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We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili 1T
(KPII) equation by investigating the Wronskian form of its tau-function. We show
that, in addition to the previously known line soliton solutions of KPII, this class
also contains a large variety of multisoliton solutions, many of which exhibit non-
trivial spatial interaction patterns. We also show that, in general, such solutions
consist of unequal numbers of incoming and outgoing line solitons. From the
asymptotic analysis of the tau function, we explicitly characterize the incoming and
outgoing line solitons of this class of solutions. We illustrate these results by dis-
cussing several examples. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2181907]

I. INTRODUCTION

The Kadomtsev-Petviashvili (KP) equation

(9( du  Fu &u) &
ox

u
—4—+ 5 +6u— | +30*— =0, (1.1)

ot ox ox dy
where u=u(x,y,t) and o>=+1, is one of the prototypical (2+ 1)-dimensional integrable nonlinear
partial differential equations. The case o>=-1 is known as the KPI equation, and o>=1 as the
KPII equation. Originally derived'' as a model for small-amplitude, long-wavelength, weakly
two-dimensional (y-variation much slower than the x-variation) solitary waves in a weakly dis-
persive medium, the KP equation arises in disparate physical settings including water waves and
plasmas, astrophysics, cosmology, optics, magnetics, anisotropic two-dimensional lattices, and
Bose-Einstein condensation. The remarkably rich mathematical structure underlying the KP equa-
tion, its integrability and large classes of exact solutions have been studied extensively for the past
30 years, and are documented in several monographs.l’3 8151821

In this paper we study a large class of solitary wave solutions of the KPII equation. It is well
known (e.g., see Refs. 5 and 15) that solutions of the KPII equation can be expressed as

u(x,y,t) = 2% In m(x,y,1), (1.2)
ox

where the tau function 7(x,y,) is given in terms of the Wronskian determinant’"’

“Electronic mail: biondini @buffalo.edu
YElectronic mail: chuck@math.uccs.edu

0022-2488/2006/47(3)/033514/26/$23.00 47, 033514-1 © 2006 American Institute of Physics


http://dx.doi.org/10.1063/1.2181907
http://dx.doi.org/10.1063/1.2181907

033514-2 G. Biondini and S. Chakravarty J. Math. Phys. 47, 033514 (2006)

S fr o fn
) = Wil ) =def| T Ty (1.3)
f<lN—l) f(2 - ... f(NN—l)
with f9=¢f/ox’, and where the functions fi, ...,fy are a set of linearly independent solutions of
the linear system
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Equations (1.2) and (1.3) can also be obtained as the N-fold Darboux transformation for KPII
(Ref. 15) starting from a seed solution u=0. In fact, the functions f,,...,fy in Egs. (1.3) are
precisely N independent solutions of the KPII Lax pair: d,f— &§f+uf=0 and d,f— o“’_zf+6u(&xu) f
+3(z9;1¢9yu) =0, with u=0. A one-soliton solution of the KPII equation is obtained by choosing
N=1 and f(x,y,f)=e%+e%, where

0,,(xX,y,8) = ko + Koy + kot + 6, (1.5)

with k,,, 6,0 € R, m=1,2 and with k, # k, for nontrivial solutions. Without loss of generality, one
can order the parameters as k; <k,. The above choice yields the following traveling-wave solu-
tion:

u(x,y,1) = 3(ky = ky)? sech® 3(6, - 6;) = D(k - x + wi), (1.6)

where x=(x,y). The wave-vector k=([,,/,) and the frequency w are given by

k= (k| —kpki —k3), w=k -k, (1.7)

and they satisfy the nonlinear dispersion relation

—dol +1*+37=0. (1.8)
X X y

The solution in Eq. (1.6) is localized along points satisfying 8, =6,, which defines a line in the xy
plane, for fixed ¢. Such solitary wave solutions of the KPII equation are thus called line solitons.
They are stable with respect to transverse perturbations unlike the KPI [Eq. (1.1) with o?=-1]
line-soliton solutions which are not stable with respect to small transverse perturbations. Equation
(1.6) also implies that, apart from the constant 6, o— 6, corresponding to an overall translation of
the solution, a line soliton of KPII is characterized by either the phase parameters k;,k,, or the
physical parameters, namely, the soliton amplitude a and the soliton direction c, defined, respec-
tively, as

Cl:kz—kl, C=k1+k2. (19)

Note that c=tan «, where « is the angle, measured counterclockwise, between the line soliton and
the positive y axis. Hence, the soliton direction ¢ can also be viewed as the “velocity” of the
soliton in the xy plane, c=-dx/dy=1,/1,. For any given choice of amplitude and direction of the
soliton, one obtains the phase parameters k; , uniquely as k1=%(c—a) and k2=%(c+a).

When ¢=0 (equivalently, k;=—k,), the solution in Eq. (1.6) becomes y-independent and re-
duces to the one-soliton solution of the Korteweg-de Vries (KdV) equation. Similar to KdV, it is
also possible to obtain multisoliton solutions of the KPII equation. Each of the multisoliton
solutions decay exponentially in the xy plane, except along a number of rays or line solitons as
y— =+, These line solitons are sorted according to their directions, with increasing values of ¢
from left to right as y— —o0 and increasing values of ¢ from right to left as y—oc. However, the
multisoliton solution space of the KPII equation turns out to be much richer than that of the (1
+1)-dimensional KdV equation due to the dependence of the KPII solutions on the additional
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spatial variable y. It is possible to construct a general family of multisoliton solutions via the
Wronskian of Eq. (1.3) by choosing M phases 0,, ..., 0, defined as in Eq. (1.5) with distinct real
phase parameters k; <k, <---<k,, and then defining the functions f/,...,fy in Eq. (1.3) by

M
Fale,y,t) = 2 ay e, n=1,2,...,N. (1.10)

m=1

The constant coefficients a,,,, define the N X M coefficient matrix A= (a,,,), which is required to
be of full rank [i.e., rank(A)=N] and all of whose nonzero N X N minors must be sign definite. The
full rank condition is necessary and sufficient for the functions f, in Eq. (1.10) to be linearly
independent. The sign definiteness of the nonzero minors is sufficient to ensure that the tau
function 7(x,y,?) has no zeros in the xy plane for all 7, so that the KPII solution u(x,y,?) resulting
from Eq. (1.2) is nonsingular.

One of the main results of this work (cf. Theorem 3.6) is to show that, when the coefficient
matrix A satisfies certain conditions (cf. Definition 2.2), Eq. (1.10) leads to a multisoliton con-
figuration with N_ asymptotic line solitons as y——% and N, asymptotic line solitons as y — e,
where N_.=M-N and N,=N. Furthermore, each of the asymptotic line solitons has the form of a
plane wave similar to the one-soliton solution in Eq. (1.6). We refer to these multisoliton configu-
rations the (N_,N,)-soliton solutions of KPII, and call the asymptotic line solitons as y — — and
as y— the incoming and outgoing line solitons, respectively. The amplitudes, directions and
even the number of incoming solitons are in general different from those of the outgoing ones,
depending on the values of M, N, the phase parameters k,, ... ,k,; and the coefficient matrix A. We
note that a special family of KPII (N_,N,)-soliton solutions which also satisfy the finite Toda
lattice hierarchy, was found earlier in Ref. 2. In this paper, we generalize the results of Ref. 2 to
the entire class of (N_,N,)-soliton solutions of KPII generated by arbitrary coefficient matrices A.
These solutions exhibit a variety of spatial interaction patterns which include the formation of
intermediate line solitons and web structures in the xy plane.z‘lz‘l(”23 In contrast, the line solitons
for the previously known5’15‘240rdinary soliton solutions of KPII (cf. Sec. IV) and the KdV soli-
tons experience only a phase shift after collision. The existence of these nontrivial spatial features
was found to be related to the presence of resonant soliton interactions in some earlier
studies.*"1** Several examples of these (N_,N,)-soliton solutions of KPII are discussed
throughout this work (e.g., see Figs. 1-4). If M=2N, it follows from Theorem 3.6 that N_=N,
=N, i.e., the numbers incoming and outgoing asymptotic line solitons are the same. We call the
resulting solutions the N-soliton solutions of KPIl. Among these, there is an important subclass
called the elastic N-soliton solutions, for which the amplitudes and directions of the out-going line
solitons coincide with those of the incoming line solitons. Elastic N-soliton solutions possess a
number of interesting features, some of which have been studied in Ref. 12. A detailed study of the
specific properties of the elastic N-solutions will be reported in a future presentation.

We note that multisoliton solutions exhibiting nontrivial spatial structures and interaction
patterns were also recently found in other (2+ 1)-dimensional integrable equations. For example,
solutions with soliton resonance and web structure were presented in Refs. 9 and 10 for a coupled
KP system, and similar solutions were also found in Ref. 14 in discrete soliton systems such as the
two-dimensional Toda lattice, together with its fully discrete and ultradiscrete analogues. From
these works, the existence of these solutions appears to be a rather common feature of
(2+1)-dimensional integrable systems. Thus, we expect that the scope of the results described in
this paper will not be limited to the KP equation alone, but will also be applicable to a variety of
other (2+1)-dimensional integrable systems.

Il. THE TAU FUNCTION AND THE ASYMPTOTIC LINE SOLITONS

In this section we investigate the properties of the tau function given by Eq. (1.3) when the N
functions f|, ...,fy are chosen according to Eq. (1.10) as linear combinations of M exponentials
e?, ..., e%. We should emphasize that Eq. (1.10) represents the most general form for the func-
tions involving linear combinations of exponential phases. Since the elements of the N X M coef-
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ficient matrix A=(a,,) are the linear combination coefficients of the functions f, ..., fy, one can
naturally identify each f,, with one of the rows of A and each phase 6,, with one of the columns of
A, and vice versa. Next, we examine the asymptotic behavior of the tau function in the xy plane as
y— =, It is clear that, with the above choice of functions, the tau function is a linear combination
of exponentials. Consequently, the leading order behavior of the tau function as y— + in a given
asymptotic sector of the xy plane is governed by those exponential terms which are dominant in
that sector. A systematic analysis of the dominant exponential phases allows us to characterize the
incoming and outgoing line solitons of (N_,N,)-soliton solutions of KPIIL.

A. Basic properties of the tau function

We present here some general properties of the tau function. Without loss of generality,
throughout this work we choose the phase parameters k,, to be distinct and well ordered as k;
<k, <o <ky,.

