
IMA Journal of Applied Mathematics(2010)75, 968−997
doi:10.1093/imamat/hxq014
Advance Access publication on May 14, 2010

Initial-boundary-v alue problems for discrete linear evolution equations

GINO BIONDINI∗ AND DANHUA WANG

Departmentof Mathematics, State University of New York, Buffalo, NY 14260, USA
∗Correspondingauthor: biondini@buffalo.edu

[Received on 4 January 2010; accepted on 4 March 2010]

We present a transform method for solving initial-boundary-value problems (IBVPs) for linear semidis-
crete (differential-difference) and fully discrete (difference-difference) evolution equations. The method
is the discrete analogue of the one recently proposed by A. S. Fokas to solve IBVPs for evolution lin-
ear partial differential equations. We show that any discrete linear evolution equation can be written as
the compatibility condition of a discrete Lax pair, namely, an overdetermined linear system of equations
containing a spectral parameter. As in the continuum case, the method employs the simultaneous spectral
analysis of both parts of the Lax pair, the symmetries of the evolution equation and a relation, called the
global algebraic relation, that couples all known and unknown boundary values. The method applies for
differential-difference equations in one lattice variable as well as for multi-dimensional and fully discrete
evolution equations. We demonstrate the method by discussing explicitly several examples.
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1. Introduction

Initial-boundary-value problems (IBVPs) are of interest both theoretically and in applications. In par-
ticular, the solution of IBVPs for integrable non-linear partial differential equations (PDEs) has been
an ongoing problem for over 30 years. Several approaches have been proposed for solving IBVPs
for integrable non-linear PDEs on semiinfinite spatial domains (e.g., seeAblowitz & Segur, 1975;
Bikbaev & Tarasov, 1991;Biondini & Hwang,2009;Degasperiset al.,2001,2002;Khabibullin, 1991;
Sabatier,2006;Skylanin,1987;Tarasov, 1991and references therein). In particular, a transform method
was recently developed by Fokas and collaborators (seeFokas,1997,2000;Fokas & Gelfand,1994;
Fokaset al., 2005 and references therein). The method uses three key ingredients: (i) simultaneous
spectral analysis of the Lax pair of the PDE in question, (ii) the global algebraic relation that cou-
ples all known and unknown boundary values and (iii) the symmetries of the associated dispersion
relation. Interestingly, the method also provides a new and powerful approach to solve IBVPs for ‘linear’
PDEs in one and several space dimensions (seeFokas,2002, 2005; Fokas & Pelloni, 1998, 2001;
Treharne & Fokas, 2004and references therein). At the same time, it is generally accepted that dis-
crete problems are often more difficult and than continuum ones and also in some sense more fun-
damental (e.g., seeAblowitz, 1977;Ablowitz et al., 2000;Ablowitz & Ladik, 1975,1976;Ablowitz
et al., 2003; Biondini & Hwang, 2008; Flaschka,1974a,b;Habibullin, 1995; Hirota et al., 1988a,b;
Maruno & Biondini, 2004; Ragnisco & Santini,1990; Toda, 1975). The purpose of this work is to
show that an approach similar to the one mentioned above for linear PDEs can also be used to solve
IBVPs for a general class of discrete linear evolution equations (DLEEs). The method is quite gen-
eral, and it works for many IBVPs for which Fourier or Laplace methods are not applicable. Even
when such methods can be used, the present method has several advantages, in that it provides a
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INITIAL-BOUND ARY-VALUE PROBLEMS FOR DISCRETE LINEAR EVOLUTION EQUATIONS 969

representationof the solution which is convenient for both asymptotic analysis and numerical
evaluation.

The work is organized as follows. First, we describe the general method for semidiscrete (i.e.
differential-difference) evolution equations in 1 + 1 dimensions, namely in one discrete lattice variable
and one continuous time variable. We then solve explicitly several examples to illustrate the method.
Next, we discuss the extensions of the method to systems of equations, higher-order problems and
forced equations, and we present the extensions of the method to linear semidiscrete evolution equa-
tion in two lattice variables and to fully discrete (difference-difference) evolution equations. Finally, we
conclude this work with some final remarks.

2. Differential-difference equations in one lattice variable

Consider an arbitrary linear discrete evolution equation in one lattice variable, namely

iq̇n = ω(e∂ )qn, (2.1)

for a sequence of functions{qn(t)}n∈N with qn: R → C, where e∂ is the shift operator (namely e∂qn =
qn+1), and the dot denotes differentiation with respect to time (ḟ = d f/dt), andω(z) is an arbitrary
discrete dispersion relation, namely

ω(z) =
J2∑

j =−J1

ω j z
j , (2.2)

whereJ1 and J2 arearbitrary non-negative integers. Equation (2.1) is the discrete analogue of a linear
evolution PDE. Indeed, whenn ∈ Z, (2.1) admits the solutionqn(t) = zn e−iω(z)t , which is the analogue
of the plane-wave solutions ei(kx−ω(k)t) for linear PDEs. Note that, in order for the IBVP for (2.1) to
be well posed on(n, t) ∈ N × R+

0 , one must assign not only an initial conditionqn(0), ∀ n ∈ N but
also J1 boundaryconditions (BCs)q−J1+1(t), . . . , q0(t). Indeed, these conditions are necessary and
sufficient to ensure that (2.1) can be evaluated∀ n ∈ N and∀ t ∈ R+

0 . Below we first present the Lax
pair formulation of (2.1) and we derive a formal expression for the solution. We then discuss the issue
of the unknown boundary data and the symmetries of the equation. Finally, we combine those results to
obtain the solution of the IBVP. Section4 will illustrate the method with various examples.

2.1 Lax pair and compatibility form

Equation (2.1) can be written via a discrete Lax pair, i.e. as the compatibility relation of the overdeter-
mined linear system

Φn+1 − zΦn = qn, Φ̇n + iω(z)Φn = Xn, (2.3)

whereXn(z, t) is given by

Xn(z, t) = −i

[
ω(z) − ω(ξ)

z − ξ

]

ξ=e∂

qn(t). (2.4)

That is, requiring that∂t (Φn+1) = e∂ (Φ̇n) implies that qn(t) satisfies(2.1). Equation (2.3) is a
generalization of the Lax pair for the discrete linear Schrdinger (DLS) equation obtained inBiondini &
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970 G. BIONDINI AND D. WANG

Hwang (2008) by taking the linear limit of the Lax pair for the Ablowitz–Ladik system. Note that the
differenceω(z) − ω(s) is always divisible byz − s. Thus, the Laurent series ofXn(z, t) asa function
of ξ always truncates. In fact,

Xn(z, t) = i
J2−1∑

j =−J1

bj (z)qn+ j (t), (2.5a)

where

bj (z) = −
J2∑

m= j +1

ωmzm− j −1, j = 0, . . . , J2 − 1, (2.5b)

and

bj (z) =
J1∑

m=− j

ω−mz−m− j −1, j = −J1, . . . , −1. (2.5c)

The solution of the IBVP can be obtained by performing spectral analysis of the Lax pair. (Indeed,
this was the method used inBiondini & Hwang, 2008 because it can be non-linearized.) For linear
problems, however, a simplified approach is possible. For this purpose, it is useful to rewrite the Lax
pair (2.3) by introducingΨn(z, t) = z−n eiω(z)tΦn(z, t). The modified eigenfunctionΨn(z, t) satisfiesa
simpler Lax pair in which the homogeneous part is trivial:

Ψn+1 = z−n eiω(z)tqn, Ψ̇n = z−n eiω(z)t (zXn − z2Xn−1). (2.6)

Thecompatibility condition of (2.6), which also yields (2.1), can be written as

∂t (z
−n eiω(z)tqn) = z−n eiω(z)t (Xn+1 − zXn).

Theabove condition can be written more conveniently as

∂t (z
−n eiω(z)tqn) = Δ(z−n+1 eiω(z)t Xn), (2.7)

whereΔQn = Qn+1 − Qn is the finite-difference operator. Equation (2.7) is the discrete analogue of
the closure condition for a differential 1-form that arises in the continuum case (seeFokas,2002) and
provides the starting point for the solution of the IBVP.

