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ABSTRACT

We formulate the inverse scattering transform for the scalar Maxwell-Bloch system of equations describing the resonant interaction of light
and active optical media in the case when the light intensity does not vanish at infinity. We show that pure background states in general do
not exist with a nonzero background field. We then use the formalism to compute explicitly the soliton solutions of this system. We discuss
the initial population of atoms and show that the pure soliton solutions do not correspond to a pure state initially. We obtain a representation
for the soliton solutions in determinant form and explicitly write down the one-soliton solutions. We next derive periodic solutions and
rational solutions from the one-soliton solutions. We then analyze the properties of these solutions, including discussion of the sharp-line
and small-amplitude limits, and thereafter show that the two limits do not commute. Finally, we investigate the behavior of general solutions,
showing that solutions are stable (i.e., the radiative parts of solutions decay) only when initially atoms in the ground state dominate, i.e., initial
population inversion is negative.
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I. INTRODUCTION

Resonant interaction between pulses of monochromatic light and an active optical medium is one of the most useful phenomena studied
in applied optics, having led to indispensable devices such as lasers and optical amplifiers.1–5 The optical medium is often assumed to have
two working atomic levels, with the transition frequency between these two levels being roughly equal to the frequency of the impinging light,
which is known as the two-level medium approximation.3 In addition to lasing and amplification, the interaction between light and two-level
media has given rise to several classical nonlinear-optics effects including self-induced transparency2,6–8 (undisturbed propagation of pulses
with sufficiently high amplitudes through the medium and absorption of weaker pulses), superfluorescence (generation of short optical pulses
from material polarizability fluctuations in an excited medium9–19), optical nutation (a phenomenon during which the material properties
exhibit oscillations akin to nutation in rigid bodies3), and photon echo9,20–23 (generation of a third pulse from the injection of a pair of pulses
into the medium).

The wealth of physical phenomena exhibited by light interacting with two-level active optical media has provided an abundant source
of fundamental mathematical problems used in their description. This description is afforded by various versions of the two-level Maxwell-
Bloch equations (MBEs).3,12,24–27 Frequently, such equations are derived by assuming unidirectional propagation and using the slowly varying
envelope approximation, i.e., separating the fast-oscillating plane wave representing the color of the light from the slowly varying envelope
representing its amplitude and phase, and the rotating wave approximation, i.e., averaging over the fast oscillations.27 Mathematically, these
approximations are equivalent to the more general method of multiple scales.28 The properties of the material are typically described in
terms of the quantum density matrix that yields a Bloch vector analogous to that used in spin dynamics.24 Depending on the values of their
parameters and inputs, the two-level MBEs exhibit a rich variety of dynamical regimes. While some regimes of laser operation are chaotic,29–33

and can be described by the Lorenz equations,34,35 or are even turbulent,36–39 and have a finite-dimensional attractor40–43 or a slowmanifold,44

other regimes of light propagating through rarefied gases may be approximated by completely integrable, soliton-type equations.4,9,10,17,45–52
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The integrable MBEs are derived under the above-mentioned approximations and have addressed phenomena including self-
induced transparency,9,10,45 area theorem,46 photon echo,48 amplification,47,49,50 and superfluorescence.17,51,52 Typically, these phenomena
are addressed from the viewpoint of the initial-boundary-value or signaling problem for a finitely or infinitely long narrow tube contain-
ing the active medium, into which a narrow optical pulse is injected at one end, and whose initial state is given far in the past. The MBEs
can be represented in terms of a Lax pair,45,52 and thus, the initial-value problem can be solved using the inverse-scattering transform
(IST).45,52–54 The temporal piece of the Lax pair is in the AKNS form,55,56 so just as for the nonlinear Schrödinger equation appearing in Refs. 57
and 58, which stretches from the infinite past to the infinite future, and pulses are evolved along the spatial variable, describing its propagation
from the location, where the pulse is launched into the medium. The evolution operator in the Lax pair of the MBEs has an unusual form
containing a Hilbert transform, which complicates the derivation and form of the equations describing the evolution of the spectral data, as
well as reflects the fact that the phenomena described by the MBEs are irreversible.45

All the above classic works on the IST for the integrable two-level MBEs addressed narrow optical pulses, i.e., pulses that decay both
forward and backward in time. A few studies have discussed pulses riding on top of a continuous-wave (CW) background.59–68 However,
these phenomena have so far attracted much less attention. In this paper, we make a systematic attempt to fill this gap by developing the IST
for studying pulses that asymptotically approach plane waves with equal amplitudes and frequencies in both backward and forward times, i.e.,
for MBEs with nonzero background (NZBG).

The direct and inverse scattering components of our study closely parallel those in our work on the focusing nonlinear Schrödinger
(NLS) equation with nonzero boundary conditions (NZBC).69 More generally, the study of nonlinear systems with NZBG has also received
considerable interest thanks in part to its connections to the theory of modulational instability, rogue waves, and integrable turbulence.70–79

The continuous spectra for the scattering problems of both the NLS and MBEs comprise the real axis plus a symmetric interval along the
imaginary axis with length twice that the amplitude of the CW background. This symmetric interval is the branch cut for the double-sheeted
Riemann surface on which both the scattering and inverse-scattering take place.

The main difficulty of the IST for MBEs lies in evaluating the evolution of the spectral data. Deriving this evolution is aided by the
Liouville form of the equation for the material variables and the dual role of the spectral parameter as the frequency detuning.45,52 Espe-
cially intricate is finding the time-dynamics of the reflection coefficients, which requires careful evaluation of Fourier-type integrals using
the Riemann-Lebesgue lemma and results in an inhomogeneous linear differential equation. While the result is somewhat similar to that
derived in Ref. 52 for MBEs with vanishing background, the details of the derivation are significantly more involved. We find that already
the single-soliton solutions of the MBEs with NZBG bring some surprises. The electric field envelope of their counterparts on zero back-
ground (ZBG) has a very simple, sechlike shape, possibly multiplied by an oscillating complex phase factor. On NZBG, this shape only
remains for the solitons corresponding to the eigenvalue lying on the imaginary axis above the branch cut (and, of course, its complex con-
jugate, which we ignore from now on). An eigenvalue in the general position in the upper half-plane gives rise to a traveling breatherlike
structure, with an exponentially localized envelope containing sinusoidal ripples that move faster than the envelope in the same direction.
The entire structure is again multiplied by an oscillating complex phase factor. Away from its center, the structure rapidly approaches the
background plane wave. Moreover, as the corresponding eigenvalue approaches the branch cut, the width of the solution envelope spreads
to infinity, and what remains is a periodic traveling wave. Moreover, the eigenvalue at the branch point produces a traveling wave with
a rational form. If we consider the spectral parameter to be a bifurcation parameter, these families of solitons represent the unfolding of
the solutions around the spectral singularity at the branch point. The four types of one-soliton solutions have been previously reported in
Ref. 80. Finally, we investigate soliton solutions in the case in which the frequency of the impinging light is detuned from the peak frequency
of the atomic transition in the medium, and describe further the unfolding properties of the solutions also in terms of the detuning as a
parameter.

The outline of this work is the following: In Sec. II, we present theMBEs and their Lax pair and we discuss their background solutions and
the treatment of the branch cut in the complex plane in the formulation of the IST. In Sec. III, we formulate the direct scattering. We derive
all scattering data including the transmission and reflection coefficients, and discrete spectrum and norming constants. We then discuss
the symmetries and asymptotics of eigenfunctions and scattering data, and the asymptotic behavior of the density matrix. In Sec. IV, we
determine propagation equations for all the relevant quantities, including the scattering data and the continuous-wave background. In Sec. V,
we formulate the inverse problem in terms of a Riemann-Hilbert problem (RHP).We then reconstruct general solutions of theMBEs from the
solutions of the RHP. Moreover, we derive a “trace” formula which recovers the analytic scattering coefficient and derive a “theta” condition
which yields the asymptotic phase difference of the solution. In particular, we write down an explicit formula for pure N-soliton solutions,
for which the reflection coefficient is identically zero. In Sec. VI, we focus on one-soliton solutions. We show that there are four types of
solitons depending on the location of the corresponding discrete eigenvalue. They are traveling-wave solitons, oscillatory solitons, periodic
solutions, and rational solutions. We also discuss their properties in detail, and we analyze the stability of soliton solutions. In Sec. VII, we
discuss soliton solutions resulting from a shifted Lorentzian as the spectral-line shape. Such a shift originates from a detuning between the
resonance frequency of the atoms (corresponding to the transition between the ground state and the excited state) and the frequency of the
incident light pulse. Importantly, we show that the presence of such a shift produces markedly different properties for the resulting soliton
solutions. In particular, we will show that some of the solutions actually become rogue-wave in character, in the sense that they appear to
arise from virtually nothing, attain a peak value which is several times larger than the average, and eventually revert to the background. We
conclude this work with some final remarks in Sec. VIII.

Auxiliary material is confined to the background. In Subsection 1 of the Appendix, we describe some frequently used notation. In Sub-
section 2 of the Appendix, we derive the symmetries of various quantities appearing in the direct problem of the IST. In Subsection 3 of
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the Appendix, we compute the asymptotics of the eigenfunctions. In Subsection 4 of the Appendix, we derive the explicit formula for an
auxiliary matrix that appears in the propagation part of the IST. In Subsection 5 of the Appendix, we derive the propagation equations for
the norming constants and for the reflection coefficient. In Subsection 6 of the Appendix, we show how to solve the RHP that appears in the
inverse problem. In Subsection 7 of the Appendix, we derive the trace formula and the “theta” condition for the solutions of the MBEs with
NZBG. In Subsection 8 of the Appendix, we calculate the auxiliary matrix explicitly with a Lorentzian as the spectral-line shape. In Subsec-
tion 9 of the Appendix, we briefly discuss an alternative formulation of the IST and prove the equivalence between the two versions of the
IST.

II. PRELIMINARIES

A. The Maxwell-Bloch system of equations and its Lax pair

Up to rescalings of the dependent and independent variables, the scalar MBEs are, in component form,

∂q/∂z ≙ −∫ P(t, z, λ)g(λ)dλ, (1)

∂D/∂t ≙ 2Re(q∗P), ∂P/∂t − 2iλP ≙ −2qD, (2)

where z = zlab is the propagation distance, t = tlab − zlab/c is a retarded time (c is the speed of light in vacuum), q(t, z) is the optical field, i.e., the
electric field envelope corresponding to the transitions between the ground state and the excited state, level inversion D(t, z, λ), and medium
polarization envelope P(t, z, λ) are the entries of a 2 × 2 Hermitian matrix representing the density matrix, and g(λ) is the (known) shape of
the spectral line. All integrals in this work run from −∞ to∞ unless indicated otherwise.

The MBEs (1) and (2) can be written compactly as

ρt ≙ ∥iλσ3 +Q, ρ∥, (3)

Qz ≙ −1
2 ∫ ∥σ3, ρ∥ g(λ)dλ, (4)

where subscripts t and z denote partial differentiation, [A, B] =AB − BA is the matrix commutator, the 2 × 2 optical matrix and density matrix
are

Q(t, z) ≙ ( 0 q

−q∗ 0
), ρ(t, z, λ) ≙ (D P

P∗ −D),
and σ1, σ2, σ3 are the Pauli matrices

σ1 ≙ ( 0 1

1 0
), σ2 ≙ ( 0 −i

i 0
), σ3 ≙ ( 1 0

0 −1). (5)

The Lax pair for the MBEs (1) and (2) is

ϕt ≙ (iλσ3 +Q)ϕ, (6)

ϕz ≙ V ϕ, (7)

where Eq. (6) and q(t, z) are referred to as the scattering problem and as the scattering potential, respectively, and ϕ = ϕ(t, z, λ) is the wave
function, with

V(t, z, λ) ≙ iπ

2
Hλ∥ρ(t, z, λ′)g(λ′)∥,

whereHλ∥f (λ′)∥ is the Hilbert transform of the function f (λ) defined by

Hλ∥f (λ′)∥ ≙ 1

π ∫−
f (λ′)
λ′ − λdλ′. (8)

Throughout this work, primes in integration variables do not denote differentiation.
The IST for the MBEs (3) and (4) with q(t, z)→ 0 as t → ±∞—hereafter referred to as ZBG—was carried out in Refs. 45 and 52 (while

some earlier results appeared in Refs. 9 and 10). Here, we develop the IST for the scalar MBEs (3) and (4) with NZBG. Specifically, we
solve systems (3) and (4) with q → q± as t → ±∞. We assume |q±| = qo > 0. Similarly to what has been done in Ref. 69 for the focusing
nonlinear Schrödinger (NLS) equation with NZBC, we will formulate the IST such that it allows one to take the reduction qo → 0 explicitly
throughout.
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Note that (i) systems (3) and (4) imply ∂t(tr ρ) = ∂t(det ρ) = 0, (ii) systems (3) and (4) are invariant under the transformation
ρ(t, z, λ)↦ ρ̃(t, z, λ) ≙ ρ(t, z, λ) + f (z, λ) I, where f is any scalar function independent of t. Hence, without loss of generality, we can take ρ to
be traceless and with determinant equal to −1. Moreover, we assume that this normalization has been made for all z ⩾ 0.
B. Background solutions

Before we formulate the IST, we investigate whether there exist exact “constant” solutions of the MBEs (3) and (4) with NZBG. That is,
we look for solutions q(t, z) ≙ qo(z) ∀t ∈ R, with qo ≠ 0. The right-hand side (RHS) of Eq. (3) contains the matrix Xo = iλσ3 + Qo, where Qo

is the same as Q, but with qo instead of q. Since Qo is independent of t, the solution of Eq. (3) is simply

ρ(t, z, λ) ≙ eXot C e−Xot (9)

for any 2 × 2 matrix C independent of t. The eigenvalues of Xo are ±iγ, where γ2 ≙ λ2 + q2o. For now, we limit our discussion to real values of
λ. (The extension of γ to complex values of λ will be discussed in Sec. II C.) In order to be able to take the limit qo → 0 continuously, we need
to choose

γ(λ) ≙ sign(λ)√λ2 + q2o, λ ∈ R. (10)

Of course, with this choice γ has a sign discontinuity across λ = 0. We can write an eigenvector matrix of Xo compactly as

Yo ≙ I + (i/ζ) σ3Qo, (11)

where we introduced the shorthand notation

ζ ≙ λ + γ, (12)

which will be used throughout this work. Explicitly, XoYo = Yoiγσ3. Thus,

ρ(t, z, λ) ≙ Yo e
iγtσ3ρo e

−iγtσ3Y
−1
o , (13)

where ρo ≙ Y−1o CYo. The inverse transformation to Eq. (12) is

λ ≙ 1

2
(ζ − q2o/ζ), γ ≙ 1

2
(ζ + q

2
o/ζ). (14)

For future reference, note that

Y
−1
o ≙ ∥I − (i/ζ)σ3Qo∥ /detYo, detYo ≙ 2γ/ζ ≙ 1 + q

2
o/ζ2.

Also note that det ρ = det ρo and tr ρ = tr ρo. Hence, equations ρ† = ρ, tr ρ = 0, and det ρ = −1 imply that ρ†
o ≙ ρo, tr ρo = 0, and det ρo = −1,

respectively. Therefore, we can write ρo = h ⋅ σ, where σ ≙ (σ1, σ2, σ3)T and h ∈ R3, with h ⋅ h = −det ρ = 1. The superscript T denotes matrix
transpose. So, we have

ρ(t, z, λ) ≙ h ⋅ ρ,
where ρ ≙ (ρ1, ρ2, ρ3)T and

ρj(t, z, λ) ≙ Yo e
iγtσ3σj e

−iγtσ3Y
−1
o , (15)

with ρ†

j ≙ ρj, tr ρj = 0, and det ρj = −1. Explicitly,

ρ1 ≙ 1

2γζ
(ζ2 eiγtσ3σ1e−iγtσ3 − 2ζ Im(e−2iγtqo) σ3 + e−iγtσ3Qoσ1Qoe

iγtσ3), (16)

ρ2 ≙ 1

2γζ
(ζ2 eiγtσ3σ2e−iγtσ3 − 2ζ Re(e−2iγtqo) σ3 + e−iγtσ3Qoσ2Qoe

iγtσ3), (17)

ρ3 ≙ 1

γ
(λσ3 − iQo). (18)

All these results reduce to the correct behavior in the ZBG limit (i.e., qo → 0). In particular, γ→ λ, ζ → 2λ, and Y → I when qo → 0, implying

ρ → eiλtσ3σ eiλtσ3 in the limit qo → 0. Remarkably, even when qo ≠ 0, ρ3 is always independent of t as in the case with ZBG, even though the
ODEs (3) are more complicated when Qo ≠ 0.

Now, we insert the behavior described by Eqs. (16)–(18) into Eq. (4). It is trivial to see that [σ3, ρ] = h ⋅ [σ3, ρ]. Moreover, direct calculation
yields
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∥σ3, ρ1∥ ≙ (1/γζ) e−iγtσ3(iζ2σ2 + σ3Qoσ1Qo) eiγtσ3 , (19)

∥σ3, ρ2∥ ≙ (1/γζ) e−iγtσ3( − iζ2σ1 + σ3Qoσ2Qo) eiγtσ3 , (20)

∥σ3, ρ3∥ ≙ −(i/γ)∥σ3,Qo∥. (21)

The third commutator above is t-independent, leaving the field invariant. Explicitly,

∫ ∥σ3, ρ3∥g(λ)dλ ≙ −iwo∥σ3,Qo∥,
where

wo ≙ ∫ g(λ)/γdλ. (22)

On the other hand, the two commutators in Eqs. (19) and (20) contain t-dependent oscillating exponentials, which in general do not cancel
even upon integration. Hence, in general, the material polarization does not preserve the t-independence of the optical field, i.e., they are not
consistent with a constant solution q(t, z) = qo(z). Accordingly, the only self-consistent background solution is the one obtained with h1 = h2
= 0 and h3 = ±1, resulting in

q(t, z) ≙ qo(z) ≙ qo(0) e−ih3 woz , ρ(t, z, λ) ≙ h3(λσ3 − iQo)/γ. (23)

With a generic spectral-line shape g(λ), it is clear from Eq. (22) that wo ≠ 0. However, the simplest situation occurs when the distribution of
atoms is even with respect to the normalized resonant frequency λ = 0. In such a case, the evenness of the function g(λ) and oddness of the
function γ(λ) imply wo = 0. The above background solution (23) reduces to

q(t, z) ≙ qo, ρ(t, z, λ) ≙ h3(λσ3 − iQo)/γ. (24)

Importantly, note that ρ(t, z, ζ) is discontinuous at λ = 0. Also recall that in the case of the MBEs with ZBG, h3 = −1 implies that the
atoms are in the ground state, whereas h3 = 1 implies that all the atoms are in the excited state. However, in the case with NZBG, the situation
is seemingly more complicated. Because of the presence of background radiation, a polarization-free state does not exist in the background
solutions (24), i.e., the medium is always polarized. This polarization is reflected in the off-diagonal entries of the density matrix ρ, which
never vanish, i.e., P = −ih3qo/γ, which arises from the background radiation qo(z). In fact, later we will show that this statement holds for
general solutions as well. Nonetheless, we will also show that a natural decomposition still exists for the density matrix. We will also show in
Sec. III D that, when q(t, z) depends on t, as long as q → q± as t → ±∞, the asymptotic behavior of the density matrix [i.e., the solutions of
Eq. (3)] is consistent with the above expressions obtained with a background value of the potential.

C. Riemann surface and uniformization variable

Before we can start to develop the IST for the MBEs (3) and (4), it is useful to discuss the branching of the eigenvalues of the scattering
problem. The asymptotic scattering problem as t → ±∞ is ϕt = X±ϕ, where X± = iλσ3 + Q±. The eigenvalues of X± are ±iγ, with γ2 ≙ q2o + λ2,
where qo = |q±|. As with the NLS equation,

81 to address the branching, we introduce the two-sheeted Riemann surface defined by the complex
square root

γ(λ) ≙ (q2o + λ2)1/2. (25)

Specifically, the Riemann surface is obtained by introducing two copies of the complex plane, called CI and CII, in which γ(λ) takes either of

the two possible signs of the complex square root. The branch points are the values of λ for which γ(λ) = 0, i.e., λ = ±iqo. Let λ + iqo ≙ r1 eiθ1
and λ − iqo ≙ r2 eiθ2 . In this way, we can write

γ(λ) ≙√r1r2 e
iΘ, Θ ≙ (θ1 + θ2)/2 +mπ, (26)

where m = 0, 1 on sheets I and II, respectively. Now take −π/2 ⩽ θj < 3π/2 for j = 1, 2. With these conventions, the discontinuity of γ (which
defines the location of the branch cut) occurs on the segment i[−qo, qo]. The Riemann surface is then obtained by gluing the two copies of

the complex plane along the cut. Formally, Ĉ ≙ CI ∪ CII. Along the real λ axis, we then have γ(λ) ≙ ±sign(λ)√q2o + λ2, where the plus
and minus signs apply on sheets I and II of the Riemann surface, respectively, and the square root sign denotes the principal branch of the
real-valued square root function. For later use, we use the subscripts I and II to denote that a quantity is evaluated on the first or second sheet,
respectively.

The reason why we take the branch cut along [−iqo, iqo] is that, in this way, γ(λ) reduces to (10) for λ ∈ R which in turn reduces to λ as
qo → 0. Not only does this allow us to take the limit qo → 0 throughout, but it also allows us to choose the initial state for the MBEs motivated
by the physical intuition gained from the case of ZBG. Of course, one could just as well formulate the IST with the branch cut on iR/∥−iqo, iqo∥.
In Subsection 9 of Appendix, we show that doing so is equivalent to a redefinition of the initial states of the MBEs. Note that Eqs. (14) allow
us to express all λ dependence in terms of ζ, and we will do so throughout this work.
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FIG. 1. Left and right plots show the two complex λ-planes, in which the square root takes different signs. Center plot shows the complex ζ-plane. The red contour Σ in all
three plots corresponds to the continuous spectrum γ ∈ R. The gray region and the yellow region correspond to where Im γ > 0 and Im γ < 0, i.e., the regions Γ

± (27),
respectively. The blue curves denote the uniformization mapping.

It will also be convenient to introduce a uniformization variable. As in Ref. 82, this is easily done by defining ζ = λ + γ as in Eq. (12),
which is inverted by Eq. (14). Let Co be the circle of radius qo centered at the origin in the complex ζ-plane. With these definitions: (i) the
branch cut on either sheet is mapped onto Co; (ii) in particular, ζ(±iqo) = ±iqo from either sheet, ζ(0I ± ϵ) → ±qo and ζ(0II ± ϵ) → ∓qo as
ϵ → 0+; (iii) CI is mapped onto the exterior of Co; (iv) CII is mapped onto the interior of Co; (v) in particular, ζ(∞I) =∞ and ζ(∞II) = 0;
(vi) the first/second quadrant of CI is mapped into the first/second quadrant outside Co, respectively; (vii) the first/second quadrant of CII is
mapped into the second/first quadrant inside Co, respectively; (viii) note also ζIζII ≙ −q2o. The uniformization map can be seen clearly from
Fig. 1.