Lemma 2.1: Suppose 7y ,y=Wr(fy,....fy) as in Eq. (1.3) with the functions fi, ..., fy given by
Eq. (1.10). Then

Tyu(x,y,1) = det(AOKT), (2.1)
where A=(a, ) is the NX M coefficient matrix, O=diag(e?, ... ,e%), and the NX M matrix K is
given by

1 1 1
eol ol |

k]1v_1 klz‘/-l kl/\\ff_l

where the superscript T denotes matrix transpose. Moreover, Ty ), can be expressed as

TN,M(x’y’t) = E V(ml’ s ’mN)A(m]’ cee ’mN)eXp[eml,..‘,mN]’ (22)
Ism<my<---<my<M
where On,....my denotes the phase combination
Ony....my(X:Y51) = O, (6,9,0) + =+ + 6, (x,7,1), (2.3)
A(my,...,my) denotes the NXN minor of A obtained by selecting columns my,...,my, and
V(m,,...,my) denotes the Van der Monde determinant
Vimy, ....my)= |1 ki, =, )- (2.4)

Iss;<sp<N

Proof: Equation (2.1) follows by direct computation of the Wronskian determinant (1.3). Next,
to prove Eq. (2.2) apply the Binet-Cauchy theorem to expand the determinant in Eq. (2.1) and note
that the N X N minor of K obtained by selecting columns 1<m;<---<my=<M is given by the
Van der Monde determinant V(m,, ... ,my). O

From Lemma 2.1 we have the following basic properties of the tau function:

(i) The spatiotemporal dependence of the tau function in Eq. (2.2) is confined to a sum of
exponential phase combinations — which according to Eq. (2.3) are linear in x,y,1.
Moreover, all the Van der Monde determinants V(m,,...,my) are positive, as the phase
parameters k|, ...,k are well ordered. A sufficient condition for the tau function in Eq.
(2.2) to generate a nonsingular solution of KPII is that it is sign-definite for all (x,y,r)
€ R3. In turn, a sufficient condition for the sign-definiteness of the tau-function is that the
minors of the coefficient matrix A are either all non-negative or all nonpositive. However,
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it is not clear at present whether these conditions are also necessary. If the tau function in
Eq. (2.2) is taken as a sum of exponential phase combinations with non-negative coeffi-
cients, the solution u(x,y,f) in Eq. (1.2) can be expressed as a ratio of two sums, each
containing the same set of exponential terms, and with non-negative coefficients. Conse-
quently, the resulting solution of KPII is bounded and positive definite for all (x,y,?)

eR3.
(i)  Each exponential term in the tau function of Eq. (2.2) contains combinations of N distinct
phases 0’"1’ ,ﬁmN identified by integers my,...,my chosen from {1,...,M}. Thus, the

maximum number of terms in the tau function is given by the binomial coefficient (%)
However, a given phase combination On,....my, is actually present in the tau function if and
only if the corresponding minor A(m,, ...,my) is nonzero.

(iii) If M <N the functions f|,...,fy are linearly dependent; in this case there are no terms in
the summation in Eq. (2.2), and therefore the tau function 7y y,(x,y,?) is identically zero.
Also, if M=N, there is only one term in the summation corresponding to the determinant of
A; then 7y ,,(x,y,r) depends linearly on x and therefore it generates the trivial solution
u(x,y,t)=0. Finally, if rank(A) <N, all N X N minors of A vanish identically, leading once
again to TN,M(x,y,t):O. Therefore, for nontrivial solutions one needs M >N and rank(A)
=N.

(iv)  The transformation A—A’=GA with G € GL(N,R) (corresponding to elementary row op-
erations on A) amounts to an overall rescaling 7(x,y,t)— 7' (x,y,t)=det(G) r(x,y, ) of the
tau function (2.1). Such rescaling leaves the solution u(x,y,?) in Eq. (1.2) invariant. This
reflects the fact that N independent linear combinations of the functions fi,...,fy in Eq.
(1.10) generate equivalent tau functions. This GL(N,R) gauge freedom can be exploited to
choose the coefficient matrix A in Eq. (2.1) to be in reduced row-echelon form (RREF).
The GL(N,R) invariance means that the tau function (2.1) represents a point in the real
Grassmannian Gr(N, M)."

(v)  Suppose that one of the functions in Eq. (1.10) contains only one exponential term, and is
given by f,=a, % with a,,,=0 Vm#q. Then, the minors A(m;,...,my)=0 whenever
qge&{m,...,my}. As a result, the tau function in Eq. (2.2) can be expressed as
Ty (X, Y, 1) =e%7 (x,y,t), and 7' (x,y,t) is a sum of exponential phase combinations, where
each combination consists of N—1 distinct phases chosen from all M phases except 6,.
From Eq. (1.2) it is evident that 7y ,(x,y,#) and 7'(x,y,r) generate the same solution of
KPII. Moreover, the function 7/(x,y,r) is effectively equivalent to a tau function
Tn_1.m-1(x,y,1) with a coefficient matrix obtained by deleting the pth row and gth column
of A. Hence in this case the tau function 7y ,,(x,y,?) is reducible to another tau function
Tn-1.m-1(x,y,7) obtained from a Wronskian of N—1 functions with M—1 distinct phases.

In accordance with the above remarks, throughout this work we consider the coefficient
matrix A to be in RREF. Also, to avoid trivial and singular cases, from now on we assume that
M >N and rank(A)=N, and that all nonzero N X N minors of A are positive. Finally, we assume
that A satisfies the following irreducibility conditions.

Definition 2.2 (Irreducibility): A matrix A of rank N is said to be irreducible if, in RREF:

(1) Each column of A contains at least one nonzero element.
(i)  Each row of A contains at least one nonzero element in addition to the pivot.

Condition (i) in Definition 2.2 requires that each exponential phase appear in at least one of the
functions fy, ..., fy. If a particular phase is absent, then the corresponding tau function 7y, can be
reexpressed in terms of a reduced tau function 7y, ;. Condition (ii) requires that each function
contains at least two exponential phases in order to avoid reducible situations like those in part (v)
of the above remarks. Note also that if an N X M matrix A is irreducible, then M > N.
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B. Dominant phase combinations and index pairs

We now study the asymptotic behavior of the tau function in the xy-plane for large values of
|y| and finite values of z. Let ® denote the set of all phase combinations 0,,11,“4,,,,N such that
A(my,...,my)#0, that is, the set of phase combinations that are actually present in the tau
function (x,y,7).

Definition 2.3 (Dominant phase): A given phase combination 0ml,_'.,mNe O is said to be

dominant for the tau function 7(x,y,t) of Eq. (2.2) in a region ReR® if Bm{,_”,m[rv(x,y,t)

S Op,....my (X, ¥, 1) for all On...m! € O and for all (x,y,t) € R. The region R is called the dominant
reglon of bty
The phase combinations 0,,, (x v,t) are linear functions of x, y, and ¢. So, each of the

inequalities in Definition 2.3 deﬁnes a convex subset of R®. The dominant region R associated
with each phase combination is also convex because it is defined by the intersection of finitely
many convex subsets. Furthermore, since the phase combinations are defined globally on R?, each
point (x,y,#) € R? belongs to some dominant region R. As a result, we obtain a partition of the
entire R? into a finite number of convex dominant regions, intersecting only at points on the
boundaries of each region. It is important to note that such boundaries always exist whenever there
is more than one phase combination in the tau function, because then there are more than one
dominant region in R3. The significant of the dominant regions lies in the following:

Lemma 2.4: The solution u(x,y,t) of the KPII equation generated by the tau function (2.2) is
exponentially small at all points in the interior of any dominant region. Thus, the solution is
localized only at the boundaries of the dominant regions, where a balance exists between two or
more dominant phase combinations in the tau function of Eq. (2.2).

Proof: Let R be the dominant region of 6, g which is therefore the only dominant phase
in the interior of R. Then from Eq. (2.2), 7y, M(x y £) ~ O(em....my) in the interior of R. As a result,
In 7 5(x,y,1) locally becomes a linear function of x apart frorn exponentially small terms. Hence,
it follows from Eq. (1.2) that the solution u(x,y,r) of KPII is exponentially small at all such
interior points of R. U

The boundary between any two adjacent dominant regions is the set of points across which a
transition from one dominant phase combination 6, oy 1O another dominant phase combination
0,,,{,.“,,"1/\] takes place. Such boundary is therefore identified by the equation Hml,,_.,mN: 0m{~<~’m1/v’
which defines a line in the xy plane for fixed values of 7. The simplest instance of a transition
between dominant phase combinations arises for the one-soliton solution (1.6), which is localized
along the line 6;=#6, defining the boundary of the two regions of the xy plane where 6, and 6,
dominate. In the one-soliton case, these two regions are simply half-planes. But in the general case
the dominant regions are more complicated, although the solution u(x,y,?) is still localized along
the boundaries of these regions, corresponding to similar phase transitions. For example, Fig. 1(a)
illustrates a (2,1)-soliton known as a Miles resonance'” (also called a Y junction), generated by the
tau function 71,226‘9' +e%+¢%_ In this case, the xy plane is partitioned into three dominant regions
corresponding to each of the dominant phases 6;, 6,, and 6;. Once again, the solution u(x,y,?) is
exponentially small in the interior of each dominant regions, and is localized along the phase
transition boundaries: here, 8,=6,, 6,=65, and 6,=6,. It should also be noted that some of these
regions have infinite extension in the xy plane, while others are bounded, as in the case of resonant
soliton solutions, described in Sec. IV and Ref. 2. Each phase transition which occurs asymptoti-
cally as y— o defines an asymptotic line soliton, which is infinitely extended in the xy plane.

When studying the asymptotics of the tau function for large |y| it is useful to consider the limit
y— =% along the straight lines

Lox+cy=¢, (2.5)

parametrized by the direction c. Note that ¢ increases counterclockwise, namely from the positive
x axis to the negative x axis for y>0 and from the negative x axis to the positive x axis for y



033514-7 Line solitons of the KP Il equation J. Math. Phys. 47, 033514 (2006)

100f

(b)

(@)

50

@) 0

-50 ,

(23] 10
-100 50 0 50 100 -100 -50 0 50 100

FIG. 1. Dominant phase combinations in the different regions of the xy plane (labeled by the indices in parentheses) and
the asymptotic line solitons (labeled by the indices in square braces) for two different line soliton solutions: (a) a
fundamental Miles resonance (Y junction) produced by the tau function with N=1, M=3 and (kl,kz,k3):(—1,0,%) at ¢
=0; (b) an ordinary two-soliton solution, produced by the coefficient matrix in Example 2.7 with (kl,...,k4)=(—%,
—%,0,1) at 1=0 (see text for details). Here and in all of the following figures, the horizontal and vertical axes are,
respectively, x and y, and the graphs show contour lines of In u(x,y,?) at a fixed value of r.

<0. From Egs. (1.5) and (2.5), each exponential phases along L, is ﬁm:km(km—c)y+km§+k31t
+6,,0- The difference between two such phases along L. then becomes

O = Opr = (kg = k) iy + Ky =€)y + (i = K VE+ (k2= K N+ By = B gs (2.62)

and the difference between any two phase combinations along L. is given by

0m1,4.., - ' (2 (kmj m (k +k r= C))y + 5(§ t) (Zéb)

where 8(&,1)= E 1[(k —k,, )§+(k

transition line L, ,: 0,,= 0 glven by Eq (2.5) w1th cmm,—k +k,,, will play an important role
below.

It is also convenient at this point to introduce the following notations which will be employed
throughout this paper. We denote by A[m] e R the mth column of a matrix A, and we denote by
A[m,,...,m,] the NXr submatrix obtained by selecting the r columns A[m,], ... ,A[m,]. We also
label the N pivot columns of an irreducible, NX M matrix A by Ale,],...,Aley], with 1=e¢,
<e,<--<ey<M, and we label the M—N nonpivot columns by Alg;],...,Algy_n], where 1
<g1<g,<---<gy_ny=M.Note that A has N pivot columns because it is rank N; also, e;=1 since
A is in RREF, and ey <M since it is irreducible. We now establish a result that will be useful in
order to characterize the asymptotics of the tau function.

