( ) ( ) ( )f c=-

+

x t z d x t z b, , , , , 17n n n2 ,1( ) ( ) ( )* *c f=-
+

x t z e x t z c, , , , , 17n n n3 ,4( ) ( )ˆ ˆ ( )c f=+
+

x t z g x t z h x t z d, , , , , , , 17n n n n n,4 2 3( ) ( ) ( )ˆ ˆ ˜ ˆ ( )* * *f c c= +-
- -

where dn, en and gn are determined in terms of bn via the symmetries,

x t z x t z A z, , , ,
3 3 3,4˜ ( ) ( ) ( )[ ]c c=- - is finite at zoˆ*, and hn is proportional to the non-zero

analytic non-principal minor A zn1,3

1,2

( )⎛

⎝
⎜

⎞

⎠
⎟

. The residues of M x t z, ,( ) at each point of Zn can

then be computed via equation (17) and expressed in terms of a single, arbitrary complex

vector norming constant c cc ,n n n
T

1, 2,( )= . Finally, the solution of the VNLS equation in the

reflectionless case is recovered from equation (12) as:

q x t q c M x t z c M x t z, i , , , , e , 18j j
n

N

n j n n j n
z z

,
1

1, 2, 1 2, 3, 1
i n n2 1( ) ( ) ( ) ( )( )( ) ( )⎡⎣ ⎤⎦å= - + q q

+
=

+
+

+
+ -

for j 1, 2, 3= , where N is the total number of eigenvalue quartets.

4. General dark–bright soliton solutions and interaction-induced polarization

shift

We now use the results presented in the previous sections to study the dark–bright soliton

solutions of equation (1) and their interactions.

One-soliton solutions and dark–bright solitons. When only one quartet of discrete

eigenvalues is present, letting z v zi eo o o o
i o∣ ∣h= + = a , with z qo o∣ ∣ < and 0oh > , one

obtains a dark–bright soliton solution of the VNLS equation:

q x t p w S j a, i sin e sech , 1, 2, 19j j o o o o,
i o( ) ( )a= - =F

q x t q S b, e cos i sin tanh , 19o o o3
i o( )( ) ( )a a= -a

+

where

w q z v x v t a, , 20n o n n n n n
2 2 2 2( ) ( )h= - F = - -

J. Phys. A: Math. Theor. 48 (2015) 395202 G Biondini et al

7



(in this case with n = 0), with

S x v t x
z

w
a

c
2 , e

2
, 21o o o o

x o o

o o

o o( )
∣ ∣

( )h
h

= - - =h  

and the polarization vector for the bright components is

p p bp c c, . 21o o o
T

o o1, 2,( ) ( )= =  

For the dark component, the special case 0oa = , in which the intensity of the dark part dips

all the way to zero at x xo= , is referred to as a black soliton, while the generic case 0oa ¹ is

referred to as a gray soliton.

The complex, unit-magnitude two-component vector po uniquely determines the state of

polarization (SOP) of the bright part; that is, the relative amplitude and phase of the first two

components of the soliton. Of course the SOP could be equivalently described by the real,

unit-length three-component Stokes vector s s s s, , T
1 2 3ˆ ( )= with s p pj o j o

†s= , where , ,1 2 3s s s
are the Pauli matrices [25]. The SOP is then identified by a point on the so-called Poincaré

sphere s s s 11
2

2
2

3
2+ + = . Indeed, the real representation is the one most commonly used in

nonlinear optics and telecommunications [26]. However, it is straightforward to go back and

forth between the two representations of the SOP, and the complex representation given

above will be sufficient for our purposes.

Two-soliton solutions. When two quartets Z1 and Z2 of discrete eigenvalues are con-

sidered, one obtains a two-soliton solution of the VNLS equation. We next discuss such kinds

of solutions.

Denote the real and imaginary parts of the discrete eigenvalues zn as z v in n nh= + for

n = 1, 2, with 0nh > and z qn o∣ ∣ < . Let the two complex vector norming constants for soliton

1 and 2 be given by c cc ,n n n
T

1 2( )= for n = 1, 2, respectively. Also define the coefficients

g
z z

z z q z z

f
z

q z
n

,

2
, 1, 2,

o

n

n

n o n

1 2

2 1
2

1 2

2

2 2( )

( )( )
*

* *

h

=
- -

=
-

=

as well as the short-hand notations

z z

z z
g f fc c c c

4
, .