2.2 Global relation and reconstruction formula

We now obtain an expression for the solution of (2.1). We introduce the spectral transforms of the initial
condition and BC as

q̂(z, t) =
∞∑

n=1

qn(t)/zn, ĝn(z, t) =
∫ t

0
eiω(z)t ′qn(t

′)dt′, (2.8a)

defined,respectively, for all|z| > 1 and for allz 6= 0, together with

X̂1(z, t) = z
∫ t

0
eiω(z)t ′ X1(z, t ′)dt′. (2.8b)
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INITIAL-BOUND ARY-VALUE PROBLEMS FOR DISCRETE LINEAR EVOLUTION EQUATIONS 971

(Throughoutthis work, primes will not denote differentiation.) Henceforth, we require thatqn(0) ∈
l 1(N) (thespace of absolutely summable sequences). This ensures thatq̂(z, t) is bounded∀ z ∈ C with
|z| > 1 and is analytic for|z| > 1. Similarly, we require that the BCs are continuous functions oft ,
which ensures that̂X1(z, t) is analytic everywhere in the punctured complex planeC(∗), and is bounded
∀ z ∈ D̄, whereD = {z ∈ C: Im ω(z) > 0}. (Throughout this work, we will use the notationR(∗) =
R − {0}. As usual, the overbar denotes closure.) In what follows it will be convenient to decompose
D = D+ ∪ D−, whereD± denotesthe portions ofD inside and outside the unit disk:

D± = {z ∈ C: |z| <> 1 ∧ Im ω(z) > 0}.

We now sum (2.7) fromn = 1 to∞, obtaining, for|z| > 1,

∂t (e
iω(z)t q̂(z, t)) =

∞∑

n=1

Δ(z−n+1 eiω(z)t Xn) = −eiω(z)t zX1(z, t). (2.9)

Integrating (2.9) fromt ′ = 0 to t ′ = t wethen get, for|z| > 1,

eiω(z)t q̂(z, t) = q̂(z, 0) − X̂1(z, t). (2.10)

Equation(2.10) is the global algebraic relation, which combines all known and unknown initial and
boundary data.

The inverse transform of̂q(z, t) is obtained by noting that theqn(t) arethe Laurent coefficients of
q̂(z, t), implying simply

qn(t) =
1

2πi

∫

|z|=1
zn−1q̂(z, t)dz, ∀ n ∈ N.

Useof (2.10) then yields,∀ n ∈ N and∀t ∈ R+
0 ,

qn(t) =
1

2πi

∫

|z|=1
zn−1e−iω(z)t q̂(z, 0)dz −

1

2πi

∫

|z|=1
zn−1e−iω(z)t X̂1(z, t)dz. (2.11)

Equation(2.11) allows one to obtain the solution of the IBVP in terms of the spectral data. Indeed, one
can easily verify that the functionqn(t) definedby the right-hand side of (2.11) solves the DLEE and sat-
isfies the initial condition and the BC. The right-hand side of (2.11), however, involves both known and
unknown boundary data viâX1(z, t), which depends onq−J1+1(t), . . . , qJ2(t) via their spectral trans-
forms (cf. (2.5a) and (2.8b)). Since onlyq−J1+1(t), . . . , q0(t) areassigned as BCs,q1(t), . . . , qJ2(t)
must be considered as unknowns. Thus, in order for the expression (2.12) to provide an effective
solution of the IBVP, we must be able to expressX̂1(z, t) only in terms of known ones.

As we show below, the elimination of the unknown boundary data is made possible by using
both the global relation and the symmetries of the differential-difference evolution (2.1). A key
part of the method, however, is the use of contour deformation to move the integration contour for
the second integral in (2.11) away from the unit circle. The integrand in the last term of (2.11)
is analytic ∀ z 6= 0 and continuous and bounded forz ∈ D̄. Moreover, q̂(z, t) → q0(t) as z → ∞
and ĝn(z, t) → 0 as z → 0 and z → ∞ in D. Thus, we can deform that integration contour from
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972 G. BIONDINI AND D. WANG

|z| = 1 to z ∈ ∂ D+, obtaining the reconstruction formula:

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz −

1

2πi

∫

∂ D+

zn−1 e−iω(z)t X̂1(z, t)dz,

∀ n ∈ N and∀ t ∈ R+
0 . We next show that, whenz ∈ D+, it is indeed possible to eliminate the unknown

boundary data. When this is done, (2.12) then provides the solution of the IBVP in terms of the spectral
functions.

2.3 Symmetries

The spectral functionŝgn(z, t) (and with them X̂1(z, t)) are invariant under any transformation that
leaves the dispersion relation (2.2) invariant; i.e. they are invariant under any mapz 7→ ξ(z) such that
ω(ξ(z)) = ω(z). (Note that, under any such transformation, we haveξ(D±) = D±.) The equation
ω(z) = ω(ξ(z)) hasJ1 + J2 − 1 non-trivial roots, of course, in addition to the trivial oneξ = z. Using
these symmetries in the global relation will allow us to eliminate the unknown boundary data. To do
so, however, one needs to identify which of theJ1 + J2 − 1 non-trivial roots are useful for this purpose.
In general, it is not possible to express these roots in closed form except in the simplest cases. One
must therefore look at the asymptotic behaviour of these roots asz → 0 andz → ∞. (Note thatz = 0
andz = ∞ are both images ofk = ∞ underz = eikh, whereh is the lattice spacing.)

As z → ∞, we haveω(z) ∼ ωJ2zJ2, and asz → 0, it is ω(z) ∼ ω−J1z−J1. Thus, asz → ∞, D− is
asymptoticallyequivalent toS(∞), and asz → 0, D+ is asymptotically equivalent toS(0), where

S(∞) =
J2−1⋃

j =0
S(∞)

j , S(0) =
0⋃

j =−J1+1
S(0)

j ,

where,for j = 0, . . . , J2 − 1 and for j = −J1 + 1, . . . , 0, respectively, it is

S(∞)
j = {z ∈ C: 2 j π/J2 − argωJ2/J2 < argz < (2 j +1)π/J2 − argωJ2/J2},

S(0)
j = {z ∈ C: (2 j −1)π/J1 + argω−J1/J1 < argz < 2 j π/J1 + argω−J1/J1}.

To study the asymptotic behaviour of the symmetries, note that

ω(ξ) − ω(z) =
J2∑

j =−J1

ω j (ξ
j − zj ) = (ξ − z)Q(ξ, z)/ξ J1zJ1,

where,owing to (2.5a),

Q(ξ, z) = −zJ1

J1+J2−1∑

j =0

bj −J1(z)ξ
j , (2.12)

andthe coefficientsbj (z) areas in (2.5c). Thus,Q(ξ, z) is a polynomial of degreeJ1 + J2 − 1 in ξ .
Its J1 + J2 − 1 roots, which we denote byξ−J1+1(z), . . . , ξJ2−1(z), yield the non-trivial roots of the
equationω(ξ) = ω(z). In Section3, we compute the asymptotic behaviour of these non-trivial roots
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INITIAL-BOUND ARY-VALUE PROBLEMS FOR DISCRETE LINEAR EVOLUTION EQUATIONS 973

via a singular perturbation expansion. In particular, we show that, asz → 0, theJ1 + J2 − 1 non-trivial
roots behave as follows:

ξn(z) ∼

{
e2πin/J1z, n = −J1 + 1, . . . , −1,

(ω−J1/ωJ2)
1/J2 e2πin/J2z−J1/J2, n = 0, . . . , J2 − 1.

(2.13)

In particular, (2.13) implies that each ofξ0(z), . . . , ξJ2−1(z) mapsone of theJ1 sectorsof S(0)
j (and

thereforeD+) onto one of theJ2 sectorsof S(∞)
j (andthereforeD−). These roots are precisely those

needed to eliminate the unknown boundary data. Using similar arguments, one can also show that, as
z → ∞, these roots behave as follows:

ξσn(z) ∼

{
(ω−J1/ωJ2)

1/J1 e2πin/J1z−J2/J1, n = −J1 + 1, . . . , 0,

e2πin/J2z, n = 1, . . . , J2 − 1,

whereσ = (σ1, . . . , σJ1+J2−1) is a permutation of−J1 + 1, . . . , J2 − 1. The behaviour of the roots as
z → ∞ and that asz → 0 could of course be connected if desired using matched asymptotic expansions.
This, however, is not necessary for our purposes.

