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oliton solutions of the Kadomtsev-Petviashvili II equation
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We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II
�KPII� equation by investigating the Wronskian form of its tau-function. We show
that, in addition to the previously known line soliton solutions of KPII, this class
also contains a large variety of multisoliton solutions, many of which exhibit non-
trivial spatial interaction patterns. We also show that, in general, such solutions
consist of unequal numbers of incoming and outgoing line solitons. From the
asymptotic analysis of the tau function, we explicitly characterize the incoming and
outgoing line solitons of this class of solutions. We illustrate these results by dis-
cussing several examples. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2181907�

. INTRODUCTION

The Kadomtsev-Petviashvili �KP� equation

�

�x
�− 4

�u

�t
+

�3u

�x3 + 6u
�u

�x
� + 3� 2�2u

�y2 = 0, �1.1�

here u=u�x ,y , t� and � 2= ±1, is one of the prototypical �2+1�-dimensional integrable nonlinear
artial differential equations. The case � 2=−1 is known as the KPI equation, and � 2=1 as the
PII equation. Originally derived11 as a model for small-amplitude, long-wavelength, weakly

wo-dimensional �y-variation much slower than the x-variation� solitary waves in a weakly dis-
ersive medium, the KP equation arises in disparate physical settings including water waves and
lasmas, astrophysics, cosmology, optics, magnetics, anisotropic two-dimensional lattices, and
ose-Einstein condensation. The remarkably rich mathematical structure underlying the KP equa-

ion, its integrability and large classes of exact solutions have been studied extensively for the past
0 years, and are documented in several monographs.1,3,8,15,18,21

In this paper we study a large class of solitary wave solutions of the KPII equation. It is well
nown �e.g., see Refs. 5 and 15� that solutions of the KPII equation can be expressed as

u�x,y,t� = 2
�2

�x2 ln ��x,y,t� , �1.2�

here the tau function ��x ,y , t� is given in terms of the Wronskian determinant7,15
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��x,y,t� = Wr�f1, . . . , fN� = det�
f1 f2 ¯ fN

f1� f2� ¯ fN�

] ] ]

f1
�N−1� f2

�N−1�
¯ fN

�N−1�
� . �1.3�

ith f �i�=�i f /�xi, and where the functions f1 , . . . , fN are a set of linearly independent solutions of
he linear system

�f

�y
=

�2f

�x2 ,
�f

�t
=

�3f

�x3 . �1.4�

quations �1.2� and �1.3� can also be obtained as the N-fold Darboux transformation for KPII
Ref. 15� starting from a seed solution u=0. In fact, the functions f1 , . . . , fN in Eqs. �1.3� are
recisely N independent solutions of the KPII Lax pair: �yf −�x

2f +uf =0 and �t f −�x
3f +6u��xu�f

3��x
−1�yu�f =0, with u=0. A one-soliton solution of the KPII equation is obtained by choosing

=1 and f�x ,y , t�=e�1 +e�2, where

�m�x,y,t� = kmx + km
2 y + km

3 t + �m,0 �1.5�

ith km ,�m,0�R, m=1,2 and with k1�k2 for nontrivial solutions. Without loss of generality, one
an order the parameters as k1�k2. The above choice yields the following traveling-wave solu-
ion:

u�x,y,t� = 1
2 �k2 − k1�2 sech2 1

2 ��2 − �1� = ��k · x + �t� , �1.6�

here x= �x ,y�. The wave-vector k= �lx , ly� and the frequency � are given by

k = �k1 − k2,k1
2 − k2

2�, � = k1
3 − k2

3, �1.7�

nd they satisfy the nonlinear dispersion relation

− 4�lx + lx
4 + 3ly

2 = 0. �1.8�

he solution in Eq. �1.6� is localized along points satisfying �1=�2, which defines a line in the xy
lane, for fixed t. Such solitary wave solutions of the KPII equation are thus called line solitons.
hey are stable with respect to transverse perturbations unlike the KPI �Eq. �1.1� with � 2=−1�

ine-soliton solutions which are not stable with respect to small transverse perturbations. Equation
1.6� also implies that, apart from the constant �1,0−�2,0 corresponding to an overall translation of
he solution, a line soliton of KPII is characterized by either the phase parameters k1 ,k2, or the
hysical parameters, namely, the soliton amplitude a and the soliton direction c, defined, respec-
ively, as

a = k2 − k1, c = k1 + k2. �1.9�

ote that c=tan �, where � is the angle, measured counterclockwise, between the line soliton and
he positive y axis. Hence, the soliton direction c can also be viewed as the “velocity” of the
oliton in the xy plane, c=−dx /dy= ly / lx. For any given choice of amplitude and direction of the
oliton, one obtains the phase parameters k1,2 uniquely as k1= 1

2 �c−a� and k2= 1
2 �c+a�.

When c=0 �equivalently, k1=−k2�, the solution in Eq. �1.6� becomes y-independent and re-
uces to the one-soliton solution of the Korteweg-de Vries �KdV� equation. Similar to KdV, it is
lso possible to obtain multisoliton solutions of the KPII equation. Each of the multisoliton
olutions decay exponentially in the xy plane, except along a number of rays or line solitons as

y→ ±�. These line solitons are sorted according to their directions, with increasing values of c
rom left to right as y→−� and increasing values of c from right to left as y→�. However, the
ultisoliton solution space of the KPII equation turns out to be much richer than that of the �1

1�-dimensional KdV equation due to the dependence of the KPII solutions on the additional
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patial variable y. It is possible to construct a general family of multisoliton solutions via the
ronskian of Eq. �1.3� by choosing M phases �1 , . . . ,�M defined as in Eq. �1.5� with distinct real

hase parameters k1�k2� ¯ �kM and then defining the functions f1 , . . . , fN in Eq. �1.3� by

fn�x,y,t� = 	
m=1

M

an,me�m, n = 1,2, . . . ,N . �1.10�

he constant coefficients an,m define the N	M coefficient matrix Aª �an,m�, which is required to
e of full rank �i.e., rank�A�=N� and all of whose nonzero N	N minors must be sign definite. The
ull rank condition is necessary and sufficient for the functions fn in Eq. �1.10� to be linearly
ndependent. The sign definiteness of the nonzero minors is sufficient to ensure that the tau
unction ��x ,y , t� has no zeros in the xy plane for all t, so that the KPII solution u�x ,y , t� resulting
rom Eq. �1.2� is nonsingular.

One of the main results of this work �cf. Theorem 3.6� is to show that, when the coefficient
atrix A satisfies certain conditions �cf. Definition 2.2�, Eq. �1.10� leads to a multisoliton con-
guration with N− asymptotic line solitons as y→−� and N+ asymptotic line solitons as y→�,
here N−=M −N and N+=N. Furthermore, each of the asymptotic line solitons has the form of a
lane wave similar to the one-soliton solution in Eq. �1.6�. We refer to these multisoliton configu-
ations the �N− ,N+�-soliton solutions of KPII, and call the asymptotic line solitons as y→−� and
s y→� the incoming and outgoing line solitons, respectively. The amplitudes, directions and
ven the number of incoming solitons are in general different from those of the outgoing ones,
epending on the values of M ,N, the phase parameters k1 , . . . ,kM and the coefficient matrix A. We
ote that a special family of KPII �N− ,N+�-soliton solutions which also satisfy the finite Toda
attice hierarchy, was found earlier in Ref. 2. In this paper, we generalize the results of Ref. 2 to
he entire class of �N− ,N+�-soliton solutions of KPII generated by arbitrary coefficient matrices A.
hese solutions exhibit a variety of spatial interaction patterns which include the formation of

ntermediate line solitons and web structures in the xy plane.2,12,16,23 In contrast, the line solitons
or the previously known5,15,24ordinary soliton solutions of KPII �cf. Sec. IV� and the KdV soli-
ons experience only a phase shift after collision. The existence of these nontrivial spatial features
as found to be related to the presence of resonant soliton interactions in some earlier

tudies.4,17,19,22 Several examples of these �N− ,N+�-soliton solutions of KPII are discussed
hroughout this work �e.g., see Figs. 1–4�. If M =2N, it follows from Theorem 3.6 that N−=N+

N, i.e., the numbers incoming and outgoing asymptotic line solitons are the same. We call the
esulting solutions the N-soliton solutions of KPII. Among these, there is an important subclass
alled the elastic N-soliton solutions, for which the amplitudes and directions of the out-going line
olitons coincide with those of the incoming line solitons. Elastic N-soliton solutions possess a
umber of interesting features, some of which have been studied in Ref. 12. A detailed study of the
pecific properties of the elastic N-solutions will be reported in a future presentation.

We note that multisoliton solutions exhibiting nontrivial spatial structures and interaction
atterns were also recently found in other �2+1�-dimensional integrable equations. For example,
olutions with soliton resonance and web structure were presented in Refs. 9 and 10 for a coupled
P system, and similar solutions were also found in Ref. 14 in discrete soliton systems such as the

wo-dimensional Toda lattice, together with its fully discrete and ultradiscrete analogues. From
hese works, the existence of these solutions appears to be a rather common feature of
2+1�-dimensional integrable systems. Thus, we expect that the scope of the results described in
his paper will not be limited to the KP equation alone, but will also be applicable to a variety of
ther �2+1�-dimensional integrable systems.

I. THE TAU FUNCTION AND THE ASYMPTOTIC LINE SOLITONS

In this section we investigate the properties of the tau function given by Eq. �1.3� when the N
unctions f1 , . . . , fN are chosen according to Eq. �1.10� as linear combinations of M exponentials
�1 , . . . ,e�M. We should emphasize that Eq. �1.10� represents the most general form for the func-

ions involving linear combinations of exponential phases. Since the elements of the N	M coef-
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cient matrix A= �an,m� are the linear combination coefficients of the functions f1 , . . . , fN, one can
aturally identify each fn with one of the rows of A and each phase �m with one of the columns of
, and vice versa. Next, we examine the asymptotic behavior of the tau function in the xy plane as

y→ ±�. It is clear that, with the above choice of functions, the tau function is a linear combination
f exponentials. Consequently, the leading order behavior of the tau function as y→ ±� in a given
symptotic sector of the xy plane is governed by those exponential terms which are dominant in
hat sector. A systematic analysis of the dominant exponential phases allows us to characterize the
ncoming and outgoing line solitons of �N− ,N+�-soliton solutions of KPII.