Theorem 2.5: (Single-phase transition) Asymptotically as y — =%, and for generic values of
the phase parameters ky, ... ,ky;, the dominant phase combinations in the tau function (2.2) exhibit
the following behaviors in the xy plane.

k )t+ 0m 0 Hm/ ol In particular, the single-phase-

’11

(1) For finite values of t, the set of dominant phase combinations remains invariant in time.
(i)  The dominant phase combinations in any two adjacent dominant regions contain N—1
common phases.

We discuss below several consequences of Theorem 2.5 which is proved in the Appendix.
Consider the single-phase transition as y — +° in which a phase 6; from the dominant phase
combination in one region is replaced by another phase 6; to produce the dominant phase com-
bination in the adjacent region. We refer to this transition as an i —j transition, which takes place
along the line L;;: 6= 6, whose direction in the xy plane is given by ¢;;=k;+k;. As y— 0, it is clear
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from Eq. (2.6a) that, if k;<<k;, the transition i — j takes place from the left of the line L;; to its
right, while if k;>k; the transition i — j takes place from the right of the line L, to its left. Thus,
as y— o, each dominant phase region R is bounded on the left by the transition line L; ; given by
the minimum value of c;; that corresponds to an allowed transition and, on the right by the
transition line L;; given by the maximum value of c; ; that corresponds to an allowed transition.
Here, an allowed transition from one dominant phase combination to another means that the
minors associated with those phase combinations in the tau function of Eq. (2.2), are both nonzero.
In turn, these nonvanishing minors determine the values of ¢;; corresponding to the allowed
single-phase transitions. A similar statement can be made for transitions occurring as y ——. So,
each dominant phase region R as y— +% has boundaries defined by a counterclockwise and a
clockwise single-phase transitions which can be determined in the following way.

Corollary 2.6: Suppose that 0’"1’---"”1\/ is the dominant phase combination on a region R

asymptotically as y— +. Let J be the complement of the set of indices {m,,m,,...,my} in
{1.2,....,M}. For each jelJ, define I;C{my,my,....my} as the set of all indices m,
e{m,,m,,...,my} such that the minor A(m,,...,m,_;,j,M,,1,...,my)#0. Then, the following
hold.

(1) As y— o, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

cy= min [¢;;] with k;>k;, c_= max [¢;;] with k; <k;. (2.7a)
ielyjel ielyjel
(i)  As y——oo, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

cy= min [¢;;] with k;>k;, c_= max [¢;;] with k;>k;. (2.70b)
ielj,jeJ ielj,je.l
The results of Theorem 2.5 and Corollary 2.6 can be used to determine the asymptotic
behavior of the tau function, thereby obtaining an important characterization of the asymptotic line
solitons corresponding to (N_,N,)-soliton solutions of the KPII equation. Namely, for the tau
function 7y ,(x,y,1) of Eq. (2.2) with generic values of the phase parameters ki, ... k) we have
the following:

(1) As y— +%, the dominant phase combinations of the tau function in adjacent regions of the
xy plane contain N—1 common phases and differ by only a single phase. The transition
between any two such dominant phase combinations O:my...my, and 0} m,....m, OCCUrS along
the line L; ;: 6;=6,, where a single phase 6, in the dominant phase combination is replaced
by a phase 6. Moreover, if the dominant phase combination Oimy...my, in a given region is
known, the transition line L;; and the dominant phase combination Gj!mz’”_’mN are deter-
mined via Corollary 2.6. In particular, Egs. (2.7) for c, determine explicitly the pair of
phase parameters k; and k; corresponding to the single-phase transition i —; across each
boundary L; ; of a given dominant phase region.

(ii)  As y— = along the line L, ;, the asymptotic behavior of the tau function is determined by
the balance between the two dominant phase combinations ei,mz,.“,mN and gj,mzw-,ﬂw’ and is
given by

TN,M(x’y’t) ~ ViA(i,m2, . ,mN)eai’mz’“"’”N + V,‘A(j,mz, - ,mN)e‘91'~mz~---~’”N,

where V;:=V(i,m,,...,my) and V;:=V(j,m,,...,my) are Van der Monde determinants
defined in Eq. (2.4), and where the minors A(i,m,,...,my) and A(j,m,,...,my) of the
coefficient matrix A are both nonzero. The solution u(x,y,r) of the KPII equation in a
neighborhood of such a single-phase transition is then obtained from Eq. (1.2) as
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u(x,y,1) ~ (k; = k;)* sech?[ (6, - 6))]. (2.8)

Moreover, Lemma 2.4 and Theorem 2.5 together imply that the solution of the KPII
equation is exponentially small everywhere in the xy-plane except at the locations of such
single-phase transitions. Equation (2.8), which is a traveling wave solution satisfying the
dispersion relation in Eq. (1.8), coincides with the one-soliton solution in Eq. (1.6). Thus,
it defines an asymptotic line soliton associated with the single-phase transition i —j. The
phase parameters k; and k; associated with the single-phase transition i — j are determined
by Egs. (2.7). Then, the soliton amplitude is given by a;, j=|k,»—kj , and the soliton direction
is given by the direction of L; j, which is ¢; j=k;+k;.
(iii)  All of the asymptotic line solitons resulting from the single-phase transitions described
above are invariant in time, in the sense that their number, amplitudes, and directions are
constants.

Motivated by these results, we label each asymprotic line soliton by the index pair [i,j] which
uniquely identifies the phase parameters k; and k; in the ordered set {ky, ... ,ky}. The results
summarized in the above remarks can be applied to explicitly delineate the dominant phase
combinations and the asymptotic line solitons associated with the tau function of a given
(N_,N,)-soliton solution of the KPII equation, as illustrated by the following example.

Example 2.7: When N=2 and M =4, Lemma 2.1 implies that the tau function 7(x,y,?) is given
by

7'(X,y,f) = Wr(fl 7f2) = E (km’ - km)A(m,m’)eem"'am’ > (29)

I=m<m'<4

where the phases are given by 0m=kmx+k,2ﬂy +k,3nt+ O form=1,....4, as in Eq. (1.5), and where

the phase parameters are ordered as k; < --- <k,. We consider the line-soliton solution constructed
from the functions f;=e% +¢% and f,=e%+e%, so that the associated 2 X 4 coefficient matrix is

1 100
A=< ) (2.10)
0011

Then A(1,2)=A(3,4)=0, and the remaining four minors are all equal to 1. We apply Corollary 2.6
to determine the asymptotic line solitons associated with the tau function in Eq. (2.9). First note
from the expression 0,n’mr=(km+kmr)x+(k,2n+k,2n,)y+(km+ki,)t+(0m’0+ 6,/ o) that for every finite
value of y the dominant phase combination as x— — is given by 6, 3, which corresponds to the
minimum value of k,,+k,, such that A(m,m") # 0 (cf. Definition 2.3). We denote by R, 3 the region
of the xy plane where 6, ; is the dominant phase. The transition boundaries of R 5 are determined
by applying Corollary 2.6 as follows: The complement of the index set {1,3} is J={2,4}. When
j=2eJ, we have A(1,2)=0 but A(2,3) #0; hence I,={1}. Similarly, when j=4 we have I,={3}
because A(1,4)+# 0 but A(4,3)=0. Thus the possible transitions i —; from R; ; are 1 —2 and 3
—4. As y—, the second of Egs. (2.7a) implies that the clockwise transition boundary of R; 5 is
given by the transition line L34, whose direction c;4=k;+k, is greater than the direction ¢,
=k +k, of the line L; ;. Across the transition line L; 4, the dominant phase combination switches
from 6, 5 to 6, 4, onto the corresponding dominant region R, 4. Similarly, as y — -, the first of
Egs. (2.7b) implies that the counterclockwise transition boundary of R 3 is given by the transition
line L, ,, whose direction c; ; is less than the direction c; 4 of the line L 4. This implies that the
dominant phase combination and dominant region change to 6, ; and R, 3, respectively. Applying
Corollary 2.6 again to the region R, 3 as y ——, one finds J={1,4} with I;={2} and I,={3}, so the
possible transitions from R, 5 are 2— 1 and 3—4. The 2— 1 transition corresponds to a clockwise
transition from R, 3 back to R, 3, whereas the 3 — 4 transition corresponds to a counterclockwise
transition from R, ; to the region R, 4, where 6, 4 is the dominant phase combination. Continuing
counterclockwise from R; ; we finally obtain the following dominant phase regions asymptotically
as y— o, together with the associated single-phase transitions:
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1—=2 3—4 2—1 43
Ry Ry Rs4 Ry, Ry ;. (2.11)

It is then clear that there are two asymptotic line solitons as y — — as well as y— 0, and in both
cases they correspond to the lines #;,=60, and 6;=6,. The dominant phase regions, denoted by
indices (m,m’), and the asymptotic line solitons, identified by the index pairs [, /], are illustrated
in Fig. 1(b). The corresponding solution is called an ordinary 2-soliton solution. The ordinary
N-soliton solutions are described in Sec. IV.

In the following section we obtain several results that will allow us to identify more precisely
the index pairs corresponding to each asymptotic line soliton. In addition, we will prove a general
result concerning the numbers of asymptotic line solitons present in an (N_,N,)-soliton solution
corresponding to the tau function of Eq. (2.2).

lll. ASYMPTOTIC LINE SOLITONS AND THE COEFFICIENT MATRIX

In this section we continue our investigation of the tau function in the general setting intro-
duced in Sec. II. We have seen in the preceding section that an asymptotic line soliton corresponds
to a dominant balance between two phase combinations in the tau function. But we still need to
identify which phase combinations in a given tau function are indeed dominant as y — +. This
requires a detailed study of the structure of the N X M coefficient matrix A associated with the tau
function. In this section we carry out this analysis, which enables us to explicitly identify all the
asymptotic line solitons of a given tau function in an algorithmic fashion. One of our main results
of this section will be to establish that, for arbitrary values of N and M, and for irreducible
coefficient matrices (cf. Definition 2.2) with non-negative N X N minors, the tau function (2.2)
produces an (N_, N, )-soliton solution with N_.=M—N and N, =N, i.e., a solution in which there are
N_=M—-N asymptotic line solitons as y——% and N,=N asymptotic line solitons as y — .

A. Dominant phases and the structure of the coefficient matrix

We begin by presenting a simple yet useful result (see also Ref. 2, Lemma 2.4) that will be
frequently used to determine the dominant phase combinations in the tau function as y — +.

Lemma 3.1 (Dominant phase conditions): As y — £% along the line L; ;: ;= 0; with i <], the
exponential phases 6, ..., 0, satisfy the following relations.

(i) As y—o, 60,<6:, Vmel{i+l,...,j—1}, and 6,> 0., Vme{l,...,i-1,j+1,...,M},
where 0s:= 6;=0,.
(i) Asy—-o, 0,>60., Vmeli+l,...,j—1}, while 6,,< 0., Vme{l,...,i—1,j+1,...,M}.