1 2
2

1 2 1 2

2 1 2
2 2

1
2

2
2

1 2∣ ∣†

*h h
G =

-

-
D = -    

Note that 0G and 0D , due to the inequalities

z z

q z z q z q z

c c c c , 4 ,

.
o o o

1
2

2
2

1 2
2

1 2

2

1 2

2
1 2

2 2
1

2 2
2

2( )( )

† *

*

 



h h-

- - -

   

The reconstruction formula for the two-soliton solution of the three-component defocusing

VNLS equation (1) then yields
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for j = 1, 2, together with

b22
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Figure 1. A two-soliton solution of the defocusing three-component VNLS equation
exhibiting a polarization shift, obtained for qo = 1 with z i 21 = (stationary soliton),

z 1 i 42 ( )= + (moving soliton) and norming vectors c 1,0 T
1 ( )= and

c 1,1 i 2 T
2 ( )= + . Note how the bright component of soliton 1 is initially aligned

exclusively with q1, but acquires a component along q2 as a result of the interaction.
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where nF and wn are given by equation (20) for n = 1, 2, but now

S x v t2 . 24n n n( ) ( )h= -

Soliton interactions and polarization shift. The solution of VNLS solution in

equation (22) describes a nonlinear superposition of two dark–bright solitons. As an example,

figure 1 shows an interaction between a stationary dark–bright soliton (with a dark part

comprised of a black soliton) and a moving dark–bright soliton (with a dark part comprised of

a gray soliton).

The behavior of the solution and the effects of the interaction can be studied using a long-

time asymptotic analysis similar to the one described in [28]. This analysis shows that, along

the direction of Sn, as t  ¥, the solution takes the form of the one-soliton solution (19)

but with pn, xn and nj replaced by p
n
, xn

 and
n
j, with all these quantities expressed in terms

of the discrete eigenvalues and norming constants. Explicitly

ap c c p c c, , 25
1 1 1 2 2 2 ( )= =- +   

z

w

z

w
b

c c
e

2
, e

2
, 25x x1 1

1 1

2 2

2 2

1 1 2 2 ( )
h h

= =h h- +   

and p
1
+ and p

2
- expressed in terms of p

1
- and p

2
+ as

z z z q z

z z z q z z
cp p p p p

1
, , 25

o

o

1 1

1 2 2
2

2
2

2 2 1
2

1 2
2 1 2

( )
( )

( )
( )

( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

*

* *c
= +

- -

- -
+ - + - +

z z z q z

z z z q z z
dp p p p p

1
, , 25

o

o

2 2

2 1 1
2

1
2

1 1 2
2

1 2
1 2 1

( )
( )

( )
( )

( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

*

* *c
= +

- -

- -
- + - + -

where a b a b, †= , with

r w w ap p1 1 4 , , 261 2
2

1
2

2
2

1 2
2

1 2
∣ ∣ ∣ ( )⎡

⎣
⎤
⎦c h h= + - -

r z z q z z b1 . 26
o1 2
2

1 2( )( ) ( )⎡
⎣

⎤
⎦= - -

A non-trivial polarization shift for the bright components is evident in figure 1. In

particular, the bright part of the stationary soliton, which is completely aligned along the first

component before the interaction, acquires a nontrivial projection along the second compo-

nent as a result of the interaction. A shift in the relative intensities of the projections of the

moving soliton along the first two components is also clearly visible. We next quantify these

effects.

Recall that the angle a b,d between two complex two-component polarization vectors a

and b is a bcos ,a b, ∣ ∣d = [25]. Thus, the quadratic expressions p p,
1 2
- - , p p,

1 2
+ +

p p,
1 1
+ - and p p,

2 2
+ - quantify respectively the degree of input copolarization between

the two solitons, the degree of output copolarization between the two solitons, and the

polarization shift of each of the solitons.