. Basic properties of the tau function

We present here some general properties of the tau function. Without loss of generality,
hroughout this work we choose the phase parameters km to be distinct and well ordered as k1

k2� ¯ �kM.
Lemma 2.1: Suppose �N,M =Wr�f1 , . . . , fN� as in Eq. �1.3� with the functions f1 , . . . , fN given by

q. �1.10�. Then

�N,M�x,y,t� = det�A
KT� , �2.1�

here A= �an,m� is the N	M coefficient matrix, 
=diag�e�1 , . . . ,e�M�, and the N	M matrix K is
iven by

K =�
1 1 ¯ 1

k1 k2 ¯ kM

] ] ]

k1
N−1 k2

N−1
¯ kM

N−1
� ,

here the superscript T denotes matrix transpose. Moreover, �N,M can be expressed as

�N,M�x,y,t� = 	
1�m1�m2�¯�mN�M

V�m1, . . . ,mN�A�m1, . . . ,mN�exp��m1,. . .,mN
� , �2.2�

here �m1,. . .,mN
denotes the phase combination

�m1,. . .,mN
�x,y,t� = �m1

�x,y,t� + ¯ + �mN
�x,y,t� , �2.3�

�m1 , . . . ,mN� denotes the N	N minor of A obtained by selecting columns m1 , . . . ,mN, and
�m1 , . . . ,mN� denotes the Van der Monde determinant

V�m1, . . . ,mN� = 

1�s1�s2�N

�kms2
− kms1

� . �2.4�

Proof: Equation �2.1� follows by direct computation of the Wronskian determinant �1.3�. Next,
o prove Eq. �2.2� apply the Binet-Cauchy theorem to expand the determinant in Eq. �2.1� and note
hat the N	N minor of K obtained by selecting columns 1�m1� ¯ �mN�M is given by the
an der Monde determinant V�m1 , . . . ,mN�. �

From Lemma 2.1 we have the following basic properties of the tau function:

i� The spatiotemporal dependence of the tau function in Eq. �2.2� is confined to a sum of
exponential phase combinations �m1,. . .,mN

which according to Eq. �2.3� are linear in x ,y , t.
Moreover, all the Van der Monde determinants V�m1 , . . . ,mN� are positive, as the phase
parameters k1 , . . . ,kM are well ordered. A sufficient condition for the tau function in Eq.
�2.2� to generate a nonsingular solution of KPII is that it is sign-definite for all �x ,y , t�
�R3. In turn, a sufficient condition for the sign-definiteness of the tau-function is that the

minors of the coefficient matrix A are either all non-negative or all nonpositive. However,
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it is not clear at present whether these conditions are also necessary. If the tau function in
Eq. �2.2� is taken as a sum of exponential phase combinations with non-negative coeffi-
cients, the solution u�x ,y , t� in Eq. �1.2� can be expressed as a ratio of two sums, each
containing the same set of exponential terms, and with non-negative coefficients. Conse-
quently, the resulting solution of KPII is bounded and positive definite for all �x ,y , t�
�R3.

ii� Each exponential term in the tau function of Eq. �2.2� contains combinations of N distinct
phases �m1

, . . . ,�mN
identified by integers m1 , . . . ,mN chosen from �1, . . . ,M�. Thus, the

maximum number of terms in the tau function is given by the binomial coefficient � M
N

�.
However, a given phase combination �m1,. . .,mN

is actually present in the tau function if and
only if the corresponding minor A�m1 , . . . ,mN� is nonzero.

iii� If M �N the functions f1 , . . . , fN are linearly dependent; in this case there are no terms in
the summation in Eq. �2.2�, and therefore the tau function �N,M�x ,y , t� is identically zero.
Also, if M =N, there is only one term in the summation corresponding to the determinant of
A; then �N,M�x ,y , t� depends linearly on x and therefore it generates the trivial solution
u�x ,y , t�=0. Finally, if rank�A��N, all N	N minors of A vanish identically, leading once
again to �N,M�x ,y , t�=0. Therefore, for nontrivial solutions one needs M �N and rank�A�
=N.

iv� The transformation A→A�=GA with G�GL�N ,R� �corresponding to elementary row op-
erations on A� amounts to an overall rescaling ��x ,y , t�→���x ,y , t�=det�G���x ,y , t� of the
tau function �2.1�. Such rescaling leaves the solution u�x ,y , t� in Eq. �1.2� invariant. This
reflects the fact that N independent linear combinations of the functions f1 , . . . , fN in Eq.
�1.10� generate equivalent tau functions. This GL�N ,R� gauge freedom can be exploited to
choose the coefficient matrix A in Eq. �2.1� to be in reduced row-echelon form �RREF�.
The GL�N ,R� invariance means that the tau function �2.1� represents a point in the real
Grassmannian Gr�N ,M�.12

v� Suppose that one of the functions in Eq. �1.10� contains only one exponential term, and is
given by fp=ap,qe�q with ap,m=0 "m�q. Then, the minors A�m1 , . . . ,mN�=0 whenever
q� �m1 , . . . ,mN�. As a result, the tau function in Eq. �2.2� can be expressed as
�N,M�x ,y , t�=e�q���x ,y , t�, and ���x ,y , t� is a sum of exponential phase combinations, where
each combination consists of N−1 distinct phases chosen from all M phases except �q.
From Eq. �1.2� it is evident that �N,M�x ,y , t� and ���x ,y , t� generate the same solution of
KPII. Moreover, the function ���x ,y , t� is effectively equivalent to a tau function
�N−1,M−1�x ,y , t� with a coefficient matrix obtained by deleting the pth row and qth column
of A. Hence in this case the tau function �N,M�x ,y , t� is reducible to another tau function
�N−1,M−1�x ,y , t� obtained from a Wronskian of N−1 functions with M −1 distinct phases.

In accordance with the above remarks, throughout this work we consider the coefficient
atrix A to be in RREF. Also, to avoid trivial and singular cases, from now on we assume that

M �N and rank�A�=N, and that all nonzero N	N minors of A are positive. Finally, we assume
hat A satisfies the following irreducibility conditions.

Definition 2.2 (Irreducibility): A matrix A of rank N is said to be irreducible if, in RREF:

i� Each column of A contains at least one nonzero element.
ii� Each row of A contains at least one nonzero element in addition to the pivot.

ondition �i� in Definition 2.2 requires that each exponential phase appear in at least one of the
unctions f1 , . . . , fN. If a particular phase is absent, then the corresponding tau function �N,M can be
eexpressed in terms of a reduced tau function �N,M−1. Condition �ii� requires that each function
ontains at least two exponential phases in order to avoid reducible situations like those in part �v�

f the above remarks. Note also that if an N	M matrix A is irreducible, then M �N.
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. Dominant phase combinations and index pairs

We now study the asymptotic behavior of the tau function in the xy-plane for large values of
y
 and finite values of t. Let 
 denote the set of all phase combinations �m1,. . .,mN

such that
�m1 , . . . ,mN��0, that is, the set of phase combinations that are actually present in the tau

unction ��x ,y , t�.
Definition 2.3 (Dominant phase): A given phase combination �m1,. . .,mN

�
 is said to be

ominant for the tau function ��x ,y , t� of Eq. �2.2� in a region R�R3 if �m1�,. . .,mN�
�x ,y , t�

�m1,. . .,mN
�x ,y , t� for all �m1�,. . .,mN�

�
 and for all �x ,y , t��R. The region R is called the dominant
egion of �m1,. . .,mN

.
The phase combinations �m1,. . .,mN

�x ,y , t� are linear functions of x, y, and t. So, each of the
nequalities in Definition 2.3 defines a convex subset of R3. The dominant region R associated
ith each phase combination is also convex because it is defined by the intersection of finitely
any convex subsets. Furthermore, since the phase combinations are defined globally on R3, each

oint �x ,y , t��R3 belongs to some dominant region R. As a result, we obtain a partition of the
ntire R3 into a finite number of convex dominant regions, intersecting only at points on the
oundaries of each region. It is important to note that such boundaries always exist whenever there
s more than one phase combination in the tau function, because then there are more than one
ominant region in R3. The significant of the dominant regions lies in the following:

Lemma 2.4: The solution u�x ,y , t� of the KPII equation generated by the tau function �2.2� is
xponentially small at all points in the interior of any dominant region. Thus, the solution is
ocalized only at the boundaries of the dominant regions, where a balance exists between two or
ore dominant phase combinations in the tau function of Eq. �2.2�.

Proof: Let R be the dominant region of �m1,. . .,mN
, which is therefore the only dominant phase

n the interior of R. Then from Eq. �2.2�, �N,M�x ,y , t��O�e�m1,. . .,mN� in the interior of R. As a result,
n �N,M�x ,y , t� locally becomes a linear function of x apart from exponentially small terms. Hence,
t follows from Eq. �1.2� that the solution u�x ,y , t� of KPII is exponentially small at all such
nterior points of R. �

The boundary between any two adjacent dominant regions is the set of points across which a
ransition from one dominant phase combination �m1,. . .,mN

to another dominant phase combination

m1�,. . .,mN�
takes place. Such boundary is therefore identified by the equation �m1,. . .,mN

=�m1�,. . .,mN�
,

hich defines a line in the xy plane for fixed values of t. The simplest instance of a transition
etween dominant phase combinations arises for the one-soliton solution �1.6�, which is localized
long the line �1=�2 defining the boundary of the two regions of the xy plane where �1 and �2

ominate. In the one-soliton case, these two regions are simply half-planes. But in the general case
he dominant regions are more complicated, although the solution u�x ,y , t� is still localized along
he boundaries of these regions, corresponding to similar phase transitions. For example, Fig. 1�a�
llustrates a �2,1�-soliton known as a Miles resonance17 �also called a Y junction�, generated by the
au function �1,2=e�1 +e�2 +e�3. In this case, the xy plane is partitioned into three dominant regions
orresponding to each of the dominant phases �1, �2, and �3. Once again, the solution u�x ,y , t� is
xponentially small in the interior of each dominant regions, and is localized along the phase
ransition boundaries: here, �1=�2, �1=�3, and �2=�3. It should also be noted that some of these
egions have infinite extension in the xy plane, while others are bounded, as in the case of resonant
oliton solutions, described in Sec. IV and Ref. 2. Each phase transition which occurs asymptoti-
ally as y→ ±� defines an asymptotic line soliton, which is infinitely extended in the xy plane.

When studying the asymptotics of the tau function for large 
y
 it is useful to consider the limit
y→ ±� along the straight lines

Lc:x + cy = 
 , �2.5�

arametrized by the direction c. Note that c increases counterclockwise, namely from the positive

axis to the negative x axis for y�0 and from the negative x axis to the positive x axis for y
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0. From Eqs. �1.5� and �2.5�, each exponential phases along Lc is �m=km�km−c�y+km
+km
3 t

�m,0. The difference between two such phases along Lc then becomes

�m − �m� = �km − km���km + km� − c�y + �km − km��
 + �km
3 − km�

3 �t + �m,0 − �m�,0, �2.6a�

nd the difference between any two phase combinations along Lc is given by

�m1,. . .,mN
− �m1�,. . .,mN�

= �	
j=1

N

�kmj − kmj�
��kmj

+ kmj�
− c��y + ��
,t� , �2.6b�

here ��
 , t�=	 j=1
N ��kmj

−kmj�
�
+ �kmj

3 −kmj�
3 �t+�mj,0

−�mj�,0�. In particular, the single-phase-

ransition line Lm,m� :�m=�m� given by Eq. �2.5� with cm,m�=km+km�, will play an important role
elow.

It is also convenient at this point to introduce the following notations which will be employed
hroughout this paper. We denote by A�m��RN the mth column of a matrix A, and we denote by
�m1 , . . . ,mr� the N	r submatrix obtained by selecting the r columns A�m1� , . . . ,A�mr�. We also

abel the N pivot columns of an irreducible, N	M matrix A by A�e1� , . . . ,A�eN�, with 1=e1

e2� ¯ �eN�M, and we label the M −N nonpivot columns by A�g1� , . . . ,A�gM−N�, where 1
g1�g2� ¯ �gM−N=M. Note that A has N pivot columns because it is rank N; also, e1=1 since
is in RREF, and eN�M since it is irreducible. We now establish a result that will be useful in

rder to characterize the asymptotics of the tau function.
Theorem 2.5: (Single-phase transition) Asymptotically as y→ ±�, and for generic values of

he phase parameters k1 , . . . ,kM, the dominant phase combinations in the tau function �2.2� exhibit
he following behaviors in the xy plane.

i� For finite values of t, the set of dominant phase combinations remains invariant in time.
ii� The dominant phase combinations in any two adjacent dominant regions contain N−1

common phases.

e discuss below several consequences of Theorem 2.5 which is proved in the Appendix.
Consider the single-phase transition as y→ ±� in which a phase �i from the dominant phase

ombination in one region is replaced by another phase � j to produce the dominant phase com-
ination in the adjacent region. We refer to this transition as an i→ j transition, which takes place

IG. 1. Dominant phase combinations in the different regions of the xy plane �labeled by the indices in parentheses� and
he asymptotic line solitons �labeled by the indices in square braces� for two different line soliton solutions: �a� a
undamental Miles resonance �Y junction� produced by the tau function with N=1, M =3 and �k1 ,k2 ,k3�= �−1,0 , 1

2
� at t

0; �b� an ordinary two-soliton solution, produced by the coefficient matrix in Example 2.7 with �k1 , . . . ,k4�= �− 3
2 ,

1
2 ,0 ,1� at t=0 �see text for details�. Here and in all of the following figures, the horizontal and vertical axes are,

espectively, x and y, and the graphs show contour lines of ln u�x ,y , t� at a fixed value of t.
long the line Lij :�i=� j whose direction in the xy plane is given by cij =ki+kj. As y→�, it is clear
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rom Eq. �2.6a� that, if ki�kj, the transition i→ j takes place from the left of the line Li,j to its
ight, while if ki�kj the transition i→ j takes place from the right of the line Li,j to its left. Thus,
s y→�, each dominant phase region R is bounded on the left by the transition line Li,j given by
he minimum value of ci,j that corresponds to an allowed transition and, on the right by the
ransition line Li,j given by the maximum value of ci,j that corresponds to an allowed transition.
ere, an allowed transition from one dominant phase combination to another means that the
inors associated with those phase combinations in the tau function of Eq. �2.2�, are both nonzero.

n turn, these nonvanishing minors determine the values of cij corresponding to the allowed
ingle-phase transitions. A similar statement can be made for transitions occurring as y→−�. So,
ach dominant phase region R as y→ ±� has boundaries defined by a counterclockwise and a
lockwise single-phase transitions which can be determined in the following way.