2.4 Elimination of the unknown boundary data

The solution in (2.12) depends on̂X1(z, t), which involves theJ2 unknown functionsq1(t), . . . , qJ2(t)
via these spectral transforms. Applying the transformationsz → ξ j (z), with j = 0, . . . , J2 − 1, in the
discrete global relation (2.10), we obtain,∀ z ∈ D̄∗

+, the J2 algebraicequations:

X̂1(ξ j (z), t) + eiω(z)t q̂(ξ j (z), t) = q̂(ξ j (z), 0), (2.14)

i.e.∀ z ∈ D̄∗
+ andfor n = 0, . . . , J2 − 1,

iξ j (z)
J2∑

n=−J1+1

bn(ξ j (z))ĝn(z, t) + eiω(z)t q̂(ξ j (z), t) = q̂(ξ j (z), 0).

Thesecan be regarded as a linear system ofJ2 equationsfor the J2 unknowns ĝ1(z, t), . . . , ĝJ2(z, t).
In fact, they are precisely these equations that allow us to solve for these unknown boundary data in
terms of the given BCŝg−J1+1(z, t), . . . , ĝ0(z, t). (Or, we can solve for any other combination ofJ2
unknown boundary data with anyJ1 given BCs.) Indeed, the determinant of the coefficient matrixM of
the system (2.14) is

detM = (ωJ2)
J2

∏

06n<n′6J2−1

(ξn(z) − ξn′(z)),

which is always non-zero as long as the rootsξ j (z) are distinct. Here, we assume that this condi-
tion is satisfied∀ z ∈ D̄+. (This condition is always satisfied in the limitz → 0.) By substituting
ĝ1(z, t), . . . , ĝJ2(z, t) into (2.12), one then finally obtains the solution of IBVP (2.1) only in terms of
known initial-boundary data.

A careful reader will obviously note that the term eiω(z)t q̂(ξn(z), t) appearingin the left-hand side of
(2.14) is (apart from the changez → ξn(z)) just the transform of the solution we are trying to recover.
Note, however, that for alln ∈ N this term gives zero contribution to the reconstruction formula (2.12)
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974 G. BIONDINI AND D. WANG

sincetermzn−1 eiω(z)(t−t ′)q̂(ξn(z), t ′) is analytic and bounded inD+ andtherefore its integral over∂ D+
is zero. This is exactly the same as to what happens for the method in the continuum limit (Fokas,2002).

3. Asymptotic behaviour of the symmetries

Here, we briefly show how to obtain the asymptotic behaviour of the rootsξ j (z) of ω(ξ(z)) = ω(z). As
z → 0, collecting the lowest powers ofz in Q(ξ, z), we obtain

Q(ξ, z) ∼
J1+J2−1∑

j =J1

ω j −J1+1zJ1ξ j −
J1−1∑

j =0

ω−J1zJ1− j +1ξ j . (3.1)

We therefore look for the values ofξ(z) that make the right-hand side of (3.1) zero. Two possible
situations arise:

(i) If zJ1−2ξ ∼ zJ1−1, it is ξ = O(z) asz → 0. This is a consistent assumption becausezJ1−1,
zJ1−2ξ, . . . , zξ J1−2, ξ J1−1 areall O(zJ1−1), i.e. all these terms are the highest order terms in (3.1), and
other termszJ1ξ J1, zJ1ξ J1+1, . . . , zJ1ξ J1+J2−2, zJ1ξ J1+J2−1 are negligible compared with O(zJ1−1).
Letting ξ(z) = zk, for some non-zero constantk, and substitutingξ(z) into (3.1) gives

ω−J1zJ1−1
J1−1∑

j =0

k j = zJ1

J2∑

j =1

ω j z
J1+ j −1kJ1+ j −1,

or, equivalently,

J1−1∑

j =0

k j =
J2∑

j =1

(ω j /ω−J1)z
J1+ j kJ1+ j −1. (3.2)

As z → 0, the right side of (3.2) goes to zero. Thus, we needkJ1−1 + kJ1−2 + ∙ ∙ ∙ + k + 1 = 0. We
therefore haveJ1 − 1 non-trivial rootskn = e2πin/J1 for n = −J1 + 1, . . . , −1. Thus,ξn(z) ∼ e2πin/J1z
for n = −J1 + 1, . . . , −1.

(ii) If zJ1ξ J1+J2−1 ∼ ξ J1−1, it is ξ = O(z−J1/J2) asz → 0. This is also a consistent assumption
because the other terms in the equation, namely,zJ1ξ J1+J2−2, . . . , zJ1ξ J1+1, zξ J1−2, . . . , zJ1−1 areneg-
ligible compared withzJ1ξ J1+J2−1 andξ J1−1. Letting ξ(z) = z−J2/J1k, for some non-zero constantk,
and substituting into (3.1), we get

J2∑

j =1

ω j z
−J1(J1−J2+ j −1)/J2kJ1+ j −1 − ω−J1




J1∑

j =1

zJ1(J2− j +1)/J2− j k j −1



 = 0.

As z → 0, the leading order yields, after simplifications,kJ1−1(ωJ2k j2 −ω−J1) = 0. It is then clear that
we haveJ2 non-trivial rootskn = (ω−J1/ωJ2)

1/J2 e2πin/J2 for n = 0, . . . , J2 − 1. Hence,

ξn(z) ∼ (ω−J1/ωJ2)
1/J2 e2πin/J2z−J1/J2, n = 0, . . . , J2 − 1.

Summarizing,as z → 0, the J1 + J2 − 1 non-trivial roots behave as in (2.13). The asymptotic
behaviour of the roots asz → ∞ can be obtained in a similar way. A similar approach can also be used
for multi-dimensional and fully discrete evolution equations.
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4. Examples

We now illustrate the method by discussing various examples that are discretizations of physically sig-
nificant PDEs. For simplicity, we set the lattice spacing constanth to 1 whenever this can be done
without loss of generality by rescaling dependent and/or independent variables.

4.1 Discrete one-directional wave equations

We start by considering two different semidiscretizations of the one-directional wave equation. (Of
course, both these could also be solved using more traditional methods. This will not be the case for
many of the other examples, however.)

Consider first the forward-difference DLEE

q̇n = (qn+1 − qn)/h.

We takeh = 1, as mentioned earlier. The dispersion relation isω(z) = i(z − 1) and it is J1 = 0 and
J2 = 1, implying Xn(z, t) = qn(t) (including X̂1(z, t) = ĝ1(z, t)). The domainD is the union of
D+ = ∅ andD− = {z ∈ C: Rez > 1} (see Fig.1). The global relation yields, for|z| > 1,

eiω(z)t q̂(z, t) + ĝ1(z, t) = q̂(z, 0).

Hence, we have

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz −

1

2πi

∫

|z|=1
zn−1 e−iω(z)t ĝ1(z, t)dz. (4.1)

SinceJ1+ J2 = 1, the equationω(ξ) = ω(z) has only one root, i.e. the trivial oneξ = z. SinceD+ = ∅,
however,zn−1 e−iω(z)t ĝ1(z, t) is analytic∀ z 6= 0 and bounded for all|z| 6 1, so the second integral in
(4.1) vanishes∀ n ∈ N. We therefore obtain the solution simply as

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dt.

FIG. 1. The dispersion relationω(z) for the discrete one-directional wave equation in the complexz-plane. Left: The forward-
difference DLEE. Right: The backward-difference DLEE. Here, and in all subsequent figures, the shaded regions show the
domainsD± where Imω(z) > 0.
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976 G. BIONDINI AND D. WANG

Thatis, no BC is needed in this case, as expected.
Consider now the backward-difference DLEE

q̇n = (qn − qn−1)/h.

Again, let h = 1. In this case, the dispersion relation isω(z) = i(1 − 1/z) and it is J1 = 1 and
J2 = 0. We haveXn(z, t) = qn−1(t)/z and X̂1(z, t) = ĝ0(z, t). The domainD is now the union of
D+ = {z ∈ C: |z| < 1 ∧ |z − 1/2| > 1/2} andD− = {z ∈ C: |z| > 1} (see Fig.1). The global relation
(2.10) is, for|z| > 1,

eiω(z)t q̂(z, t) + ĝ0(z, t) = q̂(z, 0)

from which we obtain the solution as

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz −

1

2πi

∫

|z|=1
zn−1 e−iω(z)t ĝ0(z, t)dz.