Proof: Tt follows from Eq. (2.6a) that, along the line L;; whose direction is c; ;=k;+k;, the
difference between any two exponential phases 6,, and 6,,/ is given by

O = O = (K = Ky ) (ki + ki) = (ki + k) ]y + 8" (£.0), 3.1)

where &'(£,1) is a linear function of £ and r and which also depends on the constants G0 O 05
0,0, and 0;. It is clear that the sign of 6,,—6,, as y— + and for finite values of & and ¢ is
determined by the coefficient of y on the right-hand side of Eq. (3.1). Then, setting m’=i (or
m'=j) in Eq. (3.1) one obtains the desired inequalities. O

Lemma 3.1, which is illustrated in Fig. 2, will be used to obtain a set of conditions that are
necessary for a given pair of phase combinations in the tau-function to be dominant. These
conditions are given in terms of the vanishing of certain N X N minors of the coefficient matrix A,
and they determine which phase combinations are present (or absent) in the tau function of Eq.
(1.3). In order to derive these conditions, it is convenient to introduce two submatrices P; jand Q; ;
associated with any index pair [i,/] with 1 <i<j<M, and given by
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As y — o0 along 6;=§;

ki ko Ky Kok o Ky K Ky o Ky Ry K
- v ’ D N Ssasmmend “ v s
9m>8,= 01 e’H<ei= ej 0m>0,= 81

As y —+ —0 along 9,=0j

K kg o Ky KoKy o Ky KoKy o Ky Ky K
. > J —_— \ v J
0, <8/= 6 Om>8,=6; 87, <0;= 6

FIG. 2. Relations among the exponential phases as y — +c along the direction L; ;: 6;= 0.

Pi=A[12, .. i=1,j+1,...,M], Q=Ali+1,...,j-1]. (3.2)

The matrix P, ; is formed by the consecutive columns of A to the left of column A[7] and those to
the right of column A[], while Q, ; is formed by the consecutive columns of A between columns
A[i] and A[]. Using the matrices P; ; and Q; ; and the dominant phase conditions in Lemma 3.1 we
then have the following.

Lemma 3.2 (Vanishing minor conditions): Suppose that the index pair [i,]] identifies an
asymptotic line soliton. Let the two dominant phase combinations along the line L;;: 6,=6; be
given by 6, g g and O, 4 4. and let  A(i,pi,....p,.q1, ... .q),
A(jp1se sPrsqis .- »4qy) be the corresponding nonzero minors where Alpy], ..., Alp,] € P;; and

Alq], ..., Alg,] € Q;.
(i)  If[i.j] identifies an asymptotic line soliton as y— =, then

(a) all NXN minors obtained by replacing one of the columns Ali],A[j],Alq.],....Alq,] from
either A(i,py,....0mq1.--»q5) 0or A(j.p1s....Ppq1s-.. . q5) With any column A[p]e P;;,
are zero;

(b) all NXN minors obtained by replacing one of the columns Alq,],...,Alq,] from either
AWLDLs oo s Prs Qs sqs) OF A(JoP1s e sPrrqys - - »qs) With either Ali] or Alj], are zero.

(ii)  If[i.j] identifies an asymptotic line soliton as y — —o, then

(a) all NXN minors obtained by replacing one of the columns A[i],A[j],Alp],...,Alp,] from
either A(i,py,....Prq1>---q5) or A(j.p1,....Psqy,....q,) with any column Alq]e Q;
are zero;

(b) all NXN minors obtained by replacing one of the columns Alp,],...,Alp,] from either
A(Prsee s PrrGrs e sqs) OT A(JoP1s oo sPrs s - - - q5) With either Ali] or A[j], are zero.

Proof: All of the above conditions follow from the repeated use of the dominant phase
conditions in Lemma 3.1. For example, as y — o along the line L; ;, Lemma 3.1 implies 6,> 6, for
all pe{l,...,i-1,j+1,...,M} and for all me {i,j,q,,....q,}. Consequently, if condition (b) in
part (i) of the Lemma does not hold, each of the phase combinations obtained by replacing 6,, with

6, in either ei’pl""‘pr’ql""’qs or ef»l’1v~~-sl’r»‘11»~--»‘15 will be greater than both 0i’p1""’pr’ql""’qs and
6J’P1s-~-Pr"11w-’qs‘ But this contradicts the hypothesis that 6,»’1,1’_“%_’41’“_’% and 6J’P1s---~Pw‘11w-’qs are the

dominant phase combinations as y— o along L, ;. The other conditions follow in a similar fash-
ion. O

We should emphasize that in general, the asymptotic solitons and the index pairs labeling
them as y — e are different from those as y ——c. Lemma 3.2 allows us to determine the ranks of
the submatrices P;; and Q;; associated with each asymptotic line soliton [i,j]. This information
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will be exploited later in Theorem 3.6 to identify explicitly the asymptotic line solitons produced
by any given tau function. The next two results are direct consequences of the conditions specified
in Lemma 3.2.

Lemma 3.3 (Span): Let A[p,], ..., Alp,] € P;;and Alq,], ... ,Alq,] € Q; ; be the columns in the
minors associated with the dominant pair of phase combinations of Lemma 3.2.

(i)  If[i.j] identifies an asymptotic line soliton as y— ©, the columns A[p,],...,Alp,] form a
basis for the column space of the matrix P .

(ii)  If[i,j] identifies an asymptotic line soliton as y — —°, the columns A[q,], ... ,Alq,] form a
basis for the column space of the matrix Q; ;.

Proof: We prove part (i). Since A(i,p;,....Prq1s---.q5) #0 by Lemma 3.2, the set of col-
umns  A={A[i],Alp,].....Alp,].A[q,],....A[g,]} is a basis for R". Hence the set
{A[p], ..., Alp,J} C A is linearly independent. Moreover, any A[p] e P;; can be expanded with
respect to the basis A as

s

Alpl=aAlil+ 2 b,Alp,]+ 2 cuAlg,]. (3.3)
m=1

m=1

Replacing one of the columns A[i],A[q,],...,Alq,] in A(i,p,....p;»q15--->q,) With A[p]e P
we have from Lemma 3.2(i)(a) that

ij»

A(p’pl’ R L/ATEES ’qs) =0’ A(i’pl’ s Pl - Au-1P>9mls - -+ qs) =0.

Hence in Eq. (3.3) we have a=0 and ¢,=0Vm=1,...,s. Therefore A[p]
espan({A[p; ,...,A[p,]}) for all A[p]e P;;. Similarly, part (ii) follows from the conditions in
Lemma 3.2(ii)(a). O

Lemma 3.4 (Rank conditions): Let r be the number of columns from P;; and let s be the
number of columns from Q; ; in the minors associated with the dominant pair of phase combina-
tions of Lemma 3.2.

(i) If [i.j] identifies an asymptotic line soliton as y—=, then rank(P;;)=r<N-1 and
rank(P; ;| A[i])=rank(P; ;| A[j]) =rank(P; ;| A[i,j)) =r+1.

(i)  If [i,j] identifies an asymptotic line soliton as y— -, then rank(Q;)=s<N-1 and
rank(Qi,j |A[l]) =rank(Qi,j|AU]) =rank(Qi,j |A[i7j]) =s+1.

Above and hereafter, (A|B) denotes the matrix A augmented by the matrix B.

Proof: Let us prove part (i). Since the columns A[p,],...,A[p,] form a basis for the column
space of P;; from Lemma 3.3(i)) we immediately have rank(P;;)=r. Moreover, since A
={A[il.Alp,]. ..., Alp,].Alq,]. ... ,Alq,]} is a basis for RV, the vectors A[i],A[p],...,A[p,] are
linearly independent, and therefore rank(P; ;|A[i])=r+1. Similarly, replacing A[i] with A[/] in the
previous statement we have rank(P; ;|A[j])=r+1. It remains to prove that rank(P;;|A[i,j])=r
+1. Expanding the jth column of A in terms of A as in Lemma 3.3 we have

s

A[j1=aAlil+ 2 buAlp,]+ 2 cuAlg,). (3.4)
m=1

m=1

By replacing one of the columns A[q,],...,Alq,] in A(i,py,...,prq1>s-..,qs) With A[j], we have
from Lemma 3.2(i)(b) that A(i,p,....Prsq1s - sGQmetis]>Gmris - - - »qs) =0. Therefore c¢,,=0 for all
m=1,...,s. Consequently we have A[j]espan({A[i],A[p;],...,Alp,]}), which implies that
rank(PiJ|A[i ,jl)=r+1. Similarly, using Lemma 3.2(ii)(b) one can establish the corresponding
results in part (ii) for the asymptotic line solitons as y — —oo. O

It is important to note that, even though Lemmas 3.3-3.4 were proved by using the vanishing
minor conditions in Lemma 3.2, they provide additional information on the structure of the
coefficient matrix A. For example, when r</N—1 for an asymptotic line soliton as y — %, Lemma
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3.4 yields rank(P;;|A[i,j]) <N, and when s<<N-1 for an asymptotic line soliton as y——o,
Lemma 3.4 yields rank(Qi,j|A[i ,j])<N. As a consequence, we immediately have the following
additional vanishing minor conditions:

(i)  If[i,j] identifies an asymptotic line soliton as y— o, then

AL JoPis e PPy oy 0) =0 Y {my, ... omy 0} C{1,...,M}.  (3.5a)

(i)  If [,/] identifies an asymptotic line soliton as y — —, then

A(i,j,ql, ...,qs,ml, ...,mN_s_z):O V{m], ...,mN_S_z}C{l, ,M} (35b)

We remark that conditions (3.5) were also introduced (without proof) in Ref. 12 (cf. Definition
4.2) in order to characterize the tau functions of the elastic N-soliton solutions which correspond
to the special case M=2N. It should also be noted that, when [, ] identifies an asymptotic line
soliton as y — o, Lemma 3.4(i) only provides information on P, ;, and the only condition on Q, ; is
that rank(Q; ;) =s. Similarly, when [i,;] identifies an asymptotic line soliton as y— -, all is
known about P; ; is that rank(P; ;) =r.

B. Characterization of the asymptotic line solitons from the coefficient matrix

In the preceding section we derived several conditions that an index pair [7,/] must satisfy in
order to identify an asymptotic line soliton. Those results are now applied to obtain a complete
characterization of the incoming and outgoing asymptotic line solitons of a generic line-soliton
solution of the KPII equation.

Lemma 3.5 (Pivots and nonpivots): Consider an index pair [i,j] with 1 <i<j<M.

(1)  If[i.j] identifies an asymptotic line soliton as y— =, the index i labels a pivot column of
the coefficient matrix A. That is, Ali]=Ale,] with 1<n<N.

(i)  If[i,j] identifies an asymptotic line soliton as y— —, the index j labels a nonpivot column
of the coefficient matrix A. That is, A[j]1=Alg,] with 1<n<M-N.

Proof: We first prove part (i). Suppose that O:m,....my 1S ONE of the dominant phase combina-
tions corresponding to the asymptotic line soliton [i,j] as y—oe. The corresponding minor
A(i,m,, ...,my) is nonzero. Since A is in RREF, we have A[i]=3"_,c,A[e,] for some n<N, where
e, <--<e,<i. Therefore A(i,m,,...,my)=2"_c.Ale,,my,...,my). If e,<i, we have
Aley], ..., Ale,] € P, ;, where P;; is the submatrix of A defined in Eq. (3.2). Then from condition
(a) in Lemma 3.2(i) we have A(e,,m,,...,my)=0Vr=1,...,n, implying that A(i,m,,...,my)
=0. But this is impossible, since 0"””2»-“””/\/ is a dominant phase combination. Therefore we must
have i=e¢,, meaning that A[i] is a pivot column.