Corollary 2.6: Suppose that �m1,. . .,mN
is the dominant phase combination on a region R

symptotically as y→ ±�. Let J be the complement of the set of indices �m1 ,m2 , . . . ,mN� in
1,2 , . . . ,M�. For each j�J, define Ij � �m1 ,m2 , . . . ,mN� as the set of all indices mr

�m1 ,m2 , . . . ,mN� such that the minor A�m1 , . . . ,mr−1 , j ,mr+1 , . . . ,mN��0. Then, the following
old.

i� As y→�, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

c+ = min
i�Ij,j�J

�ci,j� with ki � kj, c− = max
i�Ij,j�J

�ci,j� with ki � kj . �2.7a�

ii� As y→−�, the directions of the counterclockwise and clockwise transition boundaries of R
are, respectively, given by

c+ = min
i�Ij,j�J

�ci,j� with ki � kj, c− = max
i�Ij,j�J

�ci,j� with ki � kj . �2.7b�

The results of Theorem 2.5 and Corollary 2.6 can be used to determine the asymptotic
ehavior of the tau function, thereby obtaining an important characterization of the asymptotic line
olitons corresponding to �N− ,N+�-soliton solutions of the KPII equation. Namely, for the tau
unction �N,M�x ,y , t� of Eq. �2.2� with generic values of the phase parameters k1 , . . . ,kM we have
he following:

i� As y→ ±�, the dominant phase combinations of the tau function in adjacent regions of the
xy plane contain N−1 common phases and differ by only a single phase. The transition
between any two such dominant phase combinations �i,m2,. . .,mN

and � j,m2,. . .,mN
occurs along

the line Li,j :�i=� j, where a single phase �i in the dominant phase combination is replaced
by a phase � j. Moreover, if the dominant phase combination �i,m2,. . .,mN

in a given region is
known, the transition line Li,j and the dominant phase combination � j,m2,. . .,mN

are deter-
mined via Corollary 2.6. In particular, Eqs. �2.7� for c± determine explicitly the pair of
phase parameters ki and kj corresponding to the single-phase transition i→ j across each
boundary Li,j of a given dominant phase region.

ii� As y→ ±� along the line Li,j, the asymptotic behavior of the tau function is determined by
the balance between the two dominant phase combinations �i,m2,. . .,mN

and � j,m2,. . .,mN
, and is

given by

�N,M�x,y,t� � ViA�i,m2, . . . ,mN�e�i,m2,. . .,mN + VjA�j,m2, . . . ,mN�e�j,m2,. . .,mN,

where ViªV�i ,m2 , . . . ,mN� and VjªV�j ,m2 , . . . ,mN� are Van der Monde determinants
defined in Eq. �2.4�, and where the minors A�i ,m2 , . . . ,mN� and A�j ,m2 , . . . ,mN� of the
coefficient matrix A are both nonzero. The solution u�x ,y , t� of the KPII equation in a

neighborhood of such a single-phase transition is then obtained from Eq. �1.2� as

 Mar 2006 to 128.205.114.91. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



�

u
s
c
�

b

w
t
f

T
t
f
v
m
o
b

b
→
g
=
f
E
l
d
C
p
t
t
c
a

033514-9 Line solitons of the KP II equation J. Math. Phys. 47, 033514 �2006�

Downloaded 31
u�x,y,t� � 1
2 �ki − kj�2 sech2� 1

2 ��i − � j�� . �2.8�

Moreover, Lemma 2.4 and Theorem 2.5 together imply that the solution of the KPII
equation is exponentially small everywhere in the xy-plane except at the locations of such
single-phase transitions. Equation �2.8�, which is a traveling wave solution satisfying the
dispersion relation in Eq. �1.8�, coincides with the one-soliton solution in Eq. �1.6�. Thus,
it defines an asymptotic line soliton associated with the single-phase transition i→ j. The
phase parameters ki and kj associated with the single-phase transition i→ j are determined
by Eqs. �2.7�. Then, the soliton amplitude is given by ai,j = 
ki−kj
, and the soliton direction
is given by the direction of Li,j, which is ci,j =ki+kj.

iii� All of the asymptotic line solitons resulting from the single-phase transitions described
above are invariant in time, in the sense that their number, amplitudes, and directions are
constants.

Motivated by these results, we label each asymptotic line soliton by the index pair �i , j� which
niquely identifies the phase parameters ki and kj in the ordered set �k1 , . . . ,kM�. The results
ummarized in the above remarks can be applied to explicitly delineate the dominant phase
ombinations and the asymptotic line solitons associated with the tau function of a given
N− ,N+�-soliton solution of the KPII equation, as illustrated by the following example.

Example 2.7: When N=2 and M =4, Lemma 2.1 implies that the tau function ��x ,y , t� is given
y

��x,y,t� = Wr�f1, f2� = 	
1�m�m��4

�km� − km�A�m,m��e�m+�m�, �2.9�

here the phases are given by �m=kmx+km
2 y+km

3 t+�m,0 for m=1, . . . ,4, as in Eq. �1.5�, and where
he phase parameters are ordered as k1� ¯ �k4. We consider the line-soliton solution constructed
rom the functions f1=e�1 +e�2 and f2=e�3 +e�4, so that the associated 2	4 coefficient matrix is

A = �1 1 0 0

0 0 1 1
� . �2.10�

hen A�1,2�=A�3,4�=0, and the remaining four minors are all equal to 1. We apply Corollary 2.6
o determine the asymptotic line solitons associated with the tau function in Eq. �2.9�. First note
rom the expression �m,m�= �km+km��x+ �km

2 +km�
2 �y+ �km+km�

3 �t+ ��m,0+�m�,0� that for every finite
alue of y the dominant phase combination as x→−� is given by �1,3, which corresponds to the
inimum value of km+km� such that A�m ,m���0 �cf. Definition 2.3�. We denote by R1,3 the region
f the xy plane where �1,3 is the dominant phase. The transition boundaries of R1,3 are determined
y applying Corollary 2.6 as follows: The complement of the index set �1,3� is J= �2,4�. When

j=2�J, we have A�1,2�=0 but A�2,3��0; hence I2= �1�. Similarly, when j=4 we have I4= �3�
ecause A�1,4��0 but A�4,3�=0. Thus the possible transitions i→ j from R1,3 are 1→2 and 3

4. As y→�, the second of Eqs. �2.7a� implies that the clockwise transition boundary of R1,3 is
iven by the transition line L3,4, whose direction c3,4=k3+k4 is greater than the direction c1,2

k1+k2 of the line L1,2. Across the transition line L3,4, the dominant phase combination switches
rom �1,3 to �1,4, onto the corresponding dominant region R1,4. Similarly, as y→−�, the first of
qs. �2.7b� implies that the counterclockwise transition boundary of R1,3 is given by the transition

ine L1,2, whose direction c1,2 is less than the direction c3,4 of the line L3,4. This implies that the
ominant phase combination and dominant region change to �2,3 and R2,3, respectively. Applying
orollary 2.6 again to the region R2,3 as y→−�, one finds J= �1,4� with I1= �2� and I4= �3�, so the
ossible transitions from R2,3 are 2→1 and 3→4. The 2→1 transition corresponds to a clockwise
ransition from R2,3 back to R1,3, whereas the 3→4 transition corresponds to a counterclockwise
ransition from R2,3 to the region R2,4, where �2,4 is the dominant phase combination. Continuing
ounterclockwise from R1,3 we finally obtain the following dominant phase regions asymptotically

s y→ ±�, together with the associated single-phase transitions:
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R1,3 ——→
1→2

R2,3 ——→
3→4

R3,4 ——→
2→1

R1,4 ——→
4→3

R1,3. �2.11�

t is then clear that there are two asymptotic line solitons as y→−� as well as y→�, and in both
ases they correspond to the lines �1=�2 and �3=�4. The dominant phase regions, denoted by
ndices �m ,m��, and the asymptotic line solitons, identified by the index pairs �i , j�, are illustrated
n Fig. 1�b�. The corresponding solution is called an ordinary 2-soliton solution. The ordinary
-soliton solutions are described in Sec. IV.

In the following section we obtain several results that will allow us to identify more precisely
he index pairs corresponding to each asymptotic line soliton. In addition, we will prove a general
esult concerning the numbers of asymptotic line solitons present in an �N− ,N+�-soliton solution
orresponding to the tau function of Eq. �2.2�.

II. ASYMPTOTIC LINE SOLITONS AND THE COEFFICIENT MATRIX

In this section we continue our investigation of the tau function in the general setting intro-
uced in Sec. II. We have seen in the preceding section that an asymptotic line soliton corresponds
o a dominant balance between two phase combinations in the tau function. But we still need to
dentify which phase combinations in a given tau function are indeed dominant as y→ ±�. This
equires a detailed study of the structure of the N	M coefficient matrix A associated with the tau
unction. In this section we carry out this analysis, which enables us to explicitly identify all the
symptotic line solitons of a given tau function in an algorithmic fashion. One of our main results
f this section will be to establish that, for arbitrary values of N and M, and for irreducible
oefficient matrices �cf. Definition 2.2� with non-negative N	N minors, the tau function �2.2�
roduces an �N− ,N+�-soliton solution with N−=M −N and N+=N, i.e., a solution in which there are

−=M −N asymptotic line solitons as y→−� and N+=N asymptotic line solitons as y→�.

. Dominant phases and the structure of the coefficient matrix

We begin by presenting a simple yet useful result �see also Ref. 2, Lemma 2.4� that will be
requently used to determine the dominant phase combinations in the tau function as y→ ±�.

Lemma 3.1 (Dominant phase conditions): As y→ ±� along the line Li,j :�i=� j with i� j, the
xponential phases �1 , . . . ,�M satisfy the following relations.

i� As y→�, �m��*, "m� �i+1, . . . , j−1�, and �m��*, "m� �1, . . . , i−1, j+1, . . . ,M�,
where �*ª�i=� j.

ii� As y→−�, �m��*, "m� �i+1, . . . , j−1�, while �m��*, "m� �1, . . . , i−1, j+1, . . . ,M�.