Note that, in general, the density matrix ρ(t, z, λ) is only defined for λ ∈ R. Writing it as a function of the uniformization parameter ζ, we
can evaluate it for all ζ ∈ R, specifically for |ζ| > qo on sheet I, and for |ζ| < qo on sheet II, where obviously ρ(t, z,−q2o/ζ) ≙ ρ(t, z, ζ) [since ρ(t,
z, λ) is a single-valued function of λ]. But since a priori we do not have any guarantee that ρ(t, z, λ) can be analytically extended off the real λ
axis, we will not be allowed to evaluate ρ(t, z, ζ) off the real ζ axis either.

We next discuss the difference between the two sheets. Recall in the case with ZBG, the background density-matrix solution is ρ = h3 σ3
with h3 = ±1. The value h3 = ∓1 indicates that all atoms are in the ground state or in the excited state, respectively. Therefore, the background
solution (24) with NZBG should reduce to ρ = h3σ as qo → 0. On sheet I, this is obviously true. However, on sheet II, the solution (24) reduces
to ρ = −h3σ3 as qo → 0. Hence, to maintain consistency with the ZBG reduction, one must choose opposite values for h3 on sheet II in the
background solution (24). We will discuss this situation in detail in Sec. III D.

Hereafter, with some abuse of notation, we will rewrite all the λ dependence as dependence on ζ. Note that Eq. (26) implies that
Im γ ≷ 0, respectively, in Γ

+ and Γ
−, where

Γ
+ ≙ {ζ ∈ C : (Im ζ)(∣ζ∣2 − q2o) > 0}, Γ

− ≙ {ζ ∈ C : (Im ζ)(∣ζ∣2 − q2o) < 0}. (27)

These two regions are shown in Fig. 1 with gray and yellow colors. As we show next, this property will determine the analyticity regions of the
Jost eigenfunctions.

III. DIRECT PROBLEM

We are now ready to start formulating the IST for the MBEs (3) and (4) with NZBG.

A. Jost solutions, analyticity, and scattering matrix

We first go back to the asymptotic scattering problem, i.e., the ODE (6) with t→ ±∞. We find it convenient to consider the wave function
ϕ(t, z, λ) as a 2 × 2 matrix (instead of a 2-component vector). On either sheet, we can write the asymptotic eigenvalue matrix and eigenvector
matrices as iγσ3 and

Y± ≙ I + (i/ζ)σ3Q±, (28)
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respectively, where I denotes the 2 × 2 identity matrix and Q→ Q± as t → ±∞ so that

X±Y± ≙ Y± iγσ3,

with

X± ≙ iλσ3 +Q±.

Similarly to what happened in Sec. II B, one can easily calculate that

detY± ≙ 2γ/ζ ≙ 1 + q
2
o/ζ2, (29)

Y
−1
± ≙ (I − (i/ζ)σ3Q±) /detY±. (30)

By definition,69 the continuous spectrum Σλ consists of all values of λ (on either sheet) such that γ(λ) ∈ R. Based on the above choices (25)
[equivalent to Eq. (10)], it is Σλ ≙ R ∪ i∥−qo, qo∥. The corresponding set in the complex ζ-plane is Σζ ≙ R ∪ Co from the definition (12).
Hereafter, we will omit the subscripts on Σ; the intended meaning should be clear from the context.

We expect that, for all ζ ∈ Σ, the scattering problem (6) admits solutions ϕ± which behave as

ϕ−(t, z, ζ) ≙ Y−eiγtσ3 + o(1) as t → −∞, (31)

ϕ+(t, z, ζ) ≙ Y+e
iγtσ3 + o(1) as t →∞. (32)

As in Ref. 69, we introduce modified eigenfunctions by removing the asymptotic exponential oscillations

μ(t, z, ζ) ≙ ϕ(t, z, ζ) e−iγtσ3 (33)

so that limt→±∞μ±(t, z, ζ) = Y±. One can then formally integrate the resulting ODEs for μ± found from the scattering problem (6) and obtains
integral equations for μ± as follows:

μ−(t, z, λ) ≙ Y− + t

∫
−∞

Y−e
iγ(t−τ)σ3Y

−1
− ΔQ−(τ, z)μ−(τ, z, ζ) e−iγ(t−τ)σ3 dτ, (34)

μ+(t, z, λ) ≙ Y+ − ∞

∫
t

Y+e
iγ(t−τ)σ3Y

−1
+ ΔQ+(τ, z)μ+(τ, z, ζ) e−iγ(t−τ)σ3 dτ, (35)

where ΔQ± = Q − Q±. In particular, after some calculations, the integrand in Eqs. (34) and (35) can be written as

1

detY±
Y± (G(1)± (t − τ)ΔQ±μ±,1, G(2)± (t − τ)ΔQ±μ±,2),

where

G
(1)
± (s) ≙ ( 1 −iq±/ζ−ie−2iγsq∗±/ζ e−2iγs

), G
(2)
± (s) ≙ ( e2iγs −ie2iγsq±/ζ−iq∗±/ζ 1

),
and where the subscripts 1 and 2 on μ± identify the matrix columns, i.e., μ± = (μ± ,1, μ± ,2). Note that the limits of integration imply that
s = t − τ is either always positive (for μ−) or always negative (for μ+). Recall that Im γ ≷ 0 in Γ

+ and Γ
− (27) (and, in contrast, they are not

sign-definite in CI and CII), respectively.
Requiring boundedness as τ → ±∞, one can then show that the eigenfunctions can be analytically extended in the complex λ-plane into

the following regions:

μ+,1, μ−,2 : Γ
+, μ−,1, μ+,2 : Γ

−. (36)

The above arguments are made rigorous using Neumann series, as in Ref. 83. The analyticity properties of the columns of the eigenfunction
matrices ϕ± follow trivially from those of μ±. Hereafter, we will consistently use the subscripts ± to denote limiting values as t→ ±∞, whereas
the superscripts ± will denote analyticity (or more in general meromorphicity) in the regions Γ±. The analyticity region of all eigenfunctions
is shown in Fig. 2 (left).

1. Scattering matrix

If the wave matrix ϕ(t, z, ζ) solves the scattering problem (6), Abel’s theorem implies

∂t(detϕ) ≙ tr(iλσ3 +Q) detϕ ≙ 0.
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FIG. 2. In both plots, gray and yellow regions correspond to Γ
±. Left: the analyticities of all eigenfunctions in the ζ-plane. Right: a quartet of discrete eigenvalues ζn.

In addition, for any spectral-parameter value ζ ∈ Σ, we have limt→±∞ ϕ±(t, z, ζ) e−iγtσ3 ≙ Y±. Hence, for any ζ ∈ Σ, we have
detϕ±(t, z, ζ) ≙ detY±, ∀t ∈ R, (37)

where detY± was given in Eq. (29). So for any λ ∈ Σ /{±iqo}, ϕ− and ϕ+ are two fundamental matrix solutions of the scattering problem. As
in the case of NLS equation with NZBC, the behavior at the branch points can be singular. (See, for example, Ref. 82 for a discussion of the
possible situations that can arise. A rigorous formulation of the IST for the NLS equation with NZBC considering the singularity at the brunch
points is recently presented in Ref. 84. For now, we ignore any such situations.) Hence we can write, for any ζ ∈ Σ,

ϕ+(t, z, ζ) ≙ ϕ−(t, z, ζ) S(ζ, z), (38)

where S(ζ, z) = (si ,j) is the scattering matrix. The entries si ,j are called the scattering coefficients. It is convenient to introduce the notation
ϕ± = (ϕ± ,1, ϕ± ,2), as before. With this notation, the scattering relation (38) becomes the columns system,

ϕ+,1 ≙ s1,1ϕ−,1 + s2,1ϕ−,2, ϕ+,2 ≙ s1,2ϕ−,1 + s2,2ϕ−,2,

Moreover, Eqs. (29) and (37) also imply

det S(ζ, z) ≙ 1.
The reflection coefficients that will be needed in the inverse problem are

b(ζ, z) ≙ s2,1/s1,1, b̃(ζ, z) ≙ s1,2/s2,2, ζ ∈ Σ. (39)

Note that Wrϕ− ≙WrY± ≙ 2γ(γ − λ)/q2o ⩾ 0 from Eq. (37), where Wr denotes the Wronskian of a matrix. Using the scattering relation (38),
we obtain

s1,1(ζ, z) ≙Wr(ϕ+,1,ϕ−,2)/detY±, s1,2(ζ, z) ≙Wr(ϕ+,2,ϕ−,2)/detY±, (40)

s2,1(ζ, z) ≙Wr(ϕ−,1,ϕ+,1)/detY±, s2,2(ζ, z) ≙Wr(ϕ−,1,ϕ+,2)/detY±. (41)

So, from the analyticity properties (36) of the eigenfunctions, one can show that the diagonal entries of the scattering matrix are analytic in
the following regions in the complex plane:

s1,1 : Γ
+, s2,2 : Γ

−. (42)

As usual,69 the off-diagonal scattering coefficients are nowhere analytic in general.
We can also write an integral representation of the scattering matrix S(ζ, z) from Eq. (38), taking the limit of the relation (38) as t→−∞

and using the integral equations (34) and (35), to get

S(ζ, z) ≙ lim
t→−∞

e−iγtσ3Y−1− Y+e
iγtσ3(I −

∞

∫
t

e−iγτσ3Y−1+ ΔQ+(τ, t)ϕ+(τ, t, ζ)dτ). (43)

Note however that care is necessary to evaluate Eq. (43), since (unlike the case of ZBG) one cannot separate the two terms in parentheses
(because the individual terms do not admit separate limits).
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B. Symmetries and discrete spectrum

1. Symmetries

The symmetries of the eigenfunctions and scattering coefficients are complicated by (i) the presence of the Riemann surface, because,
while with ZBG one simply deals with λ ↦ λ∗, here one must also keep track of the sheets of the Riemann surface; (ii) after removing the
asymptotic oscillations, the Jost solutions do not tend to the identity matrix as t → ±∞.

Recall from Secs. II B and II C that γII(λ) = −γI(λ), ζ = λ + γ, q2o/ζ ≙ γ − λ, γ ≙ (ζ + q2o/ζ)/2, and λ ≙ (ζ − q2o/ζ)/2. One can consider
several transformations compatible with Eq. (25). As we show next, three of them correspond to actual symmetries of the scattering problem.
Of these, two are independent,

1. ζ ↦ ζ∗ (upper/lower half plane), implying (λ, γ)↦ (λ∗, γ∗) (same sheet);
2. ζ ↦ −q2o/ζ (outside/inside Co), implying (λ, γ)↦ (λ, −γ) (opposite sheets).

In Subsection 2 of the Appendix, we show that the following is true:
1. If ϕ(t, z, ζ) is a solution of the scattering problem (6), we have

ϕ−1± (t, z, ζ) ≙ ϕ†
±(t, z, ζ∗), ζ ∈ Σ,

where † denotes Hermitian adjoint. Explicitly, the columns satisfy

ϕ±,1(t, z, ζ) ≙ σ∗ϕ∗±,2(t, z, ζ∗), ϕ±,2(t, z, ζ) ≙ −σ∗ϕ∗±,1(t, z, ζ∗), ∀ζ ∈ Σ, (44)

where σ∗ is defined by

σ∗ ≙ ( 0 1−1 0
). (45)

Similarly, for the scattering matrix, we have

S
†(ζ∗, z) ≙ S−1(ζ, z), ζ ∈ Σ. (46)

We therefore have the following relations between the scattering coefficients:

s2,2(ζ, z) ≙ s∗1,1(ζ∗, z), s1,2(ζ, z) ≙ −s∗2,1(ζ∗, z), ∀ζ ∈ Σ. (47)

2. If ϕ(t, z, ζ) is a solution of the scattering problem, ∀ζ ∈ Σ, it is
ϕ±(t, z, ζ) ≙ (i/ζ)ϕ±(t, z,−q2o/ζ) σ3Q±. (48)

Recalling Eq. (A4), we have, for the columns,

ϕ±,1(t, z, ζ) ≙ (iq∗±/ζ)ϕ±,2(t, z,−q2o/ζ), ϕ±,2(t, z, ζ) ≙ (iq±/ζ)ϕ±,1(t, z,−q2o/ζ). (49)

Again for the scattering matrix, we have, ∀ζ ∈ Σ,
S(−q2o/ζ, z) ≙ σ3Q− S(ζ, z) (σ3Q+)−1. (50)

Recalling Eq. (A4) we then have, elementwise,

s1,1(ζ, z) ≙ (q∗+/q∗−) s2,2(−q2o/ζ, z), s1,2(ζ, z) ≙ (q+/q∗−) s2,1(−q2o/ζ, z), (51)

s2,1(ζ, z) ≙ (q∗+/q−) s1,2(−q2o/ζ, z), s2,2(ζ, z) ≙ (q+/q−) s1,1(−q2o/ζ, z). (52)

In Subsection 2 of the Appendix, we also consider the combination of the two symmetries, i.e., 1 + 2. The result for the scattering matrix is
S∗(ζ∗, z) ≙ −σ∗(σ3Q−)−1 S(−q2o/ζ, z) σ3Q+σ∗. Or, elementwise,

s
∗
1,1(ζ∗, z) ≙ (q+/q−) s1,1(−q2o/ζ, z), s

∗
1,2(ζ∗, z) ≙ −(q∗+/q−) s1,2(−q2o/ζ, z), (53)

s
∗
2,1(ζ∗, z) ≙ −(q+/q∗−) s2,1(−q2o/ζ, z), s

∗
2,2(ζ∗, z) ≙ (q∗+/q∗−) s2,2(−q2o/ζ, z). (54)

Even though Eqs. (46) and (50) are only valid when ζ ∈ Σ, the scattering coefficients s1,1 and s2,2 in Eqs. (47) and (51)–(54) are analytic in
appropriate regions [cf. Eq. (42)]. Hence, those three equalities with s1,1 and s2,2 can be extended uniquely to the appropriate regions shown
in Eq. (42) of the ζ-plane via the Schwartz reflection principle.

The above symmetries yield immediately the symmetries for the reflection coefficients,

b(ζ, z) ≙ −b̃∗(ζ∗, z) ≙ (q−/q∗−) b̃(−q2o/ζ, z) ≙ −(q∗−/q−) b∗(−q2o/ζ∗, z) ∀ζ ∈ Σ. (55)

Recall that the two reflection coefficients b and b̃ are defined in Eq. (39).
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Note that

(i) Unlike the case of ZBG, where there is only one symmetry, here there are two.
One of them, ζ ↦ ζ∗, is the same as for ZBG; the other, ζ ↦ −q2o/ζ, relates to the definition of γ.

(ii) Unlike the case of ZBG, and unlike the defocusing NLS with NZBC, here even the symmetries of the nonanalytic scattering coefficients
involve the map ζ ↦ ζ∗. This is because here the continuous spectrum is not just a subset of the real ζ-axis.

(iii) The second involution, ζ ↦ −q2o/ζ, simply expresses the switch from one sheet to the other. (The corresponding transformation
for the defocusing NLS has no minus sign because of the different location of the branch points.) This transformation does not
affect λ. That is, if f (λ) is any single-valued function of λ, it is f I(λ) = f II(λ). Thus, f, when expressed as a function of ζ, satisfies the
symmetry f (ζ) ≙ f (−q2o/ζ). That is because f depends not on ζ directly, but only through the combination λ ≙ (ζ − q2o/ζ)/2. So, we
have ρ(t, z, ζ) ≙ ρ(t, z,−q2o/ζ) and V(t, z, ζ) ≙ V(t, z,−q2o/ζ). More generally, Eqs. (48), (51), and (52) relate the values of the Jost
eigenfunctions and scattering coefficients on opposite sheets of the Riemann surface.

2. Discrete spectrum and residue conditions

The discrete spectrum of the scattering problem is the set of all values ζ ∈ C/Σ such that decaying eigenfunctions exist. As usual, the
discrete spectrum plays an important role in the inverse problem (see Sec. V A). We next show that these values are the zeros of s1,1(ζ, z) in
Γ
+ and those of s2,2(ζ, z) in Γ

−. Note that, unlike defocusing NLS, we cannot exclude the possible presence of zeros along Σ. Such zeros would
give rise to the so-called “embedded” eigenvalues. In this work, we ignore this possibility.

Let ζ1, . . ., ζN be the zeros of s1,1(ζ, z) on the portion of Γ+ lying in the upper-half plane (UHP). We assume these N zeros are simple.
That is, we assume s1,1(ζn, t) = 0 and s′1,1(ζn, t) ≠ 0, with |ζn| > 1 and Im ζn > 0 for n = 1, . . ., N, and where the prime denotes differentiation
with respect to ζ.

Recalling the asymptotic behavior of the individual columns of ϕ± as t → ±∞ and the fact that Im γ(ζ) ≷ 0 for ζ ∈ Γ±, we have that∀ζ ∈ Γ+, ϕ+,1(t, z, ζ)→ 0 as t→∞, and ϕ− ,2(t, z, ζ)→ 0 as t→ −∞. Recalling Eq. (40), however, if s1,1(ζ, z) = 0 at ζ = ζn the eigenfunctions ϕ+,1
and ϕ− ,2 at ζ = ζn must be proportional, i.e.,

ϕ+,1(t, z, ζn) ≙ bn ϕ−,2(t, z, ζn), (56)

with bn dependent on z in general, but independent of t and ζ. We therefore have an eigenfunction that decays as t → ±∞.
Owing to the symmetries (47) and (51)–(54), we have that

s1,1(ζn, t) ≙ 0 ⇔ s2,2(ζ∗n , t) ≙ 0 ⇔ s2,2(−q2o/ζn, t) ≙ 0 ⇔ s1,1(−q2o/ζ∗n , t) ≙ 0.
For each n = 1, . . ., N, we therefore have a quartet of discrete eigenvalues. That is, the discrete spectrum is the set

{ζn, ζ∗n ,−q2o/ζn,−q2o/ζ∗n }Nn≙1.
This is similar to what happens to the focusing and defocusing vector NLS with NZBC and scalar focusing NLS with NZBC. [Instead, for the
scalar NLS, in the focusing case (with ZBC) and in the defocusing case (with NZBC) one has symmetric pairs, respectively, in the λ plane and
in the ζ plane.] The symmetries among a quartet are shown in Fig. 2 (right).

Next, we derive the residue conditions. We can write relation (56) equivalently as

μ+,1(t, z, ζn) ≙ bne−2iγ(ζn)tμ−,2(t, z, ζn).
Thus,

Resζ≙ζn[μ+,1(t, z, ζ)/s1,1(ζ, z)] ≙ Cn e
−2iγ(ζn)tμ−,2(t, z, ζn), (57)

where Cn ≙ bn/s′1,1(ζn, z) is called the norming constant. Again, prime denotes differentiation with respect to ζ. Equation (57) is the first of
the residue conditions that will be used in the inverse problem. Similarly, from Eq. (41), we have that, if s2,2(ζ∗n , z) ≙ 0, it is

ϕ+,2(t, z, ζ∗n ) ≙ b̃n ϕ−,1(t, z, ζ∗n ). (58)

Or, equivalently, μ+,2(t, z, ζ∗n ) ≙ b̃ne2iγ(ζ∗n )tμ−,1(t, z, ζ∗n ), and as a result with C̃n ≙ c̃n/s′2,2(ζ∗n , z),
Resζ≙ζ∗n [μ+,2(t, z, ζ)/s2,2(ζ, z)] ≙ C̃n e

2iγ(ζ∗n )tμ−,1(t, z, ζ∗n ).
The above norming constants are related by the symmetries of the problem. Applying relation (44) to Eq. (56) and comparing with Eq. (58),

one easily obtains b̃n ≙ −b∗n . It is also easy to see that symmetry (47) implies s′1,1(ζn, z) ≙ (s′2,2(ζ∗n , z))∗. Hence, we have, ∀n = 1, . . ., N,
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C̃n ≙ −C∗n . (59)

Finally, we need to discuss the remaining two points of the eigenvalue quartet. Applying symmetry (49) to Eqs. (56) and (58), we have the
relations

ϕ+,2(t, z,−q2o/ζn) ≙ (q−/q∗+) bn ϕ−,1(t, z,−q2o/ζn),
ϕ+,1(t, z,−q2o/ζ∗n ) ≙ (q∗−/q+) b̃n ϕ−,2(t, z,−q2o/ζ∗n ).

Moreover, differentiating symmetries (51) and (52), using Eq. (47), and evaluating at ζ = ζn or ζ ≙ ζ∗n , we have
s
′
1,1(−q2o/ζ∗n , z) ≙ (ζn/qo)2(q−/q+) (s′1,1(ζn, z))∗,

s
′
2,2(−q2o/ζn, z) ≙ (ζn/qo)2(q−/q+)∗ (s′2,2(ζ∗n , z))∗.

Combining these relations, we then have

Resζ≙−q2o/ζ∗n [μ+,1(t, z, ζ)/s1,1(ζ, z)] ≙ CN+n e
−2iγ(−q2o/ζ

∗
n )tμ−,2(t, z,−q2o/ζ∗n ), (60)

Resζ≙−q2o/ζn[μ+,2(t, z, ζ)/s2,2(ζ, z)] ≙ C̃N+n e
2iγ(−q2o/ζn)tμ−,1(t, z,−q2o/ζn), (61)

where for brevity we defined

CN+n ≙ (qo/ζ∗n )2(q∗−/q−) C̃n, C̃N+n ≙ (qo/ζn)2(q−/q∗−)Cn, n ≙ 1, . . . ,N. (62)

Note that C̃N+n ≙ −C∗N+n, consistently with symmetry (59).
Hereafter, it will be convenient to define ζN+n ≙ −q2o/ζ∗n for n = 1, . . ., N so that ζ1, . . ., ζ2N are all the discrete eigenvalues in C

+.

C. Asymptotics as ζ→ 0 and ζ → ∞
As usual, the asymptotic properties of the eigenfunctions and the scattering matrix are instrumental in properly normalizing the RHP

when we formulate the inverse problem later. Moreover, the next-to-leading-order behavior of the eigenfunctions will allow us to reconstruct
the potential from the solution of the RHP. Again, the asymptotics with NZBG is more complicated than in the case of ZBG. The calculations
are somewhat simpler and cleaner, however, in the uniformization variable. Note that the limit λ →∞ corresponds to ζ →∞ in CI and to
ζ → 0 in CII. It is necessary to study both of these limits to normalize the RHP.

Recall from Eqs. (28) and (30) that the asymptotic eigenvector matrices are Y± = I + (i/ζ)σ3Q± and Y
−1
± ≙ (I−(i/ζ)σ3Q±)/(1+(qo/ζ)2).