Part (ii) follows from the rank conditions in Lemma 3.4(ii). In particular, rank(QiJ|A[i])
=rank(Q; ;|A[i,j])=s+1 implies that A[j] e span({A[{], ... ,A[j—1]}). Since A is in RREF, none of
its pivot column can be spanned by the preceding columns. Hence A[j] is not a pivot column.[]

Lemma 3.5 identifies outgoing and incoming asymptotic line solitons, respectively, with the
pivot and the nonpivot columns of A. It is then natural to ask if in fact each of the N pivot columns
and each of the M —N nonpivot columns identifies an outgoing or incoming line soliton, and
whether such identification is unique. Both of these questions can be answered affirmatively by the
following theorem which constitutes one of the main results of this work, and is proved in the
Appendix.

Theorem 3.6: (Asymptotic line solitons) Let 7y y(x,y,t) be the tau function in Eq. (2.1)
associated with a rank N, irreducible coefficient matrix A with non-negative minors.

(1) For each pivot index e, there exists a unique asymptotic line soliton as y — %, identified by
an index pair [e,,j,] with n=1,...,N and 1 <e,<j,<M.

(i)  For each nonpivot index g, there exists a unique asymptotic line soliton as y ——», iden-
tified by an index pair [i,,g,] with n=1,... M—N and 1<i,<g,<M.
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Thus, the solution of KPII generated by the coefficient matrix A via Eq. (2.1) has exactly N,.=N
asymptotic line solitons as y—* and N_=M—N asymptotic line solitons as y — —».

Part (i) of Theorem 3.6 uniquely identifies the asymptotic line solitons as y— o by the index
pairs [e,,j,] where e, <j,. The indices e, ... ,ey label the N pivot columns of A, however, the j,’s
may correspond to either pivot or nonpivot columns, and indeed both cases appear in examples.
Moreover, when the pivot indices are sorted in increasing order l=e;<e,<---<ey<M, the
indices j;, ..., jy in general are not sorted in any specific order. For example, the line solitons as
y—oo generated by the matrix A in Eq. (4.5) of Sec. IV have j, <j3<j,. In fact, the indices
Jis---»jn need not necessarily even be distinct. Similarly, part (ii) of Theorem 3.6 uniquely
identifies the asymptotic line solitons as y— —c© by index pairs [i,,g,], where i, <g,. In this case,
the indices g1, ...,gy_n label the M—N nonpivot columns of A, but the i,’s may correspond to
either pivot or nonpivot columns. Moreover, when the nonpivot indices are sorted in increasing
order 1 <g;<---<gy_y=M, the indices ij,...,iy_y are not in general sorted, and need not be
distinct. Theorem 3.6 yields an important characterization of the solution via the associated coef-
ficient matrix A, and it provides a concrete method to identify the asymptotic line solitons as y
— +, as illustrated with the examples below. Further examples are discussed in Sec. IV.

Example 3.7: Consider the tau function 7y 4, with N=2 and M =5 generated by the coefficient
matrix

1 10 -1 =2
A:( ) (3.6)
00 1 1 1

The pivot columns of A are labeled by the indices {e;,e,}={1,3}, and the nonpivot columns by the
indices {g,g,,2:}={2,4,5}. It follows from Theorem 3.6 that there will be N,=N=2 asymptotic
line solitons as y — oo, identified by the index pairs [1,/;] and [3,/,] for some j,>1 and j,>3,
and that there will be N_.=M—-N=3 asymptotic line solitons as y — —, identified by the index
pairs [iy,2], [i,4], and [i3,5], for some i; <2, i, <4, and i3<5. We first determine the asymptotic
line solitons as y — o using part (i) of Theorem 3.6 together with the rank conditions in Lemma
3.4(i). The we find the asymptotic line solitons as y — —o using part (ii) of Theorem 3.6 and the
rank conditions in Lemma 3.4(ii).

For the first pivot column, e;=1, we start with j=2 and consider the submatrix
P1’2=( 10 _11 _21 ). Since rank(P; ,)=2>1=N-1, from Lemma 3.4(i) we conclude that the pair [1,2]
cannot identify an asymptotic line soliton as y — . Incrementing j to j=3,4,5 and checking the
rank of each submatrix P;; we find that the rank conditions in Lemma 3.4(i) are satisfied when
j=4, and P1’4:(_12)=A[5]. So, rank(P; 4)=1 and rank(P, 4|A[1])=rank(P; 4| A[4])=2. The condi-
tion rank(P; 4|A[1,4])=2 is trivial here, since any three columns are linearly dependent. Thus, the
first asymptotic line soliton as y— o is identified by the index pair [1,4]. For the second pivot,
e,=3, proceeding in a similar manner we find that j=4 does not satisfy the rank conditions
because P;, has rank 2. But j=5 satisfies Lemma 3.4(i), since P3’5=((1)(1)), which yields
rank(P35)=1 and rank(P;s|A[3])=rank(P3s|A[5])=2. Again, rank(P3s|A[3,5])=2 is trivially
satisfied here. So the asymptotic line solitons as y— o are given by the index pairs [1,4] and [3,5],
and the associated phase transition diagram (cf. Corollary 2.6) is given by

3—5 1—4
R3 R, Rys.

We now consider the asymptotics for y— —o. Starting with the nonpivot column g;=2, the
only column to its left is i=1. We have Q;,=@, and rank(Q,,|A[1])=rank(Q,,|A[2])
=rank(Q ,|A[1,2])=1. Consequently, the pair [1,2] identifies an asymptotic line soliton as y—
-, For g,=4 we consider i=1,2,3 and find that the rank conditions in Lemma 3.4(ii) are
satisfied only for i=2. In this case, Q2,4:((1)):A[3], so rank(Q, 4)=1=N-1 and rank(Q, 4|A[2])
=rank(Q, 4|A[4])=2, while rank(Q, 4|A[2,4])=2 is trivially satisfied. Hence [2,4] is the unique
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FIG. 3. Line soliton solutions of KPII: (a) the (3,2)-soliton solution generated by the coefficient matrix A in Example 3.7

with (k;,... ,k5)=(—1 ,O,i,i,i) at t=—-32; (b) the inelastic 3-soliton solution generated by the coefficient matrix A in

Example 3.8 with (k;, ... ,k(,):(—l ,—%,O,%, 1 %) at 1=20 (see text for details).

asymptotic line soliton as y ——% associated to the nonpivot column g,=4. In a similar way we
can uniquely identify the last asymptotic line soliton as y ——o© as given by the indices [3,5]. The
phase transition diagram for y ——o is thus given by

1-2 24 35
Ris Ry3 R34 Rys.

To summarize, there are N,=2 outgoing line solitons, each associated with one of the pivot
columns e;=1 and e,=3, given by the index pairs [1,4] and [3,5], and there are N_=3 incoming
line solitons, each associated with one of the nonpivot columns g;=2, g,=4, and g3=5, given by
the index pairs [1,2], [2,4], and [3,5]. A snapshot of the solution at r=-32 is shown in Fig. 3(a).

Example 3.8: Consider the tau function with N=3 and M =6 generated by the coefficient
matrix in RREF,

11100 0
A=[0 0010 -1]. (3.7)
00001 2

Again, we first determine the asymptotic line solitons as y—cc, and then the asymptotic line
solitons as y — —o,

The pivot columns of A are labeled by the indices e;=1, e,=4, and e;=5. Thus, we know that
the asymptotic line solitons as y — o will be given by the index pairs [1,/,], [4,/,], and [5, 3] for
some j; >1, j,>4, and j;>5. Starting with the first pivot, e;=1, we take j=2,3,... and check the

10 0 0
rank of the submatrix P;; in each case. When j=2 we have P;,=[o 1 o -1, and rank(P, ,)
00 1 2

=3>N-1. So, by Lemma 3.4(i), the index pair [1,2] does not correspond to an asymptotic line

soliton as y —ce. In fact, using Lemma 3.1 it can be verified that 6; 5 ¢ is the only dominant phase

combination along the line #,=0, as y— . Next, we consider j=3. In this case we have P ;
00 0

=|1 o -1, with rank(P; 3)=2=:r and rank(P; ;|A[1])=rank(P, 3|A[3])=rank(P, 5|A[1,3])=3
01 2

=r+1. So the rank conditions in Lemma 3.4(i) are satisfied. Therefore the index pair [1,3] corre-

sponds to an asymptotic line soliton as y — . Moreover, by considering j=4,5,6 one can easily

check that the rank conditions are no longer satisfied. Thus [1,3] is the unique asymptotic line

soliton associated with the pivot index e;=1 as y— %, in agreement with Theorem 3.6. Let us now
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consider the second pivot column, e,=4. In this case we find that the rank conditions are only
1110

satisfied when j=5, since Pys=|0 o o -1|, with rank(P,s)=2=:r and rank(P4,5|A[4])
000 2

=rank(P, s|A[5])=rank(P4 5|A[4,5])=3=r+1. Therefore, the index pair [4,5] corresponds to an

asymptotic line soliton as y —cc. Finally, for e;=5, since we know from Theorem 3.6 that j > e;,

we immediately find that the third asymptotic line soliton as y — o is given by the index pair [5,6].

From Corollary 2.6, the phase transition diagram as y — o is given by

5—6 4—5 1—3

Ri4s Ri46 Ris6 R3 5.

The nonpivot columns of the coefficient matrix A are labeled by the indices g;=2, g,=3, and
g3=6. For g;=2, the only possible value of i <j is i=1. In this case Q; ,=@, so rank(Q; ,)=0 and
rank(Q; ,|A[1])=rank(Q, ,|A[2])=rank(Q, ,|A[1,2])=1. Thus the pair [1,2] identifies an
asymptotic line soliton as y — —cc. For g,=3 we consider i=2,1. When i=2, the rank conditions in
Lemma 3.4(ii) are satisfied, leading to the asymptotic line soliton [2,3] as y — —. We can check
that the soliton associated with the nonpivot column g,=3 is unique by considering i=1 and
verifying that the rank conditions are not satisfied. Similarly, it is easy to verify that for g;=6 the
index pair [4,6] uniquely identifies the asymptotic line soliton as y— —oc. The phase transition
diagram as y — — reads as follows:

1—-2 2—3 4—6

Ry 45 Ryas R345 R; 5.

Summarizing, there are N, =3 asymptotic line solitons as y— o0 identified by the index pairs
[1,3], [4,5], and [5,6], and there are N_=3 asymptotic line solitons as y— — identified by the
index pairs [1,2], [2,3], and [4,6]. A snapshot of the solution at 7=—20 is shown in Fig. 3(b).

Examples 3.7 and 3.8 illustrate the fact that, starting from any given coefficient matrix A in
RREEF, the asymptotic line solitons as y — +% can be identified in an algorithmic way by applying
Theorem 3.6 together with the rank conditions in Lemma 3.4.

IV. FURTHER EXAMPLES

In this section we present a variety of line-soliton solutions of KPII generated by the tau
function (2.2) with different choices of coefficient matrices.