Proof: It follows from Eq. �2.6a� that, along the line Li,j whose direction is ci,j =ki+kj, the
ifference between any two exponential phases �m and �m� is given by

�m − �m� = �km − km����km + km�� − �ki + kj��y + ���
,t� , �3.1�

here ���
 , t� is a linear function of 
 and t and which also depends on the constants �m,0, �m�,0,

i,0, and � j,0. It is clear that the sign of �m−�m� as y→ ±� and for finite values of 
 and t is
etermined by the coefficient of y on the right-hand side of Eq. �3.1�. Then, setting m�= i �or
�= j� in Eq. �3.1� one obtains the desired inequalities. �

Lemma 3.1, which is illustrated in Fig. 2, will be used to obtain a set of conditions that are
ecessary for a given pair of phase combinations in the tau-function to be dominant. These
onditions are given in terms of the vanishing of certain N	N minors of the coefficient matrix A,
nd they determine which phase combinations are present �or absent� in the tau function of Eq.
1.3�. In order to derive these conditions, it is convenient to introduce two submatrices Pi,j and Qi,j
ssociated with any index pair �i , j� with 1� i� j�M, and given by
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Pi,j = A�1,2, . . . ,i − 1, j + 1, . . . ,M�, Qi,j = A�i + 1, . . . , j − 1� . �3.2�

he matrix Pi,j is formed by the consecutive columns of A to the left of column A�i� and those to
he right of column A�j�, while Qi,j is formed by the consecutive columns of A between columns
�i� and A�j�. Using the matrices Pi,j and Qi,j and the dominant phase conditions in Lemma 3.1 we

hen have the following.
Lemma 3.2 (Vanishing minor conditions): Suppose that the index pair �i , j� identifies an

symptotic line soliton. Let the two dominant phase combinations along the line Li,j :�i=� j be
iven by �i,p1,. . .,pr,q1,. . .,qs

and � j,p1,. . .,pr,q1,. . .,qs
, and let A�i , p1 , . . . , pr ,q1 , . . . ,qs�,

�j , p1 , . . . , pr ,q1 , . . . ,qs� be the corresponding nonzero minors where A�p1� , . . . ,A�pr�� Pi,j and
�q1� , . . . ,A�qs��Qi,j.

i� If �i , j� identifies an asymptotic line soliton as y→�, then

a� all N	N minors obtained by replacing one of the columns A�i� ,A�j� ,A�q1� , . . . ,A�qs� from
either A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with any column A�p�� Pi,j,
are zero;

b� all N	N minors obtained by replacing one of the columns A�q1� , . . . ,A�qs� from either
A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with either A�i� or A�j�, are zero.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then

a� all N	N minors obtained by replacing one of the columns A�i� ,A�j� ,A�p1� , . . . ,A�pr� from
either A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with any column A�q��Qi,j,
are zero;

b� all N	N minors obtained by replacing one of the columns A�p1� , . . . ,A�pr� from either
A�i , p1 , . . . , pr ,q1 , . . . ,qs� or A�j , p1 , . . . , pr ,q1 , . . . ,qs� with either A�i� or A�j�, are zero.

Proof: All of the above conditions follow from the repeated use of the dominant phase
onditions in Lemma 3.1. For example, as y→� along the line Li,j, Lemma 3.1 implies �p��m for
ll p� �1, . . . , i−1, j+1, . . . ,M� and for all m� �i , j ,q1 , . . . ,qs�. Consequently, if condition �b� in
art �i� of the Lemma does not hold, each of the phase combinations obtained by replacing �m with

p in either �i,p1,. . .,pr,q1,. . .,qs
or � j,p1,. . .,pr,q1,. . .,qs

will be greater than both �i,p1,. . .,pr,q1,. . .,qs
and

j,p1,. . .,pr,q1,. . .,qs
. But this contradicts the hypothesis that �i,p1,. . .,pr,q1,. . .,qs

and � j,p1,. . .,pr,q1,. . .,qs
are the

ominant phase combinations as y→� along Li,j. The other conditions follow in a similar fash-
on. �

We should emphasize that in general, the asymptotic solitons and the index pairs labeling
hem as y→� are different from those as y→−�. Lemma 3.2 allows us to determine the ranks of

FIG. 2. Relations among the exponential phases as y→ ±� along the direction Li,j :�i=� j.
he submatrices Pij and Qij associated with each asymptotic line soliton �i , j�. This information
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ill be exploited later in Theorem 3.6 to identify explicitly the asymptotic line solitons produced
y any given tau function. The next two results are direct consequences of the conditions specified
n Lemma 3.2.

Lemma 3.3 (Span): Let A�p1� , . . . ,A�pr�� Pi,j and A�q1� , . . . ,A�qs��Qi,j be the columns in the
inors associated with the dominant pair of phase combinations of Lemma 3.2.

i� If �i , j� identifies an asymptotic line soliton as y→�, the columns A�p1� , . . . ,A�pr� form a
basis for the column space of the matrix Pi,j.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, the columns A�q1� , . . . ,A�qs� form a
basis for the column space of the matrix Qi,j.

Proof: We prove part �i�. Since A�i , p1 , . . . , pr ,q1 , . . . ,qs��0 by Lemma 3.2, the set of col-
mns A= �A�i� ,A�p1� , . . . ,A�pr� ,A�q1� , . . . ,A�qs�� is a basis for RN. Hence the set
A�p1� , . . . ,A�pr���A is linearly independent. Moreover, any A�p�� Pi,j can be expanded with
espect to the basis A as

A�p� = aA�i� + 	
m=1

r

bmA�pm� + 	
m=1

s

cmA�qm� . �3.3�

eplacing one of the columns A�i� ,A�q1� , . . . ,A�qs� in A�i , p1 , . . . , pr ,q1 , . . . ,qs� with A�p�� Pij,
e have from Lemma 3.2�i��a� that

A�p,p1, . . . ,pr,q1, . . . ,qs� = 0, A�i,p1, . . . ,pr,q1, . . . qm−1,p,qm+1, . . . qs� = 0.

ence in Eq. �3.3� we have a=0 and cm=0"m=1, . . . ,s. Therefore A�p�
span��A�p1� , . . . ,A�pr��� for all A�p�� Pi,j. Similarly, part �ii� follows from the conditions in

emma 3.2�ii��a�. �

Lemma 3.4 (Rank conditions): Let r be the number of columns from Pi,j and let s be the
umber of columns from Qi,j in the minors associated with the dominant pair of phase combina-
ions of Lemma 3.2.

i� If �i , j� identifies an asymptotic line soliton as y→�, then rank�Pi,j�=r�N−1 and
rank�Pi,j 
A�i��=rank�Pi,j 
A�j��=rank�Pi,j 
A�i , j��=r+1.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then rank�Qi,j�=s�N−1 and
rank�Qi,j 
A�i��=rank�Qi,j 
A�j��=rank�Qi,j 
A�i , j��=s+1.

bove and hereafter, �A 
B� denotes the matrix A augmented by the matrix B.
Proof: Let us prove part �i�. Since the columns A�p1� , . . . ,A�pr� form a basis for the column

pace of Pi,j, from Lemma 3.3�i� we immediately have rank�Pi,j�=r. Moreover, since A
�A�i� ,A�p1� , . . . ,A�pr� ,A�q1� , . . . ,A�qs�� is a basis for RN, the vectors A�i� ,A�p1� , . . . ,A�pr� are

inearly independent, and therefore rank�Pi,j 
A�i��=r+1. Similarly, replacing A�i� with A�j� in the
revious statement we have rank�Pi,j 
A�j��=r+1. It remains to prove that rank�Pi,j 
A�i , j��=r
1. Expanding the jth column of A in terms of A as in Lemma 3.3 we have

A�j� = aA�i� + 	
m=1

r

bmA�pm� + 	
m=1

s

cmA�qm� . �3.4�

y replacing one of the columns A�q1� , . . . ,A�qs� in A�i , p1 , . . . , pr ,q1 , . . . ,qs� with A�j�, we have
rom Lemma 3.2�i��b� that A�i , p1 , . . . , pr ,q1 , . . . ,qm−1 , j ,qm+1 , . . . ,qs�=0. Therefore cm=0 for all
=1 , . . . ,s. Consequently we have A�j��span��A�i� ,A�p1� , . . . ,A�pr���, which implies that

ank�Pi,j 
A�i , j��=r+1. Similarly, using Lemma 3.2�ii��b� one can establish the corresponding
esults in part �ii� for the asymptotic line solitons as y→−�. �

It is important to note that, even though Lemmas 3.3–3.4 were proved by using the vanishing
inor conditions in Lemma 3.2, they provide additional information on the structure of the
oefficient matrix A. For example, when r�N−1 for an asymptotic line soliton as y→�, Lemma
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.4 yields rank�Pi,j 
A�i , j���N, and when s�N−1 for an asymptotic line soliton as y→−�,
emma 3.4 yields rank�Qi,j 
A�i , j���N. As a consequence, we immediately have the following
dditional vanishing minor conditions:

i� If �i , j� identifies an asymptotic line soliton as y→�, then

A�i, j,p1, . . . ,pr,m1, . . . ,mN−r−2� = 0 " �m1, . . . ,mN−r−2� � �1, . . . ,M� . �3.5a�

ii� If �i , j� identifies an asymptotic line soliton as y→−�, then

A�i, j,q1, . . . ,qs,m1, . . . ,mN−s−2� = 0 " �m1, . . . ,mN−s−2� � �1, . . . ,M� . �3.5b�

e remark that conditions �3.5� were also introduced �without proof� in Ref. 12 �cf. Definition
.2� in order to characterize the tau functions of the elastic N-soliton solutions which correspond
o the special case M =2N. It should also be noted that, when �i , j� identifies an asymptotic line
oliton as y→�, Lemma 3.4�i� only provides information on Pi,j, and the only condition on Qi,j is
hat rank�Qi,j��s. Similarly, when �i , j� identifies an asymptotic line soliton as y→−�, all is
nown about Pi,j is that rank�Pi,j��r.

. Characterization of the asymptotic line solitons from the coefficient matrix

In the preceding section we derived several conditions that an index pair �i , j� must satisfy in
rder to identify an asymptotic line soliton. Those results are now applied to obtain a complete
haracterization of the incoming and outgoing asymptotic line solitons of a generic line-soliton
olution of the KPII equation.

Lemma 3.5 (Pivots and nonpivots): Consider an index pair �i , j� with 1� i� j�M.

i� If �i , j� identifies an asymptotic line soliton as y→�, the index i labels a pivot column of
the coefficient matrix A. That is, A�i�=A�en� with 1�n�N.

ii� If �i , j� identifies an asymptotic line soliton as y→−�, the index j labels a nonpivot column
of the coefficient matrix A. That is, A�j�=A�gn� with 1�n�M −N.

Proof: We first prove part �i�. Suppose that �i,m2,. . .,mN
is one of the dominant phase combina-

ions corresponding to the asymptotic line soliton �i , j� as y→�. The corresponding minor
�i ,m2 , . . . ,mN� is nonzero. Since A is in RREF, we have A�i�=�r=1

n cr A�er� for some n�N, where

1� ¯ �en� i. Therefore A�i ,m2 , . . . ,mN�=	r=1
n cr A�er ,m2 , . . . ,mN�. If en� i, we have

�e1� , . . . ,A�en�� Pi,j, where Pi,j is the submatrix of A defined in Eq. �3.2�. Then from condition
a� in Lemma 3.2�i� we have A�er ,m2 , . . . ,mN�=0"r=1, . . . ,n, implying that A�i ,m2 , . . . ,mN�
0. But this is impossible, since �i,m2,. . .,mN

is a dominant phase combination. Therefore we must
ave i=en, meaning that A�i� is a pivot column.

Part �ii� follows from the rank conditions in Lemma 3.4�ii�. In particular, rank�Qi,j 
A�i��
rank�Qi,j 
A�i , j��=s+1 implies that A�j��span��A�i� , . . . ,A�j−1���. Since A is in RREF, none of

ts pivot column can be spanned by the preceding columns. Hence A�j� is not a pivot column.�
Lemma 3.5 identifies outgoing and incoming asymptotic line solitons, respectively, with the

ivot and the nonpivot columns of A. It is then natural to ask if in fact each of the N pivot columns
nd each of the M −N nonpivot columns identifies an outgoing or incoming line soliton, and
hether such identification is unique. Both of these questions can be answered affirmatively by the

ollowing theorem which constitutes one of the main results of this work, and is proved in the
ppendix.

Theorem 3.6: (Asymptotic line solitons) Let �N,M�x ,y , t� be the tau function in Eq. (2.1)
ssociated with a rank N, irreducible coefficient matrix A with non-negative minors.

i� For each pivot index en there exists a unique asymptotic line soliton as y→�, identified by
an index pair �en , jn� with n=1, . . . ,N and 1�en� jn�M.

ii� For each nonpivot index gn there exists a unique asymptotic line soliton as y→−�, iden-

tified by an index pair �in ,gn� with n=1, . . . ,M −N and 1� in�gn�M.
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hus, the solution of KPII generated by the coefficient matrix A via Eq. �2.1� has exactly N+=N
symptotic line solitons as y→� and N−=M −N asymptotic line solitons as y→−�.