Theboundary ofD+ includesall the unit circle, so it is not necessary to use contour deformation. Since
J1 + J2 = 1 as before, however, the equationω(ξ) = ω(z) has no non-trivial root. Hence, in this case
no elimination is possible, with the result that as expected, we need one BC,q0(t).

4.2 DLSequation

A discrete analogue of the linear Schrdinger equation iqt + qxx = 0 is

iq̇n + (qn+1 − 2qn + qn−1)/h2 = 0. (4.2)

Again, leth = 1. Here, the dispersion relation isω(z) = 2 − (z + 1/z), implying J1 = J2 = 1 and
Xn = i(qn − qn−1/z). Thus, we have

X̂1(z, t) = i(zĝ1(z, t) − ĝ0(z, t)) (4.3)

for |z| > 1, which contains the unknown boundary datumq1(t) via its spectral transform. The domains
D± aresimply D± = {z ∈ C: |z| ≶ 1 ∧ Im z≷ 0} (see Fig.2). The global relation is

i[zĝ1(z, t) − ĝ0(z, t)] + eiω(z)t q̂(z, t) = q̂(z, 0), ∀ z ∈ D̄−. (4.4)

Theelimination of the unknown boundary data is simple becauseω(ξ) = ω(z) is a quadratic equation,
whose only non-trivial root isξ = 1/z, and (4.4) withz → 1/z gives,∀ z ∈ D̄∗

+,

i[ ĝ1(z, t)/z − ĝ0(z, t)] + eiω(z)t q̂(1/z, t) = q̂(1/z, 0). (4.5)

We then solve for̂g1(z, t) to get,∀ z ∈ D̄∗
+,

ĝ1(z, t) = z[ĝ0(z, t) + i(eiω(z)t q̂(1/z, t) − q̂(1/z, 0))].

We therefore obtain the following expression for the solution:∀ n ∈ N and∀ t ∈ R+
0 ,

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz +

1

2π

∫

∂ D+

zn−1 e−iω(z)t
[
iz2q̂(1/z, 0) − (z2 − 1)ĝ0(z, t)

]
dz.

(4.6)
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FIG. 2. Left: The dispersion relationω(z) for the DLS (4.2) in the complexz-plane. Right: The dispersion relationω(z) for the
discrete linear Korteweg-de Vries (4.10) in the complexz-plane. The shaded regions show the domainsD± where Imω(z) > 0.

The above solution could also be obtained by using Fourier sine series. Unlike Fourier sine/cosine series,
however, the present method applies to any discrete evolution equation. Moreover, the method can also
deal with other kind of BCs just as effectively, as we show next. Consider (4.2) with BCs

αq1(t) + q0(t) = b(t), (4.7)

with b(t) given, andα ∈ C an arbitrary constant. Such kinds of BCs, which are the discrete analogue of
Robin BCs for PDEs, cannot be treated using sine/cosine series. The present method, however, works
equally well; one just needs to solve the global relation for a different unknown. Indeed,∀ n ∈ N and
∀ t ∈ R+

0 , the solution of this IBVP is given by (cf.Biondini & Hwang,2008)

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz

−
1

2πi

∫

∂ D+

zn−1 e−iω(z)t Ĝ(z, t)

1/z − α
dz − ναα1−n e−iω(α)t Ĝ(1/α, t), (4.8)

where

Ĝ(z, t) = i(2α − z − 1/z)b̂(z, t) − i(z − α)q̂(1/z, 0) (4.9)

and whereνα = 1 if α ∈ D−, να = 1/2 if α ∈ ∂ D− andνα = 0 otherwise, and where the integral along
∂ D+ is to be taken in the principal value sense whenα ∈ ∂ D−. As before, one can easily verify that the
expression in (4.8) indeed solves (4.2) and satisfies the initial condition and the BC (4.7). One can verify
that, in the limitα → ∞ with b(t)/α = b′(t) finite, the solution (4.6) of the IBVP with ‘Dirichlet-type’
BCs is recovered.

4.3 Discrete linear Korteweg-de Vries equations

A discrete analogue of the linear Korteweg-de Vries equationqt = qxxx is given by

q̇n = (qn+2 − 2qn+1 + 2qn−1 − qn−2)/h3. (4.10)
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Note that the IBVP for (4.10) cannot be solved with Fourier methods. Again, we seth = 1. The
dispersion relationω(z) = i(z2 − 2z + 2/z − 1/z2), implying J1 = J2 = 2 and

Xn(z, t) = −(qn+1 + (z − 2)qn + (1/z2 − 2/z)qn−1 + qn−2/z).

The domainsD± are now significantly more complicated (see Fig.2). However, asz → 0, D+ is
asymptoticallyequivalent to

S(0) = {z ∈ C: (π/4 < argz < 3π/4) ∪ (5π/4 < argz < 7π/4)}

and asz → ∞, D− is asymptotically equivalent to

S(∞) = {z ∈ C: (−π/4 < argz < π/4) ∪ (3π/4 < argz < 5π/4)}.

Then we have that, for|z| > 1,

X̂1(z, t) = −zĝ2(z, t) − z(z − 2)ĝ1(z, t) − (1/z − 2)ĝ0(z, t) − ĝ−1(z, t). (4.11)

Insertingthe above into (2.10), we get

−zĝ2(z, t) − z(z − 2)ĝ1(z, t) − (1/z − 2)ĝ0(z, t) − ĝ−1(z, t) + eiω(z)t q̂(z, t) = q̂(z, 0), ∀ z ∈ D̄−.
(4.12)

Theuse of the symmetries of the discrete linear Korteweg-de Vries to eliminate the unknown boundary
data is more complicated than in the previous examples sinceω(ξ) = ω(z) yields a quartic equation.
Note [ω(ξ)− ω(z)]/(ξ − z) = 0 is equivalent toz2ξ3 + z2(z − 2)ξ2 + (1 − 2z)ξ + z = 0. Let ξ−1, ξ0
andξ1 bethe non-trivial roots of (4.3) in our case. One can show that, asz → 0,

ξ−1 = i/z + (1 − i) − iz + O(z2), ξ0 = −z + O(z2), ξ1 = −i/z + (1 + i) + iz + O(z2),

while, asz → ∞,

ξ−1 = −z + 2 + O(1/z2), ξ0 = −i/z + O(1/z2), ξ1 = i/z + O(1/z2).

Thefunctionsĝn(z, t) areinvariant under the transformationsz → ξ j (z) for j = −1,0,1. Moreover,
z ∈ D− impliesξ0(z), ξ1(z) ∈ D+ andviceversa. Then, substitutingz → ξ0 andz → ξ1 in (4.12) and
solving for ĝ1(z, t) andĝ2(z, t), we obtain,∀ z ∈ D̄∗

+

ĝ1,eff(z, t) = {ξ2
0ξ1q̂(ξ1, 0) − ξ0ξ

2
1 q̂(ξ0, 0) + [ξ 2

0ξ1 − ξ0ξ
2
1 ]ĝ−1(z, t)

+ [ξ 2
0 − ξ2

1 − 2ξ2
0ξ1 + 2ξ0ξ

2
1 ]ĝ0(z, t)}/[ξ 2

0ξ2
1 (ξ1 − ξ0)], (4.13a)

ĝ2,eff(z, t) = {ξ2
1 (ξ1 − 2)[ξ0q̂(ξ0, 0) + ξ0ĝ−1(z, t) + (1 − 2ξ0)ĝ0(z, t)]

− ξ2
0 (ξ0 − 2)[ξ1q̂(ξ1, 0) + ξ1ĝ−1(z, t) + (1 − 2ξ1)ĝ0(z, t)]}/[ξ 2

0ξ2
1 (ξ1 − ξ0)], (4.13b)

wherethe z-dependence ofξ0 and ξ1 was omitted for brevity. As before, terms containingq̂(ξ j , t)
give no contribution to the solution and have been neglected. The solution of (4.10) is then given by
(2.12) with X̂1(z, t) given by (4.12) withĝ1(z, t) andĝ2(z, t) replacedby (4.13).

 at U
niversity at B

uffalo on N
ovem

ber 18, 2010
im

am
at.oxfordjournals.org

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


INITIAL-BOUNDARY-VALUE PROBLEMS FOR DISCRETE LINEAR EVOLUTION EQUATIONS 979

Consider now the following alternative discretization of the linear Korteweg-de Vries equation:

q̇n = (qn+1 − 3qn + 3qn−1 − qn−2)/h3. (4.14)

Note that in this case, the truncation error is dissipative rather than dispersive. (The right-hand side
of (4.14) is asymptotic toqxxx−hqxxxx/2+O(h2) ash → 0, as opposed toqxxx+h2qxxxxx/4+O(h3)
for (4.10).) Seth = 1 as before. The dispersion relation isω(z) = i(z − 3 + 3/z − 1/z2), implying
J1 = 2 andJ2 = 1. Also,

Xn = qn − (3/z + 1/z2)qn−1 + 1/zqn−2.