Ordinary N-soliton solutions: These are constructed by taking M =2N and choosing the func-
tions {f,}"", in Eq. (1.10) as (e.g., see Refs. 5 and 15)

foxy,0)=e’m-14 e n=1, .. N. (4.1)

The corresponding coefficient matrix is thus given by

1100 - 00

o011 --00

00O0O0 -+ 11
with N pairs of identical columns at positions {2n—1,2n}, n=1,...,N. There are only 2N nonzero
minors of A, which are given by A(m,m,,...,my)=1 where, for each n=1,...,N, either m,
=2n—1 or m,=2n. The asymptotic analysis of the preceding section implies that the nth
asymptotic line soliton as y — +o is identified by the index pair [2n—1,2n] for n=1,...,N, where

i,=2n-1 and j,=2n label, respectively, the pivot and nonpivot columns of A. Therefore the
amplitude and direction are given by a,=k,,—k,,_; and c¢,=k,,_;+k,,. Moreover, the dominant
pair of phase combinations for the nth soliton as y— o is given by 6|3 2,-124+2.0+4....2n and
01 3....2n-3.2n.2n+2....on» While the dominant phase combinations for the same soliton as y — —% by
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FIG. 4. Line-soliton solutions of KPII: (a) an ordinary 3-soliton solution with (k, ... ,kﬁ):(—B,—Z,O, 1 ,%,2) at t=4; (b) a

fully resonant (3,2)-soliton solution with (k, ... (-1,0,1, ,%) at 1=-32; (c) an elastic, partially resonant 3-soliton
solution with A given by Eq. (4.5) and (ky, ...,k¢)= —% ,—1 ()i% %) at t=-20; (d) an elastic, partially resonant 4-soliton
solution with A given by Eq. (4.6) and (k,, ... kg :(—2,—%,—1 ,—%,0,%,1,%) at r=20; (e) an inelastic 2-soliton solution
with A given by Eq. (4.7) and (k, ... ,k4)=(—l ,—%,5,2) t t=16; (f) an inelastic 3-soliton solution with A given by Eq.
3

(4.8) and (k,,....kg)=(~1,-3,0,3,1,3) at r=32.

e
a
—
I <
(98]

bha... 2n2ni12n43,...on-1 AN Oy 5420510041, 2n-1- Apart from the phase shift of each line
soliton, the interaction gives rise to a pattern of N intersecting lines in the xy plane, as shown in
Fig. 4(a).

Solutions of KPII which also satisfy the finite Toda lattice hierarchy: Another class of
(N_,N,)-soliton solutions of KPII is given by the following choice of functions {f,}"_, in Eq.
(1.10):
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f,=f"Y n=1,...,N. (4.2)

In addition to generating solutions of KPII, the set of tau functions 7y, for N=1,...,M also
satisfy the Pliicker relations for the finite Toda lattice hierarchy.2 Choosing f(x, y,t):E%zlegm
yields the following coefficient matrix:

1o I
S (4.3)
k]l\l—l k12v-1 . k[[:’/[—l

Note that A in Eq. (4.3) is not in RREF, and coincides with the matrix K in Lemma 2.1. The
pivot columns of A are labeled by indices 1,...,N. Furthermore, all the N X N minors of A are
nonzero, and coincide with the Van der Monde determinants in Eq. (2.4). The corresponding class
of KPII solutions was studied in Ref. 2, where it was shown that the N asymptotic line solitons as
y— oo are identified by the index pairs [n,n+M—N] for n=1,...,N, while the M —N asymptotic
line solitons as y——o are identified by the index pairs [n,n+N] for n=1,...,M-N. These
pairings can also be easily verified using Theorem 3.6. The dominant pair of phase combinations
for the nth soliton as y—o is given by 60, ynine1...m a0d 0 1 p-nen. > While the
dominant pair of phase combinations for the nth soliton as y—— by 6,  y.,—1 and 0,41 yen-
The solution displays phenomena of soliton resonance and web structure [e.g., see Fig. 4(b)].
More precisely, the interaction of the asymptotic line solitons results in a pattern with (2N_
—1)N, interaction vertices, (3N_-2)N, intermediate interaction segments and (N_—1)(N,—1)
“holes” in the xy plane. Each of the intermediate interaction segments can be effectively regarded
as a line soliton since it satisfies the dispersion relation (1.8). Furthermore, all of the asymptotic
and intermediate line solitons interact via a collection of fundamental resonances. A fundamental
resonance, also called a Y junction, describes an interaction of three line solitons whose wave
numbers k, and frequencies w, (a=1,2,3) satisfy the three-wave resonance conditions' """

k] +k2=k3, (O] +w2=a)3. (44)

Such a solution is shown in Fig. 1(a).

Elastic N-soliton solutions: As mentioned in Sec. I and in the Appendix, the elastic N-soliton
solutions are those for which the sets of incoming and outgoing asymptotic line solitons are the
same. In this case we necessarily have M =2N. Ordinary N-soliton solutions and solutions of KPII
which also satisfy the finite Toda lattice hierarchy with M=2N are two special classes of elastic
N-soliton solutions. However, a large variety of other elastic N-soliton solutions do also exist, and
were recently investigated in Ref. 12. For example, Fig. 4(c) shows an elastic 3-soliton solution
generated by the coefficient matrix,

100 1 1 1
A={0 1 0 -2 -2 —1]. (4.5)
001 2 1 0

In this case the pivot columns are labeled by indices 1, 2, and 3. So, from Lemma 3.5 we know
that the asymptotic line solitons as y— oo will be identified by index pairs [1,/,], [2,/,], and
[3,/3], while those as y——c by index pairs [i;,4], [i,,5], and [i5,6], for certain values of
i1,...,i3 and jy,...,j3. Indeed, from the results developed in Sec. III one can verify that both the
incoming and the outgoing asymptotic line solitons are given by the same index pairs [1,4], [2,6],
and [3,5]. The soliton interactions in this case are partially resonant, in the sense that the pairwise
interaction among solitons [1,4] and [2,6] and that among solitons [1,4] and [3,5] are both reso-
nant, but the pairwise interaction among solitons [2,6] and [3,5] is nonresonant. Similarly, Fig.
4(d) shows an elastic, partially resonant 4-soliton solution generated by the coefficient matrix
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1 0-10 1 0-1 -2
01 2 0 -10 1 2
A= (4.6)
00 01 2 0 -1 -2
00 0o 0 O 1 2 3

In this case the pivot columns are labeled by the indices 1, 2, 4, and 6 and the nonpivot columns
by the indices 3, 5, 7, and 8. The asymptotic line solitons as y — +o0 are identified by the index
pairs [1,3], [2,5], [4,7], and [6,8]. As can be seen from Fig. 4(f), the pairwise interaction of solitons
[1,3] and [2,5], solitons [2,5] and [4,7], and [4,7] and [6,8] are resonant, but the remaining
pairwise interactions between solitons [1,3] and [4,7], [1,3] and [6,8], [2,5] and [6,8], are non-
resonant. It should be clear from these examples that a large variety of elastic N-soliton solutions
with resonant, partially resonant and nonresonant interactions is possible.

Inelastic N-soliton solutions: There also exist a large class of N-soliton solutions that are not
elastic. We have already seen such solutions in Examples 3.7 and 3.8 [cf. Figs. 3(a) and 3(b)] of
Sec. III. As a further example, Fig. 4(e) shows an inelastic 2-soliton solution generated by the

coefficient matrix
1 00 -1
A= . (4.7)
011 1

In this case the pivot columns are labeled by indices 1 and 2. The asymptotic line solitons as y
— —oo are identified by the index pairs [1,4] and [2,3], while those as y— o by the index pairs
[1,3] and [2.,4]. Notice that the outgoing solitons interact resonantly via two Y junctions, while the
incoming soliton pair interact nonresonantly. This is in contrast with an elastic 2-soliton solution,
where both incoming and outgoing pairs of solitons exhibit the same kind of interaction. Similarly,
Fig. 4(f) shows inelastic 3-soliton solution generated by the coefficient matrix

10-1-10 2
A=l01 2 1 0 -1 (4.8)
00 0 0 1 1

Here the pivot columns are labeled by indices 1, 2, and 5. The asymptotic line solitons as y
— oo are identified by the index pairs [1,3], [2,5], and [5,6], while those as y— —o by the index
pairs [1,3], [2,4], and [3,6].

Finally, we remark that in the generic case M # 2N, the numbers of asymptotic line solitons as
y— o0 are different, as in the solutions shown in Figs. 3(a) and 4(b). Also, note that the one-
soliton solutions, the ordinary two-soliton solutions and the Y junction solutions have the property
that their time evolution is just an overall translation of a fixed spatial pattern. However, for all
other solutions discussed above, the interaction patterns formed by the asymptotic line solitons,
and the relative positions of the interaction vertices in the xy plane are in general time dependent.

V. CONCLUSIONS

In this paper we have studied a class of line-soliton solutions of the Kadomtsev-Petviashvili IT
equation by expressing the tau function as the Wronskian of N linearly independent combinations
of M exponentials. From the asymptotics of the tau function as y — +% we showed that each of
these solutions of KPII is composed of asymptotic line solitons which are defined by the transition
between two dominant phase combinations with N—1 common phases. Moreover, the number,
amplitudes and directions of the asymptotic line solitons are invariant in time. We also derived an
algorithmic method to identify these asymptotic line solitons in a given solution by examining the
NXM coefficient matrix A associated with the corresponding tau function. In particular, we
proved that every N X M, irreducible coefficient matrix A produces an (N_,N,)-soliton solution of
KPII in which there are N, =N asymptotic line solitons as y — o, labeled by the pivot columns of
A, and N_=M —N asymptotic line solitons as y — —, labeled by the nonpivot columns of A. Such
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solutions exhibit a rich variety of time-dependent spatial patterns which include resonant soliton
interactions and web structure. Finally, we discussed a number of examples of such
(N_,N,)-soliton solutions in order to illustrate the above results.

It is remarkable that the KPII equation possesses such a rich structure of line-soliton solutions
generated by a simple form of the tau function. In this work we have primarily focused on the
asymptotic behavior of the solutions as y — +%, but not on their interactions in the xy plane. A full
characterization of the interaction patterns of the general (N_,N,)-soliton solutions is an important
open problem, which is left for further study. Nonetheless, we believe that our results will provide
a key step toward that endeavor. We point out that resonant interaction described by the line
solitons of KPII is a physical phenomenon that has been observed experimentally in ion-acoustic
waves (see e.g., Refs. 20 and 13). Hence, we expect that the resonant solutions considered in this
work are likely to be stable with respect to small perturbations and physically relevant. However,
a formal stability analysis of these (2+ 1)-dimensional solutions is a highly nontrivial task, and has
not yet been carried out to the best of our knowledge. Finally, we note that soliton solutions
exhibiting phenomena of soliton resonance and web structure have been found for several other
(2+1)-dimensional integrable systems, and those solutions can also be described by direct alge-
braic methods similar to the ones used here. Therefore we expect that the results presented in this
work will also be useful to study solitonic solutions in a variety of other (2+ 1)-dimensional
integrable systems.
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APPENDIX A: PROOF OF THEOREM 2.5

To prove part (i) of Theorem 2.5, it is sufficient to show that, along each line L., the sign of
the inequalities among the phase combinations in Definition 2.3 remain unchanged in time as y
— z20, For this purpose, note that the sign of 0'"1»-~-»mN_ ami’-‘-”"/'v in Eq. (2.6b) is determined by the
coefficient of y on the right-hand side as y— = and for finite ¢ and ¢, if this coefficient is
nonzero. For generic values of the phase parameters &y, ...,k this coefficient is indeed nonvan-
ishing, and its sign depends only on the direction ¢ of the line L.. Consequently, the dominant
phase combinations asymptotically as y— +o are determined only by the constant ¢ for finite
time.