Part �i� of Theorem 3.6 uniquely identifies the asymptotic line solitons as y→� by the index
airs �en , jn� where en� jn. The indices e1 , . . . ,eN label the N pivot columns of A, however, the jn’s
ay correspond to either pivot or nonpivot columns, and indeed both cases appear in examples.
oreover, when the pivot indices are sorted in increasing order 1=e1�e2� ¯ �eN�M, the

ndices j1 , . . . , jN in general are not sorted in any specific order. For example, the line solitons as
y→� generated by the matrix A in Eq. �4.5� of Sec. IV have j1� j3� j2. In fact, the indices
j1 , . . . , jN need not necessarily even be distinct. Similarly, part �ii� of Theorem 3.6 uniquely
dentifies the asymptotic line solitons as y→−� by index pairs �in ,gn�, where in�gn. In this case,
he indices g1 , . . . ,gM−N label the M −N nonpivot columns of A, but the in’s may correspond to
ither pivot or nonpivot columns. Moreover, when the nonpivot indices are sorted in increasing
rder 1�g1� ¯ �gM−N=M, the indices i1 , . . . , iM−N are not in general sorted, and need not be
istinct. Theorem 3.6 yields an important characterization of the solution via the associated coef-
cient matrix A, and it provides a concrete method to identify the asymptotic line solitons as y

±�, as illustrated with the examples below. Further examples are discussed in Sec. IV.
Example 3.7: Consider the tau function �N,M with N=2 and M =5 generated by the coefficient

atrix

A = �1 1 0 − 1 − 2

0 0 1 1 1
� . �3.6�

he pivot columns of A are labeled by the indices �e1 ,e2�= �1,3�, and the nonpivot columns by the
ndices �g1 ,g2 ,g3�= �2,4 ,5�. It follows from Theorem 3.6 that there will be N+=N=2 asymptotic
ine solitons as y→�, identified by the index pairs �1, j1� and �3, j2� for some j1�1 and j2�3,
nd that there will be N−=M −N=3 asymptotic line solitons as y→−�, identified by the index
airs �i1 ,2�, �i2 ,4�, and �i3 ,5�, for some i1�2, i2�4, and i3�5. We first determine the asymptotic
ine solitons as y→� using part �i� of Theorem 3.6 together with the rank conditions in Lemma
.4�i�. The we find the asymptotic line solitons as y→−� using part �ii� of Theorem 3.6 and the
ank conditions in Lemma 3.4�ii�.

For the first pivot column, e1=1, we start with j=2 and consider the submatrix
P1,2= � 0 −1 −2

1 1 1
�. Since rank�P1,2�=2�1=N−1, from Lemma 3.4�i� we conclude that the pair �1,2�

annot identify an asymptotic line soliton as y→�. Incrementing j to j=3,4 ,5 and checking the
ank of each submatrix P1,j we find that the rank conditions in Lemma 3.4�i� are satisfied when

j=4, and P1,4= � −2
1

�=A�5�. So, rank�P1,4�=1 and rank�P1,4 
A�1��=rank�P1,4 
A�4��=2. The condi-
ion rank�P1,4 
A�1,4��=2 is trivial here, since any three columns are linearly dependent. Thus, the
rst asymptotic line soliton as y→� is identified by the index pair �1,4�. For the second pivot,

2=3, proceeding in a similar manner we find that j=4 does not satisfy the rank conditions
ecause P3,4 has rank 2. But j=5 satisfies Lemma 3.4�i�, since P3,5= � 1 1

0 0
�, which yields

ank�P3,5�=1 and rank�P3,5 
A�3��=rank�P3,5 
A�5��=2. Again, rank�P3,5 
A�3,5��=2 is trivially
atisfied here. So the asymptotic line solitons as y→� are given by the index pairs �1,4� and �3,5�,
nd the associated phase transition diagram �cf. Corollary 2.6� is given by

R1,3 ——→
3→5

R1,5 ——→
1→4

R4,5.

We now consider the asymptotics for y→−�. Starting with the nonpivot column g1=2, the
nly column to its left is i=1. We have Q1,2=�, and rank�Q1,2 
A�1��=rank�Q1,2 
A�2��
rank�Q1,2 
A�1,2��=1. Consequently, the pair �1,2� identifies an asymptotic line soliton as y→
�. For g2=4 we consider i=1,2 ,3 and find that the rank conditions in Lemma 3.4�ii� are
atisfied only for i=2. In this case, Q2,4= � 0

1
�=A�3�, so rank�Q2,4�=1=N−1 and rank�Q2,4 
A�2��
rank�Q2,4 
A�4��=2, while rank�Q2,4 
A�2,4��=2 is trivially satisfied. Hence �2,4� is the unique
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symptotic line soliton as y→−� associated to the nonpivot column g2=4. In a similar way we
an uniquely identify the last asymptotic line soliton as y→−� as given by the indices �3,5�. The
hase transition diagram for y→−� is thus given by

R1,3 ——→
1→2

R2,3 ——→
2→4

R3,4 ——→
3→5

R4,5.

o summarize, there are N+=2 outgoing line solitons, each associated with one of the pivot
olumns e1=1 and e2=3, given by the index pairs �1,4� and �3,5�, and there are N−=3 incoming
ine solitons, each associated with one of the nonpivot columns g1=2, g2=4, and g3=5, given by
he index pairs �1,2�, �2,4�, and �3,5�. A snapshot of the solution at t=−32 is shown in Fig. 3�a�.

Example 3.8: Consider the tau function with N=3 and M =6 generated by the coefficient
atrix in RREF,

A = �1 1 1 0 0 0

0 0 0 1 0 − 1

0 0 0 0 1 2
� . �3.7�

gain, we first determine the asymptotic line solitons as y→�, and then the asymptotic line
olitons as y→−�.

The pivot columns of A are labeled by the indices e1=1, e2=4, and e3=5. Thus, we know that
he asymptotic line solitons as y→� will be given by the index pairs �1, j1�, �4, j2�, and �5, j3� for
ome j1�1, j2�4, and j3�5. Starting with the first pivot, e1=1, we take j=2,3 , . . . and check the

ank of the submatrix Pi,j in each case. When j=2 we have P1,2= �1 0 0 0

0 1 0 �1

0 0 1 2
�, and rank�P1,2�

3�N−1. So, by Lemma 3.4�i�, the index pair �1,2� does not correspond to an asymptotic line
oliton as y→�. In fact, using Lemma 3.1 it can be verified that �3,5,6 is the only dominant phase
ombination along the line �1=�2 as y→�. Next, we consider j=3. In this case we have P1,3

�0 0 0

1 0 �1

0 1 2
�, with rank�P1,3�=2¬r and rank�P1,3 
A�1��=rank�P1,3 
A�3��=rank�P1,3 
A�1,3��=3

r+1. So the rank conditions in Lemma 3.4�i� are satisfied. Therefore the index pair �1,3� corre-
ponds to an asymptotic line soliton as y→�. Moreover, by considering j=4,5 ,6 one can easily
heck that the rank conditions are no longer satisfied. Thus �1,3� is the unique asymptotic line

IG. 3. Line soliton solutions of KPII: �a� the �3,2�-soliton solution generated by the coefficient matrix A in Example 3.7
ith �k1 , . . . ,k5�= �−1,0 , 1

4 , 3
4 , 5

4
� at t=−32; �b� the inelastic 3-soliton solution generated by the coefficient matrix A in

xample 3.8 with �k1 , . . . ,k6�= �−1,− 1
2 ,0 , 1

2 ,1 , 3
2

� at t=20 �see text for details�.
oliton associated with the pivot index e1=1 as y→�, in agreement with Theorem 3.6. Let us now
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onsider the second pivot column, e2=4. In this case we find that the rank conditions are only

atisfied when j=5, since P4,5= �1 1 1 0

0 0 0 �1

0 0 0 2
�, with rank�P4,5�=2¬r and rank�P4,5 
A�4��

rank�P4,5 
A�5��=rank�P4,5 
A�4,5��=3=r+1. Therefore, the index pair �4,5� corresponds to an
symptotic line soliton as y→�. Finally, for e3=5, since we know from Theorem 3.6 that j�e3,
e immediately find that the third asymptotic line soliton as y→� is given by the index pair �5,6�.
rom Corollary 2.6, the phase transition diagram as y→� is given by

R1,4,5 ——→
5→6

R1,4,6 ——→
4→5

R1,5,6 ——→
1→3

R3,5,6.

The nonpivot columns of the coefficient matrix A are labeled by the indices g1=2, g2=3, and

3=6. For g1=2, the only possible value of i� j is i=1. In this case Q1,2=�, so rank�Q1,2�=0 and
ank�Q1,2 
A�1��=rank�Q1,2 
A�2��=rank�Q1,2 
A�1,2��=1. Thus the pair �1,2� identifies an
symptotic line soliton as y→−�. For g2=3 we consider i=2,1. When i=2, the rank conditions in
emma 3.4�ii� are satisfied, leading to the asymptotic line soliton �2,3� as y→−�. We can check

hat the soliton associated with the nonpivot column g2=3 is unique by considering i=1 and
erifying that the rank conditions are not satisfied. Similarly, it is easy to verify that for g3=6 the
ndex pair �4,6� uniquely identifies the asymptotic line soliton as y→−�. The phase transition
iagram as y→−� reads as follows:

R1,4,5 ——→
1→2

R2,4,5 ——→
2→3

R3,4,5 ——→
4→6

R3,5,6.

Summarizing, there are N+=3 asymptotic line solitons as y→� identified by the index pairs
1,3�, �4,5�, and �5,6�, and there are N−=3 asymptotic line solitons as y→−� identified by the
ndex pairs �1,2�, �2,3�, and �4,6�. A snapshot of the solution at t=−20 is shown in Fig. 3�b�.

Examples 3.7 and 3.8 illustrate the fact that, starting from any given coefficient matrix A in
REF, the asymptotic line solitons as y→ ±� can be identified in an algorithmic way by applying
heorem 3.6 together with the rank conditions in Lemma 3.4.

V. FURTHER EXAMPLES

In this section we present a variety of line-soliton solutions of KPII generated by the tau
unction �2.2� with different choices of coefficient matrices.

Ordinary N-soliton solutions: These are constructed by taking M =2N and choosing the func-
ions �fn�n=1

N in Eq. �1.10� as �e.g., see Refs. 5 and 15�

fn�x,y,t� = e�2n−1 + e�2n, n = 1, . . . ,N . �4.1�

he corresponding coefficient matrix is thus given by

A =�
1 1 0 0 ¯ 0 0

0 0 1 1 ¯ 0 0

] ] ] ] ] ] ]

0 0 0 0 ¯ 1 1
� ,

ith N pairs of identical columns at positions �2n−1,2n�, n=1, . . . ,N. There are only 2N nonzero
inors of A, which are given by A�m1 ,m2 , . . . ,mN�=1 where, for each n=1, . . . ,N, either mn

2n−1 or mn=2n. The asymptotic analysis of the preceding section implies that the nth
symptotic line soliton as y→ ±� is identified by the index pair �2n−1,2n� for n=1, . . . ,N, where

n=2n−1 and jn=2n label, respectively, the pivot and nonpivot columns of A. Therefore the
mplitude and direction are given by an=k2n−k2n−1 and cn=k2n−1+k2n. Moreover, the dominant
air of phase combinations for the nth soliton as y→� is given by �1,3,. . .,2n−1,2n+2,2n+4,. . .,2N and
1,3,. . .,2n−3,2n,2n+2,. . .,2N, while the dominant phase combinations for the same soliton as y→−� by
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2,4,. . .,2n,2n+1,2n+3,. . .,2N−1 and �2,4,. . .,2n−2,2n−1,2n+1,. . .,2N−1. Apart from the phase shift of each line
oliton, the interaction gives rise to a pattern of N intersecting lines in the xy plane, as shown in
ig. 4�a�.