Also recall that γ(ζ) ≙ 1
2
(ζ + q2o/ζ). Consider now the following formal expansion for μ−(t, z, ζ):

μ−(t, z, ζ) ≙ ∞∑
n≙0

μ(n)(t, z, ζ), (63)

with
μ(0)(t, z, ζ) ≙ Y−, (64)

μ(n+1)(t, z, ζ) ≙
t

∫
−∞

Y−e
iγ(ζ)(t−y)σ3Y

−1
− ΔQ−(y, t)μ(n)(y, t, ζ)eiγ(ζ)(y−t)σ3 dy. (65)

Let Ad and Ao denote the diagonal and off-diagonal parts of a matrix A, respectively.
In Subsection 3 of the Appendix, we prove that Eq. (63) provides an asymptotic expansion for the columns of μ−(t, z, ζ) as ζ →∞ in the

appropriate region of the ζ-plane described by Eq. (36), with ∀m ∈ N and

μ
(2m)
d
≙ O(1/ζm), μ

(2m)
o ≙ O(1/ζm+1), (66)

μ
(2m+1)
d

≙ O(1/ζm+1), μ
(2m+1)
o ≙ O(1/ζm+1). (67)

Explicitly, the result holds with Im ζ ⩽ 0 for the first column and Im ζ ⩾ 0 for the second column. A similar asymptotic behavior to Eqs. (66)
and (67) holds for μ+ and can be derived in a similar way.

Next we consider the asymptotics as ζ → 0. We use the same formal expansion (63). In Subsection 3 of the Appendix, we prove that Eq.
(63) provides an asymptotic expansion for the columns of μ−(t, z, ζ) as ζ → 0 in their analytic regions of the ζ-plane, with ∀m ∈ N,

μ
(2m)
o ≙ O(ζm−1), μ

(2m)
d
≙ O(ζm), (68)

μ
(2m+1)
o ≙ O(ζm), μ

(2m+1)
d

≙ O(ζm). (69)

Again, similar asymptotic behavior to Eqs. (68) and (69) holds for μ+ and can be derived in a similar way.
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In particular, by computing explicitly the first five terms in expansion (63) we have that, as ζ →∞,

μ−(t, z, ζ) ≙ I + (i/ζ)σ3Q(t, z) + (i/ζ)
t

∫
−∞

(∥σ3Q−,ΔQ−(y, t)∥ + ΔQ−(y, t)σ3ΔQ−(y, t))dy +O(1/ζ2). (70)

Equation (70) will provide the means to reconstruct the scattering potential Q(t, z) from the solution of the RHP in the inverse problem.
Finally, inserting the above asymptotic expansions for the Jost eigenfunctions into the Wronskian representations (40) and (41), one

shows that, as ζ →∞ in the appropriate regions of the complex ζ-plane,

S(ζ, z) ≙ I +O(ζ).
Explicitly, the above estimate holds with Im ζ ⩾ 0 and Im ζ ⩽ 0 for s1,1 and s2,2, respectively, and with Im ζ = 0 for s1,2 and s2,1. Similarly, one
shows that, as ζ → 0,

S(ζ, z) ≙ diag(q−/q+, q+/q−) +O(1/ζ), (71)

again in regions of the ζ-plane from Eq. (42).

D. Asymptotics of the density matrix

One can see (by direct substitution) that, as in the case of ZBG, if ϕ(t, z, ζ) is any fundamental matrix solution of the scattering problem,
it is

∂

∂t
∥ϕ−1(t, z, ζ)ρ(t, z, ζ)ϕ(t, z, ζ)∥ ≙ 0.

Hence, the quantity in square brackets must be independent of t. So, ∀ζ ∈ Σ, we can define

ρ±(ζ, z) ≙ ϕ−1± (t, z, ζ)ρ(t, z, ζ)ϕ±(t, z, ζ). (72)

Conversely,

ρ(t, z, ζ) ≙ ϕ±(t, z, ζ)ρ±(ζ, z)ϕ−1± (t, z, ζ). (73)

Then, taking the limit as t → ±∞ and using Eqs. (34) and (35), we obtain

ρ±(ζ, z) ≙ lim
t→±∞

e−iγtσ3Y−1± (ζ)ρ(t, z, ζ)Y±(ζ) eiγtσ3 . (74)

However, note that the density matrix ρ(t, z, ζ) by itself does not have a limit. In other words, one should remember that despite the ± signs
on the left-hand side of Eq. (72), ρ±(ζ, z) are not simply the limits of ρ(t, z, ζ) as t → ±∞. Note also that, even though ρ is a single-valued
function of λ, the Jost solutions ϕ− and ϕ+ are not. Thus, like ϕ±, in general ρ± is only single-valued on R, unlike in the case of ZBG. (In other
words, ρ± ,II ≠ ρ± ,I in general.)

One can also see by direct calculation that S ρ+ ≙ ρ−S ≙ ϕ−1− ρϕ+. Hence,

ρ+(ζ, z) ≙ S−1(ζ, z) ρ−(ζ, z) S(ζ, z), ∀ζ ∈ Σ. (75)

Equation (75) relates the asymptotic values of the density matrix as t → ±∞, and allows one to obtain ρ+ from the knowledge of ρ− and S
[which in turn is completely determined by q(t, z)]. Thus, one can only pick one of ρ±, after which the other one is fixed. Due to the causality,
we choose ρ−.

Note that the properties of the density matrix tr ρ = 0 and det ρ = −1 imply that tr ρ± = 0 and det ρ± = −1. Note also that since ρ† = ρ if

ζ ∈ R, it is also ρ†
± ≙ ρ±, if ζ ∈ R. In the rest of this work, we assume that ρ† = ρ(ζ∗) when ζ ∈ Co, which implies ρ†

± ≙ ρ±(ζ∗) for all ζ ∈ Σ. [Note
that this assumption will not affect our final solution ρ since it is defined only on the real axis.] Thus, we denote the entries of ρ± as

ρ±(ζ, z) ≙ (D± P±

P∗± −D± ), ζ ∈ Σ,
with P±(ζ) = P±(ζ

∗). Note however that D± and P± are not the limits of D and P as t → ±∞. (Indeed, as we show below, such limits do not
exist in general.) Combining the symmetry (48) and definition (72), we have

ρ±(−q2o/ζ, z) ≙ σ3Q±ρ±(ζ, z)Q−1± σ3, ζ ∈ Σ. (76)
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This implies that one does not have freedom to pick the asymptotic state ρ± for all values of λ (or ζ). One can only pick ρ± for λ ∈ R on the
first sheet [or ζ ∈ (−∞, −qo] ∪ [qo,∞)]. Thus, let us denote ρ± ,I and ρ± ,II to the values of the asymptotic state on the first or second sheet,
respectively. Then, we define the asymptotic state on the two λ-sheets as

D±,I ∈ R, P±,I ∈ C, D
2
±,I + ∣P±,I∣2 ≙ 1, (77)

D±,II ≙ −D±,I, P±,II ≙ q2±P∗±,I/q2o, (78)

or, in the ζ-plane,

D± ∈ R, P± ∈ C, D
2
± + ∣P±∣2 ≙ 1, (79)

D±(−q2o/ζ, z) ≙ −D±(ζ, z), P±(−q2o/ζ, z) ≙ q2±P∗±(ζ, z)/q2o. (80)

Equation (75) can then be used to obtain D+ and P+ from D− and P−, respectively. Note that, in principle, D± and P± depend on λ on each
sheet. Here, however, we make the assumption that the preparation of the medium on each λ-sheet is independent of λ, which is the simplest
possible situation from a physical point of view.

Because the asymptotic state (77)–(80) satisfies the symmetry (76), we know that the calculations performed on both λ-sheets are
equivalent. Hereafter, we will focus on the first λ-sheet.

Equation (74) gives the explicit relation between ρ± and ρ. In component form, it is

D± ≙ 1

γ
lim

t→±∞
∥λD − Im(Pq∗)∥, (81)

P± ≙ 1

2γ
lim

t→±∞
e−2iγt(q2P∗/ζ + 2iDq + ζP). (82)

Conversely, Eq. (76) also implies that ρ(t, z, ζ) ≙ Y±eiγtσ3ρ±(ζ, z)e−iγtσ3Y−1± + o(1) as t → ±∞, which in component form, as t → ±∞, is,

D ≙ λ

γ
D± − 1

γ
Im(e−2iγtP∗±q±) + o(1), (83)

P ≙ − i
γ
q±D± +

ζ

2γ
e2iγtP± +

q±

2γζ
e−2iγtP∗± + o(1). (84)

Let us now discuss the implications of the relations (81)–(84). First, just as in the case of ZBG, Eq. (84) implies that, in general, P does not
have a limit as t→±∞, but instead oscillates in time. Unlike in the case of ZBG, however, Eq. (83) implies that, in general, due to the nonzero
background radiation q±, the quantity D also does not have a limit in time and instead oscillates. Second, unlike in the case of ZBG, P ≠ 0 as
t → ±∞ even in the particular case in which D and P are time-independent and do tend to a limit as t → ∞ or t → −∞, which is when
P+ = 0 or P− = 0, respectively. The nonzero contribution arises from the polarization induced by the limiting electric field. (If one takes the limit
qo → 0, one of course recovers the relation limt→±∞D = D± that holds in the case of ZBG.)

To further elaborate on the above, let us focus on the asymptotic state at t → −∞. Recall that the normalization det ρ− = −1 implies the
constraint,

D
2
− + ∣P−∣2 ≙ 1, (85)

which implies that one does not have the freedom to assign D− and P− independently. In particular, in the special case when ρ− is diagonal,
i.e., D− = ±1 and P− = 0, we have

D ≙ λ

γ
D− + o(1), P ≙ − i

γ
q−D− + o(1), t → −∞, (86)

which yields P = −iq−D/λ + o(1) as t → −∞. Therefore, the polarization in this case is entirely induced by the limiting values of the electric
field. On the other hand, the time-dependent terms in Eq. (84) describe the intrinsic part of the polarization, which is due to the excitation of
the medium as t → −∞, and has parts proportional to P−. Note that, generally, the induced polarization is still present in the initial state for
the density matrix ρ even in the presence of nonzero intrinsic polarization, except that it is reduced in magnitude due to the constraint (85)
together with D−.

Finally, we remark that, even in the absence of intrinsic initial polarization, themedium is not in a pure state because of the initial induced
polarization, which must exist (and so limt→−∞|P| ≠ 0). Instead, initially the medium is necessarily in a superposition of two states. One can
also obtain this result directly from limt→−∞|D| = |λ/γ| < 1 for any qo > 0.
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1. The initial amount of population inversion

The above discussion shows that although the quantityD− is not the direct limit ofD even in an initial state with no intrinsic polarization,
it still provides an important indicator of the initial state of the medium. In fact, D− is directly proportional to the amount of the initial
population inversion in the medium, i.e., it describes the amount of the population inversion allowed initially by the background electric
field. More generally, D− is proportional to the time-averaged amount of the initial population inversion in the medium, i.e., it describes the
amount of the time-averaged population inversion allowed initially by the background electric field and the intrinsic polarization. Recall
that the population inversion is defined as the difference between the populations of the atoms in the excited state and in the ground state.
Thus, if −1 ⩽ D− < 0, initially there are more atoms in the ground state than in the excited state on average, while if 0 < D− ⩽ 1, initially
there are more atoms in the excited state than in the ground state on average. As we show in Sec. VI F, the former condition leads to
stable and the latter to unstable electric-field propagation through the medium. This is consistent with what happens to the case of ZBG
(D± = limt→±∞D).

We further will see in Sec. V B that pure soliton solutions can only exist when the initially intrinsic polarization of the medium vanishes.
In the case when the ground state is more occupied initially than the excited state these solitons are subluminal and stable, and thus physical,
while in the opposite case they are superluminal and unstable, and thus unphysical.

IV. PROPAGATION

Recall that in the MBEs, the traditional role of evolution variable is played by the physical propagation distance z. As a result, we will
refer to the z-dependence as the propagation.

A. Evolution of the background

Let us first discuss the z dependence of the asymptotic values of the optical field. The propagation of these values is given by the limit as
t → ±∞ of Eq. (4). That is,

∂Q±/∂z ≙ −1
2

lim
t→±∞

∫ ∥σ3, ρ(t, z, λ)∥ g(λ)dλ.
Using Eq. (72), we can express the solution of Eq. (3) as

ρ(t, z, ζ) ≙ Y± eiγtσ3ρ±(ζ, z) e−iγtσ3Y−1± + o(1), t → ±∞. (87)

Note that the off-diagonal elements of ρ can never be zero as t → ±∞, even when the off-diagonal elements of ρ± are identically zero. This is
because of the background-induced polarization from Eqs. (83) and (84). Denote the diagonal and off-diagonal part of a matrix the subscripts
d and o, respectively. In particular, let ρ± = ρ± ,d + ρ± ,o. Note that [σ3, ρ± ,d] = 0 and [σ3, ρ± ,o] = 2σ3ρ± ,o. (In addition,Q±σ3 + σ3Q± = 0.) Using
definitions (87) and (28), we then have

∥σ3, ρ∥ ≙ ∥σ3,Y±ρ±,dY−1± ∥ + ∥σ3,Y± eiγtσ3ρ±,oe−iγtσ3Y−1± ∥ + o(1), t → ±∞.

All entries in the second term on the RHS, however, contain oscillating exponentials, which, when integrated, tend to zero in the limit
t → ±∞ thanks to the Riemann-Lebesgue lemma. Therefore, the effective part of [σ3, ρ] as t → ±∞ is

∥σ3, ρ∥eff ≙ ∥σ3,Y±ρ±,dY−1± ∥ ≙ 1

detY±
( ∥σ3, ρ±,d∥ + i ∥σ3, ∥σ3Q±, ρ±,d∥∥/ζ + ∥σ3, σ3Q±ρ±,dσ3Q±∥/ζ2 ).

Note that the first and last commutators on the RHS vanish because σ3, ρ± ,d, and σ3Q±ρ± ,dσ3Q± are all diagonal. Finally, note that
[σ3, [σ3Q±, ρ± ,d]] = 2[Q±, ρ± ,d], and recall detY± = 2γ/ζ.

Evaluating Eq. (4) in the limit t→ ±∞ (assuming the derivative with respect to z and the limits as t→ ±∞ commute) we then obtain the
propagation of Q± with respect to z,

∂Q±/∂z ≙ iw±∥σ3,Q±∥, (88)

where

w±(z) ≙ 1

2 ∫ D±(λ, z) g(λ)/γ dλ. (89)

Recall that tr ρ± = tr ρ = 0 and D± has opposite signs on sheets I and II from symmetries (77)–(80). Since γ also takes opposite signs on both
sheets, it is easy to verify that w± is single-valued, as it should be. Equation (88) can be integrated to obtain
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Q±(z) ≙ eiW±σ3Q±(0) e−iW±σ3 , W±(z) ≙ z

∫
0

w±(z′)dz′, (90)

or simply,

q±(z) ≙ e2iW±(z)q±(0).
Note that ∣q±(z)∣2 ≙ ∣q±(0)∣2 ≙ q2o, ∀z ∈ R+. In particular, if w− is independent of z, taking q−(0) = qo without loss of generality, we simply
have

q−(z) ≙ qoe2iw−z . (91)

Note also that Eq. (90) is similar to Eq. (23). The difference is that Eq. (90) describes the background as t → −∞, whereas Eq. (23) describes
the entire background solution for ∀t ∈ R. The corresponding propagation of the asymptotic eigenvector matrices is given by

Y±(ζ, z) ≙ I + (i/ζ)σ3Q±(z) ≙ eiW±σ3Y±(ζ, 0) e−iW±σ3 ,
and the asymptotic behavior of the Jost solutions is

ϕ±(t, z, ζ) ≙ eiW±σ3Y±(ζ, 0) ei(γt−iW±)σ3 + o(1), as t → ±∞. (92)

Using relation (75), one can then express w+ in terms of ρ− ,d. In general, w+ ≠ w−, and therefore q+ evolves at a different rate than q−.
However,

(S−1ρ−S)d ≙ ρ−,d + (s2,1s2,2P− − s1,1s1,2P∗−) σ3,
which shows w+ = w− for reflectionless solutions (i.e., when So = 0) or when ρ− ,o = 0. (We will see later that indeed ρ− ,o = 0 is necessary for
radiation to remain zero as a function of z.)

B. Evolution of reflection coefficients and norming constants

We now discuss the propagation of the reflection coefficients and norming constants. As in the case with ZBG, this is the place where
the theory deviates the most from the IST for AKNS systems such as the focusing NLS equation with NZBC.69 Here, the situation is further
complicated by the nontrivial behavior of the Jost solutions as t → ±∞.

1. Simultaneous solutions of the Lax pair and auxiliary matrix

Since the asymptotic behavior of ϕ±(t, z, z) as t → ±∞ is fixed, in general, they will not be solutions of Eq. (7). Because both ϕ+ and ϕ−
are fundamental matrix solutions of the scattering problem, any other solution Φ(t, z, ζ) can be written as

Φ(t, z, ζ) ≙ ϕ+(t, z, ζ)C+(ζ, z) ≙ ϕ−(t, z, ζ)C−(ζ, z), ζ ∈ Σ, (93)

where C±(ζ, z) are 2 × 2 matrices independent of t. Suppose that Φ(t, z, ζ) is a simultaneous solution of both parts of the Lax pair (6) and (7),
so Φz = VΦ. Then some algebra shows that

∂C±

∂z
≙ i

2
R±C±, ∀ζ ∈ Σ, (94)

where the auxiliary matrices R± are given by

i

2
R±(ζ, z) ≙ ϕ−1± ∥V ϕ± − (ϕ±)z∥. (95)

It is not obvious a priori that the RHS of Eq. (95) is independent of t, but Eq. (94) shows it must be. In addition, even though g(λ) and
ρ(t, z, λ) are only defined for λ ∈ R, definition (95) can be evaluated ∀ζ ∈ Σ. But since ϕ± are not single-valued functions of λ, neither are C±
and R±. That is, in general we have C± ,II ≠ C± ,I and R± ,II ≠ R± ,I.

Moreover, recalling definition (72), we can write V (t, z, ζ) as

V(t, z, ζ) ≙ iπ

2
Hλ∥ϕ±(t, z, ζ′)ρ±(ζ′, z)ϕ−1± (t, z, ζ′)g(λ′)∥, (96)

with shorthand notation ζ′ = ζ(λ′). As we show below, Eqs. (95) and (96) allow one to compute the propagation of the reflection coefficients
and norming constants, as in the case with ZBG. Note that, even though the individual terms on the RHS of Eq. (96) are only single-valued
on the real line, the whole RHS is a single-valued function for λ ∈ C. In fact, one can use the symmetries of ϕ± and ρ± to verify that
V(t, z, ζ) ≙ V(t, z,−q2o/ζ).
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We next express R± in terms of known quantities for all z ⩾ 0. Recalling the definition (95), and under the assumption that z-derivatives
and the limits as t → ±∞ commute, we have

R±(ζ, z) ≙ −2i lim
t→±∞

ϕ−1± ∥V ϕ± − (ϕ±)z∥
≙ lim

t→±∞
{e−iγtσ3Y−1± (λ)Hλ∥Y±(λ′)eiγ′tσ3ρ±(λ′, z)e−iγ′tσ3Y−1± (λ′)g(λ′)∥Y±(λ) eiγtσ3 − (ϕ±)−1(ϕ±)z}, (97)

with γ′ = γ(λ′). Above and throughout this subsection (Subsection IV B 1), the prime will denote the functional argument in the integrand of
the Hilbert transform, not derivative with respect to ζ.

Note that (i) unlike in the case of ZBG, the last term in the curly bracket does not vanish and (ii) one cannot evaluate the terms in the
curly brackets individually. The detailed calculation is presented in Subsection 4 of the Appendix, where we show that R± = R± ,d + R± ,o, with

R±,d(ζ, z) ≙ πγHλ∥ρ′±,d g(λ′)/γ′∥ + 2w± σ3, ζ ∈ C, (98)

R±,o(ζ, z) ≙ {∓i νπ g(λ)ρ±,o(λ, z) σ3, ζ ∈ R,
0, ζ ∈ Co,

(99)

where ν = 1 for ζ ∈ (−∞, −qo] ∪ [qo, ∞) and ν = −1 for ζ ∈ (−qo, qo) and the subscripts d and o denote diagonal and off-diagonal parts,
respectively, as before. Equations (98) and (99) in component form are

R±,1,1 ≙ ∫− γ + λ′ − λ
γ′(λ′ − λ)D′±g(λ′)dλ′, R±,2,2 ≙ −R±,1,1, (100)

R±,1,2 ≙ {±iνπg(λ)P±, ζ ∈ R,
0, ζ ∈ Co,

R±,2,1 ≙ {∓iνπg(λ)P∗±, ζ ∈ R,
0, ζ ∈ Co,

(101)

where R± ,i ,j are the (i, j)-elements of R±. One should note that in Eq. (98), both ρ
′
±,d and γ

′ take opposite signs on sheets I and II, so the Hilbert
transform achieves a unique result on the two λ′-sheets, as it should. Therefore, we conclude that the matrix R± ,d is determined independently
of the choice of the integration variable.

Note that, even though the calculation is considerably more involved than that in the case of ZBG, the final result appears relatively
simple. As in the case of ZBG, the matrices (98) and (99) enable one to calculate the propagation equations for the reflection coeffi-
cients and norming constants. Importantly, however, note that, since R±(ζ, z) are defined in terms of a principal value integral, even
when it admits an extension to the complex λ-plane, their values are discontinuous across the real λ-axis, both from above and from
below.

In general, it is not possible to extend all the entries of R± off the continuous spectrum. Some of the entries, however, can be extended, as
we show next. Recalling Eq. (97) and following the calculations in Subsection 4 of the Appendix, the off-diagonal entries of R± can be written
as

R±,o(ζ, z) ≙ iπν lim
t→±∞

Hλ[g(λ′) e−i(γ−γ′)tσ3ρ±,o(t, z, λ′)ei(γ−γ′)tσ3]. (102)

We point out that Eq. (102) is equivalent to Eq. (99) via Lemma A.1. For each matrix element, the Hilbert transform on the RHS of Eq. (102)
is analytic and bounded in the complex ζ-plane wherever the exponential inside tends to zero as t→±∞. Hence, looking at the regions, where
Im γ ≷ 0, we have

R+,1,2(ζ, z) ≙ R−,2,1(ζ, z) ≙ 0, ∀ζ ∈ C−/Co, (103)

R−,1,2(ζ, z) ≙ R+,2,1(ζ, z) ≙ 0, ∀ζ ∈ C+/Co. (104)

Below we will show that, just as in the case of ZBG, these conditions are all that is necessary to determine the propagation equations for the
reflection coefficient and norming constants.