Using the expressions (25) obtained from the long-time aymptotics of the exact two-

soliton solution (22), it is straightforward to write the output SOPs p
j
+ in terms in terms of the

input ones p
j
-. Explicitly
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r z z w ap p p p p2i , , 27
1 1 1 2 2 2

2
1 2 2( ) ( )⎡

⎣
⎤
⎦* * *c h= -+ - - - -

r z z w bp p p p p2i , . 27
2 2 2 1 1 1

2
1 2 1( ) ( )⎡

⎣
⎤
⎦*c h= -+ - - - -

From equations (27) we see that the SOP of each soliton always changes as a result of the

interaction, unless the polarization vectors are either parallel or orthogonal to each other. The

form of equations (27) is similar to that of the equations for the polarization shifts for the

focusing Manakov system with ZBC [10, 27], but the dependence on the soliton parameters is

of course different.

The input and output degrees of copolarization and the polarization shift can now be

easily obtained from the exact expressions (27). These quantities are shown in figure 2 as a

function of the input copolarization p p,
1 2
- - . Note how in some cases the output polar-

ization is orthogonal to the input one. Also, note how the output copolarization is always

larger than the input one, even though the interactions occur in a repulsive medium.

The long-time asymptotics also yields the position shift x xn n-+ - of the solitons, which is

found to be

z z z ze e . 28x x x x
1 2 1 2

1 1 1 2 2 2( ) ( ) ( )*c= = - -h h- -+ - - +

For the separation between the asymptotic soliton centers one then has

x x x x x z z z zlog log . 292 2 1 1
1 2

1 2

1 2 1 2( ) ( )⎡
⎣

⎤
⎦*

h h
h h

cD = - - + =
+

- - -+ - + -

When the polarizations of the interacting solitons are parallel or perpendicular, this expression

reduces to the one found in [28] for the defocusing Manakov system with NZBC. But in

general the position shift depends on the polarization vectors of the interacting solitons.

5. Discussion

The interaction-induced polarization shifts between bright solitons in focusing media is a

well-known effect [10, 27] which has been experimentally observed [29]. To the best of our

knowledge, however, the interaction-induced polarization shift between dark–bright solitons

Figure 2. The polarization shift p p,
1 1

∣ ∣+ - (left) and output copolarization p p,
1 2

∣ ∣+ +

(right) as a function of the input copolarization p p,
1 2

∣ ∣- - for different combinations of

soliton parameters. Red curves: z i 21 = , z i 42 = ; blue curves: z i 21 = ,

z 1 i 42 ( )= + ; purple curves: z 1 i 21 ( )= + , z 1 i 42 ( )= + ; black curves:

z 1 i 21 ( )= - + , z 1 i 22 ( )= + . The input copolarization is also shown as a dotted

black line in the figure to the right.
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in defocusing media is a novel physical effect that had not previously been reported in the

literature.

We emphasize that, in spite of the interaction-induced redistribution of energy between

the bright components along q1 and q2, the total energy of each soliton and that of its bright

part are both conserved, and a polarization shift is still consistent with elastic interactions, just

like a position shift.

The formulae (27) for the polarization shift in the defocusing three-component VNLS

equation with NZBC are similar to those for the equivalent effect in the focusing two-

component VNLS equation with ZBC [10]. Also, the defocusing two-component VNLS

equation with NZBC admits solutions arising from double zeros of the analytic scattering

coefficients, leading to logarithmic interactions between dark–bright solitons [18]. Such

solutions are not allowed in the scalar defocusing NLS equation [14], and their behavior is

similar to that of double-pole solutions of the scalar focusing NLS equation with ZBC [30].

Thus, in both instances, the defocusing case of the VNLS equation with NZBC allows similar

degrees of freedom as the focusing case with ZBC and one less component. It is an interesting

question whether this analogy persists as the number of components increases further.

The multi-soliton solutions and the corresponding polarization interactions presented

here are stable, as was demonstrated by performing careful direct numerical simulations of

equation (1). Moreover, one can expect that the phenomenon will also be present for non-

integrable versions of the coupled NLS equations, similarly to what happens for the inter-

action-induced polarization shifts in focusing media. Since scalar and VNLS equations arise

in a wide variety of physical contexts, ranging from BEC to nonlinear optics, the polarization

shift should therefore be a robust phenomenon that can in principle be verified

experimentally.
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