Solutions of KPII which also satisfy the finite Toda lattice hierarchy: Another class of
N− ,N+�-soliton solutions of KPII is given by the following choice of functions �fn�n=1

N in Eq.

IG. 4. Line-soliton solutions of KPII: �a� an ordinary 3-soliton solution with �k1 , . . . ,k6�= �−3,−2,0 ,1 , 3
2 ,2� at t=4; �b� a

ully resonant �3,2�-soliton solution with �k1 , . . . ,k5�= �−1,0 , 1
2 ,1 , 3

2
� at t=−32; �c� an elastic, partially resonant 3-soliton

olution with A given by Eq. �4.5� and �k1 , . . . ,k6�= �− 3
2 ,−1 ,0 , 1

4 , 3
2 , 7

4
� at t=−20; �d� an elastic, partially resonant 4-soliton

olution with A given by Eq. �4.6� and �k1 , . . . ,k8�= �−2,− 3
2 ,−1 ,− 1

2 ,0 , 1
2 ,1 , 3

2
� at t=20; �e� an inelastic 2-soliton solution

ith A given by Eq. �4.7� and �k1 , . . . ,k4�= �−1,− 1
2 , 1

2 ,2� at t=16; �f� an inelastic 3-soliton solution with A given by Eq.
4.8� and �k1 , . . . ,k6�= �−1,− 1

2 ,0 , 1
2 ,1 , 3

2
� at t=32.
1.10�:
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fn = f �n−1�, n = 1, . . . ,N . �4.2�

n addition to generating solutions of KPII, the set of tau functions �N,M for N=1, . . . ,M also
atisfy the Plücker relations for the finite Toda lattice hierarchy.2 Choosing f�x ,y , t�=	m=1

M e�m

ields the following coefficient matrix:

A =�
1 1 ¯ 1

k1 k2 ¯ kM

] ] � ]

k1
N−1 k2

N−1
¯ kM

N−1
� . �4.3�

Note that A in Eq. �4.3� is not in RREF, and coincides with the matrix K in Lemma 2.1. The
ivot columns of A are labeled by indices 1 , . . . ,N. Furthermore, all the N	N minors of A are
onzero, and coincide with the Van der Monde determinants in Eq. �2.4�. The corresponding class
f KPII solutions was studied in Ref. 2, where it was shown that the N asymptotic line solitons as

y→� are identified by the index pairs �n ,n+M −N� for n=1, . . . ,N, while the M −N asymptotic
ine solitons as y→−� are identified by the index pairs �n ,n+N� for n=1, . . . ,M −N. These
airings can also be easily verified using Theorem 3.6. The dominant pair of phase combinations
or the nth soliton as y→� is given by �1,. . .,n,M−N+n+1,. . .,M and �1,. . .,n−1,M−N+n,. . .,M, while the
ominant pair of phase combinations for the nth soliton as y→−� by �n,. . .,N+n−1 and �n+1,. . .,N+n.
he solution displays phenomena of soliton resonance and web structure �e.g., see Fig. 4�b��.
ore precisely, the interaction of the asymptotic line solitons results in a pattern with �2N−

1�N+ interaction vertices, �3N−−2�N+ intermediate interaction segments and �N−−1��N+−1�
holes” in the xy plane. Each of the intermediate interaction segments can be effectively regarded
s a line soliton since it satisfies the dispersion relation �1.8�. Furthermore, all of the asymptotic
nd intermediate line solitons interact via a collection of fundamental resonances. A fundamental
esonance, also called a Y junction, describes an interaction of three line solitons whose wave
umbers ka and frequencies �a �a=1,2 ,3� satisfy the three-wave resonance conditions17,19

k1 + k2 = k3, �1 + �2 = �3. �4.4�

uch a solution is shown in Fig. 1�a�.
Elastic N-soliton solutions: As mentioned in Sec. I and in the Appendix, the elastic N-soliton

olutions are those for which the sets of incoming and outgoing asymptotic line solitons are the
ame. In this case we necessarily have M =2N. Ordinary N-soliton solutions and solutions of KPII
hich also satisfy the finite Toda lattice hierarchy with M =2N are two special classes of elastic
-soliton solutions. However, a large variety of other elastic N-soliton solutions do also exist, and
ere recently investigated in Ref. 12. For example, Fig. 4�c� shows an elastic 3-soliton solution
enerated by the coefficient matrix,

A = �1 0 0 1 1 1

0 1 0 − 2 − 2 − 1

0 0 1 2 1 0
� . �4.5�

n this case the pivot columns are labeled by indices 1, 2, and 3. So, from Lemma 3.5 we know
hat the asymptotic line solitons as y→� will be identified by index pairs �1, j1�, �2, j2�, and
3, j3�, while those as y→−� by index pairs �i1 ,4�, �i2 ,5�, and �i3 ,6�, for certain values of

1 , . . . , i3 and j1 , . . . , j3. Indeed, from the results developed in Sec. III one can verify that both the
ncoming and the outgoing asymptotic line solitons are given by the same index pairs �1,4�, �2,6�,
nd �3,5�. The soliton interactions in this case are partially resonant, in the sense that the pairwise
nteraction among solitons �1,4� and �2,6� and that among solitons �1,4� and �3,5� are both reso-
ant, but the pairwise interaction among solitons �2,6� and �3,5� is nonresonant. Similarly, Fig.

�d� shows an elastic, partially resonant 4-soliton solution generated by the coefficient matrix
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A =�
1 0 − 1 0 1 0 − 1 − 2

0 1 2 0 − 1 0 1 2

0 0 0 1 2 0 − 1 − 2

0 0 0 0 0 1 2 3
� . �4.6�

n this case the pivot columns are labeled by the indices 1, 2, 4, and 6 and the nonpivot columns
y the indices 3, 5, 7, and 8. The asymptotic line solitons as y→ ±� are identified by the index
airs �1,3�, �2,5�, �4,7�, and �6,8�. As can be seen from Fig. 4�f�, the pairwise interaction of solitons
1,3� and �2,5�, solitons �2,5� and �4,7�, and �4,7� and �6,8� are resonant, but the remaining
airwise interactions between solitons �1,3� and �4,7�, �1,3� and �6,8�, �2,5� and �6,8�, are non-
esonant. It should be clear from these examples that a large variety of elastic N-soliton solutions
ith resonant, partially resonant and nonresonant interactions is possible.

Inelastic N-soliton solutions: There also exist a large class of N-soliton solutions that are not
lastic. We have already seen such solutions in Examples 3.7 and 3.8 �cf. Figs. 3�a� and 3�b�� of
ec. III. As a further example, Fig. 4�e� shows an inelastic 2-soliton solution generated by the
oefficient matrix

A = �1 0 0 − 1

0 1 1 1
� . �4.7�

n this case the pivot columns are labeled by indices 1 and 2. The asymptotic line solitons as y
−� are identified by the index pairs �1,4� and �2,3�, while those as y→� by the index pairs

1,3� and �2,4�. Notice that the outgoing solitons interact resonantly via two Y junctions, while the
ncoming soliton pair interact nonresonantly. This is in contrast with an elastic 2-soliton solution,
here both incoming and outgoing pairs of solitons exhibit the same kind of interaction. Similarly,
ig. 4�f� shows inelastic 3-soliton solution generated by the coefficient matrix

A = �1 0 − 1 − 1 0 2

0 1 2 1 0 − 1

0 0 0 0 1 1
� . �4.8�

ere the pivot columns are labeled by indices 1, 2, and 5. The asymptotic line solitons as y
� are identified by the index pairs �1,3�, �2,5�, and �5,6�, while those as y→−� by the index

airs �1,3�, �2,4�, and �3,6�.
Finally, we remark that in the generic case M �2N, the numbers of asymptotic line solitons as

y→ ±� are different, as in the solutions shown in Figs. 3�a� and 4�b�. Also, note that the one-
oliton solutions, the ordinary two-soliton solutions and the Y junction solutions have the property
hat their time evolution is just an overall translation of a fixed spatial pattern. However, for all
ther solutions discussed above, the interaction patterns formed by the asymptotic line solitons,
nd the relative positions of the interaction vertices in the xy plane are in general time dependent.

. CONCLUSIONS

In this paper we have studied a class of line-soliton solutions of the Kadomtsev-Petviashvili II
quation by expressing the tau function as the Wronskian of N linearly independent combinations
f M exponentials. From the asymptotics of the tau function as y→ ±� we showed that each of
hese solutions of KPII is composed of asymptotic line solitons which are defined by the transition
etween two dominant phase combinations with N−1 common phases. Moreover, the number,
mplitudes and directions of the asymptotic line solitons are invariant in time. We also derived an
lgorithmic method to identify these asymptotic line solitons in a given solution by examining the
	M coefficient matrix A associated with the corresponding tau function. In particular, we

roved that every N	M, irreducible coefficient matrix A produces an �N− ,N+�-soliton solution of
PII in which there are N+=N asymptotic line solitons as y→�, labeled by the pivot columns of

, and N−=M −N asymptotic line solitons as y→−�, labeled by the nonpivot columns of A. Such
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olutions exhibit a rich variety of time-dependent spatial patterns which include resonant soliton
nteractions and web structure. Finally, we discussed a number of examples of such
N− ,N+�-soliton solutions in order to illustrate the above results.

It is remarkable that the KPII equation possesses such a rich structure of line-soliton solutions
enerated by a simple form of the tau function. In this work we have primarily focused on the
symptotic behavior of the solutions as y→ ±�, but not on their interactions in the xy plane. A full
haracterization of the interaction patterns of the general �N− ,N+�-soliton solutions is an important
pen problem, which is left for further study. Nonetheless, we believe that our results will provide
key step toward that endeavor. We point out that resonant interaction described by the line

olitons of KPII is a physical phenomenon that has been observed experimentally in ion-acoustic
aves �see e.g., Refs. 20 and 13�. Hence, we expect that the resonant solutions considered in this
ork are likely to be stable with respect to small perturbations and physically relevant. However,
formal stability analysis of these �2+1�-dimensional solutions is a highly nontrivial task, and has
ot yet been carried out to the best of our knowledge. Finally, we note that soliton solutions
xhibiting phenomena of soliton resonance and web structure have been found for several other
2+1�-dimensional integrable systems, and those solutions can also be described by direct alge-
raic methods similar to the ones used here. Therefore we expect that the results presented in this
ork will also be useful to study solitonic solutions in a variety of other �2+1�-dimensional

ntegrable systems.
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PPENDIX A: PROOF OF THEOREM 2.5

To prove part �i� of Theorem 2.5, it is sufficient to show that, along each line Lc, the sign of
he inequalities among the phase combinations in Definition 2.3 remain unchanged in time as y

±�. For this purpose, note that the sign of �m1,. . .,mN
−�m1�,. . .,mN�

in Eq. �2.6b� is determined by the
oefficient of y on the right-hand side as y→ ±� and for finite 
 and t, if this coefficient is
onzero. For generic values of the phase parameters k1 , . . . ,kM this coefficient is indeed nonvan-
shing, and its sign depends only on the direction c of the line Lc. Consequently, the dominant
hase combinations asymptotically as y→ ±� are determined only by the constant c for finite
ime.