2. Evolution equations for the reflection coefficient

Since ϕ+ = ϕ−S, Eq. (93) implies,

S(ζ, z) ≙ C−(ζ, z)C−1+ (ζ, z), ∀ζ ∈ Σ.
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Some algebra then shows that

∂S

∂z
≙ i

2
(R−S − SR+), ∀ζ ∈ Σ. (105)

Recall that the reflection coefficients are b = s2,1/s1,1 and b̃ ≙ s1,2/s2,2, with b̃(ζ, z) ≙ −b∗(ζ, z). Let us introduce the matrix

B(ζ, z) ≙ SoS−1d ≙ ( 0 b̃

b 0
),

where once more the subscripts d and o denote the diagonal and off-diagonal parts, respectively. In Subsection 5 of the Appendix, we show
that

− 2i∂B
∂z
≙ { 2R−,o + ∥R−,d,B∥ + iν π g ∥B, ρ−,d∥ σ3, ζ ∈ R,∥R−,d,B∥, ζ ∈ Co,

(106)

where ν = 1 for ζ ∈ (−∞, −qo] ∪ [qo,∞) and ν = −1 for ζ ∈ (−qo, qo), similarly to Eqs. (98) and (99). (Note that this result is formally identical
to that of the case with ZBG on sheet I.) In particular,

∂b

∂z
≙ −iA b − νπ g(λ)P∗−, (107)

where ν = 1 if ζ ∈ (−∞, −qo] ∪ [qo,∞), ν = 0 if ζ ∈ Co, and ν = −1 if ζ ∈ (−qo, qo), and
A(ζ, z) ≙ ∫− γ + λ′ − λ

γ′(λ′ − λ)D′− g(λ′)dλ′ + i ν π g(λ)D−. (108)

Note that the propagation equation for the reflection coefficient is completely determined by the asymptotic values as t → −∞, as it should
be. Note also that because of the symmetry of the reflection coefficient (55), in general, b(ζ, z) with ζ ∈ (−qo, qo) evolves differently from
b(ζ, z) with ζ ∈ (−∞, −qo] ∪ [qo,∞). This can also be seen from Eq. (107) with ν = ±1, and from the fact that D− and P− take different values
depending on ζ. However, everything is still consistent, as D− and P− also satisfy the symmetries (77)–(80). Thus, again, we only focus on the
first λ-sheet, i.e., ζ ∈ (−∞, −qo] ∪ [qo,∞).

3. Evolution equations for norming constants

Recall that Cn is defined by Eq. (57),

Cn ≙ bn

s′1,1(ζn) ≙ bn limζ→ζn

ζ − ζn
s1,1(ζ, z) . (109)

In Subsection 5 of the Appendix, we show that for n = 1, . . ., N,

∂Cn

∂z
≙ −i R−,1,1(ζn, z)Cn, (110)

where R− ,1,1 is given in Eq. (100). Hereafter, one can use Eqs. (59) and (62) to obtain the propagation for Cn with n = N + 1, . . ., 2N. Like
the propagation of the reflection coefficient, the propagation equation for the norming constant is completely determined by the asymptotic
values as t→−∞, as it should be. In addition, in the ODE (110), the quantity R− ,1,1 is evaluated at ζ = ζn ∈ Γ+, i.e., in the first λ-sheet. Therefore,
norming constants Cn are uniquely determined without any ambiguities.

V. INVERSE PROBLEM

A. Riemann-Hilbert problem and reconstruction formula

The development of the inverse problem begins from the scattering relation (38). One can rewrite this scattering relation as(μ+,1,μ+,2) ≙ (μ−,1,μ−,2) eiγtσ3S e−iγtσ3 . Equivalently, one can write

μ+,1/s1,1 ≙ μ−,1 + b e−2iγtμ−,2, μ+,2/s2,2 ≙ b̃ e2iγtμ−,1 + μ−,2, ∀ζ ∈ Σ, (111)

where the (t, z, ζ)-dependence is omitted for brevity and the reflection coefficients b and b̃ are defined in Eq. (39). One can view Eq. (111) as a
relation between eigenfunctions analytic in Γ

+ and those in Γ
−. Thus, we introduce the meromorphic matrices

M
+(t, z, ζ) ≙ (μ+,1/s1,1, μ−,2), M

−(t, z, ζ) ≙ (μ−,1, μ+,2/s2,2). (112)
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As mentioned in Sec. III A, subscripts ± indicate normalization as t→ ±∞, while superscripts ± distinguish between analyticity in Γ
+ and Γ−,

respectively. We then have

M
−(t, z, ζ) ≙M+(t, z, ζ) (I −G(t, z, ζ)), ∀ζ ∈ Σ, (113)

where the jump matrix G is

G(t, z, ζ) ≙ ⎛⎝
0 −e2iγ(ζ)t b̃(ζ, z)

e−2iγ(ζ)tb(ζ, z) b(ζ, z)b̃(ζ, z)
⎞
⎠. (114)

Equation (113) is the jump condition for the desired RHP. This RHP is solved explicitly in Subsection 6 of the Appendix, where it is shown
that the solution is

M(t, z, ζ) ≙ I + i

ζ
σ3Q− +

2N∑
n≙1

(ResζnM+

ζ − ζn +
Resζ∗n M

−

ζ − ζ∗n ) +
1

2πi ∫
Σ

M+(t, z, ζ′)
ζ′ − ζ G(t, z, ζ′)dζ′, (115)

with ζN+n ≙ −q2o/ζ∗n for n = 1, . . ., N. Note that the expressions forM+ andM− are formally identical, except for the fact thatM is evaluated in
different regions of the complex plane.

With the relabeling in definition (62), the residue relations (57), (60), and (61) imply that only the first column ofM+ has a pole at ζ = ζn
with n = 1, . . ., 2N, and its residue is proportional to the second column ofM+ at that point, explicitly,

Resζ≙ζnM
+ ≙ (Cn(z) e−2iγ(ζn)tμ−,2(t, z, ζn), 0) ≙ (Cn(z) e−2iγ(ζn)tM+

2 (t, z, ζn), 0). (116)

Similarly,

Resζ≙ζ∗n M
− ≙ (0, C̃n(z) e2iγ(ζ∗n )tμ−,1(t, z, ζ∗n )) ≙ (0, C̃n(z) e2iγ(ζ∗n )tM−1 (t, z, ζ∗n )). (117)

We can therefore evaluate the second column of the solution (115) at ζ = ζn, obtaining

μ−,2(t, z, ζn) ≙ ( iq−/ζn1
) + 2N∑

j≙1

C̃j(z) e2iγ(ζ∗j )t
ζn − ζ∗j μ−,1(t, z, ζ∗j ) + 1

2πi ∫
Σ

M+(t, z, ζ′)
ζ′ − ζn G2(t, z, ζ′)dζ′ (118)

for n = 1, . . ., 2N, and where G2 denotes the second column of G. Similarly, we can evaluate the first column of the solution (115) at ζ ≙ ζ∗n ,
obtaining

μ−,1(t, z, ζ∗n ) ≙ ( 1
iq∗−/ζ∗n ) +

2N∑
j≙1

Cj(z) e−2iγ(ζj)t
ζ∗n − ζj μ−,2(t, z, ζj) + 1

2πi ∫
Σ

M+(t, z, ζ′)
ζ′ − ζ∗n G1(t, z, ζ′)dζ′, (119)

again for n = 1, . . ., 2N, and where G1 denotes its first column. Finally, evaluating the solution (115) with ζ ∈ Σ, we obtain together with
Eqs. (118) and (119), a closed linear system of algebraic-integral equations for the solution of the RHP.

The last remaining task in the inverse problem is to reconstruct the potential and the density matrix from the solution (115) of the RHP.
It is easy to compute the asymptotic behavior ofM(t, z, ζ),

M(t, z, ζ) ≙ I + 1

ζ
[iσ3Q− + 2N∑

n≙1

(ResζnM+ + Resζ∗n M
−) − 1

2πi ∫
Σ

M
+(t, z, ζ′)G(t, z, ζ′)dζ′ ] +O(1/ζ2), ζ →∞, (120)

where the residues are given by Eqs. (116) and (117). TakingM =M+ and comparing the (1, 2)-element of Eq. (120) to the one of Eq. (70), we
then obtain the reconstruction formula for the potential,
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q(t, z) ≙ q− − i 2N∑
n≙1

C̃n(z) e2iγ(ζ∗n )t μ−,1,1(t, z, ζ∗n ) + 1

2π ∫
Σ

(M+
G)1,2(t, z, ζ′)dζ′, (121)

where μ−,2(t, z, ζ∗n ) andM+(t, z, ζ) are obtained from the simultaneous solution (115) for ζ ∈ Σ and Eqs. (118) and (119).
To reconstruct the density matrix, one also starts from the solution (115) and Eqs. (118) and (119) and then computes M−(t, z, ζ) for

ζ ∈ Σ. Recalling definition ofM± (112), we then have

μ−(t, z, ζ) ≙ (M−1 (t, z, ζ),M+
2 (t, z, ζ)), ∀ζ ∈ Σ.

In turn, from the definition (33) of μ and relation (73), we obtain the density matrix as

ρ(t, z, ζ) ≙ μ−(t, z, ζ) eiγtσ3ρ−(ζ, z) e−iγtσ3μ−1− (t, z, ζ), ∀ζ ∈ Σ. (122)

Similarly to the NLS equation, it is also possible to derive a “trace” formula, which allows one to recover the analytic scattering coefficient
from the knowledge of the reflection coefficient and discrete eigenvalues, and also a so-called “theta” condition, which yields the asymptotic
phase difference of the potential in terms of the discrete eigenvalues,

s1,1(ζ, z) ≙ exp( − 1

2πi ∫
Σ

log∥1 + ∣b(ζ′, z)∣2∥
ζ − ζ′ dζ′) N∏

n≙1

(ζ − ζn)(ζ + q2o/ζ∗n )(ζ − ζ∗n )(ζ + q2o/ζn) , (123)

s2,2(ζ, z) ≙ exp( 1

2πi ∫
Σ

log∥1 + ∣b(ζ′)∣2∥
ζ − ζ′ dζ′) N∏

n≙1

(ζ − ζ∗n )(ζ + q2o/ζn)(ζ − ζn)(ζ + q2o/ζ∗n ) , (124)

as well as

arg(q−/q+) ≙ 4 N∑
n≙1

arg ζn +
1

2πi ∫
Σ

log∥1 + ∣b(ζ′, z)∣2∥dζ′
ζ′

. (125)

See Subsection 7 of the Appendix for details. In fact, the trace formulae (123) and (124) and the “theta” condition (125) are exactly the same
as the ones obtained in focusing NLS with NZBC.69

B. Reflectionless potentials

We now look at a special case of potentials Q(t, z) for which the reflection coefficient b(ζ, z) vanishes identically. Note that in order for
the solution to remain reflectionless for z > 0 it is not sufficient that b(ζ, 0) = 0. Indeed, the propagation equation (107) for the reflection
coefficient b(ζ, z) shows that b(ζ, z) = 0 for z > 0 only if ρ− ,o(ζ, z) = 0 ∀z > 0. We therefore assume that this is the case for the rest of this
section. Recalling the general asymptotic state (77)–(80) we then define the initial state for the medium as follows:

ρ−(ζ, z) ≙ ν h− σ3, (126)

where ν = 1 for ζ ∈ (−∞, −qo] ∪ [qo,∞), ν = −1 for ζ ∈ (−qo, qo), and where h− = ±1 is related to the initial population inversion via Eq. (86).
Note that the sign discontinuities introduced by ν are necessary because of the symmetry (76). Also recall that h− = ±1 indicates whether,
initially, more atoms are in the excited state than in the ground state or vice versa, respectively (cf. the discussion at the end of Sec. III D).
Again, we emphasize the fact, shown in Sec. III D, that, due to the presence of background radiation, the medium is always polarized, and as
a result, pure states do not exist in general, which differs from the case of ZBG. Moreover, without calculating the density matrix ρ from the
inverse problem explicitly, we know that D→ λh−/γ and P→ −ih−q−/γ as t→ −∞ from Eqs. (83) and (84). In other words, the initial state of
the medium is independent of discrete eigenvalues and soliton types (discussed later) but is dependent on λ.

As usual, for reflectionless potentials, there is no jump from M+ to M− across the continuous spectrum and the RHP therefore reduces
to an algebraic system, whose solution yields the soliton solutions of the nonlinear system.

It is convenient to introduce scalar functions

cj(ζ, z) ≙ Cj(z)
ζ − ζj e−2iγ(ζj)t , j ≙ 1, . . . , 2N.

Also recall the symmetry (62) and γ(ζ∗) = γ∗(ζ). The algebraic system obtained from the RHP can then be expressed as

μ−,2(t, z, ζj) ≙ ( iq−/ζj1
) − 2N∑

l≙1

c
∗
l (ζ∗j , z)μ−,1(t, z, ζ∗l ), j ≙ 1, . . . , 2N, (127)

μ−,1(t, z, ζ∗n ) ≙ ( 1
iq∗−/ζ∗n ) +

2N∑
j≙1

cj(ζ∗n , z)μ−,2(t, z, ζj), n ≙ 1, . . . , 2N. (128)
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Substituting Eq. (127) into Eq. (128) yields, for all n = 1, . . ., 2N,

μ−,1(t, z, ζ∗n ) ≙ ( 1
iq∗−/ζ∗n ) +

2N∑
j≙1

cj(ζ∗n , z)( iq−/ζj1
) − 2N∑

j≙1

2N∑
l≙1

cj(ζ∗n , z)c∗l (ζ∗j , z)μ−,1(t, z, ζ∗l ). (129)

Note that only the first component of the above eigenfunctions is needed in the reconstruction formula (121) for the potential. Let us write

the resulting system in matrix form. Let X ≙ (X1, . . . ,X2N)T and B ≙ (B1, . . . ,B2N)T , where
Xn ≙ μ−,1,1(t, z, ζ∗n ), Bn ≙ 1 + iq−

2N∑
j≙1

cj(ζ∗n , z)/ζj, n ≙ 1, . . . , 2N.

In addition, let us define the 2N × 2N matrix A = (An , l), where

An,l ≙ 2N∑
j≙1

cj(ζ∗n , z)c∗l (ζ∗j , z), n, l ≙ 1, . . . , 2N.

The system (129) then becomes simply KX = B, where

K ≙ I + A ≙ (K1, . . . ,K2N). (130)

The solution of the system is Xn = detKn/detK for n = 1, . . ., 2N, where the 2N × 2N matrices K1, . . ., K2N are Kn = (K1, . . ., Kn−1, B, Kn+1,
. . .,K2N). Finally, upon substituting X1, . . ., X2N into the reconstruction formula (121), one can write the result for the potential compactly as

q(t, z) ≙ detKaug

detK
, K

aug ≙ ( q− iDT

B K
), (131)

withD ≙ (D1, . . . ,D2N)T and Dn ≙ C̃n(z) e2iγ(ζ∗n )t for n = 1, . . ., 2N.
The reconstruction formula for the density matrix also takes on a simpler form in the reflectionless case. In this case, we also need the

second component of the eigenfunctions in the linear system (127) and (128). However, it is trivial to see that, from Eq. (129), one can obtain
them from the solution of

K Y ≙ L,
where Y ≙ (Y1, . . . ,Y2N)T are the unknowns and L ≙ (L1, . . . ,L2N)T , with

Yn ≙ μ−,2,1(t, z, ζ∗n ), Ln ≙ iq∗−/ζ∗n +
2N∑
j≙1

cj(ζ∗n , z), n ≙ 1, . . . , 2N,

and where the coefficient matrix K is still given by definition (130). Once X and Y have been obtained, from Eqs. (127) and (128), we have

μ−,1(t, z, ζ∗n ) ≙ (Xn,Yn)T , μ−,2(t, z, ζn) ≙ (X̃n, Ỹn)T , n ≙ 1, . . . , 2N,

which are related by Eq. (127), i.e.,

( X̃n

Ỹn
) ≙ ( iq−/ζn

1
) − 2N∑

j≙1

c
∗
j (ζ∗n , z)(Xj

Yj
), n ≙ 1, . . . , 2N.

Recalling that in the reflectionless case there is no jump, we then have μ−(t, z, ζ) ≙ (M−,1,M+,2) ∀ζ ∈ Σ, and therefore, from Eq. (115), we find

μ−(t, z, ζ) ≙ I + i

ζ
σ3Q− +

2N∑
n≙1

Cn e
−2iγ(ζn)t

ζ − ζn ( X̃n 0

Ỹn 0
) + 2N∑

n≙1

C̃n e
2iγ(ζ∗n )t

ζ − ζ∗n ( 0 Xn

0 Yn
). (132)

Recall the relationship between the density matrix ρ and the eigenfunction matrix μ is given by relation (122). In the reflectionless situation,
it simplifies to

ρ(t, z, ζ) ≙ νh−μ−(t, z, ζ) σ3 μ−1− (t, z, ζ), ∀ζ ∈ Σ. (133)

VI. EXACT SOLUTIONS AND THEIR BEHAVIOR

In this section, we use the IST formalism developed in Secs. III–V to obtain a variety of exact solutions of the MBEs with NZBG. In
particular, we will focus on variation of one-soliton solutions with a single discrete eigenvalue ζ1. According to the location of this discrete
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eigenvalue, there exist four types of solutions, shown in Fig. 3. We will discuss all types separately in detail. In addition, we will also discuss
the stability of soliton solutions of the MBEs.

A. One-soliton solutions: Representation formulae

Without loss of generality, we take the input background to be q−(0) = qo (owing to the phase invariance of the MBEs) so that the

background propagates as q−(z) ≙ qoe
2iW−(z) with W−(z) ∈ R defined in Eq. (90). We parameterize the discrete eigenvalue ζ1 and the

norming constant C1 as

ζ1 ≙ qoη eiα, C1(z) ≙ exp [ξ(z) + iφ(z)], (134)

respectively, with η > 1, α ∈ (0, π), and both ξ(z) and φ(z) real. For later use, we also defined quantities,

Δ± ≙ η ± 1/η, d± ≙ η2 ± 1/η2. (135)

Recall that, for all the soliton solutions, the initial state for themedium is given by Eq. (126) with h− =±1.We further assume h− is independent
of z and ζ. We take ρ− to be diagonal because only in this case, a reflectionless solution remains reflectionless upon propagation. The formula
for the optical field will be given explicitly below. However, due to the complexity of the expressions, we will only give explicit formulas for
the modified eigenfunction matrix μ instead of the density matrix ρ. One can then simply use the relationship (133) to reconstruct ρ(t, z, ζ).
Moreover, it turns out that μ satisfies the symmetries μ2,1 ≙ −μ∗1,2 and μ2,2 ≙ μ∗1,1, so it is sufficient to give only the (1, 1) and (1, 2) components
of μ.

1. Type 1. Traveling-wave soliton: Solutions with purely imaginary eigenvalues

Let us start from the simplest case α = π/2 in Eq. (134). The theta condition (125) implies that the corresponding asymptotic phase
difference is 2π (i.e., no phase difference). The general soliton solution (131) and (132) reduces to

q(t, z) ≙ q−(Δ+ cosh χ + d+ sin s + id− cos s)/(Δ+ cosh χ + 2 sin s), (136)

μ1,1 ≙ (−d−ζqo sinh χ + iΔ−q
2
oY + 2iγζX)/(ζXZ), (137)

μ1,2 ≙ q−(−id−qo sinh χ + Δ−ζY + 2γX)/(ζXZ∗), (138)

with

X ≙ Δ+ cosh χ + 2 sin s, Y ≙ Δ− sin s + iΔ+ cos s, Z ≙ Δ−qo + 2iγ, (139)

χ(t, z) ≙ qoΔ−t + Δ0 + ξ(z), s(z) ≙ φ(z) + 2W−(z), Δ0 ≙ log∥Δ+/(2qoΔ−η)∥. (140)

Recall thatW−(z) was defined in Eq. (90) and all quantities in Eq. (135). Note that Δ+ > 2, so the above soliton solution is always nonsingular.
Equation (136) is the analog of the Kuznetsov-Ma solution of the focusing NLS equation with NZBC.85,86 Indeed, the calculations to obtain
the soliton solution (136) are similar to those for the focusing NLS equation (e.g., see Ref. 69 for details), but the resulting solutions exhibit
quite different behavior upon propagation.

Importantly, the z dependence of the solution is entirely determined by the norming constant via ξ(z), φ(z), and the background q−(z).
We will discuss the z dependence later.

FIG. 3. Left and center: four types of one-soliton solutions: type 1, traveling-wave soliton with a purely imaginary discrete eigenvalue; type 2, oscillatory soliton with a generic
discrete eigenvalue; type 3, periodic solution with a discrete eigenvalue on the branch cut; and type 4, rational solution with a discrete eigenvalue at the branch point iqo. Red
contours denote the continuous spectrum. Right: how the discrete eigenvalue (134) changes as a function of η with various values of α in the λ-plane.
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2. Type 2. Oscillatory soliton: Solutions with eigenvalues in general position

Amore general expression of the one-soliton solution for a general discrete eigenvalue can also be found, similarly to that for the focusing
NLS equation. (Again, see Ref. 69 for details.) Recalling the parameterization (134) for the discrete eigenvalue and norming constant, after
tedious but straightforward calculations, we obtain

q(t, z) ≙e−2iαq−∥cosh(χ − 2iα) + d+κs + id−κc∥/(cosh χ − 2κs), (141)

μ1,1(t, z, ζ) ≙[q2o cosh(χ − 2iα) + Δ−ζqo cosh(χ − iα) − ζ2 cosh χ]/(XY)
+ i sinα[Eoe−is∣ζ − ζ1∣2 − eisE∗o ∣ζ − ζ̂1∣2]/(∣Eo∣Δ+XY), (142)

μ1,2(t, z, ζ) ≙ − ie−2iαq−[ζ cosh(χ − 2iα) − Δ−qo cosh(χ − iα) + ζ̂ cosh χ]/(XY∗)
+ e−2iαq− sinα[e−isη4Eo∣ζ − ζ̂1∣2 − eisE∗o ∣ζ − ζ1∣2]/(∣Eo∣Δ+ζη

2
XY
∗), (143)

where

X ≙ cosh χ − 2κs, Y ≙ e2iαq2o + eiαΔ−ζqo − ζ2, (144)

κs(t, z) ≙ E1(η2 sin(s − 2α) + sin s), κc(t, z) ≙ E1(η2 cos(s − 2α) + cos s), (145)

χ(t, z) ≙ qoΔ−t sinα + ξ(z) + ln [Δ+/(2qo∣Eo∣ sinα)], (146)

s(t, z) ≙ −qoΔ+t cosα + φ(z) + 2W−(z), Eo ≙ 1 + e2iαη2, E1 ≙ sinα/(∣Eo∣Δ+), (147)

and Δ±, d± are defined in Eq. (136) and W−(z) is defined in Eq. (90). Note that the term cosh(χ − 2iα) can be easily expressed in terms of
real-valued functions using addition formulae. Equation (141) is the analog of the Tajiri-Watanabe solutions of the focusing NLS equation
with NZBC87 but exhibits different spatial-temporal behavior.

The same as for the traveling-wave soliton solutions, the propagation of the above solution is also determined by the three quantities
ξ(z), φ(z), and q−(z) from Sec. IV, which will be discussed later. The names “traveling-wave soliton” and “oscillatory soliton” will become
clear after we compute the z propagation explicitly.

3. Soliton amplitude

We define the instantaneous amplitude compared to the background as

A(z) ≙ max
t∈R
∣q(t, z)∣ − qo. (148)

It is easy to see that the soliton achieves its maximum when χ = 0 in both cases (136) and (141). For the oscillatory soliton solution (141), the
explicit formula (148) is complicated and does not simplify in general, so it is omitted for brevity. However, for the traveling-wave soliton
(136), simple calculations show that the amplitude (148) becomes

A(z) ≙ qo
√(Δ2

2 + 1)Δ1 + 2 sin s

Δ1 + 2 sin s
− qo. (149)

The maximal possible amplitude is attained when s(z) = (2n + 3/2)π with n ∈ Z and is

Amax ≙ qo(1 + η2)/η.
Note that Amax is an increasing function of η. That is, traveling-wave soliton solutions have a larger maximal possible amplitude when the
discrete eigenvalues move farther away from the continuous spectrum.