We have, for|z| > 1,

X̂1(z, t) = zĝ1(z, t) − (3 + 1/z)ĝ0(z, t) + ĝ−1(z, t), (4.15)

which contains one unknown datumq1(t). The domainD± shown in Fig.3 are somewhat complicated.
As z → 0, however,D+ is asymptotically equivalent to

S(0) = {z ∈ C: (π/4 < argz < 3π/4) ∪ (5π/4 < argz < 7π/4)},

and asz → ∞, D− is asymptotically equivalent to

S(∞) = {z ∈ C: − π/2 < argz < π/2}.

Owing to (4.15), the global relation (2.10) is,∀z ∈ D̄−,

zĝ1(z, t) − (3 + 1/z)ĝ0(z, t) + ĝ−1(z, t) + eiω(z)t q̂(z, t) = q̂(z, 0), ∀ z ∈ D̄−. (4.16)

We now use the symmetries of (4.14). The equation [ω(ξ) − ω(z)]/(ξ − z) = 0 yields

z2ξ2 − (3z + 1)ξ + z = 0. (4.17)

FIG. 3. Left: The dispersion relationω(z) for (4.14) in the complexz-plane. Right: the dispersion relationω(z) for (4.18) with
c = 0. As before, the shaded regions show the domainsD± where Imω(z) > 0.
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980 G. BIONDINI AND D. WANG

Let ξ−1 andξ0 bethe roots of (4.17). Asz → 0, it is

ξ−1 = z − 3z2 + 9z3 + O(z4), ξ0 = 1/z2 + 3/z − z + 3z2 − 9z3 + O(z4),

while, asz → ∞, it is

ξ−1 = −i/
√

z + 3/(2z) + 9i/
(
8z3/2

)
+ 1/

(
2z2

)
+ O

(
1/z3

)
,

ξ0 = i/
√

z + 3/(2z) − 9i/
(
8z−3/2

)
+ 1/

(
2z2

)
+ O

(
1/z3

)
.

Moreover,z ∈ D− impliesξ0 ∈ D+. Then (4.16) withz → ξ0 yields,∀ z ∈ D̄∗
+,

ξ0ĝ1(z, t) − (3 + 1/ξ0)ĝ0(z, t) + ĝ−1(z, t) + eiω(z)t q̂(ξ0, t) = q̂(ξ0, 0).

We can then solve for̂g1(z, t), ∀ z ∈ D̄∗
+,

ĝ1(z, t) = [(3 + 1/ξ0)ĝ0(z, t) − ĝ−1(z, t) − eiω(z)t q̂(ξ0, t)]/ξ0,

whereas before thez-dependence ofξ0 was omitted. As before,̂q(ξ j , t) gives no contribution to the
solution, which is therefore given by (2.12) with X̂1(z, t) replacedby

X̂1,eff(z, t) = [z(3 + 1/ξ0)/ξ0 − (3 + 1/z)]ĝ0(z, t) − (z/ξ0 − 1)ĝ−1(z, t) + q̂(ξ0, 0)/ξ0.

4.4 A discrete convection–diffusion equation

Consider the semidiscrete equation

q̇n = c(qn+1 − qn−1)/h + (qn+1 − 2qn + qn−1)/h2, (4.18)

with c ∈ R beingthe group speed in the continuum limit. Again, we takeh = 1, which can be done
without loss of generality by rescaling the time variable and redefining the constantc. The dispersion
relation isω(z) = i[(1 + c)z − 2 + (1 − c)/z], implying J1 = J2 = 1 and

Xn = −i[(1 + c)qn − (1 − c)qn−1/z].

Thenwe obtain, for|z| > 1,

X̂1(z, t) = −i[(1 + c)zĝ1(z, t) − (1 − c)ĝ0(z, t)], (4.19)

which contains the unknown datumq1(t). The domainsD± for c = 0 are shown in Fig.3 and their
boundary for some values ofc in Fig. 4. Asz → 0, D+ is asymptotically equivalent to

S(0) =






{z ∈ C: − π/2 < argz < π/2}, c < 1,

{z ∈ C: π/2 < argz < 3π/2}, c > 1.
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FIG. 4. The boundaries of the regionsD± for (4.18) for various values ofc. Left: c = 0 (solid),c = 1/4 (dot-dashed),c = 1
(dashed) andc = 2 (dotted). Right:c = 0 (solid),c = −1/4 (dotted),c = −1 (dashed) andc = −4 (dot-dashed). The shaded
regions show the domainsD± for c = 1/4 (left) andc = −1/4 (right).

As z → ∞, the domainD− is asymptotically equivalent to

S(∞) =

{
{z ∈ C: π/2 < argz < 3π/2}, c < −1,

{z ∈ C: − π/2 < argz < π/2}, c > −1.

As c → ∞, it is D± = {z ∈ C: |z| ≶ 1∧Rez≶ 0} (where the upper/lower inequalities in the right-hand
side go with the upper/lower sign in the left-hand side). Asc → −∞, D± = {z ∈ C: |z| ≶ 1∧Rez≷ 0}.
Note thatc = ±1 are special cases since the domainsD± change character at these two points
(see Fig.4).

Inserting (4.19) into (2.10), gives,∀ z ∈ D̄−, the global relation as

−i[(1 + c)zĝ1(z, t) − (1 − c)ĝ0(z, t)] + eiω(z)t q̂(z, t) = q̂(z, 0). (4.20)

The elimination of the unknown boundary datum here is simple, sinceω(ξ) = ω(z) is a quadratic
equation, whose only one non-trivial root isξ(z) = νc/z, whereνc = (1−c)/(1+c) for c 6= −1. Using
the same arguments as before, (4.20) withz → νc/z yields,∀ z ∈ D̄∗

+,

−i[(1 − c)ĝ1(z, t)/z − (1 − c)ĝ0(z, t)] + eiω(z)t q̂(νc/z, t) = q̂(νc/z, 0).q̂

Then after some algebra, we obtain the solution of (4.18),∀ n ∈ N and∀ t ∈ R+
0 ,

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz

+
1

2π

∫

∂ D+

zn−1 e−iω(z)t {iz2q̂(νc/z, 0)/νc + [(1 + c)z2 − (1 − c)]ĝ0(z, t)}dz.

Hence, only one BC is needed atn = 0 for c 6= ±1, i.e.q0(t).
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Thingschange ifc = ±1. Forc = 1, we haveX̂1(z, t) = −2izĝ1(z, t) for |z| > 1. The domainD
is the union ofD+ = ∅ andD− = {z ∈ C: Rez > 1}. The global relation is, for|z| > 1,

eiω(z)t q̂(z, t) + 2izĝ1(z, t) = q̂(z, 0).

But the termzn−1 eiω(z)t ĝ1(z, t) is analytic∀ z 6= 0 and bounded for|z| 6 1. Using (2.12), the solution
of (4.18) is then

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz.

Thus,no BC is needed forc = 1.
Whenc = −1 instead for|z| > 1, we getX̂1(z, t) = 2iĝ0(z, t). The domainD is the union of

D+ = {z ∈ C: |z − 1/2| < 1/2} andD− = ∅. The global relation (2.10) yields, for|z| > 1,

eiω(z)t q̂(z, t) + 2iĝ0(z, t) = q̂(z, 0).

The equationω(ξ) = ω(z) has no non-trivial root, hence, no elimination is possible here. Thus, we
obtain the solution as

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−iω(z)t q̂(z, 0)dz −

1

π

∫

∂ D+

zn−1 e−iω(z)t ĝ0(z, t)dz,

by deforming the integration contour from|z| = 1 to z ∈ ∂ D+. Thus, in this case, we need one BC,
q0(t).