Part (ii) of the theorem is proved by showing that the only possible phase transitions are those
in which a single phase, say 6, changes to 6,,, between the two dominant phase combinations
across adjacent regions, and that no other type of transitions can occur. We first prove that
single-phase transitions are allowed; then we show that no other type of transitions are allowed. In
the following, we will assume ¢ to be finite so that the dominant phase combinations remain
invariant, according to part (i). Suppose that Gm],“_,mN is the dominant phase combination in a
region R asymptotically for large values of |y|. Since R is a proper subset of R?, it must have a
boundary, across which a transition will take place from On,....m, tO some other dominant phase
combination. Since On,....my, is dominant, A(m,,...,my) #0 according to Definition 2.3. There-
fore, the columns A[m,],...,A[my] of the coefficient matrix form a basis of R", and for all
j&{m,,...,my} we have that A[j] is in the span of A[m,], ... ,A[my]. Thus there exists at least
one column A[m,] such that the coefficient of A[m,] in the expansion of A[;] is nonzero. We then

have  A(my,...,m,|,j,Mmg1,...,my)#0, implying that the phase combination
ﬂmly._.’mx_lyj’mm,_me is actually present in the tau function. Then, for any j & {m,...,my} it is

possible to have a single-phase transition from R to the adjacent region R’ across the line 19,,1v
=0, since the sign of 0"%_ 0; changes across this line, implying that Gm]""’ms—l’ s is larger
than 6, ., in R'.

N
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We next show that no other type of transitions can occur apart from single-phase transitions;
we do so by reduction ad absurdum. Suppose that at least two phases O, > O, from the dominant
phase combination On,....my, in a region R are replaced with phases 0’”i , 0,”5 during the transition
from R to an adjacent region R’. This transition occurs along the common boundary of R and R’,
which is given by line L:(0m1+6m2)—(0m{+ ﬂmé):O. Thus, along L, the differences 6,, — 0, and
6m2— Gmé (or, equivalently, the differences 0'"1_ Gmé and 9,,,2— ﬁm;) must have opposite signs or be
both zero.

If both differences are zero along L, the lines 19,,11 = 0,,,{ and 0m2= 0,,,5 (or, equivalently, the lines
0,,,1 = Gmé and 0,"{ = ﬁmz) must both coincide with the line L in the xy plane. This is possible only at
a given instant of time and if the directions of the two lines are the same, i.e., if kml+kmi=k,,,2
+km£ (or, equivalently, kml +km£=kmi+km2)' So for generic values of the phase parameters, or for
generic values of time, this exceptional case can be excluded. Hence, we assume that 0m1 - Gm{ and
0, - ‘9mé are of opposite signs.

Note that Gml—ﬂmizﬂml’_me— ! gy
since Hmlv_”mN is the dominant phase in R, both of these phase differences must be positive in the
interior of R if the minors A(mj,m,,...,my) and A(m,,m},ms...,my) are nonzero. Hence, we
must conclude that 0,,,1— 0,,,{ and 0m2— Gmé cannot have opposite signs unless one or both of the
phase combinations ﬂmi’mzyme and ﬁmlgmé’m}me is absent from the tau function. This requires
that either A(m|,m,, ... ,my) or A(m;,mj,ms...,my) must be zero. A similar argument applied to
the phase differences 0,,1] - 0,,,5 and 0,,12— 0,,,1 leads to the conclusion that one or both of the minors
A(my,my,...,my) and A(m;,m|,ms...,my) must vanish. However, from the Pliicker relations
among the N X N minors of A we have

0,, and O~ 0m£= On,....my~ Hml,mé,m3. _.my- Moreover,

A(my,my ... ,my)A(mi,m;, ... my) =A(m,my,ms, ... my)A(m{,m,, ...,my)
—A(m,m,ms...,my)A(ms,m, ...,my).
It follows from above that either A(m,,...,my)=0 or A(mj,m},ms, ... ,my)=0. But this is im-

possible since by assumption both minors on the left-hand-side are associated with dominant
phase combinations. Thus, they are both nonzero. Hence we have reached a contradiction which
implies that as y— +0o0, phase transitions where more than one phase changes simultaneously
across adjacent dominant phase regions, are impossible.

APPENDIX B: PROOF OF THEOREM 3.6

First we need to establish the following Lemma that will be useful in proving the theorem.

Lemma B.1: If P; is the submatrix defined in Eq. (3.2) and e, labels the nth pivot column of
an irreducible coefficient matrix A, then N-1<rank(P, , ,;)<N, Vn=1,....N.

Proof: Recall that the pivot indices are ordered as 1=¢; <e,<--- <ey<M for an irreducible
matrix A. Then it follows from Definition 2.2(ii) that, corresponding to each pivot column A[e,] of
an irreducible matrix A, there exists at least one nonpivot column A[j«], with j.>e,, that has a
nonzero entry in its nth row. Hence we have A(e;, ...,¢,_1,j, €15 --.,ex) # 0. This implies that
the matrix A[l,...,e,—1,e,+1,... ,M]:(Penenﬂ |A[e,+1]) which contains the columns
Ale],... Ale, 1].A[j:].Ale,1]. ... ,Aley], has rank N. Thus, the rank of P, , ., is at least N
—1, and this yields the desired result. O

We are now ready to prove Theorem 3.6. We prove part (i) here; the proof of part (ii) follows
similar steps. The proof of part (i) is divided in two parts. First we show that for each pivot index
e, n=1,...,N, there exists an index j,> e, with the necessary and sufficient properties for [e,,, j,]
to identify an asymptotic line soliton as y — %; then we prove that such a j, is unique.

Existence: The proof is constructive. For each pivot index e,,, and for any j>e¢,, we consider
the rank of the matrix P, ;=A[1,2,...,¢,~1,j+1,...,M] starting from j=e,+1. When j=e,
+1 we have P, ;=P, , ., and therefore N-1<rank(P, ,,)<N from Lemma B.l. If

rank(P, , .1)=N, then Lemma 3.4(i) implies that the pair le,.e,+1] does not identify an
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asymptotic line soliton as y—oe. In this case, we increment the value of j successively from e,
+1, until rank(Pen,j) decreases from N to N—1. Note that a value of j such that rank(Pen, )=N
—1 always exists because if j=M, then rank(Pen,M)zrank(A[l yoose,—1])=n—1<N-1, since A is
in RREF. Suppose j=j is the smallest index such that rank(P, ; )=N-1 and rank(Pen,j*|A[j*])
= N. We next check the rank of rank(Pen!j* Ale,]). Since rank(Pen’j*)zN— 1, two cases are pos-
sible: either (a) rank(Pen,j* Ale,])=N or (b) rank(Per* Ale,])=N—-1. We discuss these two cases
separately.

(a) Suppose that rank(Pen,j*|A[e,,]):N. By construction we have rank(Pen,j*|A[j*]):N, and
since N=rank(A) one also has rank(Pin,j* Ale,,j:])=N. In this case we set j.=j,. It follows from
Lemma 3.4 that the pair [e,,j,] satisfies the necessary rank conditions to identify an asymptotic
line soliton as y—. Next we show that these rank conditions are also sufficient in order to
determine a pair of dominant phase combinations in the tau function corresponding to the single-
phase transition e,,— j,. Since rank(Pgn, jn)=N —1, it is possible to choose N—1 linearly indepen-
dent columns A[p,],...,A[py_;] from the matrix P, ; so that for all choices of linearly indepen-
dent columns A[l],...,A[ly_] P, ; onehas 6, , =6, , ~asy—c along the transition
line L, j- The existence of such a set is guaranteed because part (i) of the dominant phase
condition 3.1 implies that, as y — o in the [e,,,j,] direction, the phases corresponding to the index
set Pen’jn are ordered as ;> 6,> -+ > Hen_l and 01}1 a< 0jn +2<<-++ < 6. Therefore, it is possible to
select the top N—1 phases from the above two lists so that the corresponding columns are linearly
independent. Furthermore, the conditions rank(P, j”|A[e,l])=rank(PeW jn|A[j,,]):N imply that the
minors A(e,,p;,....px-1) and A(j,.py,...,py-1) are both nonzero, and thus O p,...py., and
O i pney form a dominant pair of phase combinations as y — o0 along the direction of L, j-

(b) Suppose that rank(P, ;, Ale,])=N-1. Note that this is possible only for n <N, because
when n=N the submatrix P, ; for any j>ey contains the pivot columns Ale,],...,Aley].
Hence, rank(P, ;)=N-1 and rank(PeN’j|A[eN])=N. Consequently, n=N always belongs to case
(a) above and not to case (b). So we consider only the case n <N below.

Since rank(P, ;)=rank(P, ; |A[e,])=N-1, this means that Ale,] e span(P, ;). However,
since Ale,] is a pivot column, it cannot be spanned only by its preceding columns
A[1],...,Ale,—1]. Hence the spanning set of A[e,] from P, ;. must contain at least one column
from A[j«+1], ... ,A[M]. In this case we continue incrementing the value of j starting from j. until
the pivot column Ale,,] is no longer in the span of the columns of the resulting submatrix P, ;. Let
Jn be the smallest index such that A[e,] is spanned by the columns of the submatrix P, ;. |A[},.] but
not by those of Pen, X Then, by construction we have rank(Pen, jn)==r<N -1, and
rank(P, jn|A[e,1]):rank(Pen,jn|A[jn]):rank(Pen,jn|A[en, j.D=r+1. The rank conditions in Lemma
3.4(i) are once again satisfied for the index pair [e,,j,] thus found. The sufficiency of these
conditions can then be established by following similar steps as in case (a). Namely, it is possible
to choose a set of linearly independent vectors A[/,], ... ,A[l,] € P, ; and extend this set to a basis
of RV as follows: {A[e,],Al,],... . A[l,],Alm,], ... A[m,]}, where A[m,],...,A[m,] e Q,,, and
r+s=N-1. We then have Ale,.l;,...,l,,m,...,my)#0, which also implies
AG, L, ...\ l.,my,...,m)#0 since Ale,] € span(Pen,jn|A[j,,]). As in case (a), we can now maxi-
mize the phase combinations over all such sets {/,,...,l,,m,,...,m}, and find a set of indices
{P1s.--»Prq1,...,q, such that O py...ppay..q, @d 0 , 4 4 form a dominant pair of
phase combinations as y — o along the direction of L, ;- Summarizing, we have shown that for
each pivot index e,,n=1,2,...,N, there exists at least one asymptotic line soliton [e,,j,] with
Jja>>e, as y—. Next we prove uniqueness.

Uniqueness: Suppose that [e,,j,] and [e,, /] are two asymptotic line solitons identified by the
same pivot index e, as y— . Without loss of generality, assume that j/ > j,, and consider the line
soliton [e,,j,]. Lemma 3.4(i) implies that rank(P, ;- A[j,',])=rank(Pen,jn|A[en, Jjr]). Hence the
pivot column A[e, ] is spanned by the columns of the submatrix (Pen, i/|ALj,]). But by assumption
we have (P, i/[A[j})CP, ;. \
This howevernimplies that rank(Pen,jn|A[en])=rank(Pe”’jn), which contradicts the necessary rank

CnIn

since j, > j,. Hence A[e,] is also spanned by the columns of P, ; .
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conditions in Lemma 3.4(i) for [e,,/,] to identify an asymptotic line soliton as y — oo, Therefore
we must have j,=j,. Thus, it is not possible to have two distinct asymptotic line solitons as y
— oo associated with the same pivot index e,. Part (i) of Theorem 3.6 is now proved.