Importantly, however, note that, for some solutions, the above theoretical maximum may not be achieved in practice. This is because,
as we will show in Sec. VI B, for discrete eigenvalues on the imaginary axis, s(z) will turn out to be constant, and therefore the condition s(z)
= (2n + 3/2)π may not be achieved for any value of z or n. In such cases, the actual maximum of the solution depends on the phase of the
norming constant. In fact, the entire shape of the traveling-wave soliton solution depends on the phase of the norming constant. This is unlike
the case of ZBG and also unlike the solutions of the focusing NLS equation.

4. Soliton velocity

By inspecting soliton solutions (136) or (141), it is evident that solitons are localized along the curve χ(t, z) = y. Our assumption that the
initial state for the medium (126) is independent of z implies that ξ(z) from Eqs. (136) and (141) has the form ξ(z) = ξ1 z + ξ(0), where ξ1,
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ξ(0) ∈ R and are independent of z. Then, provided that ξ1 ≠ 0, the soliton is located along the line z − Vt = zo, and travels with velocity V in
the (t, z) frame, where

V ≙ −qoΔ− sinα/ξ1. (150)

Now recall that the MBEs (1) and (2) are written in a comoving frame of reference. Straightforward algebra shows that the physical soliton
velocity in the laboratory frame is

Vlab ≙ V

1 + V/c ,
where c is the speed of light in vacuum. That is, in laboratory coordinates, the soliton is located along the line z − V labt = zo. Conversely,
V = V lab/(1 − V lab/c). Therefore, the requirement V lab ⩽ c of physical signals translates into the requirement V ⩾ 0. Moreover, V lab → 0
implies V → 0 and V →∞ as V lab → c.

B. Soliton solutions with inhomogeneous broadening: Propagation

As usual, when studying the case of inhomogeneous broadening we take the spectral-line shape to be a Lorentzian, namely,

g(λ) ≙ ϵ

π

1

ϵ2 + λ2
, ϵ > 0. (151)

The propagation of the optical background q−(z) is governed by Eq. (90). But because g(λ) and γ(λ) are an even and an odd function of λ,
respectively, the integral in the definition (89) is zero, i.e., w−(z) = 0. Thus, the initial state for q(t, z) is independent of z, namely, q−(z) = qo.
We point out that a more general scenario, i.e., solutions with a shifted Lorentzian, is discussed in Subsection 7 of the Appendix.

The propagation of the norming constant C1 is governed by ODE (110). Recall that we parameterized the norming constant in Eq. (134).
In order to obtain ξ(z) and φ(z), one must compute R± ,d explicitly by using Eq. (98). In this case, the calculations are rather involved, and are
presented in Subsection 8 of the Appendix. Since we will substitute the discrete eigenvalue into R− ,d(ζ, z), we know ζ ∈ Γ+, and therefore we
consider the case with ζ ∈ C/R, i.e., λ ∈ C/R. At the end, we write the matrix in the following form:

R−,d(ζ) ≙ h−g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2] σ3, ζ ∈ C/R, (152)

with Θ(λ) defined as

Θ(λ) ≙ 2 arcsech(−iλ/qo). (153)

Importantly, in Subsection 8 of the Appendix, we also show that R− ,d has a different form on the continuous spectrum Σ as follows:

R−,d(ζ, z) ≙ σ3 ϵh−
π(ϵ2 + λ2) [ 2arccsch(−λ/qo) − γΘ(iϵ)/(q2o − ϵ2)1/2 ], ζ ∈ R. (154)

Therefore, the matrix R− ,d is discontinuous across the real ζ-axis, i.e., the real λ-axis. (This is the same as in the case of ZBG and follows
immediately from its definition as a principal value integral.) Clearly, the value of R− ,d (152) depends on whether ϵ < qo or ϵ > qo.

Using Eq. (154), we can now compute the propagation for the norming constants. Recalling the parameterization (134), we have that

ξ(z) ≙ ξ(0) + Im(R−,1,1(ζ1))z, φ(z) ≙ φ(0) − Re(R−,1,1(ζ1))z. (155)

Explicitly, from Eqs. (110) and (154), we have

ξ(z) ≙ h− Im{g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2]}z + ξ(0), (156)

φ(z) ≙ −h− Re{g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2]}z + φ(0). (157)

It is easy to show that the one-soliton solution (141) oscillates with temporal frequency,

ω ≙ qo∣Δ− sinα cot argR(ζ1) − Δ+ cosα∣/(2π).
In particular, if α = π/2 (traveling-wave soliton), simple calculations show that ω = 0, i.e., there are no oscillations. This is why we name the
solitons as traveling-wave or oscillatory solitons.

Two traveling-wave soliton solutions are shown in Figs. 4 and 5, whereas an oscillatory soliton solution is shown in Fig. 6. Note that,
since γ(λ) is discontinuous at λ = 0, the density matrix ρ(t, z, λ) is also discontinuous there. Thus, in Fig. 5 as well as the subsequent ones,
we plot ρ(t, z, 0+). Moreover, we take λ on the first sheet, i.e., we take ν = 1 in the initial state (126). Note also that oscillatory behavior can
be easily observed from Fig. 6 just like for the focusing NLS equation with NZBC. Moreover, one can easily observe from all the figures that
limt→−∞D does not equal h− and is a function of λ even though h− is not. This is consistent with our discussion in Sec. III D and with Eqs.
(83) and (84).
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FIG. 4. One traveling-wave soliton solution (136) with the initial state for the medium (126), inhomogeneous broadening and a discrete eigenvalue ζ1 = 2i on the imaginary
axis: h− = −1 (i.e., more atoms are initially in the ground state), qo = 1, ϵ = 2, ξ(0) = 0, and φ(0) = −π/2. Top left: the discrete eigenvalue in the λ-plane; bottom left:
the optical field |q(t, z)|; center and right: components of density matrix ρ(t, z, λ); top center: D(t, z, 0+); top right: |P(t, z, 0+)|; bottom center: D(t, z, qo); and bottom right:
|P(t, z, qo)|.

FIG. 5. Same as Fig. 4, but with a different choice of norming constant φ(0) = 0.
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FIG. 6. Similar to Fig. 4, but for an oscillatory soliton solution (141) with discrete eigenvalue ζ1 ≙
√
3 + i. All other parameters are the same as those in Fig. 4.

Now that we have derived the propagation of the norming constant, we can explicitly compute the amplitude and velocity of the soliton.
In Fig. 7 (left), we show the maximal possible amplitude of the soliton, Amax(z), as a function of η and α, which is computed using Eq. (148).

In addition, taking ξ(z) from Eq. (156), if Im{g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2]} ≠ 0, we can obtain the soliton velocity (150) as

V ≙ −qoh−Δ− sinα/ Im{g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2]}, (158)

where we use the notation from Sec. VI A. In Fig. 7 (center and right), we show the dependence of the soliton velocity on the parameters η
and α, in the cases ϵ < qo and ϵ > qo, respectively. It is apparent that the velocity is an increasing function as η → ∞. Thus, as the discrete
eigenvalue moves closer to the real line, the corresponding soliton travels slower.

Note that, just like in the case of ZBG, the soliton velocity is symmetric with respect to the imaginary λ-axis. That is, solitons correspond-
ing to discrete eigenvalues λn and −λ∗n (i.e., with the same imaginary part and opposite real part) have the same velocity. (This is unlike what
happens to the NLS equation, where such solitons would have opposite velocities.)

Importantly, note also that Im{g(λ)[Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2]} > 0 for all |ζ| > qo. Thus, V ≷ 0 (solitons are subluminal or superlu-
minal) when h− = ∓1 (i.e., more atoms initially are in the ground than in the excited state or vice versa), respectively, similarly to the case with
ZBG.

FIG. 7. Soliton amplitude and velocity with inhomogeneous broadening corresponding to more atoms initially being in the ground than in the excited state, i.e., h− = −1 (see
text for further details). Left: the maximum amplitude of a soliton with qo = 1 as a function of η and α; center: the velocity of the soliton with ϵ = 0.5; and right: the velocity of
the soliton with ϵ = 2.
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C. Soliton solutions in the sharp-line and zero-background limits

We next discuss the two limits ϵ → 0 and qo → 0. The former is called sharp-line limit, and the latter is called zero-background limit.
Importantly, in the development of the IST, one could take the limit qo→ 0 throughout to recover the formalism in the case of ZBG. However,
we will see shortly that the behavior of solutions differs depending on whether one lets qo → 0 before or after taking the limit ϵ→ 0. In other
words, the limits qo → 0 and ϵ→ 0 do not commute. In practice, what this means is that one must know a priori whether the physical scenario
involves ϵ < qo or qo < ϵ.
1. Case 1: Taking the limit qo → 0 first

Taking qo → 0 in Eq. (90), we immediately obtain q− = 0 for all z > 0. In addition, as it was shown in Ref. 69 that, in the limit qo → 0, the
solution profile (136) reduces to a hyperbolic secant. Moreover, taking the limit qo → 0 in Eq. (152), we obtain

R−,d ≙ ih−

ϵ − iλσ3.
Note that this expression is identical to the one in the case of ZBG.45 In addition, the expression (152) was derived on sheet I. The same applies
to ρ(t, z, λ). Thus, the entire solution reduces to that in the case of ZBG. One obtains a similar result while computing everything on sheet II.

If we now take the limit ϵ→ 0, we recover the sharp-line limit in the case of ZBG (in particular, R− = (h−/λ) σ3).

2. Case 2: Taking the limit ϵ → 0 first

We now take the limit ϵ→ 0 first. Using Eq. (152), it is easy to show that the matrix R− ,d(ζ1) is identically zero in this limit. Therefore,
the soliton solution is constant with respect to the spatial variable z.

If we now take the limit qo → 0, we preserve a soliton solution that is constant with respect to z, which is not the same as the soliton
solution of the case with ZBG in the sharp-line limit. Thus, as anticipated, the two limits ϵ→ 0 and qo → 0 do not commute. This is consistent
with the fact that the limit ϵ→ 0 is subtle and must be carried out carefully (e.g., see Ref. 88).

3. Direct sharp-line limit

We can also compute the sharp-line limit directly by using the Dirac delta with the initial state for the medium (126), meaning that we
take the spectral-line shape as follows:

g(λ) ≙ δ(λ). (159)

Again, the calculation requires evaluating the integral in Eq. (98) on either λ-sheet. Importantly, with our definition (10) of γ(λ), both ζ(λ) and
γ(λ) are discontinuous at λ = 0. Therefore, we need to use identity (A2) in the calculation. We then obtain q−(z) = qo from the propagation
equations (89) and (90). Calculating the integral in Eq. (98), we obtain R− ,d = 0. Thus, the norming constant C1 satisfies ∂C1/∂z = 0 from the
ODE (110), implying

ξ(z) ≙ ξ(0), φ(z) ≙ φ(0).
In other words, the soliton solution (136) is constant in z, and therefore the soliton travels at the speed of light. From these results, one can
also reconstruct the density matrix ρ(t, z, λ). This result is precisely the same as that obtained in case 2 above, namely by taking the limit
ϵ→ 0 first.

D. Type 3. Periodic solutions

Here, we discuss the nontrivial limiting case of oscillatory soliton solutions (141), when the discrete eigenvalues tend to the branch cut
of γ. More precisely, we take the limit as η → 1+ of the discrete eigenvalue ζ1 = qoηe

iα, as in the parameterization (134), with the phase
α ∈ (0, π/2) ∪ (π/2, π), and define qP(t, z) = limη→1q(t, z). [Several traces of the discrete eigenvalue as η→ 1+ with fixed values of α are shown
in Fig. 3 (right).] After simple calculations, this solution is found to be

qP(t, z) ≙ e−2iαq− cosh(χ − 2iα) + ∣ tanα∣ sin(s − α) cosα
cosh χ − ∣ tanα∣ sin(s − α) cosα , (160)

μ1,1(t, z, ζ) ≙ [ζ2X − q2o cosh(χ − 2iα) + q
2
oκ + iζqoκ̃]/[(ζ2 − ζ21)X], (161)

μ1,2(t, z, ζ) ≙ iq−[q2oX − ζ2 cosh(χ − 2iα) + ζ2κ − iζqoκ̃]/[ζ(q2o − e2iαζ2)X], (162)
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where

κ̃ ≙ sin(2α) cos(s − α), X ≙ cosh χ − sin(s − α) sinα, (163)

χ(z) ≙ ξ(z) − ln(qo∣ sin(2α)∣), s(t, z) ≙ −2qot cosα + φ(z) + 2W−(z), (164)

and ξ(z) and φ(z) will be discussed next. Note that the t-dependence [in s(t, z)] of the solution (160) only appears in trigonometric functions.
As a result, this solution is periodic in both t and localized along the curve χ(z) = y. We should point out that this periodic solution does not
satisfy our initial data, limt→±∞q(t, z) = q−(z). This, however, is similar to what happens when the same limiting process is applied to the
focusing NLS equation.69 Indeed, solution (160) is the analog of the so-called Akhmediev breathers89 of the focusing NLS equation, which
are spatially periodic. However, the Akhmediev breathers are not temporally periodic, but the solutions of the MBEs are. Of course, in our
case, the propagation depends on the choice of ρ− ,d and the spectral-line shape g(λ). We next compute the z dependence explicitly with
inhomogeneous broadening.

1. Periodic solution with inhomogeneous broadening

Following the discussion in Sec. VI B, taking the limit of Eq. (152) as η→ 1, we obtain the following quantities appearing in the soliton
solution:

W− ≙ 0, R−,d ≙ h−Rϵ(α) σ3, (165)

with

Rϵ ≙ g(iqo sinα)(2 arcsech(sinα) − qoΘ(iϵ) cosα√
qo2 − ϵ2 ). (166)

Therefore, we have the following two quantities from Eqs. (156) and (157), which determine the norming constant:

ξ(z) ≙ ξ(0), φ(z) ≙ −h−Rϵ z + φ(0).
In this particular case, we can rewrite the periodic solution (160) explicitly as

qϵ(t, z) ≙ e−2iαqo cosh [ ln(qo∣ sin 2α∣) + 2iα − ξ(0)] − sin(s + α) sinα
cosh [ ln(qo∣ sin 2α∣) − ξ(0)] + sin(s + α) sinα , (167)

where

s(t, z) ≙ 2qot cosα + h−Rϵ(α) z − φ(0), (168)

with ξ(0) and φ(0) arbitrary real constants and Rϵ(α) given by Eq. (166). The modified eigenfunction matrix μ can be computed in a similar
way as in the previous cases and is omitted for brevity.

Due to the fact that both variables t and z appear in trigonometric functions, this solution qϵ(t, z) is periodic in both t and z with
frequencies ωt = qo cos α/π and ωz = Rϵ/(2π). Moreover, each peak travels with velocity V = −2qoh− cos α/Rϵ. One such solution is shown in
Fig. 8.

It is easy to compute the sharp-line limit, i.e., ϵ→ 0, of the periodic solution. By Eq. (165), we find that Rϵ → 0 as ϵ→ 0. Thus, the solution
becomes

qP(t) ≙ e−2iαqo cosh [ ln(qo∣ sin 2α∣) + 2iα − ξ(0)] − sin(s + α) sinα
cosh [ ln(qo∣ sin 2α∣) − ξ(0)] + sin(s + α) sinα ,

with

s(t) ≙ 2qot cosα − φ(0).
Note that this sharp-line limit solution is independent of z. Again, note that all the solutions discussed in this section are the Maxwell-Bloch
analog of the so-called “Akhmediev breathers” of the focusing NLS equation.

E. Type 4. Rational solutions

Recall that, for the focusing NLS with NZBC, one can obtain the Peregrine solution as a suitable limit of its one-soliton solutions.90 We
next show that it is possible to obtain rational solutions of the MBEs with NZBG in a similar way. We compute such a solution by taking the
limit of the traveling-wave soliton solution (136) as the discrete eigenvalue tends to the branch point iqo, i.e., η→ 1. (Recall that the discrete
eigenvalue is ζ1 = iqoη.) Note that this limit is different from the one in Sec. VI D due to different phases of the discrete eigenvalue. To
continue our calculation, we first expand the norming constant C1 around η = 1. Recall that we parameterized the norming constant C1 in the
parameterization (134). Therefore, we have the following expansions:
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FIG. 8. One periodic solution (160) with the initial state for the medium (126), inhomogeneous broadening, α = π/4, h− = −1 (i.e., more atoms are initially in the ground state
than in the excited state), qo = 1, ϵ = 2, ξ(0) = 0, and φ(0) = −π/2. Top left: the discrete eigenvalue in the λ-plane; bottom left: the optical field |q(t, z)|; center and right:
components of density matrix ρ(t, z, λ); top center: D(t, z, 0+); top right: |P(t, z, 0+)|; bottom center: D(t, z, qo); and bottom right: |P(t, z, qo)|.

ξ(η, z) ≙ ξo(z) + ξ1(z)(η − 1) +O(η − 1)2, η→ 1, (169)

s(η, z) ≙ so(z) + s1(z)(η − 1) +O(η − 1)2, η→ 1, (170)

where

ξo(z) ≙ lim
η→1

ξ(η, z), ξ1(z) ≙ lim
η→1
[ξ(η, z) − ξo(z)]/(η − 1),

and similarly for so(z) and s1(z). In order to write down these two Taylor expansions explicitly, we need to compute the expansion of the
matrix R− ,d(ζ1, z) as η→ 1, namely,

R−,d(iqoη, z) ≙ R(0)(z) + R
(1)(z)(η − 1) +O(η − 1)2. (171)

Using Eq. (98), straightforward calculations show that the coefficients in the above expression are

R
(0)(z) ≙ 2w−(z)σ3, R

(1)(z) ≙ iqo ∫ ρ−,dg(λ)
γ(λ − iqo)dλ, (172)

wherew−(z) is defined in Eq. (89). Note that R
(1)(z) is nonzero in general and can be computed on either λ-sheet. Let us recall the propagation

equation for the norming constant (110) and the definition of W−(z) (90). The norming constant in this limit is given by limη→1 C1(iqoη, z)≙ e−2iW−(z) limη→1 C1(iqoη, 0). Comparing this expression with Eq. (134), we find

ξo(z) ≙ lim
η→1

ξ(iqoη, 0), so(z) ≙ lim
η→1

φ(iqoη, 0).
Therefore, both ξo(z) and so(z) are independent of z. Correspondingly, hereafter we will simply write them as ξo and so.

Importantly, if one takes the limit η→ 1 with an arbitrary choice of ICs for ξo and so, the soliton solution (136) reduces to the background
solution (i.e., a trivial solution). On the other hand, choosing the ICs to be ξo = −Δo [recall Δo is defined in Eq. (140)] and so = −π/2, the limit
of the solution (136) as η→ 1 yields a solution of the MBEs with rational dependence on t, namely,

qR(t, z) ≙ lim
η→1

q(t, z) ≙ q−(z) [2qot + ξ1(z)]2 + s1(z)2 + 4is1(z) − 3
[2qot + ξ1(z)]2 + s21(z) + 1

. (173)
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The center of the soliton and its velocity are given by the constraint 2qot + ξ1(z) = 0. Furthermore, the density matrix is also a rational function
of t. Indeed, computing the limit of the eigenfunction μ−(t, z, ζ) in Eq. (132) using the same methods as above, we find

μR(t, z, ζ) ≙ lim
η→1

μ−(t, z, ζ)
≙ [(Yγζ − 2q2o)I + 2iqo(qos1 + Xζ)σ3 + i(Yγ − 2ζ)σ3Q− + 2(qoX − ζs1)Q−]/(γζY), (174)

with I the 2 × 2 identity matrix and

q− ≙ qoe2iW−(z), X ≙ 2qot + ξ1, Y ≙ X2 + s
2
1 + 1. (175)

The z-dependence of all the entries was omitted for brevity. One can now use (133) to obtain the density matrix ρ(t, z, λ). The final result
is omitted for brevity due to its complexity. We refer to the solution (173) and the density matrix generated by Eqs. (174) and (133) as the
rational solution of the MBEs with NZBG.

In the limit qo → 0 of the above solution, qR(t, z)→ 0 and μR(t, z, ζ)→ I, implying ρR(t, z, ζ)→ ρ−(z, ζ). Therefore, the rational solution
reduces to the trivial solution of the MBEs with ZBG.

1. Rational solution with inhomogeneous broadening

Recall that the propagation of the above solution (173) is determined by three quantities W−(z), ξ1(z), and s1(z). The latter two are
obtained from the second term R1(z) in Eq. (172). We turn to calculating them next.

We again use the Lorentzian spectral-line shape (151). Recall from the discussion in Sec. VI B that in this case w−(z) = 0. Then from
Eq. (172), we obtain the explicit expansion (171) for the matrix R− ,d as η→ 1, with

R
(0)(z) ≙ 0, R

(1)(z) ≙ ih−goR̃1 σ3,

which again, can be computed on either sheet. Note that h− = ±1 denotes the initial state of the medium as in Eq. (126), and

go ≙ g(iqo) ≙ ϵ

π(ϵ2 − q2o) , R̃1 ≙ 2 − qoΘ(iϵ)/√q2o − ϵ2, (176)

where Θ(λ) is defined in Eq. (153). Note that go and R̃1 are both real, and both R(0)(z) and R(1)(z) are independent of z. By using Eqs. (110),
(169), and (170), we then find

ξ1(z) ≙ h−goR̃1 z + ξ̃1, s1(z) ≙ s̃1,
where

ξ̃1 ≙ lim
η→1
[ξ(η, 0) − ξo]/(η − 1), s̃1 ≙ lim

η→1
[φ(η, 0) − so]/(η − 1).

Substituting all the components into Eq. (173), we then obtain the fully explicit rational solution

qR(t, z) ≙ qo (2qot + h−goR̃1z + ξ̃1)2 + s̃21 + 4is̃1 − 3
(2qot + h−goR̃1z + ξ̃1)2 + s̃21 + 1

, (177)

where ξ̃1 and s̃1 are arbitrary real constants, and both go and R̃1 are given in Eq. (176). Note that this solution is a traveling wave. In particular,

if s̃1 ≙ 0, solution (177) is purely real. The parameter ξ̃1 determines a spatial/temporal displacement, while s̃1 determines a “phase shift.” The
density matrix ρ(t, z, ζ) can also be calculated from Eq. (174) but is omitted for brevity due to its complexity. One such solution is shown in
Fig. 9.

The amplitude compared to the background and the velocity of such a solution are, respectively,

A ≙ qo

1 + s̃21

√
s̃41 + 10s̃21 + 9 − qo, V ≙ −2h−qo/(goR̃1).