5. Systems of equations, higher-order equations and forced problems

The method presented in Section2 can be extended in a straightforward way to solve more general kinds
of IBVPs, as we show next.

5.1 Systems of DLEEs

Consider the linear system of semidiscrete evolution equations

iq̇n = Ω(e∂ )qn, (5.1)

whereqn = (q(1)
n , . . . , q(M)

n )t is anM-component vector andΩ(z) is anM × M matrix. One can easily
verify that a Lax pair for (5.1) is given by

vn+1 − zvn = qn, v̇n + iΩ(z)vn = Xn, (5.2)

where

Xn(z, t) = −i
Ω(z) − Ω(s)

z − s

∣
∣
∣
∣
s=e∂

qn(t),

andas in the scalar case,Xn hasa finite-principal part. The compatibility of (5.2) can also be written as

∂t (z
−n eiΩ(z)tqn) = Δ(z−n+1 eiΩ(z)tXn).

 at U
niversity at B

uffalo on N
ovem

ber 18, 2010
im

am
at.oxfordjournals.org

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


INITIAL-BOUND ARY-VALUE PROBLEMS FOR DISCRETE LINEAR EVOLUTION EQUATIONS 983

Following similar steps as in the scalar case, one then obtains

qn =
1

2πi

∫

|z|=1
zn−1 e−iΩ(z)t q̂(z, 0)dz −

1

2πi

∫

|z|=1
zn−1 e−iΩ(z)t X̂1(z, t)dz, (5.3)

where

q̂(z, t) =
∞∑

n=1

qn(t)/zn, X̂1(z, t) = z
∫ t

0
eiΩ(z)t ′X1(z, t ′)dt′,

respectively, for |z| > 1 and for allz 6= 0. The global algebraic relation is

eiΩ(z)t q̂(z, t) = q̂(z, 0) − X̂1(z, t).

For simplicity, we consider the case of a simple matrixΩ(z). Cases with non-trivial Jordan blocks
can be treated similarly. Letω1(z), . . . , ωM (z) andv1(z), . . . , vM (z) arethe eigenvalues ofΩ(z) and
the corresponding eigenvectors. That is, letΩ(z) = VΛV−1, whereV(z) = (v1, . . . , vM ) and

Λ(z) = diag(ω1, . . . , ωM ) = Λ1 + ∙ ∙ ∙ + ΛM ,

with Λm(z) = diag(0, . . . , 0, ωm, 0, . . . , 0). We use the spectral decomposition ofΩ(z) to write

Ω(z) = VΛ1W† + ∙ ∙ ∙ + VΛM W† = ω1v1w†
1 + ∙ ∙ ∙ + ωMvMw†

M ,

whereW = (V−1)† = (w1(z), . . . , wM (z)), and the dagger denotes conjugate transpose. Hence,

e−i A(z)t = e−iω1(z)tv1w†
1 + ∙ ∙ ∙ + e−iωM (z)tvMw†

M .

Now define the domainsD(m)
± = {z ∈ C: |z| >< 1 ∧ Im ωm(z) > 0}, m = 1, . . . , M . Note that the

rootsω1(z), . . . , ωM (z) mayhave branch cuts. If that is the case, one must carefully integrate around
these branch cuts. We discuss one such case later. If, instead, there are no branch cuts, we can use
contour deformation to move the integration contour in the second integral of (5.3) from |z| = 1 to
z ∈ ∂ D(1)

+ ∪, . . . , ∪∂ D(M)
+ , obtaining∀ n ∈ N and∀ t ∈ R+

0 ,

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−i A(z)t q̂(z, 0)dz −

1

2πi

M∑

m=1

∫

∂ D(m)
+

zn−1 e−iωm(z)tvmw†
mX̂1(z, t)dz. (5.4)

Equation(5.4) is the analogue of the reconstruction formula (2.12) of the scalar case. One can now
use the symmetries of the rootsω1(z), . . . , ωM (z) to eliminate the unknown boundary data, following
similar steps as in the scalar case.

5.2 Higher-order problems

Now, consider higher-order equations of the type systems

dMqn

dtM
=

M−1∑

m=0

Pm(e∂ )
dmqn

dtm
, (5.5)
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984 G. BIONDINI AND D. WANG

wherethe Pm(z) arerational functions. We can convert this into a matrix system of first-order (in time)
DLEEs. More precisely, introducing the vector dependent variableqn = (qn, . . . , dMqn/dtM )>, where
the superscript> denotes matrix transpose, (5.5) can be written in the form of (5.1), with

Ω(z) = i










0 1 0 ∙ ∙ ∙ 0
0 0 1 ∙ ∙ ∙ 0
...

...
. . .

. . .
...

0 0 0 ∙ ∙ ∙ 1
P0(z) P1(z) P2(z) ∙ ∙ ∙ PM−1(z)










.

Onecan then use the methods presented for systems of DLEEs.

5.3 Forced problems

Supposeqn(t) satisfiesthe forced version of (2.1), i.e.

iq̇n(t) − ω(e∂ )qn(t) = hn(t), (5.6)

∀ n ∈ N and∀ t ∈ R+
0 , whereq−J1+1(t), . . . , q0(t) aregiven boundary data, andhn(t) is a sequence of

functions with sufficient smoothness.
The solution of this problem can be reduced to the solution of (2.1). Indeed using spectral transforms,

it is relatively easy to show that a particular solution of (5.6) is given by

Hn(t) = −
1

2π

∫

|z|=1
zn−1 e−iω(z)t

∫ t

0
eiω(z)t ′

∞∑

m=1

hm(t ′)/zm dt′ dz,

∀ n ∈ Z. SinceHn(0) ≡ 0, ∀ n ∈ N, the solution of the IBVP defined by (5.6) is then given by

qn(t) = q̃n(t) + Hn(t),

whereq̃n(t) satisfiesthe homogeneous equation (2.1) with the given initial condition and BC.

5.4 Example

We illustrate the above results by solving the IBVP for the discrete wave equation

q̈n = qn+1 − 2qn + qn−1. (5.7)

Let qn = (qn, q̇n)
>. Then (5.7) becomes (5.1), with

Ω(z) =
(

0 i
i(z + 1/z − 2) 0

)
, Xn =

(
0

qn − qn−1/2

)
.

The eigenvalues ofΩ(z) are ω±(z) = ±
√

2 − (z + 1/z), and the corresponding eigenvectors are
v±(z) = (1,−iω±)>. So the spectral decomposition ofΩ(z) is Ω(z) = VΛV−1, whereΛ(z) =
diag(ω+, ω−), V(z) = (v+, v−) andV−1 = (w+, w−)†, wherew±(z) = (1, i/ω±)>/2. Now, intro-
duce the projection operators

P±(z) = v±w†
±(z) =

(
1/2 i/(2ω±)

−iω±/2 1/2

)
.
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Then, we have e−i A(z)t = e−iω+(z)t P+(z) + e−iω−(z)t P−(z). Inserting this into the reconstruction for-
mula, one obtains

qn(t) =
1

2πi

∫

|z|=1
zn−1 e−i A(z)t q̂(z, 0)dz

−
1

2πi

[∫

∂ D(+)
+

zn−1 e−iω+(z)t P+(z)X̂1(z, t)dz +
∫

∂ D(−)
+

zn−1 e−iω−(z)t P−(z)X̂1(z, t)dz

]

.

(5.8)

The deformation of the integrals to obtain (5.8) is not trivial, however, as we discuss next.
It is Im ω(σ)(z) > 0 for z ∈ D(σ ) = D(σ )

+ ∪ D(σ )
− andσ = ±, where the domains areD(+)

± = {z ∈

C: |z| <> 1 ∧ Im z >< 0} and D(−)
± = {z ∈ C: |z| <> 1 ∧ Im z <> 0}. Note also thatω±(z) have branch

points atz = 0,1,∞. Taking the branch cut of the square root to be along negative real values of its
argument, the branch cuts ofω±(z) are along(0,1)∪(1,∞). Since the first of these branch cuts is inside
the unit circle|z| = 1 in (5.3), we can decompose the integration contour as∂ D(+)

+ ∪ ∂ D(−)
+ ∪ C, where

C = C− ∪ (−C+) andC± = (±iε, 1 ± iε) and∂ D(±)
+ are above/below the branch cut, respectively

(see Fig.5).
Using the symmetry ofω±(z), i.e.ω±(x + iy) = ω∓(x − iy), we have

∫

C±
zn−1 e−iω+(z)t P+(z)X̂1(z, t)dz =

∫

C∓
zn−1 e−iω−(z)t P−(z)X̂1(z, t)dz.