APPENDIX C: EQUIVALENCE CLASSES AND DUALITY OF SOLUTIONS

In this appendix, we investigate the relationship between two classes of KPII multisoliton
solutions with complementary sets of asymptotic line solitons. Note that the KPII equation (1.1) is
invariant under the inversion symmetry (x,y,t)— (—x,—y,—f). As a result, if u(x,y,?) is an (M
—N,N)-soliton solution of KPII with M—N incoming and N outgoing line solitons, then u(—x,
—y,—t) is a (N,M—N)-soliton solution of KPII where the numbers of incoming and outgoing line
solitons are reversed. It follows from Theorem 3.6 that the solution u(—x,—y,—t) should corre-
spond to some tau function 7y,_y,(x,y,?) associated with an M —N X M coefficient matrix whose
pivot and nonpivot columns uniquely identify the asymptotic line solitons of u(—x,—y,—t).

Before proceeding further, we introduce the notion of an equivalence class which plays an
important role in subsequent discussions. Let ® as in Definition 2.3 denote the set of all phase
combinations 0m1’---~’"1v which appear with nonvanishing coefficients in the tau function r(x,y,7) of
Eq. (2.2).

Definition C.2 (Equivalence class): Two tau functions are defined to be in the same equiva-
lence class if (up to an overall exponential phase factor) the set © is the same for both. The set of
(N_,N,)-soliton solutions of KPII generated by an equivalence class of tau functions defines an
equivalence class of solutions.

It is clear from the above definition that tau functions in a given equivalence class can be
viewed as positive-definite sums of the same exponential phase combinations but with different
sets of coefficients. They are parametrized by the same set of phase parameters ki, ...,k but the
constants 6,,, in the phase 6,, are different. Moreover, the irreducible coefficient matrices associ-
ated with the tau functions have exactly the same sets of vanishing and nonvanishing minors, but
the magnitudes of the nonvanishing minors are different for different matrices. Thus, it is evident
from the remarks following Corollary 2.6 in Sec. II that the asymptotic line solitons of each
solution in an equivalence class arise from the same i — j single phase transition, and are therefore
labeled by the same index pair [i,j]. Theorem 3.6 then implies that the coefficient matrices
associated with the tau functions in the same equivalence class have identical sets of pivot and
nonpivot indices labeling the asymptotic line solitons as y — % and as y — —, respectively. Thus,
solutions in the same equivalence class can differ only in the position of each asymptotic line
solitons and in the location of each interaction vertex. As a result, any (N_,N,)-soliton solution of
KPII can be transformed into any other solution in the same equivalence class by spatio-temporal
translations of the individual asymptotic line solitons. We refer to the two tau functions
Tym(x,y,1) and 7,y (x,y,1) as dual to each other if the solution u(—x,—y,—1) obtained from the
function 7y (—x,—y,—t) and the solution generated by 7),_y (x,y,?) are in the same equivalence
class. Note that 7y ,/(—x,—y,—1) is not exactly a tau function according to Eq. (2.2), but it is
possible to construct from it a dual tau function 7,_y ,(x,y,t) whose coefficient matrix B can be
derived from the coefficient matrix A associated with the tau function TN!M(x,y,t). We describe
this construction below.

Since A is of rank N and in RRFF, it can be expressed as A=[Iy,G]P, where Iy is the N
X N identify matrix of pivot columns, G is the N X (M—N) matrix of nonpivot columns, and P
denotes the M X M permutation matrix of M columns of A. We augment A with M —N additional
rows to form the invertible M X M matrix,

Iy G
S= ( N )P, (C1)
O Iyny

where O is the (M—=N) X N zero matrix and I,,_ is the (M —N) X (M —N) identify matrix. Let A’
be the (M ~—N) X M matrix obtained by selecting the last M —N rows of (S™')7. The rank of A’ is
M —N, and the following complementarity relation holds between A and A’.
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Lemma C.3: The pivot columns of A’ are labeled by exactly the same set of indices which
label the nonpivot columns of A, and vice versa. Moreover, if A is irreducible then A’ is also
irreducible.

Proof: From Eq. (C1) and the fact that P~'=P” for a permutation matrix, we obtain

T
(S")T=< INT ¢ )P, (C2)
-G Iy

which implies that A’ =[-G7,I,,_y]P. Then (by performing row reduction in reverse order), the
pivot columns of A’P~! can be identified with its last M—N columns which correspond to the
nonpivot columns of AP‘1=[I v»G1, and vice versa. The same correspondence between pivot and
nonpivot columns also holds for A and A’ because the columns of both matrices are permuted by
the same matrix P~!. This proves the first part of the lemma.

To establish that A’ is irreducible, note first from Definition 2.2 that the permutation of
columns preserves irreducibility of a matrix. Since A is irreducible, Definition 2.2 implies that all
rows or columns of G and G are nonzero. Therefore the matrix A’ P~'=[-G”,I,,_y], and hence
A’, are both irreducible. O

Note that A’ is not in the canonical RREF, but can be set in RREF by a GL (N, R) transfor-
mation. Next, we define the matrix B which is also of rank M —N and irreducible like A’, and
whose columns are obtained from A’ as

Blm]=(-1)"A"[m], m=1,...,M. (C3)

Then using Egs. (C2) and (C3), the minors of A can be expressed in terms of the complementary
minors of B via (see, e.g., Ref. 6, p. 21)

A(ll, ,IN) = (— 1)0. det(P)B(ml, ,mM_N), (C4)

where o=M(M+1)/2+N(N+1)/2, and where the indices m; <m,< -+ <my,_y are the comple-
ment of 1</, <L, <---lyin{l,2,...,M}. The matrix B plays the role of a coefficient matrix for
the dual tau function as given by the following lemma.

Lemma C.4 (Duality): If 7y y(x,y,t) is the tau function associated with an irreducible N
XM coefficient matrix A, then the matrix B defined via Eq. (C3) generates a tau function
Ty-nm(X,y,1) that is dual to Ty y(x,y,1).

Proof: Without loss of generality we choose the tau function 7y ,(x,y,?) associated with the
given equivalence class of solutions such that 6,,,=0 for all m=1, ..., M in Eq. (2.2). Then, using
Eq. (C4) we can express the tau function as

Tyu(=x,—y,—=(-1)7 det(P)e 1...m7 (x,y,1), (C5a)

where

7 (x,y.1) = > V(s .. ) B(my, ... smyy_y)e by, (C5b)

1<m1<mz<---<mM_N£M

with V(l,,...,ly) denoting the Van der Monde determinant as in Eq. (2.2) and where the sum
is now taken over the complementary indices my,...,m,_y instead of I,...,ly. [The number
of terms in the sum remains the same since (%):( MA:IN).] It is clear from Eq. (1.2) that both
Tyu(=x,—y,—t) and 7'(x,y,r) in Eq. (C5a) generate the same solution u(x,y,) of KPII although
7' (x,y,t) itself is not a tau function. Note that all the nonzero minors of B have the same sign,
which is determined by the sign of (—1)? det(P)>0. Thus, by replacing each Van der Monde
coefficient V(1,,...,Iy) by V(m,,...,my_y) in Eq. (C5b), it is possible to obtain from 7'(x,y,?), a
new tau function 7),_y(x,y,?) associated with the irreducible coefficient matrix B. Since both
7 (x,y,t) and 7y (x,y,1) are sign-definite sums of the same exponential phase combinations,
they generate solutions that are in the same equivalence class. Therefore, the tau function
Ty-nm(X,,1) constructed via the above prescription is dual to the tau function 7y ,(x,y,?). This
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yields the desired result. O

By applying Lemma C.4, it is easy to show that part (i) of Theorem 3.6 implies part (i) and
vice versa. For example, by applying part (i) of Theorem 3.6 to the tau function 7,_y 5/(x,y,?) in
Lemma C.4 one can conclude that as y— o, 7),_y(x,y,?) generate a solution with exactly M
—N line solitons, identified by the pivot indices gy, ..., gy_y of the associated coefficient matrix B.
One should however note that since the ordering of the pivot and nonpivot columns of B is
reversed with respect to that of A, if [i,j] with i <j labels an asymptotic line soliton generated by
Ty_nm(x,y,1) as y—oo, then j is the pivot index, not i. The solution generated by 7y, y /(x,y,1)
is in the same equivalence class as u(—x,—y,—t) because 7y _y/(x,y,?) is dual to 7 y(x,y,1).
Consequently, as y— o0, u(—x,—y,—t) has M—N asymptotic line solitons labeled by exactly the

same indices g;,...,gy_y- Then as y——o, it follows that the solution u(x,y,t) generated by
Ty p(x,y,1) also has M —N asymptotic line solitons. Furthermore, these line solitons are labeled by
the same indices g, ... ,gy_y Which are the nonpivot indices of the coefficient matrix A of the tau

function 7y ,(x,y,?). This proves part (ii) of Theorem 3.6. Similarly, one could also prove part (i)
of the Theorem using part (i) and Lemma C.4.

Another consequence of Lemma C.4 is that the dominant pairs of phase combinations for the
asymptotic line solitons of 7,,_y y(x,y,?) as y — o are the complement of those for the asymptotic
line solitons of the dual tau function 7y ,(x,y,?) as y— —. Thus, if the dominant pair of phase

combinations for 7y, _y(x,y,f) as y—o along the line L;; is given by ai’mz"'“mM—N and
m,...m,,_,» the dominant phase combinations for Tvum(X,y,t) as y—— along L;; are Oin,...0,
and 6;;, ;. where the index set {l,...,ly} is the complement of {i,j,m,,...,my_x} in
{1,...,M}.

A particularly interesting subclass of (N_,N,)-soliton solutions is obtained by requiring the
solutions u(x,y,f) and u(-x,—y,—f) to be in the same equivalence class. Thus, this class of
solutions is generated tau functions which can be regarded as “self-dual.” The corresponding
solutions are the elastic N-soliton solutions of KPII, for which the amplitudes and directions of the
N incoming line solitons coincide with those of the N outgoing line solitons. Hence, the set of
incoming line solitons and the set of outgoing line solitons are both labeled by the same index
pairs {[i,,j,J}\,. Clearly, in this case we have N,=N_=N and M=2N. Some properties of the
elastic N-soliton solution have been studied in Ref. 12, and we will discuss several other properties
in a future presentation. Here we only mention one result which is a direct consequence of
Theorem 3.6 and the above discussions:

Corollary C.5: A necessary condition for a set of index pairs {[i,,j,J}\., to describe an elastic

N-soliton solution is that the indices i,...,iy and ji,...,jy form a disjoint partition of the
integers 1,...,2N.

Proof: From part (i) of Theorem 3.6, the indices iy, ..., iy for the N asymptotic line solitons as
y— oo label the pivot columns of A, and from part (ii) of Theorem 3.6, the indices j, ..., jy for the

N asymptotic line solitons as y——oo label the nonpivot columns of A. In order for the N
asymptotic line solitons as y——% to be the same as those as y— %, however, the index pairs
[i,.j,] must obviously be the same as y— + for all n=1,...,N. But the sets of pivot and
nonpivot indices of any matrix are of course disjoint; hence the desired result. ([

Note however that the condition in Corollary C.5 is necessary but not sufficient to describe an
elastic N-soliton solution. It is indeed possible to have N-soliton solutions where the index pairs
labeling the asymptotic line solitons as y— % and as y — —o form two different disjoint partition
of integers {1,2,...,2N}. Such N-soliton solutions are not elastic. See, for example, the 2-soliton
solution in Fig. 4(e).
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