The maximal possible value for A is Amax = 2qo when s̃1 ≙ 0.
It is easy to compute the sharp-line limit of the above rational solution. In the limit ϵ→ 0, we have goR̃1 → 0, while all other parts of the

solution remain the same as the ones in the inhomogeneous broadening case, implying

qR,0(t, z) ≙ qo[(2qot + ξ̃1)2 + s̃
2
1 + 4is̃1 − 3]/[(2qot + ξ̃1)2 + s̃

2
1 + 1]. (178)
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FIG. 9. One rational solution (173) with the initial state for the medium (126), inhomogeneous broadening, h− = −1 (i.e., more atoms are initially in the ground state than in

the excited state), qo = 1, ϵ = 2, and ξ̃1 ≙ s̃1 ≙ 0. Top left: the discrete eigenvalue in the λ-plane; bottom left: the optical field |q(t, z)|; center and right: components of density
matrix ρ(t, z, λ); top center: D(t, z, 0+); top right: |P(t, z, 0+)|; bottom center: D(t, z, qo); and bottom right: |P(t, z, qo)|.

Therefore, the solution travels at the speed of light in vacuum. In addition, we can use relation (133) to write down the density matrix with

ξ̃1 ≙ 0 explicitly,
ρ(t, z, λ) ≙ h−

γ3ỹ2
[ − 4qo(2q2o s̃1 + 4λq2ot − γ2 s̃1ỹ)σ1

+ (16q5ot2 − 4q3o s̃21 − 16λq3o s̃1t + 4q3o + γ2qoỹ
2 − 4γ2qoỹ)σ2

+ (16q4o s̃1t + 32λq4ot
2 − 4λq2oỹ + γ2λỹ2)σ3],

where ỹ ≙ 4q2ot2 + s̃21 + 1 and σj are defined in Eq. (5). Two such solutions are shown in Figs. 10 and 11.

F. On the stability of the soliton solutions

We now discuss the stability of general soliton solutions. To do so, we use a general form for the initial state ρ− consistent with
Eqs. (77)–(80), which we rewrite in a convenient form as

ρ−(ζ, z) ≙ (D− P−

P∗− −D− ) ≙
⎛
⎝

ν cosβ(z) eiϕ(ζ,z) sinβ(z)
e−iϕ(ζ,z) sinβ(z) −ν cosβ(z)

⎞
⎠, (179)

where ν = 1 for ζ ∈ (−∞, −qo] ∪ [qo, ∞) and ν = −1 for ζ ∈ (−qo, qo). Functions β(z) and ϕ(ζ, z) are real-valued and ensure that
det ρ−(z) = −1. Moreover, ϕ(−q2o/ζ, z) ≙ −ϕ(ζ, z) + 4W−(z) with W−(z) defined in Eq. (90) and ζ ∈ (−∞, −qo] ∪ [qo, ∞) because of the
enforced symmetries (77)–(80). Recall the discussion in Sec. III D, β(z) relates to the initial amount of population inversion of this system. If
0 ⩽ β(z) < π/2, initially, there are more atoms in the excited state than in the ground state, whereas if π/2 < β(z) ⩽ π, initially, there are more
atoms in the ground state than in the excited state. The special values β(z) = 0 and β(z) = π identify the situation where the largest proportion
of the atoms is initially in the excited and ground states, respectively. Moreover, we consider the inhomogeneous broadening case, i.e., we take
g(λ) as in Eq. (151).

We first point out that the stability is characterized by the reflection coefficient b(ζ, z) appearing in the jump condition of the RHP
(113). Therefore, we need to analyze the quantity b(ζ, z) whose dependence on z is governed by the ODE (107). Since the coefficients of
this ODE contain the entries of R− ,d, we consider the matrix R− ,d, as defined in Eq. (98). Because ρ− ,d(ζ, z) = ν cos β(z)σ3 from Eq. (179),
R− ,d can be calculated in the same way as in Subsection 8 of the Appendix. We thus obtain Eqs. (152) and (154) for λ ∈ C/R and
λ ∈ R, respectively, on either λ-sheet, with h− = cos β(z). It is then convenient to write the resulting expression as a function of ζ in the
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FIG. 10. Similarly to Fig. 9, but for a rational solution in the sharp-line limit: h− = −1, qo = 1, ξ̃1 ≙ 0, and s̃1 ≙ 0.

form of

R−,1,1(ζ, z) ≙ (R̄re + iR̄im) cosβ(z), ζ ∈ Σ, (180)

with R̄re and R̄im both real. Comparing Eqs. (100), (101), and (108), we then obtain

A ≙ ∥R̄re + i(R̄im + νoπg(λ))∥ cosβ(z),

FIG. 11. Same as Fig. 10, but with s̃1 ≙ 1.
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where νo = 1 if ζ ∈ R and νo = 0 if ζ ∈ Co. Using the propagation equation (107) for the reflection coefficient, we find the following explicit
expression:

b(ζ, z) ≙ Ω(z, 0, ζ) b(ζ, 0) − νoπg(λ)
z

∫
0

Ω(z, z′, ζ) e−iϕ(ζ,z′) sinβ(z′)dz′, (181)

where the primes denote the integration variable (not differentiation) as before, and where νo = 1 if ζ ∈ R, νo = 0 if ζ ∈ Co, and

Ω(z, z′, ζ) ≙ exp [(R̄im + νoπg(λ) − iR̄re)∫ z

z′
cosβ(s)ds]. (182)

Note that Eq. (181) on the real axis is formally the same as the one in the case of ZBG. If b(ζ, 0) (i.e., the reflection coefficient at z = 0) and
sin β(z) are both zero, then b(ζ, z) is identically zero (i.e., there is no radiation). We assume this is not the case.

Note that the reflection coefficient (181) derived from the inhomogeneous ODE contains a homogeneous and an inhomogeneous por-
tion, andΩ(z, z′, ζ) appears in both of them. As a result, the long-distance behavior of the reflection coefficient b(ζ, z) depends on the absolute
value of Ω(z, z′, ζ). The situation is further complicated by the fact that both β(z) and ϕ(ζ, z) are in principle arbitrary. For simplicity, and by
analogy with the case with ZBG, here we will study the simpler situation in which β(z) and ϕ(ζ, z) are constants with respect to z and in which
g(λ) is the Lorentzian function (151). In this case, the expression (181) simplifies to

b(ζ, z) ≙ [b(ζ, 0) − νoπg(λ)e−iϕ(ζ) tanβ
R̄im + νoπg(λ) − iR̄re

]e(R̄im+νoπg(λ)−iR̄re)z cos β +
νoπg(λ)e−iϕ(ζ) tanβ
R̄im + νoπg(λ) − iR̄re

, (183)

where again, νo = 1 if ζ ∈ R and νo = 0 if ζ ∈ Co, R̄re and R̄im given by Eq. (180) as before. In this situation, the growth/decay of b(ζ, z) depends
on the modulus of exp [(R̄im + νoπg(λ) − iR̄re) cosβ z], so the most important part by now is the unknown quantity R̄im. Since any complex

phase of the exponential produces inessential oscillations, the quantity R̄re is therefore not crucial for determining the long-distance behavior
of the reflection coefficient. By this discussion, we next turn to characterize the imaginary part of the matrix R− ,d given by Eqs. (152) and
(154), depending on the location of ζ. It is necessary to discuss separately two cases depending on whether qo > ϵ or qo < ϵ.
1. Case I: 0 ⩽ qo < ϵ

First, we discuss the case where the amplitude of the background field is small relative to the width of the spectral-line shape. In this case,
Θ(iϵ) = 2 arcsech(ϵ/qo) is pure imaginary. We can then rewrite R− ,d from Eqs. (152) and (154) as

R−,d(ζ, z) ≙ 2g(λ)[C(λ) − γ(ϵ2 − q2o)−1/2 arccos(qo/ϵ)]σ3 cosβ, ζ ∈ Σ, (184)

where

C(λ) ≙ { arccsch(−λ/qo) ζ ∈ R,
arcsech(−iλ/qo) ζ ∈ Co,

(185)

Co is the complex portion of the continuous spectrum and g(λ) is given in Eq. (151) as before. Note that the function C(λ) is always real on
the continuous spectrum because ζ ∈ R implies λ ∈ R and ζ ∈ Co implies λ ∈ i[−qo, qo]. In addition, γ is real for all ζ ∈ Σ. We then conclude
that the quantity R− ,d(ζ, z) is always real. In other words, R̄im ≙ 0 for all ζ ∈ Σ.
2. Case II: 0 < ϵ < qo

Next, we consider the case in which the width of the spectral-line shape is small compared to the amplitude of the background optical
field. In this case, Θ(iϵ) = 2 arcsech(ϵ/qo) is real. Similarly to the previous case, we rewrite the matrix from Eqs. (152) and (154) into the form
of Eq. (180). We obtain

R−,d(ζ, z) ≙ 2g(λ)[C(λ) − γ(q2o − ϵ2)−1/2arcsech(ϵ/qo)]σ3 cosβ, ζ ∈ Σ, (186)

where C(λ) is defined in Eq. (185). Following a similar discussion as in case I, we know that Eq. (186) is purely real, implying R̄im ≙ 0 for
all ζ ∈ Σ.
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3. Implications for stability

In summary, we have that R̄im ≙ 0 on the continuous spectrum, no matter what the values of ϵ and qo are. Therefore, the solution (183)
further reduces to

b(ζ, z) ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[b(ζ, 0) − πg(λ)e−iϕ(ζ) tanβ

πg(λ) − iR̄re
]e∥πg(λ)−iR̄re∥z cos β +

πg(λ)
πg(λ) − iR̄re

e−iϕ(ζ) tanβ, ζ ∈ R,
b(ζ, 0)e−iR̄rez cos β, ζ ∈ Co,

where R̄re can be computed from Eq. (184) or (186) and is omitted here due to its lack of importance. Obviously, the reflection coefficient
b(ζ, z) is always bounded on the portion ζ ∈ Co for z > 0, so we next turn to discuss the case ζ ∈ R.

It is easy to see that b(ζ, z) (and therefore the radiation) grows exponentially as z → ∞ if cos β > 0, whereas b(ζ, z) (and therefore the
radiation) decays exponentially as z →∞ if cos β < 0. Therefore, the stability of general solutions with NZBG is identical to the case of ZBG.
Specifically, radiation decays (implying that the background and the solitons are stable) when initially the atoms in the ground state dominate
(population inversion is negative); radiation grows (implying that the background and the solitons are unstable) when initially the atoms in the
excited state dominate (population inversion is positive).

In particular, for a purely diagonal initial state (i.e., sin β = 0) without any discrete eigenvalues, the solution of MBE with NZBG tends to
the background value when the medium initially has the lowest population inversion. That is, q(t, z) = q−(z) + o(1) as z →∞, if ρ− = −νσ3
and if no solitons are present.

VII. SOLITON SOLUTIONS WITH A SHIFTED LORENTZIAN

In this section, we present one-soliton solutions (141) obtained when the shape of spectral line is a shifted Lorentzian, namely,

g(λ) ≙ ϵ

π

1

ϵ2 + (λ − λo)2 , ϵ > 0, λo ∈ R, (187)

where λo is the center of the Lorentzian. In the sharp-line limit (ϵ→ 0), Eq. (187) becomes a shifted Dirac delta g(λ) = δ(λ − λo).
Note that changing the shape of spectral line only affects the z-dependence of solutions. Therefore, all the calculations for the pure soliton

solutions in Secs. V B and VI A remain valid. On the other hand, since the function (187) is not even, the calculations are more complex than
with the standard Lorentzian (151). As a result, here we present the calculations in more detail than in Sec. VI B. More importantly, we show
that the modified z-dependence results in drastically different dynamical behavior of the soliton solutions.

A. Asymptotic background

In the case of a standard Lorentzian, q−(z) is constant with respect to z (cf. Sec. VI B). This will not be true anymore in our case, however.
Recall that the relevant equations are (88)–(90). Moreover, recall that the choice of ρ− resulting in pure soliton solutions is (126). In other
words, on the first λ-sheet, D− = h− with h− = ±1 and λ ∈ R. For this value of D−, Eq. (89) becomes

w− ≙ h−

2 ∫
R

g(λ)/γdλ. (188)

We calculate this w− as follows [where we recall γ ≙ sign(λ)√λ2 + q2o for λ ∈ R]:
w− ≙ ϵh−

2π ∫
R

sign(λ)√
λ2 + q2o∥ϵ2 + (λ − λo)2∥dλ

≙ 2ϵλoh−
π

∞

∫
0

λ√
λ2 + q2o

1∥λ2 − (λo − iϵ)2∥∥λ2 − (λo + iϵ)2∥dλ.
Performing the change of variable u ≙√λ2 + q2o, we then obtain

w− ≙ ih−

4π
[ 1√

q2o + (λo + iϵ)2 ln
qo −√q2o + (λo + iϵ)2
qo +
√
q2o + (λo + iϵ)2 −

1√
q2o + (λo − iϵ)2 ln

qo −√q2o + (λo − iϵ)2
qo +
√
q2o + (λo − iϵ)2 ]. (189)

Importantly, we point out that Eq. (188) implies w− ∈ R for all values of qo, h1, ϵ, and λo, even though this is not trivially seen from Eq. (189).
If we consider the special case λo = 0 (an unshifted Lorentzian), the two terms in Eq. (189) cancel out exactly, and we recover the result
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w− = 0 of Sec. VI B. We next consider the limit of Eq. (189) as ϵ→ 0. After a careful calculation which takes into account the branch cut of the
complex logarithmic function, we obtain the limit of Eq. (189) as

w− →
h−

2
√
q2o + λ2o

sign(λo) ≙ h−

2γ(λo) , ϵ→ 0.

This result coincides with direct calculations of the sharp-line limit, where g(λ) = δ(λ − λo). Thus, the z-dependence of the background is
given by Eq. (91) with w− given by Eq. (189). Thus, with a shifted Lorentzian, the background value is not independent of the propagation
variable z.

B. The auxiliary matrix and propagation of the norming constant

We next discuss the z-dependence of the norming constant, which is governed by Eq. (110). As a result, we need to compute the auxiliary
matrix R first. In particular, we next calculate R− ,1,1 from Eq. (100). Note that in Eq. (100), the quantity R− ,1,1 is expressed as a principal value
integral, but later on is evaluated at ζ = ζn, i.e., at that discrete spectrum. In other words, eventually, the quantity R− ,1,1 is evaluated off the real
line. Thus, the principal value is not needed for soliton solutions. Equation (100) becomes

R−,1,1(λ) ≙ ∫
R

γ + λ′ − λ
γ′(λ′ − λ)D−g(λ′)dλ′ ≙

γh−ϵ

π ∫
R

1

γ′(λ′ − λ)∥ϵ2 + (λ′ − λo)2∥dλ′ + 2w−, (190)

where D− = h− = ±1. We have already calculated the quantity w−, so we only need to consider the integral in the first term. We name this
integral I1 and we can rewrite it as

I1 ≙∫
R

1

γ′(λ′ − λ)∥ϵ2 + (λ′ − λo)2∥dλ′

≙
∞

∫
0

2u√
u2 + q2o

ϵ2 + u2 + λ2o + 2λλo(u2 − λ2)∥u2 − (λo + iϵ)2∥∥u2 − (λo − iϵ)2∥du,
where we rename the integration variable λ′ to u for clarity. With a change of variable x ≙√u2 + q2o, the above integral becomes

I1 ≙ 2
∞

∫
qo

ϵ2 + x2 − q2o + λ2o + 2λλo(x2 − q2o − λ2)∥x2 − q2o − (λo + iϵ)2∥∥x2 − q2o − (λo − iϵ)2∥dx.
Decomposing this integral into partial fractions, using standard integration formulae, and combining all pieces, we then find

R−,1,1(λ) ≙ γh−ϵ

π
I1 + 2w−

≙ −h−g(λ; λo) ln qo −√λ2 + q2o

qo +
√
λ2 + q2o

− ih−

2π

q2o/ζ + λo + iϵ√
q2o + (λo + iϵ)2(λ − λo − iϵ) ln

qo −√q2o + (λo + iϵ)2
qo +
√
q2o + (λo + iϵ)2

+
ih−

2π

q2o/ζ + λo − iϵ√
q2o + (λo − iϵ)2(λ − λo + iϵ) ln

qo −√q2o + (λo − iϵ)2
qo +
√
q2o + (λo − iϵ)2 . (191)

Note that, in the limit λo → 0 (an unshifted Lorentzian), we have

R−,1,1(λ)→ −h−g(λ; 0) ln qo −√λ2 + q2o

qo +
√
λ2 + q2o

+
ih−

2π
√
q2o − ϵ2 [ −

q2o/ζ + iϵ

λ − iϵ +
q2o/ζ − iϵ
λ + iϵ

] ln qo −√q2o − ϵ2
qo +
√
q2o − ϵ2

≙ −h−g(λ; 0)[ ln qo −√λ2 + q2o

qo +
√
λ2 + q2o

− γ√
q2o − ϵ2 ln

qo −√q2o − ϵ2
qo +
√
q2o − ϵ2 ].
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This expression is equivalent to Eq. (152). We now have all the components needed to determine the z-dependence of the soliton solutions.
Recall that there are four types of one-soliton solutions depending on the location of the discrete eigenvalue (cf. Fig. 3 left). Next, we discuss
all of them and we show how they differ from the ones in the main text.

C. Soliton solutions of types 1–3

Recall that the norming constant is parameterized by Eq. (155), where ζ1 is the discrete eigenvalue and R− ,1,1(ζ) is given by Eq. (191). The
formulas for the first three types of soliton solutions all remain the same except for the z dependence. Explicitly, Eq. (136) for type I, Eq. (141)
for type II, and Eq. (160) for type III all remain valid except that one simply substitutes w− from Eq. (189), and ξ(z) and φ(z) from Eq. (155)
with R− ,1,1 from Eq. (191). The three types of solutions with a shifted Lorentzian are shown in Figs. 12–14, respectively.

Figure 12 shows type-1 soliton solutions obtained with a few different choices of λo. It is evident from Fig. 12 that, as the peak of detuning
function is shifted from the origin to infinity, the solution becomes oscillatory. As a result, this is not a simple traveling wave anymore but
becomes a breatherlike solution. Eventually, as λo→∞ the spatial period of the oscillation increases without bound. Moreover, it appears that,
as λo gets large, the soliton velocity tends to the speed of light. This is to be expected: as the atoms are detuned from the resonant frequency,
the nonlinear interactions between atoms and light become weaker, so the medium becomes essentially transparent to the light pulse, which
then becomes regular light traveling with speed c.

As shown in Fig. 13, type-2 solitons retain the main characteristics of the corresponding solutions with an unshifted Lorentzian, namely,
a localized, traveling breatherlike solution with an internal oscillatory structure. However, as the center of the Lorentzian approaches infinity,
the soliton velocity, i.e., the group velocity and the phase velocity both tend to the speed of light. Eventually, as λo →∞, this type of soliton
solution becomes a localized traveling wave.

On the other hand, as shown in Fig. 14, there is a dramatic change in the characteristics of the solution for type-3 solitons. Recall that, if
λo = 0 (i.e., for an unshifted Lorentzian), these solutions are periodic with respect to both variables t and z (cf. Sec. VI D). If λo ≠ 0, however,
type-3 soliton solutions are only periodic in t and are not periodic in z in general. This is because when λo ≠ 0 and ζ1 = eiα, the quantity
R− ,1,1(ζ1) is not purely real anymore. So both ξ(z) and φ(z) acquire a nontrivial dependence on z. Moreover, when λo ≠ 0, the solution decays
to the background as z →∞, i.e., the solution becomes localized in z. As a result, the character of this solution becomes similar to that of the
Akhmediev breathers of the NLS equation.

D. Type 4. Rational solutions

The general expression (173) for the rational solutions still applies to the current case. The difference from before is in the spatial
dependence of the three quantities q−(z), ξ1(z), and s1(z). As before, the background q−(z) is obtained from Eq. (90) with w− given by
Eq. (189). The quantities ξ1(z) and s1(z) are obtained from the Taylor expansions (169) and (170). To calculate these quantities explicitly, we

FIG. 12. Amplitudes |q(t, z)| of the type 1 solitons (136) with a shifted Lorentzian, a discrete eigenvalue ζ1 = 2i, and D− = h− = −1, qo = 1, ϵ = 2, ξ(0) = 0, and φ(0) = −π/2.
From left to right, from top to bottom, λo = 0, 1, 1.5, 3, 6, 20. Note the different scales in each plot, corresponding to the different spatial periods.

J. Math. Phys. 60, 073510 (2019); doi: 10.1063/1.5084720 60, 073510-35

Published under license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

FIG. 13. Similarly to Fig. 12, but with amplitudes |q(t, z)| of the type 2 solitons (141) with a shifted Lorentzian, and a discrete eigenvalue ζ1 ≙
√
3 + i. All other parameters

remain the same. Note that the spatial scale is different in each plot.

FIG. 14. Similarly to Fig. 12, but with amplitudes |q(t, z)| of type 3 solutions (160) with a shifted Lorentzian and a discrete eigenvalue ζ1 ≙ (1 + i)/
√
2. All other parameters

remain the same, except that in the second and third plots ξ(0) = 7, and in the fourth to the last plots ξ(0) = 5. Note that the spatial scale is different in each plot.

J. Math. Phys. 60, 073510 (2019); doi: 10.1063/1.5084720 60, 073510-36

Published under license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

first expand R− ,1,1(iqoη, z) similarly to Eq. (171) as

R−,1,1(iqoη) ≙ R(0)−,1,1 + R
(1)
−,1,1(η − 1) +O(η − 1)2, η→ 1,

where R
(0)
−,1,1 ≙ 2w− ∈ R and

R
(1)
−,1,1 ≙ 2ih−g(iqo) + qoh−

2π
[ 1

iqo − λo − iϵ
1√

q2o + (λo + iϵ)2 ln
qo −√q2o + (λo + iϵ)2
qo +
√
q2o + (λo + iϵ)2

− 1

iqo − λo + iϵ

1√
q2o + (λo − iϵ)2 ln

qo −√q2o + (λo − iϵ)2
qo +
√
q2o + (λo − iϵ)2 ]. (192)

Then, from Eq. (155), we can expand ξ and φ as

ξ(z) ≙ ξ(0)(z) + (η − 1)ξ(1)(z) +O(η − 1)2, φ(z) ≙ φ(0)(z) + (η − 1)φ(1)(z) +O(η − 1)2,
as η→ 1, with

ξ(0) ≙ Im(R(0)−,1,1)z + ξ
(0)
o ≙ ξ(0)o , φ(0) ≙ −Re(R(0)−,1,1)z + φ

(0)
o ≙ −2w−z + φ

(0)
o , (193)

ξ(1) ≙ Im(R(1)−,1,1)z + ξ
(1)
o , φ(1) ≙ −Re(R(1)−1,1,)z + φ

(1)
o , (194)

and where ξ
(j)
o and φ

(j)
o for j = 0, 1 are arbitrary real constants. Following a similar procedure from Sec. VI E, we can write down the rational

solution as

q(t, z) ≙ qoe2iw−z [2qot + ξ(1)(z)]2 + ∥φ(1)(z)∥2 + 4iφ(1)(z) − 3
[2qot + ξ(1)(z)]2 + ∥φ(1)(z)∥2 + 1

, (195)

wherew− is given by Eq. (189) and ξ
(1)(z) and φ(1)(z) are given by Eqs. (193) and (194), with R

(1)
−,1,1 given by Eq. (192). As before, a few examples

of the resulting solutions are shown in Fig. 15 for a few different choices of λo. Importantly, it should be clear from Eq. (195) and Fig. 15 that,

FIG. 15. Amplitudes |q(t, z)| of rational solutions (195) with a shifted Lorentzian, D− = −1, qo = 1, and ϵ = 2. From left to right, from top to bottom, λo = 0 with ξ
(1)
o ≙ φ(1)o ≙ 0;

λ = 1 with ξ
(1)
o ≙ 15 and φ

(1)
o ≙ 10; λ = 1.5 with ξ

(1)
o ≙ φ

(1)
o ≙ 12; λ = 3 with ξ

(1)
o ≙ φ

(1)
o ≙ 10; λ = 6 with ξ

(1)
o ≙ φ

(1)
o ≙ 10; and λ = 20 with ξ

(1)
o ≙ φ

(1)
o ≙ 16. One

should note the different variable ranges among all plots.
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when λo ≠ 0, type-4 soliton solutions are not periodic traveling waves, but rather a localized structure in both t and z and exhibits rogue-wave
characteristics. This is also evident from Fig. 14. In other words, rational solutions with λo ≠ 0 are similar to the Peregrine solutions of the
focusing NLS equation. Indeed, the very expression of the rational solution (195) is essentially identical to that of the Peregrine solution of the
focusing NLS equation.