Thus,
∫

C
zn−1e−iω+(z)t P+(z)X̂1(z, t)dz +

∫

C
zn−1e−iω−(z)t P−(z)X̂1(z, t)dz = 0 .

That is, the sum of the integrals around the branch cuts is zero. Thus, we obtain with (5.8), as anticipated.
We now discuss the elimination of the unknown boundary data. Let

ĝ±
n (z, t) =

∫ t

0
eiω±(z)t ′qn(t

′)dt′.

We have, for|z| > 1,

X̂1(z, t) =

(
i[zĝ+

1 (z, t) − ĝ+
0 (z, t)]/[2ω+(z)] + i[zĝ−

1 (z, t) − ĝ−
0 (z, t)]/[2ω−(z)]

[zĝ+
1 (z, t) − ĝ+

0 (z, t) + zĝ−
1 (z, t) − ĝ−

0 (z, t)]/2

)

,

FIG. 5. Integration contour for (5.7).
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whichcontains the unknown boundary datumq1(t). The global relation for (5.7) is,∀ z ∈ D̄(1)
− ∪ D̄(2)

− ,

X̂1(z, t) + ei A(z)t q̂(z, t) = q̂(z, 0) . (5.9)

The elimination of the unknown boundary datum is not difficult becauseω±(ξ) = ω±(z) is a quadratic
equation whose only non-trivial root isξ = 1/z. Replacingz → 1/z in (5.9) and solving for̂g+

1 (z, t)

andĝ−
1 (z, t) wethen obtain the solution via (5.8) with X̂1(z, t) replacedby

X̂1,eff(z, t) =

(
q̂(1/z, 0) + i(z2 − 1)[ĝ+

0 (z, t)/ω+(z) + ĝ−
0 (z, t)/ω−(z)]/2

z2 ˆ̇q(1/z, 0) + (z2 − 1)[ĝ+
0 (z, t) + ĝ−

0 (z, t)]/2

)

.

Thus,the only BC needed isq0(t).

6. Differential-difference equations in two lattice variables

We now show how the method presented in Section2can be extended to solve IBVPs for linear separable
differential-difference evolution equations for a double sequence of functions{qm,n(t)}m,n∈N. Consider
a multi-dimensional analogue of (2.1) in the form

iq̇m,n = ω(e∂m, e∂n)qm,n, (6.1)

wheree∂mqm,n = qm+1,n ande∂nqm,n = qm,n+1 andω(z1, z2) is an arbitrary discrete dispersion relation.
In particular, we will restrict our attention to the class of so-called ‘separable’ equations for which the
dispersion relation can be written as the sum

ω(z1, z2) = ω1(z1) + ω2(z2) =
M2∑

m=−M1

ω1,mzm
1 +

N2∑

n=−N1

ω2,nzn
2. (6.2)

This class includes many physically significant examples. An identical restriction exists for the method
in the continuum case (Fokas,2002).

6.1 The general method

Similar to Section2, we can write (6.1) in the discrete version of a divergence equation as

∂t [z
−m
1 z−n

2 eiω(z1,z2)tqm,n] = Δm(z−m+1
1 z−n

2 eiω(z1,z2)t X(1)
m,n) + Δn(z

−m
1 z−n+1

2 eiω(z1,z2)t X(2)
m,n), (6.3)

whereΔmQm = Qm+1 − Qm andΔnQn = Qn+1 − Qn arethe difference operators, and where

X(1)
m,n(z1, z2, t) = −i

[
ω1(z1) − ω1(s1)

z1 − s1

]

s1=e∂m

qm,n(t), (6.4a)

X(2)
m,n(z1, z2, t) = −i

[
ω2(z2) − ω2(s2)

z2 − s2

]

s2=e∂n

qm,n(t). (6.4b)

Let q̂(z1, z2, t), q̂m,n(z1, z2, t), X̂(1)
1 (z1, z2, t) and X̂(2)

1 (z1, z2, t) bethez-transforms of the initial con-
dition and BC, respectively. That is,

q̂(z1, z2, t) =
∞∑

m=1

∞∑

n=1

z−m
1 z−n

2 qm,n(t), (6.5a)
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q̂m,n(z1, z2, t) =
∫ t

0
eiω(z1,z2)t ′qm,n(t

′)dt′ (6.5b)

X̂(1)
1 (z1, z2, t) =

∫ t

0
eiω(z1,z2)t ′z1X(1)

1,n(z1, z2, t ′)dt′, (6.5c)

X̂(2)
1 (z1, z2, t) =

∫ t

0
eiω(z1,z2)t ′z2X(2)

m,1(z1, z2, t ′)dt′. (6.5d)

For (|z1| > 1) ∧ (|z2| > 1), summing (6.3) fromm = 1 to∞ andn = 1 to∞, it is

∂t [e
iω(z1,z2)t q̂(z1, z2, t)] +

∞∑

n=1

eiω(z1,z2)t z1X(1)
1,n(z1, z2, t) +

∞∑

m=1

eiω(z1,z2)t z2X(2)
m,1(z1, z2, t) = 0. (6.6)

Again, note that ifqm,n(0) ∈ l 1(N×N), thenq̂(z1, z2, t) is defined∀ (z1, z2) ∈ C×Cwith |z1|, |z2| > 1
andis analytic for|z1|, |z2| > 1, while X̂(1)

1 (z1, z2, t) andX̂(2)
1 (z1, z2, t) aredefined∀ z1 ∈ D̄(1), ∀ z2 ∈

D̄(2), and are analytic∀ z1 ∈ D(1), ∀ z2 ∈ D(2), whereD(1) = {z1 ∈ C: Im ω1(z1) > 0} and D(2) =
{z2 ∈ C: Im ω2(z2) > 0}.

As in Section2, we decomposeD( j ) = D( j )
+ ∪ D( j )

− for j = 1,2, where

D( j )
± = {zj ∈ C: |zj | ≶ 1 ∧ Im ω j (zj ) > 0}.

Now integrate (6.6) fromt ′ = 0 to t ′ = t to get, for(|z1| > 1) ∧ (|z2| > 1),

eiω(z1,z2)t q̂(z1, z2, t) = q̂(z1, z2, 0) − X̂(1)
1 (z1, z2, t) − X̂(2)

1 (z1, z2, t) . (6.7)

Equation (6.7) is the discrete global relation in two lattice variables.
Sinceqm,n(t) arethe Laurent coefficients of̂q(z1, z2, t), the inverse transform of̂q(z1, z2, t) is:

qm,n(t) =
1

(2πi)2

∫

|z1|=1

∫

|z2|=1
zm−1

1 zn−1
2 q̂(z1, z2, t)dz2 dz1, ∀ m, n ∈ N.

Then(6.5) provides,∀ m, n ∈ N and∀ t ∈ R+
0 ,

qm,n(t) =
1

(2πi)2

∫

|z1|=1

∫

|z2|=1
zm−1

1 zn−1
2 e−iω(z1,z2)t q̂(z1, z2, 0)dz1 dz1

−
1

(2πi)2

∫

|z1|=1

∫

|z2|=1
zm−1

1 zn−1
2 e−iω(z1,z2)t [ X̂(1)

1 (z1, z2, t) + X̂(2)
1 (z1, z2, t)]dz1 dz1.