Part �ii� of the theorem is proved by showing that the only possible phase transitions are those
n which a single phase, say �m changes to �m� between the two dominant phase combinations
cross adjacent regions, and that no other type of transitions can occur. We first prove that
ingle-phase transitions are allowed; then we show that no other type of transitions are allowed. In
he following, we will assume t to be finite so that the dominant phase combinations remain
nvariant, according to part �i�. Suppose that �m1,. . .,mN

is the dominant phase combination in a
egion R asymptotically for large values of 
y
. Since R is a proper subset of R3, it must have a
oundary, across which a transition will take place from �m1,. . .,mN

to some other dominant phase
ombination. Since �m1,. . .,mN

is dominant, A�m1 , . . . ,mN��0 according to Definition 2.3. There-
ore, the columns A�m1� , . . . ,A�mN� of the coefficient matrix form a basis of RN, and for all

j� �m1 , . . . ,mN� we have that A�j� is in the span of A�m1� , . . . ,A�mN�. Thus there exists at least
ne column A�ms� such that the coefficient of A�ms� in the expansion of A�j� is nonzero. We then
ave A�m1 , . . . ,ms−1 , j ,ms+1 , . . . ,mN��0, implying that the phase combination

m1,. . .,ms−1,j,ms+1,. . .,mN
is actually present in the tau function. Then, for any j� �m1 , . . . ,mN� it is

ossible to have a single-phase transition from R to the adjacent region R� across the line �ms
� j, since the sign of �ms

−� j changes across this line, implying that �m1,. . .,ms−1,j,ms+1,. . .,mN
is larger
han �m1,. . .,mN
in R�.
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We next show that no other type of transitions can occur apart from single-phase transitions;
e do so by reduction ad absurdum. Suppose that at least two phases �m1

,�m2
from the dominant

hase combination �m1,. . .,mN
in a region R are replaced with phases �m1�

,�m2�
during the transition

rom R to an adjacent region R�. This transition occurs along the common boundary of R and R�,
hich is given by line L : ��m1

+�m2
�− ��m1�

+�m2�
�=0. Thus, along L, the differences �m1

−�m1�
and

m2
−�m2�

�or, equivalently, the differences �m1
−�m2�

and �m2
−�m1�

� must have opposite signs or be
oth zero.

If both differences are zero along L, the lines �m1
=�m1�

and �m2
=�m2�

�or, equivalently, the lines

m1
=�m2�

and �m1�
=�m2

� must both coincide with the line L in the xy plane. This is possible only at
given instant of time and if the directions of the two lines are the same, i.e., if km1

+km1�
=km2

km2�
�or, equivalently, km1

+km2�
=km1�

+km2
�. So for generic values of the phase parameters, or for

eneric values of time, this exceptional case can be excluded. Hence, we assume that �m1
−�m1�

and

m2
−�m2�

are of opposite signs.
Note that �m1

−�m1�
=�m1,. . .,mN

−�m1�,m2,. . .,mN
and �m2

−�m2�
=�m1,. . .,mN

−�m1,m2�,m3. . .,mN
. Moreover,

ince �m1,. . .,mN
is the dominant phase in R, both of these phase differences must be positive in the

nterior of R if the minors A�m1� ,m2 , . . . ,mN� and A�m1 ,m2� ,m3 . . . ,mN� are nonzero. Hence, we
ust conclude that �m1

−�m1�
and �m2

−�m2�
cannot have opposite signs unless one or both of the

hase combinations �m1�,m2,. . .,mN
and �m1,m2�,m3. . .,mN

is absent from the tau function. This requires
hat either A�m1� ,m2 , . . . ,mN� or A�m1 ,m2� ,m3 . . . ,mN� must be zero. A similar argument applied to
he phase differences �m1

−�m2�
and �m2

−�m1�
leads to the conclusion that one or both of the minors

�m2� ,m2 , . . . ,mN� and A�m1 ,m1� ,m3 . . . ,mN� must vanish. However, from the Plücker relations
mong the N	N minors of A we have

A�m1,m2 . . . ,mN�A�m1�,m2�, . . . mN� = A�m1,m2�,m3, . . . mN�A�m1�,m2, . . . ,mN�

− A�m1,m1�,m3 . . . ,mN�A�m2�,m2, . . . ,mN� .

t follows from above that either A�m1 , . . . ,mN�=0 or A�m1� ,m2� ,m3 , . . . ,mN�=0. But this is im-
ossible since by assumption both minors on the left-hand-side are associated with dominant
hase combinations. Thus, they are both nonzero. Hence we have reached a contradiction which
mplies that as y→ ±�, phase transitions where more than one phase changes simultaneously
cross adjacent dominant phase regions, are impossible.

PPENDIX B: PROOF OF THEOREM 3.6

First we need to establish the following Lemma that will be useful in proving the theorem.
Lemma B.1: If Pij is the submatrix defined in Eq. �3.2� and en labels the nth pivot column of

n irreducible coefficient matrix A, then N−1� rank�Penen+1��N, "n=1, . . . ,N.
Proof: Recall that the pivot indices are ordered as 1=e1�e2� ¯ �eN�M for an irreducible

atrix A. Then it follows from Definition 2.2�ii� that, corresponding to each pivot column A�en� of
n irreducible matrix A, there exists at least one nonpivot column A�j*�, with j*�en, that has a
onzero entry in its nth row. Hence we have A�e1 , . . . ,en−1 , j* ,en+1 , . . . ,eN��0. This implies that
he matrix A�1, . . . ,en−1,en+1, . . . ,M�= �Penen+1 
A�en+1�� which contains the columns
�e1� , . . . ,A�en−1� ,A�j*� ,A�en+1� , . . . ,A�eN�, has rank N. Thus, the rank of Penen+1 is at least N
1, and this yields the desired result. �

We are now ready to prove Theorem 3.6. We prove part �i� here; the proof of part �ii� follows
imilar steps. The proof of part �i� is divided in two parts. First we show that for each pivot index

n, n=1, . . . ,N, there exists an index jn�en with the necessary and sufficient properties for �en , jn�
o identify an asymptotic line soliton as y→�; then we prove that such a jn is unique.

Existence: The proof is constructive. For each pivot index en, and for any j�en, we consider
he rank of the matrix Pen,j =A�1,2 , . . . ,en−1, j+1, . . . ,M� starting from j=en+1. When j=en

1 we have Pen,j = Pen,en+1, and therefore N−1� rank�Pen,en+1��N from Lemma B.1. If
ank�Pen,en+1�=N, then Lemma 3.4�i� implies that the pair �en ,en+1� does not identify an
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symptotic line soliton as y→�. In this case, we increment the value of j successively from en

1, until rank�Pen,j� decreases from N to N−1. Note that a value of j such that rank�Pen,j�=N
1 always exists because if j=M, then rank�Pen,M�=rank�A�1, . . . ,en−1��=n−1�N−1, since A is

n RREF. Suppose j= j* is the smallest index such that rank�Pen,j*
�=N−1 and rank�Pen,j*


A�j*��
N. We next check the rank of rank�Pen,j*


A�en��. Since rank�Pen,j*
�=N−1, two cases are pos-

ible: either �a� rank�Pen,j*

A�en��=N or �b� rank�Pen,j*


A�en��=N−1. We discuss these two cases
eparately.

�a� Suppose that rank�Pen,j*

A�en��=N. By construction we have rank�Pen,j*


A�j*��=N, and
ince N=rank�A� one also has rank�Pin,j*


A�en , j*��=N. In this case we set j*= jn. It follows from
emma 3.4 that the pair �en , jn� satisfies the necessary rank conditions to identify an asymptotic

ine soliton as y→�. Next we show that these rank conditions are also sufficient in order to
etermine a pair of dominant phase combinations in the tau function corresponding to the single-
hase transition en→ jn. Since rank�Pen,jn

�=N−1, it is possible to choose N−1 linearly indepen-
ent columns A�p1� , . . . ,A�pN−1� from the matrix Pen,jn

so that for all choices of linearly indepen-
ent columns A�l1� , . . . ,A�lN−1�� Pen,jn

one has �p1,. . .,pN−1
��l1,. . .,lN−1

as y→� along the transition
ine Len,jn

. The existence of such a set is guaranteed because part �i� of the dominant phase
ondition 3.1 implies that, as y→� in the �en , jn� direction, the phases corresponding to the index
et Pen,jn

are ordered as �1��2� ¯ ��en−1 and � jn+1�� jn+2� ¯ ��M. Therefore, it is possible to
elect the top N−1 phases from the above two lists so that the corresponding columns are linearly
ndependent. Furthermore, the conditions rank�Pen,jn


A�en��=rank�Pen,jn

A�jn��=N imply that the

inors A�en , p1 , . . . , pN−1� and A�jn , p1 , . . . , pN−1� are both nonzero, and thus �en,p1,. . .,pN−1
and

jn,p1,. . .,pN−1
form a dominant pair of phase combinations as y→� along the direction of Len,jn

.
�b� Suppose that rank�Pen,j*


A�en��=N−1. Note that this is possible only for n�N, because
hen n=N the submatrix PeN,j for any j�eN contains the pivot columns A�e1� , . . . ,A�eN−1�.
ence, rank�PeN,j�=N−1 and rank�PeN,j 
A�eN��=N. Consequently, n=N always belongs to case

a� above and not to case �b�. So we consider only the case n�N below.
Since rank�Pen,j*

�=rank�Pen,j*

A�en��=N−1, this means that A�en��span�Pen,j*

�. However,
ince A�en� is a pivot column, it cannot be spanned only by its preceding columns
�1� , . . . ,A�en−1�. Hence the spanning set of A�en� from Pen,j*

must contain at least one column
rom A�j*+1� , . . . ,A�M�. In this case we continue incrementing the value of j starting from j* until
he pivot column A�en� is no longer in the span of the columns of the resulting submatrix Pen,j. Let
jn be the smallest index such that A�en� is spanned by the columns of the submatrix Pen,jn


A�jn� but
ot by those of Pen,jn

. Then, by construction we have rank�Pen,jn
�¬r�N−1, and

ank�Pen,jn

A�en��=rank�Pen,jn


A�jn��=rank�Pen,jn

A�en , jn��=r+1. The rank conditions in Lemma

.4�i� are once again satisfied for the index pair �en , jn� thus found. The sufficiency of these
onditions can then be established by following similar steps as in case �a�. Namely, it is possible
o choose a set of linearly independent vectors A�l1� , . . . ,A�lr�� Pen,jn

and extend this set to a basis
f RN as follows: �A�en� ,A�l1� , . . . ,A�lr� ,A�m1� , . . . ,A�ms��, where A�m1� , . . . ,A�ms��Qen,jn

and
+s=N−1. We then have A�en , l1 , . . . , lr ,m1 , . . . ,ms��0, which also implies
�jn , l1 , . . . , lr ,m1 , . . . ,ms��0 since A�en��span�Pen,jn


A�jn��. As in case �a�, we can now maxi-
ize the phase combinations over all such sets �l1 , . . . , lr ,m1 , . . . ,ms�, and find a set of indices

p1 , . . . , pr ,q1 , . . . ,qs� such that �en,p1,. . .,pr,q1,. . .,qs
and � jn,p1,. . .,pr,q1,. . .,qs

form a dominant pair of
hase combinations as y→� along the direction of Len,jn

. Summarizing, we have shown that for
ach pivot index en ,n=1,2 , . . . ,N, there exists at least one asymptotic line soliton �en , jn� with

jn�en as y→�. Next we prove uniqueness.
Uniqueness: Suppose that �en , jn� and �en , jn�� are two asymptotic line solitons identified by the

ame pivot index en as y→�. Without loss of generality, assume that jn�� jn, and consider the line
oliton �en , jn��. Lemma 3.4�i� implies that rank�Pen,jn�


A�jn���=rank�Pen,jn

A�en , jn���. Hence the

ivot column A�en� is spanned by the columns of the submatrix �Pen,jn�

A�jn���. But by assumption

e have �Pen,jn�

A�jn���� Pen,jn

, since jn�� jn. Hence A�en� is also spanned by the columns of Pen,jn
.

his however implies that rank�Pen,jn

A�en��=rank�Pen,jn

�, which contradicts the necessary rank

 Mar 2006 to 128.205.114.91. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



c
w
→

A

s
i
−
−
s
s
p

i
c
E

l
�
e

v
s
c
a
t
f
s
l
a
n
s
s
K
t
�
f
c
p
d
t

	
d
r

w
b

033514-23 Line solitons of the KP II equation J. Math. Phys. 47, 033514 �2006�

Downloaded 31
onditions in Lemma 3.4�i� for �en , jn� to identify an asymptotic line soliton as y→�. Therefore
e must have jn= jn�. Thus, it is not possible to have two distinct asymptotic line solitons as y
� associated with the same pivot index en. Part �i� of Theorem 3.6 is now proved.