VIII. FINAL REMARKS

In conclusion, we formulated the inverse scattering transform for theMaxwell-Bloch system of equations describing resonant interaction
between light and active optical media in the case when the light intensity does not vanish in the distant past and future. We characterized
the asymptotics of the density matrix. We then used the formalism to compute explicitly the soliton solutions of the system. We obtained
a representation for the soliton solutions in determinant form, and we wrote down explicitly the one-soliton solutions. Afterward, we also
derived periodic solutions and rational solutions. We then analyzed the properties of these solutions, we discussed the sharp-line and small-
amplitude limits, and we show that the two limits do not commute. Finally, we investigated the behavior of radiation, showing that the
background and solitons are stable (i.e., radiative part of the solution is decaying) when the initial population inversion is negative, which is
similar to the case with ZBG.

An important future step will be to generalize the IST theory of this work in order to study coupled Maxwell-Bloch systems (and, in
particular, the system describing the so-called “lambda” configuration) with NZBG, using the recent results of Ref. 91. The IST for such
systems in the case with ZBG was done in Refs. 52 and 88 and was further studied in Ref. 92. The study of the coupled MBEs with NZBGmay
be instrumental to develop a mathematical theory of the phenomenon of slow light.5 In this respect, we note that a few solutions, obtained
using direct methods were reported in Refs. 63 and 64, but a comprehensive description of the phenomenon is still missing.
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APPENDIX: ADDITIONAL PROOFS AND CALCULATIONS

1. Notation

Let δ(λ) be a suitable representation of the Dirac delta. If f (λ) is continuous at λ = 0,

∫ f (λ)δ(λ)dλ ≙ f (0). (A1)

On the other hand, if f (λ) has a jump discontinuity at λ = 0,

∫ f (λ)δ(λ)dλ ≙ 1

2
( f (0−) + f (0+)). (A2)

For any 2 × 2 matrixM, one has

σ∗Mσ∗ ≙ −(detM) (M−1)T , (A3)
where σ∗ is defined in Eq. (45).

For reference, note that

σ3Q± ≙ ( 0 q±

q∗± 0
), (σ3Q±)−1 ≙ ( 0 1/q∗±

1/q± 0
) ≙ 1

q2o
σ3Q±. (A4)

2. Symmetries

We consider the two symmetries separately.

1. ζ↦ ζ∗ (upper/lower half plane), implying (λ, γ)↦ (λ∗, γ∗) (same sheet). It can be shown that, if ϕ(t, z, ζ) is a solution of the scattering
problem (6), so is

ϕ̃(t, z, ζ) ≙ σ∗ ϕ∗(t, z, ζ∗),
where σ∗ is defined in Eq. (45). (That is because σ2∗ ≙ −I, σ∗σ3σ∗ = −σ3, and σ∗Q

∗σ∗ = Q† = −Q.) By the same token, so is ϕ̃C,
where C is any constant 2 × 2 matrix. Now restrict our attention to ζ ∈ Σ. Let ϕ ≡ ϕ±, and look at the asymptotic behavior of ϕ̃± as

t → ±∞: recall that ϕ(t, z, ζ) ∼ Y±(ζ) eiγ(ζ)tσ3 as t → ±∞. Note that γ∗(ζ∗) = γ(ζ) and σ∗Y
∗
±(ζ∗) ≙ σ∗(I − iσ3Q∗±/ζ) ≙ Y(ζ)σ∗. In

addition, a little algebra shows that σ∗e
iaσ3σ∗ ≙ −e−iaσ3 . Therefore, ϕ̃±(t, z, ζ) σ∗ ∼ Y±(ζ) eiγ(ζ)tσ3 as t → ±∞. But since the solution

of the scattering problem with given BCs is unique, we must have ϕ̃± σ∗ ≙ ϕ±. Hence ∀ζ ∈ Σ, we have
ϕ±(t, z, ζ) ≙ −σ∗ϕ∗±(t, z, ζ∗) σ∗. (A5)
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Recalling Eq. (A3), the desired results for the eigenfunctions are obtained by rewriting the symmetry (A5). Recalling the scattering
relation (38) and using symmetry (A5), we have, ∀ζ ∈ Σ,

S
∗(ζ∗, z) ≙ −σ∗S(ζ, z)σ∗. (A6)

Using Eq. (A3), one can compute the corresponding symmetries for the scattering matrix.
2. ζ ↦ −q2o/ζ (outside/inside Co), implying (λ, γ)↦ (λ, −γ) (opposite sheets). Since λ(−q2o/ζ) ≙ λ(ζ), it is easy to show that if ϕ(t, z, ζ)

is a solution of the scattering problem, so is

ϕ̃(t, z, ζ) ≙ ϕ(t, z,−q2o/ζ).
As before, this implies that wC is also a solution, for any matrix C independent of t. With ϕ = ϕ±, it is ϕ̃±(t, z, ζ)C∼ Y±(−q2o/ζ) e−iγ(ζ) tσ3C as t → ±∞ because γ(−q2o/ζ) ≙ −γ(ζ). Now note that Y±(−q2o/ζ) e−iγtσ3 σ3Q± ≙ −iζY±(ζ) eiγtσ3 [because
e−iaσ3Q ≙ Qeiaσ3 and (σ3Q)2 ≙ q2oI]. Thus, taking C = (i/ζ) σ3Q, we obtain the desired results for ϕ± in this case. For the scattering
matrix, from the relation (38) and by using symmetry (48) and Eq. (A4), we finally obtain symmetry (50).

1 + 2. We can also combine the results of the first two symmetries to get

ϕ∗±(t, z, ζ∗) ≙ (1/iζ) σ∗ ϕ±(t, z,−q2o/ζ) σ3Q±σ∗.
The corresponding symmetry for the columns follows as before.

3. Asymptotics of the eigenfunctions as ζ → ∞ and ζ → 0

Here, we will prove the asymptotic expansions (66)–(69).

We start deriving the asymptotic behavior (66) and (67). The derivation proceeds by induction. The result is trivially true for μ
(0)
d

and

μ
(0)
o . Moreover, using definition (28) and separating the diagonal and off-diagonal parts of the expansion (63), we have

μ
(n+1)
d

≙ ζ

2γ

t

∫
−∞

(ΔQ−(y, t)μ(n)o (y, t, ζ) − i

ζ
σ3Q−ΔQ−(y, t)μ(n)d

(y, t, ζ) )dy

+
iσ3Q−
2γ

t

∫
−∞

eiγ(ζ)(t−y)σ3[ΔQ−(y, t)μ(n)d
(y, t, ζ) − i

ζ
σ3Q−ΔQ−(y, t)μ(n)o (y, t, ζ)]eiγ(ζ)(y−t)σ3 dy, (A7)

μ
(n+1)
o ≙ iσ3Q−

2γ

t

∫
−∞

(ΔQ−(y, t)μ(n)o (y, t, ζ) − i

ζ
σ3Q−ΔQ−(y, t)μ(n)d

(y, t, ζ) )dy

+
ζ

2γ

t

∫
−∞

eiγ(ζ)(t−y)σ3[ξΔQ−(y, t)μ(n)d
(y, t, ζ) − i

ζ
σ3Q−ΔQ−(y, t)μ(n)o (y, t, ζ)]eiγ(ζ)(y−t)σ3 dy. (A8)

As ζ →∞, the four terms on the RHS of Eq. (A7) are, respectively, O(μ(n)o ), O(μ(n)d
/ζ), O(μ(n)

d
/ζ2), and O(μ(n)o /ζ3). The last two estimates

are obtained using integration by parts, taking advantage of the fact that γ(ζ) = ζ/2 + O(1/ζ) as ζ →∞ from Eq. (14). Similarly, as ζ →∞, the

four terms on the RHS of Eq. (A8) are, respectively, O(μ(n)o /ζ), O(μ(n)d
/ζ2), O(μ(n)

d
/ζ), and O(μ(n)o /ζ2) (where again the last two estimates

are obtained using integration by parts). ◽

Next, we describe the asymptotic behavior (68) and (69). Again, the result is derived by induction. The result is trivially true for μ
(0)
d

and

μ
(0)
o . Decomposing expansion (63) into its diagonal and off-diagonal parts yields Eqs. (A7) and (A8) as before. Finally, one shows that the

four terms on the RHS of Eqs. (A7) and (A8) are, respectively, for Eq. (A7), O(ζ2μ(n)o ), O(ζ μ(n)d
), O(ζ2μ(n)

d
), and O(ζ μ(n)o ); for Eq. (A8),

O(ζμ(n)o ), O(μ(n)d
), O(ζ3μ(n)

d
), and O(ζ μ(n)o ). Again, some estimates are obtained using integration by parts and γ(ζ) = O(1/ζ) as ζ → 0 from

Eq. (14). ◽

4. Calculation of R ±

We first establish the following result, which will be needed in the calculation,

Lemma A.1.

lim
t→±∞

∞

∫−
−∞

e±i(γ
′−γ)t

f (ζ, ζ′) dλ′

λ′ − λ ≙ {±i νπf (ζ, ζ), λ ∈ R,
0, λ ∈ i∥−qo, qo∥, (A9)

where ν = ±1 when λ on sheet I or II, respectively, and where we used the shorthand notation γ = γ(λ) and γ′ = γ(λ′).
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Proof. Note that for both λ′ and λ, we have two choices: sheets I and II. Here, we compute the integral in the way that λ′ and λ are always
on the same sheet. In this case, we can eliminate the mixed case: λ′ is on sheet I and λ is on sheet II or vice versa. We choose such a calculation
because later we will show that this version of IST naturally reduces to the ZBCs as qo → 0.

Denote the LHS of the definition (A9) by I±(ζ). Note that since γ(λ) takes on different values on each sheet of the Riemann surface, so
do I±. Performing the change of variable λ′ ↦ γ′ we have

I±(ζ) ≙ ν lim
t→±∞

∫−
L

e±i(γ
′−γ)t

f (ζ, ζ′)j(ζ, ζ′) dγ′

γ′ − γ , (A10)

where again ν = ±1 when both λ and λ′ are on sheet I or II, respectively, L = (−∞, −qo) ∪ (qo,∞) and

j(ζ, ζ′) ≙ γ′ − γ
λ′ − λ dλ′

dγ′
.

Further letting y = γ′ − γ in Eq. (A10), we have

I±(ζ) ≙ ν lim
t→±∞

∫−
L′

e±iy
′t
f (ζ, ζ′)j(ζ, ζ′)dy

y
, (A11)

where L′ = (−∞, −qo − γ) ∪ (qo − γ,∞). From here, we need to discuss two cases depending on whether 0 ∈ L′ or 0 ∉ L′.
● If λ ∈ R, i.e., γ ∈ (−∞, −qo] ∪ [qo,∞), then we know 0 ∈ L′ and we obtain

I±(ζ) ≙ ±iνπf (ζ, ζ)j(ζ, ζ)
from the formula limt→±∞ ∫−∞−∞ e±iytF(y)dy/y ≙ ±iπ F(0). Equation (A9) then follows by noting that limγ′→γ(λ

′ − λ)/(γ′ − γ)
= dλ/dγ, and therefore limγ′→γj(ζ, ζ

′) = 1.● If λ ∈ i[−qo, 0) ∪ i(0, qo], i.e., ζ ∈ Co and −qo < γ < qo, then 0 ∉ L′. By using the Riemann-Lebesgue lemma, we know I±(ζ) = 0. ◽

Moreover, note that if the term (γ′ − γ)t in the exponent of Eq. (A9) were replaced by γ′ + γ or γ′t, one can show that the integral is zero
using the Riemann-Lebesgue lemma.

We now proceed to compute R±. We rewrite Eq. (97) for convenience as

R± ≙ −2i lim
t→∞
∥ϕ−1± Vϕ± − ϕ−1± (ϕ±)z∥.

We will first evaluate the two terms on the RHS separately. Note first that, from Eq. (92), we get, as t → ±∞,

(ϕ±)z ≙ iw±∥σ3,ϕ±∥ + o(1),
wherew± was defined in Eq. (89), implying ϕ−1± (ϕ±)z ≙ (ϕ−1± (ϕ±)z)eff + o(1), where (ϕ−1± (ϕ±)z)eff denotes the leading order term in the limit
given by

(ϕ−1± (ϕ±)z)eff ≙ −iw±σ3 + iw± e
−iγσ3tY

−1
± σ3Y± e

iγσ3t .

Moreover, recalling definitions (28) and (30), we have

(ϕ−1± (ϕ±)z)eff ≙ −iw±σ3 + iζw±
2γ
(σ3 + i

ζ
e−iγσ3t∥σ3, σ3Q±∥ eiγσ3t + 1

ζ2
σ3Q

2
±).

Combining the first two terms on the RHS and recalling that Q2
± ≙ −q2oI, we then have

(ϕ−1± (ϕ±)z)eff ≙ −i q2ow±
γζ

σ3 − w±

2γ
e−iγσ3t∥σ3, σ3Q±∥ eiγσ3t , (A12)

where σ1 was defined in Eq. (5). Note that (ϕ−1± (ϕ±)z)eff → 0 as qo → 0, as it should be, since then the BCs for ϕ± are independent of z. On the
other hand, the second term on the RHS of Eq. (A12) does not have a finite limit as t → ±∞. One would therefore expect that this term will
be canceled by the first term in Eq. (97). We will see that this is indeed the case. The calculation of the first term of R± is considerably more
involved, however.
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To calculate the first term in R±, we first note that, as t → ±∞,

ϕ−1± Vϕ± ∼ e−iγσ3tY−1± VY± e
iγσ3t ≙ (ϕ−1± Vϕ±)eff,d + (ϕ−1± Vϕ±)eff,o, (A13)

where d and o denote the diagonal and off-diagonal parts of a matrix, as before, and

(ϕ−1± Vϕ±)eff,d ≙ ζ

2γ
(Vd − i

ζ
∥σ3Q±,Vo∥ + 1

ζ2
σ3Q±Vdσ3Q±), (A14)

(ϕ−1± Vϕ±)eff,o ≙ ζ

2γ
e−iγσ3t(Vo − i

ζ
∥σ3Q±,Vd∥ + 1

ζ2
σ3Q±Voσ3Q±) eiγσ3t . (A15)

Now note that, as t → ±∞,

V ∼ i

2

∞

∫−
−∞

Y
′
± e

iγ′σ3tρ′±e
−iγ′σ3t(Y′±)−1 g(λ′)dλ′

λ′ − λ ,

where as before we used primes to indicate functional dependence on λ′. We therefore have

Vd ∼ i

2 ∫− ζ′

2γ′
(ρ′±,d + i

ζ′
∥σ3Q±, eiγ′σ3tρ′±,oe−iγ′σ3t∥ + 1

ζ′2
σ3Q±ρ

′
±,dσ3Q±) g(λ′)dλ′λ′ − λ , (A16)

Vo ∼ i

2 ∫− ζ′

2γ′
(eiγ′σ3tρ′±,oe−iγ′σ3t + i

ζ′
∥σ3Q±, ρ′±,d∥ + 1

ζ′2
σ3Q±e

iγ′σ3tρ′±,oe
−iγ′σ3tσ3Q±) g(λ′)dλ′

λ′ − λ . (A17)

Substituting these expressions in Eq. (A13), and using the results we obtained earlier, it is straightforward to see that all the terms in Eqs. (A16)
and (A17) containing oscillating exponentials drop out of (ϕ−1± Vϕ±)eff,d in the limit t → ±∞, leaving

lim
t→±∞

(ϕ−1± Vϕ±)eff,d ≙ i

2 ∫− ζζ′

4γγ′
{ρ′±,d + 1

ζ′2
σ3Q±ρ

′
±,dσ3Q±

+
1

ζ2
σ3Q±(ρ′±,d + 1

ζ′2
σ3Q±ρ

′
±,dσ3Q±)σ3Q± + 1

ζζ′
∥σ3Q±, ∥σ3Q±, ρ′±,d∥∥} g(λ′)dλ′λ′ − λ .

We can simplify this expression, noting that ∥σ3Q, ∥σ3Q, ρd∥∥ ≙ 2(q2oρd − 2σ3Qρdσ3Q). After some algebra, we then obtain simply

lim
t→±∞

(ϕ−1± Vϕ±)eff,d ≙ iπ
2
Hλ[ g(λ′)

4γγ′ζζ′
{(ζζ′ + q

2
o)2ρ′±,d + (ζ − ζ′)2q2oσ1 ρ′±,dσ1}]. (A18)

Next, since ρ and ρ± are traceless, it is σ1ρ± ,dσ1 = −ρ± ,d. We can therefore combine the two terms in the curly brackets to obtain a simplified
version (using the identity ζ2 − q2o ≙ 2λζ). So, we obtain

R±,d(ζ, z) ≙ πHλ[λλ′ + q2o
γγ′

ρ′±,d g(λ′)] + 2q2o
γζ

w± σ3. (A19)

Recall that the definition of w± is given in Eq. (89). The last step is to simplify Eq. (A19). The key idea is to rewrite w± as a Hilbert transform,
namely,

w± ≙ π

2
Hλ[D′±g(λ′)λ′ − λ

γ′
].

By using the identity D±σ3 = ρ± ,d, we can combine the two Hilbert transforms in Eq. (A19) and note that 1/ζ ≙ (γ − λ)/q2o. Finally, we obtain
the desired result (98). Note that, as qo → 0, Eq. (A18) reduces to the result with ZBC. In addition, one should note that this formula holds for
all ζ ∈ C.

Our next task is to compute Eq. (A15). We first look at the terms coming from the t-independent parts of Vd and Vo, of which there are
four. They yield

(ϕ−1± Vϕ±)eff,o.1 ≙ i
2
e−iγσ3t ∫− ζζ′

4γγ′
{ i

ζ′
(∥σ3Q±, ρ′±,d∥ + 1

ζ2
σ3Q±∥σ3Q±, ρ′±,d∥σ3Q±)

− i

ζ
(∥σ3Q±, ρ′±,d∥ + 1

ζ′2
∥σ3Q±, σ3Q±ρ′±,dσ3Q±∥)} g(λ′)dλ′

λ′ − λ eiγσ3t .
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Now note that σ3Q∥σ3Q, ρd∥σ3Q ≙ ∥σ3Q, σ3Qρdσ3Q∥ ≙ −q2o∥σ3Q, ρd∥. The terms in the curly brackets are then simply (2i/ζζ′)(λ′ − λ)[ρ± ,d,
σ3Q±]. We thus see that (ϕ−1± Vϕ±)eff,o.1 cancels exactly the second term on the RHS of Eq. (A12), as expected.

Our last task is to compute the terms in Eq. (A15) coming from the t-dependent parts of Vd and Vo. There are five terms, which yield

(ϕ−1± Vϕ±)eff,o.2 ≙ i
2 ∫− ζζ′

4γγ′
e−iγσ3t{(1 + q4o

ζ2ζ′2
)ρ′±,oσ3

+ ( 1

ζ2
+

1

ζ′2
)σ3Q±ρ′±,oσ3σ3Q± + 1

ζζ′
∥σ3Q±, ∥σ3Q±, ρ′±,oσ3∥∥} eiγσ3t g(λ′)dλ′λ′ − λ ,

where we used that (σ3Q±)2 ≙ q2o, and where for brevity we denoted ρ′±,oσ3 ≙ eiγ
′σ3tρ′±,oe

−iγ′σ3t . Now note that ∥σ3Q±, ∥σ3Q, ρ′±,oσ3∥∥≙ 2(q2oρ′±,oσ3 − σ3Q±ρ′±,oσ3σ3Q±), and recall σ3Q eiθσ3 ≙ e−iθσ3σ3Q. Thus, we can rewrite (ϕ−1± Vϕ±)eff,o.2 as
(ϕ−1± Vϕ±)eff,o.2 ≙ i

2 ∫− ζζ′

4γγ′
{(1 + 2q2o

ζζ′
+

q4o
ζ2ζ′2

)ei(γ′−γ)σ3tρ′±,oe−i(γ′−γ)σ3t
+ ( 1

ζ2
− 2

ζζ′
+

1

ζ′2
)σ3Q±ei(γ′+γ)σ3tρ′±,oe−i(γ′+γ)σ3tσ3Q±} g(λ′)dλ′

λ′ − λ .

Recalling Lemma A.1, we see that this integral yields

lim
t→±∞

(ϕ−1± Vϕ±)eff,o.2 ≙
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

±π
2
g(λ) ρ±,o(λ, z)σ3, ζ ∈ (−∞,−qo∥ ∪ ∥qo,∞),

∓π
2
g(λ) ρ±,o(λ, z)σ3, ζ ∈ (−qo, qo),

0, ζ ∈ Co.

(A20)

Finally, inserting Eq. (A20) into Eq. (97), we obtain Eq. (99). Note that the expression for R± ,o is exactly the same as that for ZBC.

5. Propagation of reflection coefficients and norming constants

Here, we derive the propagation equations for the reflection coefficients and norming constants.
We start to derive the ODE (106). It is obviously

∂B

∂z
≙ (So)zS−1o B − B (Sd)z S−1d .

Decomposing Eq. (105) into its diagonal and off-diagonal parts, we then have

− 2i∂B
∂z
≙ R−,o + R−,dB − BR−,d − BR−,oB − SdR+,oS

−1
d + BSo R+,oS

−1
d . (A21)

We need to (i) express the RHS in terms of the limiting values as t→−∞ and (ii) linearize the resulting equations. To accomplish these tasks,
we need to look at the last three terms on the RHS.

Recall that ρ+ is expressed in terms of ρ− via relation (75). Decomposing Eq. (75) into its diagonal and off-diagonal parts (and recalling
that S−1 = S†), we have

ρ+,o ≙ S†dρ−,oSd + S
†
oρ−,oSo + S

†

dρ−,dSo + S
†
oρ−,dSd.

Finally, since S†S = SS† = I, it is

S
†

dSd + S
†
oSo ≙ SdS†d + SoS

†
o ≙ I, S

†

dSo + S
†
oSd ≙ SdS†o + SoS

†

d ≙ O.
Substituting all of these expressions into ODE (A21), and after some tedious but straightforward algebra, and using that R+,o is given by
Eq. (99), we finally get the desired ODE (106).

We now derive the propagation equation for the norming constants (110). Recalling definition (109) and taking the derivative (and
assuming the limit and the derivative commute), we have

∂Cn

∂z
≙ ∂bn

∂z

1

s′1,1(ζn, z) − Cn lim
ζ→ζn

1

s1,1(ζ, z) ∂s1,1(ζ, z)∂z
. (A22)

We compute each of the two derivatives on the RHS separately.
Recall that, for z ∈ Σ, the propagation of the scattering matrix is governed by ODE (105). Thanks to Eqs. (103) and (104), some elements

of ODE (105) can be extended into the UHP. In particular,
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∂s1,1

∂z
≙ i

2
(R−,1,1 − R+,1,1) s1,1. (A23)

Also recall from definition (95) that, ∀z ∈ Σ,
∂ϕ±
∂z
≙ − i

2
ϕ±R± + V ϕ±. (A24)

Again, thanks to Eqs. (103) and (104), some columns of Eq. (A24) can be extended to the UHP. Explicitly,

∂ϕ+,1
∂z
≙ − i

2
R+,1,1ϕ+,1 + V ϕ+,1,

∂ϕ−,2
∂z

≙ − i
2
R+,2,2ϕ−,2 + V ϕ−,2. (A25)

Now recall that at ζ = ζn it is ϕ+,1(t, z, ζn) = bnϕ− ,2(t, z, ζn). Thus,

[∂bn
∂z

+
i

2
(R+,1,1 − R−,2,2)∣ζ≙ζn bn]ϕ−,2 ≙ 0.

Evaluating the above system in the limit t → −∞, we see that the terms in square bracket must vanish, yielding

∂bn

∂z
≙ − i

2
(R+,1,1 − R−,2,2)∣ζ≙ζn bn. (A26)

Substituting Eqs. (A23) and (A26) into Eq. (A22), we then finally obtain the desired ODE (110).

6. Solution of the Riemann-Hilbert problem

As usual, in order to solve the RHP we need to take into account its normalization, namely, the asymptotic behavior of M± as ζ →∞.
Recalling the asymptotic behavior of the Jost eigenfunctions and scattering coefficients obtained in Sec. III C, it is easy to check that

M
± ≙ I +O(1/ζ), ζ →∞.

Moreover, from the asymptotic behavior of the Jost eigenfunctions and scattering data as ζ → 0, we see that

M
± ≙ (i/ζ)σ3Q− +O(1), ζ → 0.

Thus, as in the case of the defocusing NLS with NZBC, in addition to the behavior at ζ =∞ and the poles from the discrete spectrum one also
needs to subtract the pole at ζ = 0 in order to obtain a regular RHP. On the other hand, the asymptotic behavior of the off-diagonal scattering
coefficients implies that the jump matrix G(t, z, ζ) from Eq. (114) is O(1/ζ) as ζ → ±∞ and O(ζ) as ζ → 0 along the real axis.

To solve, we subtract out the asymptotic behavior and the pole contributions. Recall that discrete eigenvalues come in symmetric quartets,{ζn, ζ∗n ,−q2o/ζn,−q2o/ζ∗n }Nn≙1. More precisely, s2,2(ζn, z) ≙ s2,2(−q2o/ζ∗n , z) ≙ s1,1(ζ∗n , z) ≙ s1,1(−q2o/ζn, z) ≙ 0 for n = 1, . . .,N. We therefore rewrite
the jump condition (113) as

M
− − I − (i/ζ)σ3Q− − N∑

n≙1

(Resζ∗n M−
ζ − ζ∗n +

Res−q2o/ζnM
−

ζ + q2o/ζn ) −
N∑
n≙1

(ResζnM+

ζ − ζn +
Res−q2o/ζ∗n M

+

ζ + q2o/ζ∗n )
≙M+ − I − (i/ζ)σ3Q− − N∑

n≙1

(ResζnM+

ζ − ζn +
Res−q2o/ζ∗n M

+

ζ + q2o/ζ∗n ) − N∑
n≙1

(Resζ∗n M−
ζ − ζ∗n +

Res−q2o/ζnM
−

ζ + q2o/ζn )
−M+

G.

We relabeled all the discrete eigenvalues at the end of Sec. III B ζN+n ≙ −q2o/ζ∗n . Therefore, the above equation reduces to

M
− − I − (i/ζ)σ3Q− − 2N∑

n≙1

(Resζ∗n M−
ζ − ζ∗n +

ResζnM
+

ζ − ζn )
≙M+ − I − (i/ζ)σ3Q− − 2N∑

n≙1

(ResζnM+

ζ − ζn +
Resζ∗n M

−

ζ − ζ∗n ) −M+
G. (A27)

Now note that the LHS is analytic in Γ
− and is O(1/ζ) as ζ →∞ there, while the sum of the first four terms of the RHS is analytic in Γ

+ and is
O(1/ζ) as ζ →∞ there. We then introduce modified Cauchy projectors P± by

J. Math. Phys. 60, 073510 (2019); doi: 10.1063/1.5084720 60, 073510-43

Published under license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

P±∥ f ∥(ζ) ≙ 1

2πi ∫
Σ

f (ζ′)
ζ′ − (ζ ± i0) dζ′, (A28)

where ∫Σ denotes the integral along the oriented contour shown in Fig. 1, and the notation z ± i0 indicates that when z ∈ Σ, the limit is taken
from the left/right of it. That is, F(ζ ± i0) ≙ limϵ→0+ F(ζ ± iϵ). Recall Plemelj’s formulae: if f ± are analytic in the C± and are O(1/ζ) as ζ tends
to∞ there, it is

P+f+ ≙ f+, P−f− ≙ −f−, P+f− ≙P−f+ ≙ 0.
Applying P+ and P− to the jump condition (A27) we then obtain the solution (115) of the RHP.

7. Trace formulae and “theta” condition

Recall that the components of the scattering matrix s1,1 and s2,2 are analytic, respectively, in Γ
+ and Γ

− from Eq. (42). Also recall that the
discrete spectrum is composed of quartets, ζn, ζ

∗
n ,−q2o/ζn,−q2o/ζ∗n ∀n ≙ 1, . . . ,N. Then define the quantities

β+(ζ, z) ≙ s1,1(ζ, z) N∏
n≙1

(ζ − ζ∗n )(ζ + q2o/ζn)(ζ − ζn)(ζ + q2o/ζ∗n ) , β−(ζ) ≙ s2,2(ζ, z) N∏
n≙1

(ζ − ζn)(ζ + q2o/ζ∗n )(ζ − ζ∗n )(ζ + q2o/ζn) . (A29)

The functions β± are analytic, respectively, in Γ
±, like s1,1 and s2,2. However, unlike s1,1 and s2,2, they have no zeros. Moreover, β±(ζ, z)→ 1 as

ζ →∞ in the proper half planes. Finally, note that

β+(ζ, z)β−(ζ, z) ≙ s1,1(ζ, z)s2,2(ζ, z). (A30)

We can then take the logarithm of Eq. (A30) and apply the Cauchy projectors (see Subsection 6 of the Appendix), obtaining

logβ±(ζ, z) ≙ ∓ 1

2πi ∫
Σ

log∥1 + ∣b(ζ′, z)∣2∥
ζ − ζ′ dζ′,

where we used that det S = 1, implying 1/(s1,1s2,2) ≙ 1 − bb̃ ≙ 1 + ∣b∣2 ∀ζ ∈ Σ by the definition (39) and symmetries (55) of the reflection
coefficients. Now, using definition (A29) to replace β± with s1,1 and s2,2, we finally obtain the so-called “trace” formulae (123) and (124),
which express the analytic scattering coefficients in terms of the discrete eigenvalues and the reflection coefficient. For reflectionless solutions
s1,2(ζ, z) = 0, ∀ζ ∈ Σ, so the integrals in Eqs. (123) and (124) are identically zero.

Now note that
∞

∫
qo

log∥1 + ∣b(ζ′, z)∣2∥dζ′/ζ′ ≙ − 0

∫
−qo

log∥1 + ∣b(ζ′, z)∣2∥dζ′/ζ′
because ∣b(ζ′, z)∣ ≙ ∣b(−q2o/ζ′, z)∣ thanks to the symmetry (55). A similar relation holds between the integral from −∞ to − qo and that from 0
to qo and for those in the upper/lower semicircle of radius Co. However, due to the orientation of the continuous spectrum, these individual
integrals do not cancel with each other, but they add together instead. Recalling the asymptotics (71), we then obtain the so-called “theta”
condition (125).

8. Explicit evaluation of R ± ,d

In this appendix, we evaluate the integral (98) that defines R± ,d. Recall that the auxiliary matrix R± has the same value when the Hilbert
transform is computed on either λ′-sheet, so we will compute this matrix on sheet I, i.e., we choose ν = 1 and ρ−(λ, z) = h−σ3 from Eqs.
(77)–(80). We start by rewriting the integral (98) for convenience. Also recall from the main text, we know in inhomogeneous broadening the
auxiliary quantity w− = 0 in Eq. (98).

First, we consider the case where λ ∈ C/R. Recall that the Hilbert transform is given by Eq. (8). There is no singularity on the integration
contour, and the principal value is not needed. To compute the integral, it is convenient to write things in terms of the uniformization variable
ζ. Recall that λ ≙ (ζ − q2o/ζ)/2 and γ ≙ (ζ + q2o/ζ)/2 from Eq. (14). Letting s = ζ′, it is dλ′ ≙ 1

2
(1 + q2o/s2)ds and, taking the principal branch of

the square root, the integration contour is Lo = (−∞, −qo) ∪ (qo,∞). Moreover,

1

λ′ − λ ≙ 2s

Δ2(s) , 1

λ′2 + ϵ2
≙ 4s2

Δ4(s) ,
where

Δ2(s) ≙ s2 − (ζ − q2o/ζ) s − q2o, Δ4(s) ≙ (s2 − 2iϵs − q2o)(s2 + 2iϵs − q2o).
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Collecting all the pieces,

R−,d(ζ, z) ≙ σ3 2ϵh−
πγζ ∫

Lo

s∥(ζs + q2o)2 − (ζ − s)2q2o∥
Δ2(s)Δ4(s) ds. (A31)

The two roots of Δ2(s) are

s ≙ λ ± γ ≙ 1

2
∥ζ − q2o/ζ ± (ζ + q

2
o/ζ)∥ ≙ {ζ,−q2o/ζ},

while the four roots of Δ4(s) are

s ≙ iϵ ±√q2o − ϵ2, s ≙ −iϵ ±√q2o − ϵ2.
Let s1, . . ., s6 denote the zeros of Δ2(s) and Δ4(s), and let f (s) denote the numerator of the integrand in Eq. (A31). Expanding the integrand in
partial fractions we have

f (s)
Δ2(s)Δ4(s) ≙

6∑
j≙1

fj

s − sj , fj ≙ Res
s≙sj
[ f (s)
Δ2(s)Δ4(s)] ≙ f (sj)/

6∏
m≙1

′ (s − sm),
where the prime indicates that the termm = j is omitted from the product. Hence,

R−,d(ζ, z) ≙ σ3 2ϵh−
πγζ

6∑
j≙1

fj ∥log(s − sj)∥Lo .
After some tedious but straightforward algebra, we then get Eq. (152).

Second, we consider the case where λ ∈ R. In this case, there is a singularity in the integral and the principal value becomes necessary.
Then, we use the following relationship to compute the integral in Eq. (98):

∫−
R

γ

γ′
ρ′±,dg(λ′) dλ′

λ′ − λ ≙ ∫
L

γ

γ′
ρ′±,dg(λ′) dλ′

λ′ − λ + πi Res
λ′≙λ
[ γ
γ′
ρ′±,dg(λ′) 1

λ′ − λ], (A32)

where the contour L is L = (−∞, λ − r) ∪ {z = reiθ|θ ∈ [0, π]} ∪ (λ + r,∞), provided a is sufficiently small and there are no singularities on the
contour. We will also use λ′ on sheet I. The integral on the RHS of Eq. (A32) can be computed normally because λ is not on the contour. So
this integral is exactly the same as the one we computed in the first case, where λ ∈ C/R. Thus,

∫
L

γ

γ′
ρ′±,dg(λ′) dλ′

λ′ − λ ≙ σ3 ϵh−
π(ϵ2 + λ2) [Θ(λ) − γΘ(iϵ)/(q2o − ϵ2)1/2 ].

The second term on the RHS of Eq. (A32) can be computed easily,

πiResλ′≙λ[ γ
γ′
ρ′±,dg(λ′)] ≙ πh−ig(λ)σ3.

Therefore, by using the relationship (A32), we obtain Eq. (154) for λ ∈ R.
9. IST with branch cut outside

In this appendix, we will formulate an alternative version of IST to solve the same problem (3) and (4). The idea of the new version is to
use a different branch cut in the complex λ-plane. As shown later, this version of IST is equivalent to the one presented in the main text.

Recall that the eigenvalue γ(λ) was defined in the main text with γ(λ) ≙ sign(λ)√q2o + λ2 for λ ∈ R. Alternatively, one could define it as

γ(λ) ≙√q2o + λ2 for λ ∈ R (i.e., without the signum function), and then formulate the IST for MBEs in a similar way.
Background states. As before, we first investigate whether there exist exact “constant” solutions of the MBEs (3) and (4) with NZBC. So

suppose for now that q(t, z) ≙ qo(z)∀t ∈ R, with qo ≠ 0. Equation (9) is still the solution of Eq. (3), i.e., ρ(t, z, λ) ≙ eXot C e−Xot . The eigenvalues
of Xo are still ±iγ, where γ2 ≙ λ2 + q2o. Consistently with the above discussion, we now take

γ(λ) ≙ (λ2 + q
2
o)1/2, λ ∈ R.

With this choice, γ is always continuous along the continuous spectrum. The branching structure of γ(λ) will be discussed later. We can write
an eigenvector matrix of Xo as Eq. (11), i.e., Yo = I + (i/ζ)σ3Q0, where we use the short notation (12) again. Thus, we again have Eq. (13), i.e.,
ρ(t, z, λ) ≙ Yo e

iγtσ3ρo e
−iγtσ3Y−1o , where ρo ≙ Y−1o CYo. We again express all λ dependence in terms of ζ, noting that the inverse transformation

to Eq. (12) is the same as Eq. (14).
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Using similar arguments as in Sec. II B, we can again write ρ(t, z, ζ) = h ⋅ ρ, where ρ ≙ (ρ1, ρ2, ρ3)T , h ⋅ h = 1 and ρj(t, z, ζ) is still given by

Eq. (15), i.e., ρj(t, z, ζ) ≙ Yo e
iγtσ3σj e

−iγtσ3Y−1o , with ρ†

j ≙ ρj, tr ρj = 0, and det ρj = −1. Explicitly, we still have formulas (16)–(18).

Now, we insert this behavior into Eq. (4) as before. Direct calculations yield Eqs. (19)–(21) again. By a similar discussion as in the
main text, we know that only the commutator in Eq. (21) is t-independent. Moreover, we have ∫[σ3, ρ3]g(λ)dλ = −iwo[σ3, Q0], where
wo = ∫g(λ)/γdλ. Then, it is easy to compute the corresponding integral

w0 ≙ 2/[π(q2o − ϵ2)1/2] arccos(ϵ/qo),
with the choice of the detuning function g(λ) as in Eq. (151). Note that due to different definitions of γ, this integral differs from the one in
the main text. It follows that the only self-consistent solutions are

q(t, z) ≙ qo exp{2i h3 z/∥π(q2o − ϵ2)1/2∥ arccos(ϵ/qo)}, ρ(t, z, ζ) ≙ h3(λσ3 − iQ0)/γ.
These expressions differ from those in Eq. (24) for all z > 0.

Formulation of the IST. As before, we define the quantity

γ(λ) ≙ (q2o + λ2)1/2. (A33)

Now, however, we take the branch cut on i(−∞, −qo] ∪ i[qo,∞). This is done by taking λ + iqo ≙ r1eiθ1 and λ − iqo ≙ r2eiθ2 so that
γ(λ) ≙√r1r2e

iΘ, Θ ≙ θ1 + θ2
2

+mπ,

where m = 0, 1 indicates the first or the second sheet, respectively, and −π/2 ⩽ θ1 < 3π/2, −3π/2 < θ2 ⩽ π/2. It is easily verified that with this
choice the discontinuity of γ occurs on the segment i(−∞, −qo] ∪ [qo,∞). As before, the Riemann surface is obtained by gluing the two sheets
of the complex λ-plane along the cut by defining the uniformization variable ζ = λ + γ, which maps the first sheet into the right half plane and
the second one into the left half plane. The continuous spectrum is the same as before, i.e., λ ∈ R ∪ i∥−qo, qo∥. On the ζ-plane, the continuous
spectrum is also the same, ζ ∈ R ∪ Co. The left half of the first sheet and the right half of the second sheet are mapped into the interior of Co.
The branch cut becomes the imaginary axis on the ζ-plane. Moreover, the inverse transformations are the same, i.e., Eq. (14).

Differently from before, however, for λ ∈ R, we have γ ≙ √q2o + λ2, which has no discontinuity at λ = 0. If one now takes the limit
qo → 0, it is obvious that γ = ±|λ| for λ ∈ R (where the ± values apply on sheet I or II, respectively). Thus, this formulation of the IST does not
reduce to the one with ZBCs in the limit qo → 0 directly. In fact, we will show below that this formulation of the IST yields different solutions
of the MBEs.

Even though the new γ is different from the one in the main text, for λ ∈ C, γ(λ) is still given by definition (10). This means that the
calculations in the two formulations of the IST are very similar. In fact, the direct and inverse problems are identical in both versions. This is
because all of the IST was formulated using the uniformization variable ζ = λ + γ(λ), and the values of γ(λ) for ζ ∈ C are exactly the same in
the two formulations. Essentially, the definition of γ(λ) amounts to just switching the left half planes between sheets I and II.

In other words, we can use the same definition of the regions Γ± of the complex ζ-plane from definition (27). It is then easy to show that
the analyticity properties of the columns of the eigenfunctions μ± in the complex ζ-plane are still the same, namely, Eq. (36). The analyticity
properties of the scattering data and the symmetries for eigenfunctions and scattering data are also the same as before.

The only part of the IST that is affected by the change is the propagation because it involves integrals over λ ∈ R. It is easy to repeat the
calculation in Secs. III D and IV B and obtain the integrals for the boundary data w± and R± ,d. The resulting integrals are formally the same
as Eqs. (89) and (98). In other words, as long as the explicit expression of γ is not used, the formulas are the same.

Equivalence between two versions of IST. In this part, we will prove that the two versions of IST are equivalent, in the sense that one
could obtain the same solutions simultaneously by using different boundary conditions in two versions of IST.

To begin with, it is convenient to introduce a new notation in this proof. The superscript I or II denotes the variable or function in the
first or second version of IST, respectively. For example, γI denotes γ in the first IST (i.e., the IST presented in the main text) and ρII− denotes
the boundary condition ρ− in the second version (i.e., the IST discussed in this appendix).

First, one should note that the solutions of MBEs are unique. More precisely, the solutions are uniquely determined by the input pulse
Q(t, 0), together with the initial state ρ−(ζ, z) which is defined by Eq. (74). Thus, to prove the equivalence between the two versions of IST, it
is sufficient to find both sets of data in the two versions of IST, respectively, that produce the same solution.

Second, one should also note that, both quantities Q(t, 0) and ρ−(ζ, z) are defined with λ ∈ R. So we can focus on real values of
λ (or γ, ζ) instead of complex values. Moreover, because the fundamental difference between the two versions of IST comes from the
definition of γ with negative values of λ (or equivalently, how to take the branch cut), it is sufficient to only consider the case where
λ < 0.

Now, we are ready to begin our proof. For any given solution Q(t, z) and ρ(t, z, λ), it is obvious that the corresponding inputs in the two
versions of IST must be the same. [Recall that the input pulse isQ(t, 0).] It is then sufficient to consider the initial data ρI−(ζI, z) and ρII−(ζII, z).
Let q− = limt→−∞q(t, z) as before, and let the density matrix be

ρ(t, z, λ) ≙ h1(t, z, λ)σ1 + h2(t, z, λ)σ2 + h3(t, z, λ)σ3,
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where σj are Pauli matrices from Eq. (5) and hj ∈ R for j = 1, 2, 3. By using relation (74), one can compute the corresponding initial states ρI−
and ρII−. Moreover, since both ρI− and ρII− are Hermitian matrices, it is sufficient to compute the (1, 1) and (1, 2) components. Consequently,

the elements are (where γo ≙√q2o + λ2 for λ < 0)
D

I
−(ζI, z) ≙ −[2h3λ − ih1(q− − q∗−) + h2(q− + q

∗
−)]/(2γo), (A34)

D
II
−(ζII, z) ≙ [2h3λ − ih1(q− − q∗−) + h2(q− + q

∗
−)]/(2γo), (A35)

P
I
−(ζI, z) ≙ − iq−

γo
e2iγoth3 +

e2iγot

2γo(γo + λ)[(
q2−
q2o

2λ(γo + λ) + q
2
−)(h1 + ih2) + q

2
o(h1 − ih2)], (A36)

P
II
−(ζII, z) ≙ iq−

γo
e−2iγoth3 +

e−2iγot

2γo(γo + λ) ∥(2λ(γo + λ) + q
2
o)(h1 − ih2) + q

2
−(h1 + ih2)∥. (A37)

Thus, the two sets of initial states for the medium are found.
By comparing the above expressions (A34)–(A37), we obtain the following relationship between the two sets of data that produce the

same solution with λ < 0,
ρI−,d ≙ −ρII−,d, ρI−o ≙ q−

q∗−
(ρII−o)∗, (A38)

or the reversion

ρII−,d ≙ −ρI−,d, ρII−o ≙ q−

q∗−
(ρI−o)∗, (A39)

where subscript d or o denotes the diagonal or off-diagonal part of the matrix, respectively, as before. Recall that for positive values of λ, the
two sets of data are exactly the same. Therefore, if one solution is produced by either one of the versions of IST, the relationships (A38) and
(A39) ensure that the same solution can also be produced by using the other version. Thus, the two versions of IST have the same solutions
set and the equivalence is proved.
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88J. A. Byrne, I. R. Gabitov, and G. Kovačič, “Polarization switching of light interacting with a degenerate two-level optical medium,” Physica D 186, 69–92 (2003).
89N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation,” Theor. Math. Phys. 69(2), 1089–1093
(1986).
90D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc., Ser. B.: Appl. Math. 25(1), 16–43 (1983).
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