PPENDIX C: EQUIVALENCE CLASSES AND DUALITY OF SOLUTIONS

In this appendix, we investigate the relationship between two classes of KPII multisoliton
olutions with complementary sets of asymptotic line solitons. Note that the KPII equation �1.1� is
nvariant under the inversion symmetry �x ,y , t�→ �−x ,−y ,−t�. As a result, if u�x ,y , t� is an �M
N ,N�-soliton solution of KPII with M −N incoming and N outgoing line solitons, then u�−x ,
y ,−t� is a �N ,M −N�-soliton solution of KPII where the numbers of incoming and outgoing line
olitons are reversed. It follows from Theorem 3.6 that the solution u�−x ,−y ,−t� should corre-
pond to some tau function �M−N,M�x ,y , t� associated with an M −N	M coefficient matrix whose
ivot and nonpivot columns uniquely identify the asymptotic line solitons of u�−x ,−y ,−t�.

Before proceeding further, we introduce the notion of an equivalence class which plays an
mportant role in subsequent discussions. Let 
 as in Definition 2.3 denote the set of all phase
ombinations �m1,. . .,mN

which appear with nonvanishing coefficients in the tau function ��x ,y , t� of
q. �2.2�.

Definition C.2 (Equivalence class): Two tau functions are defined to be in the same equiva-
ence class if (up to an overall exponential phase factor) the set 
 is the same for both. The set of
N− ,N+�-soliton solutions of KPII generated by an equivalence class of tau functions defines an
quivalence class of solutions.

It is clear from the above definition that tau functions in a given equivalence class can be
iewed as positive-definite sums of the same exponential phase combinations but with different
ets of coefficients. They are parametrized by the same set of phase parameters k1 , . . . ,kM, but the
onstants �m0 in the phase �m are different. Moreover, the irreducible coefficient matrices associ-
ted with the tau functions have exactly the same sets of vanishing and nonvanishing minors, but
he magnitudes of the nonvanishing minors are different for different matrices. Thus, it is evident
rom the remarks following Corollary 2.6 in Sec. II that the asymptotic line solitons of each
olution in an equivalence class arise from the same i→ j single phase transition, and are therefore
abeled by the same index pair �i , j�. Theorem 3.6 then implies that the coefficient matrices
ssociated with the tau functions in the same equivalence class have identical sets of pivot and
onpivot indices labeling the asymptotic line solitons as y→� and as y→−�, respectively. Thus,
olutions in the same equivalence class can differ only in the position of each asymptotic line
olitons and in the location of each interaction vertex. As a result, any �N− ,N+�-soliton solution of
PII can be transformed into any other solution in the same equivalence class by spatio-temporal

ranslations of the individual asymptotic line solitons. We refer to the two tau functions

N,M�x ,y , t� and �M−N,M�x ,y , t� as dual to each other if the solution u�−x ,−y ,−t� obtained from the
unction �N,M�−x ,−y ,−t� and the solution generated by �M−N,M�x ,y , t� are in the same equivalence
lass. Note that �N,M�−x ,−y ,−t� is not exactly a tau function according to Eq. �2.2�, but it is
ossible to construct from it a dual tau function �M−N,M�x ,y , t� whose coefficient matrix B can be
erived from the coefficient matrix A associated with the tau function �N,M�x ,y , t�. We describe
his construction below.

Since A is of rank N and in RRFF, it can be expressed as A= �IN ,G�P, where IN is the N
N identify matrix of pivot columns, G is the N	 �M −N� matrix of nonpivot columns, and P

enotes the M 	M permutation matrix of M columns of A. We augment A with M −N additional
ows to form the invertible M 	M matrix,

S = �IN G

O IM−N
�P , �C1�

here O is the �M −N�	N zero matrix and IM−N is the �M −N�	 �M −N� identify matrix. Let A�
e the �M −N�	M matrix obtained by selecting the last M −N rows of �S−1�T. The rank of A� is
M −N, and the following complementarity relation holds between A and A�.
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Lemma C.3: The pivot columns of A� are labeled by exactly the same set of indices which
abel the nonpivot columns of A, and vice versa. Moreover, if A is irreducible then A� is also
rreducible.

Proof: From Eq. �C1� and the fact that P−1= PT for a permutation matrix, we obtain

�S−1�T = � IN OT

− GT IM−N
�P , �C2�

hich implies that A�= �−GT , IM−N�P. Then �by performing row reduction in reverse order�, the
ivot columns of A�P−1 can be identified with its last M −N columns which correspond to the
onpivot columns of AP−1= �IN ,G�, and vice versa. The same correspondence between pivot and
onpivot columns also holds for A and A� because the columns of both matrices are permuted by
he same matrix P−1. This proves the first part of the lemma.

To establish that A� is irreducible, note first from Definition 2.2 that the permutation of
olumns preserves irreducibility of a matrix. Since A is irreducible, Definition 2.2 implies that all
ows or columns of G and GT are nonzero. Therefore the matrix A�P−1= �−GT , IM−N�, and hence
�, are both irreducible. �

Note that A� is not in the canonical RREF, but can be set in RREF by a GL �N ,R� transfor-
ation. Next, we define the matrix B which is also of rank M −N and irreducible like A�, and
hose columns are obtained from A� as

B�m� = �− 1�mA��m�, m = 1, . . . ,M . �C3�

hen using Eqs. �C2� and �C3�, the minors of A can be expressed in terms of the complementary
inors of B via �see, e.g., Ref. 6, p. 21�

A�l1, . . . ,lN� = �− 1�� det�P�B�m1, . . . ,mM−N� , �C4�

here �=M�M +1� /2+N�N+1� /2, and where the indices m1�m2� ¯ �mM−N are the comple-
ent of 1� l1� l2� ¯ lN in �1,2 , . . . ,M�. The matrix B plays the role of a coefficient matrix for

he dual tau function as given by the following lemma.
Lemma C.4 (Duality): If �N,M�x ,y , t� is the tau function associated with an irreducible N

M coefficient matrix A, then the matrix B defined via Eq. �C3� generates a tau function

M−N,M�x ,y , t� that is dual to �N,M�x ,y , t�.
Proof: Without loss of generality we choose the tau function �N,M�x ,y , t� associated with the

iven equivalence class of solutions such that �m,0=0 for all m=1, . . . ,M in Eq. �2.2�. Then, using
q. �C4� we can express the tau function as

�N,M�− x,− y,− t� = �− 1�� det�P�e−�1,. . .,M���x,y,t� , �C5a�

here

���x,y,t� = 	
1�m1�m2�¯�mM−N�M

V�l1, . . . ,lN�B�m1, . . . ,mM−N�e�m1,. . .,mM−N, �C5b�

ith V�l1 , . . . , lN� denoting the Van der Monde determinant as in Eq. �2.2� and where the sum
s now taken over the complementary indices m1 , . . . ,mM−N instead of l1 , . . . , lN. �The number
f terms in the sum remains the same since � M

N
�= � M

M−N
�.� It is clear from Eq. �1.2� that both

N,M�−x ,−y ,−t� and ���x ,y , t� in Eq. �C5a� generate the same solution u�x ,y , t� of KPII although
��x ,y , t� itself is not a tau function. Note that all the nonzero minors of B have the same sign,
hich is determined by the sign of �−1�� det�P��0. Thus, by replacing each Van der Monde

oefficient V�l1 , . . . , lN� by V�m1 , . . . ,mM−N� in Eq. �C5b�, it is possible to obtain from ���x ,y , t�, a
ew tau function �M−N,M�x ,y , t� associated with the irreducible coefficient matrix B. Since both
��x ,y , t� and �M−N,M�x ,y , t� are sign-definite sums of the same exponential phase combinations,
hey generate solutions that are in the same equivalence class. Therefore, the tau function
M−N,M�x ,y , t� constructed via the above prescription is dual to the tau function �N,M�x ,y , t�. This
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ields the desired result. �

By applying Lemma C.4, it is easy to show that part �i� of Theorem 3.6 implies part �ii� and
ice versa. For example, by applying part �i� of Theorem 3.6 to the tau function �M−N,M�x ,y , t� in
emma C.4 one can conclude that as y→�, �M−N,M�x ,y , t� generate a solution with exactly M
N line solitons, identified by the pivot indices g1 , . . . ,gM−N of the associated coefficient matrix B.
ne should however note that since the ordering of the pivot and nonpivot columns of B is

eversed with respect to that of A, if �i , j� with i� j labels an asymptotic line soliton generated by

M−N,M�x ,y , t� as y→�, then j is the pivot index, not i. The solution generated by �M−N,M�x ,y , t�
s in the same equivalence class as u�−x ,−y ,−t� because �M−N,M�x ,y , t� is dual to �M,N�x ,y , t�.
onsequently, as y→�, u�−x ,−y ,−t� has M −N asymptotic line solitons labeled by exactly the

ame indices g1 , . . . ,gM−N. Then as y→−�, it follows that the solution u�x ,y , t� generated by

N,M�x ,y , t� also has M −N asymptotic line solitons. Furthermore, these line solitons are labeled by
he same indices g1 , . . . ,gM−N which are the nonpivot indices of the coefficient matrix A of the tau
unction �N,M�x ,y , t�. This proves part �ii� of Theorem 3.6. Similarly, one could also prove part �i�
f the Theorem using part �ii� and Lemma C.4.

Another consequence of Lemma C.4 is that the dominant pairs of phase combinations for the
symptotic line solitons of �M−N,N�x ,y , t� as y→� are the complement of those for the asymptotic
ine solitons of the dual tau function �N,M�x ,y , t� as y→−�. Thus, if the dominant pair of phase
ombinations for �M−N,M�x ,y , t� as y→� along the line Li,j is given by �i,m2,. . .,mM−N

and

j,m2,. . .,mM−N
, the dominant phase combinations for �N,M�x ,y , t� as y→−� along Li,j are �i,l2,. . .,lN

nd � j,l2,. . .,lN
, where the index set �l2 , . . . , lN� is the complement of �i , j ,m2 , . . . ,mM−N� in

1 , . . . ,M�.
A particularly interesting subclass of �N− ,N+�-soliton solutions is obtained by requiring the

olutions u�x ,y , t� and u�−x ,−y ,−t� to be in the same equivalence class. Thus, this class of
olutions is generated tau functions which can be regarded as “self-dual.” The corresponding
olutions are the elastic N-soliton solutions of KPII, for which the amplitudes and directions of the

incoming line solitons coincide with those of the N outgoing line solitons. Hence, the set of
ncoming line solitons and the set of outgoing line solitons are both labeled by the same index
airs ��in , jn��n=1

N . Clearly, in this case we have N+=N−=N and M =2N. Some properties of the
lastic N-soliton solution have been studied in Ref. 12, and we will discuss several other properties
n a future presentation. Here we only mention one result which is a direct consequence of
heorem 3.6 and the above discussions:

Corollary C.5: A necessary condition for a set of index pairs ��in , jn��n=1
N to describe an elastic

-soliton solution is that the indices i1 , . . . , iN and j1 , . . . , jN form a disjoint partition of the
ntegers 1, . . . ,2N.

Proof: From part �i� of Theorem 3.6, the indices i1 , . . . , iN for the N asymptotic line solitons as
y→� label the pivot columns of A, and from part �ii� of Theorem 3.6, the indices j1 , . . . , jN for the

asymptotic line solitons as y→−� label the nonpivot columns of A. In order for the N
symptotic line solitons as y→−� to be the same as those as y→�, however, the index pairs
in , jn� must obviously be the same as y→ ±� for all n=1, . . . ,N. But the sets of pivot and
onpivot indices of any matrix are of course disjoint; hence the desired result. �

Note however that the condition in Corollary C.5 is necessary but not sufficient to describe an
lastic N-soliton solution. It is indeed possible to have N-soliton solutions where the index pairs
abeling the asymptotic line solitons as y→� and as y→−� form two different disjoint partition
f integers �1,2 , . . . ,2N�. Such N-soliton solutions are not elastic. See, for example, the 2-soliton
olution in Fig. 4�e�.
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