(6.8)

As in Section2, we now use contour deformation to move the integration contour for the second integral
in (6.8) away from the unit circle. The integrand in the last term of (6.8) is analytic∀ z1, z2 6= 0 and
continuous and bounded forz1 ∈ D̄(1) andz2 ∈ D̄(2). Thus, we can deform that integration contour
from |z1| = 1 to z1 ∈ ∂ D(1)

+ and |z2| = 1 to z2 ∈ ∂ D(2)
+ obtaining,∀ m, n ∈ N and∀ t ∈ R+

0 , the
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reconstructionformula for the solution of the IBVP:

qm,n(t) =
1

(2πi)2

∫

|z1|=1

∫

|z2|=1
zm−1

1 zn−1
2 e−iω(z1,z2)t q̂(z1, z2, 0)dz2 dz1

−
1

(2πi)2

∫

∂ D(1)
+

∫

∂ D(2)
+

zm−1
1 zn−1

2 e−iω(z1,z2)t [ X̂(1)
1 (z1, z2, t) + X̂(2)

1 (z1, z2, t)]dz2 dz1

−
1

(2πi)2

∫

∂ D(1)
+

∫

|z2|=1
zm−1

1 zn−1
2 e−iω(z1,z2)t X̂(1)

1 (z1, z2, t)dz2 dz1

−
1

(2πi)2

∫

|z1|=1

∫

∂ D(2)
+

zm−1
1 zn−1

2 e−iω(z1,z2)t X̂(2)
1 (z1, z2, t)dz2 dz1. (6.9)

Of course (6.9) depends on the unknown data{qm,n(t)}n=1,...,N2;m=1,...,M2 via their spectral transforms

{q̂m,n(z1, z2, t)}n=1,...,N2;m=1,...,M2 appearingin X̂(1)
1 (z1, z2, t) and X̂(2)

1 (z1, z2, t). As before, we must
express these unknown boundary values in terms of known quantities.

The spectral functionŝX(1)
1 (z1, z2, t) and X̂(2)

1 (z1, z2, t) areinvariant under any transformation that
leaves the dispersion relation (6.2) invariant; i.e. any mapz1 7→ ξ (1)(z1) andz2 7→ ξ (2)(z2) suchthat
ω1(ξ

(1)) = ω1(z1) andω2(ξ
(2)) = ω2(z2). Note that, as a result, we haveξ (1)(D(1)

± ) ⊆ D(1)
± and

η(2)(D±)(2) ⊆ D(2)
± .

The equationω1(z1) = ω1(ξ
(1)) hasM1 + M2 − 1 non-trivial roots in addition to the trivial one

ξ (1) = z1, andω2(z2) = ω2(ξ
(2)) has N1 + N2 − 1 non-trivial roots in addition to the trivial one

ξ (2) = z2. Using these symmetries in the global relation allow us to eliminate the unknown boundary
data. To do so, however, one must identify which of the(M1 + M2 − 1)(N1 + N2 − 1) non-trivial roots
are useful for this purpose. As in Section2, it is not possible to find these roots in closed form except
in the simplest cases. As before, we then look at the asymptotic behaviour of these roots asz1 → 0,
z2 → 0, z1 → ∞ andz2 → ∞. As z1 → ∞, we haveω1(z1) ∼ ω1,M2zM2

1 . Similarly, asz1 → 0, we

haveω1(z1) ∼ ω1,−M1z−M1
1 . Thus, asz1 → ∞ andz1 → 0, the domainD(1)

− andD(1)
+ are,respectively,

asymptotically equivalent to

S(1,∞) =
M2−1⋃

m=0

S(1,∞)
m , S(1,0) =

0⋃

m=−M1+1

S(1,0)
m ,

where,for m = 0, . . . , M2 − 1,

S(1,∞)
m = {z1 ∈ C: 2mπ/M2 − argω1,M2/M2 < argz1 < (2m+ 1)π/M2 − argω1,M2/M2},

while for m = −M1 + 1, . . . , 0,

S(1,0)
m = {z1 ∈ C: (2m− 1)π/M1 + argω1,−M1/M1 < argz1 < 2mπ/M1 + argω1,−M1/M1}.

Similarly, asz2 → ∞, we haveω2(z2) ∼ ω2,N2zN2
2 andasz2 → 0, we haveω2(z2) ∼ ω2,−N1z−N1

2 .

Thus,asz2 → ∞ andz2 → 0, the domainD(2)
− andD(2)

+ are,respectively, asymptotically equivalent to
domains

S(2,∞) =
N2−1⋃

n=0

S(2,∞)
n , S(2,0) =

0⋃

n=−N1+1

S(2,0)
n ,
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where,for n = 0, . . . , N2 − 1,

S(2,∞)
n = {z2 ∈ C: 2nπ/N2 − argω2,N2/N2 < argz2 < (2n + 1)π/N2 − argω2,N2/N2},

while for n = −N1 + 1, . . . , 0,

S(2,0)
n = {z2 ∈ C: (2n − 1)π/N1 + argω2,−N1/N1 < argz2 < 2nπ/N1 + argω2,−N1/N1}.

The asymptotic behaviour of the(M1 + M2 − 1)(N1 + N2 − 1) non-trivial roots of the equations
ω1(ξ

(1)) = ω1(z1) andω2(ξ
(2)) = ω2(z2) canbe found via a singular perturbation expansion as before.

Namely, using similar arguments to Section2, we find that asz1 → 0, the M1 + M2 − 1 non-trivial
roots ofω1(ξ

(1)(z1)) = ω1(z1) become

ξ (1)
m (z1) ∼

{
e2πim/M1z1, m = −M1 + 1, . . . , −1,

(ω1,−M1/ω1,M2)
1/M2 e2πim/M2z−M1/M2

1 , m = 0, . . . , M2 − 1;

asz2 → 0, the N1 + N2 − 1 non-trivial roots ofω2(ξ
(2)(z2)) = ω2(z2) are

ξ (2)
n (z2) ∼

{
e2πin/N1z2, n = −N1 + 1, . . . , −1,

(ω2,−N1/ω2,N2)
1/N2 e2πin/N2z−N1/N2

2 , n = 0, . . . , N2 − 1.

Thus,usingξ
(1)
0 (z1), . . . , ξ

(1)
M2−1(z1), each of theM1 sectorsin S(1,0)

m is mapped onto one of theM2

sectorsof S(1,∞)
m , and usingξ (2)

0 (z2), . . . , ξ
(2)
N2−1(z2), each of theN1 sectorsin S(2,0)

n is mapped onto one

of the N2 sectorsof S(2,∞)
n . We can then perform the substitutionsz1 → ξ

(1)
m (z1) andz2 → ξ

(2)
n (z2) in

theglobal relation form = 0, . . . , M2 − 1,n = 0, . . . , N2 − 1. Applying these transformations in the
discrete global relation (6.7), we then getM2N2 algebraicequations

X̂(1)
1 (z1, z2, t) + X̂(2)

1 (z1, z2, t) + eiω(z1,z2)t q̂(ξ (1)
m (z1), ξ

(2)
n (z2), t) = q̂(ξ (1)

m (z1), ξ
(2)
n (z2), 0) (6.10)

for m = 0, . . . , M2 − 1;n = 0, . . . , N2 − 1. These are precisely the equation that allow us to solve for
the unknown boundary data{q̂m,n(z1, z2, t)}m=1,...,M2

n=1,...,N2
with {q̂m,n(z1, z2, t)}m=−M1+1,...,0

n=−N1+1,...,0 given, then
we can get the solution of (6.1) with given boundary data. As in Section2, the left-hand side of (6.10)
contains eiω(z1,z2)t q̂(ξ

(1)
m (z1), ξ

(2)
n (z2), t), which is (apart from the changez1 → ξ

(1)
m (z1) and z2 →

ξ
(2)
n (z2)) just the transform of solution we are trying to recover. As before, however, this term gives

zero contribution to the reconstruction formula (6.9). This is because the termzm−1
1 zn−1

2 eiω(z1,z2)(t−t ′)

× q̂(ξ
(1)
m (z1), ξ

(2)
n (z2), t ′) is analytic and bounded inD(1)

+ ∩ D(2)
+ , and therefore its integral over∂ D(1)

+ ∪

∂ D(2)
+ is zero.

EXAMPLE. Consider the diffusive–dispersive DLEE

q̇m,n = b(qm+1,n − 2qm,n + qm−1,n)/h2 + (qm,n+1 − 3qm,n + 3qm,n−1 − qm,n−2)/h3,

whereb ∈ R+ andthe same lattice spacing inm andn was taken. As before, we takeh = 1. Here,
M1 = M2 = 1, N1 = 2 and N2 = 1. The dispersion relation isω(z1, z2) = ω1(z1) + ω2(z2) with
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ω1(z1) = ib(z1 − 2+ 1/z1) andω2(z2) = i(z2 − 3+ 3/z2 − 1/z2
2). Note thatω1(z1) equalsb timesthe

dispersion relation of (4.2), andω2(z2) is same as the dispersion relation of (4.14). We obtain

X(1)
m,n = b(qm,n − qm−1,n/z), X(2)

m,n = qm,n − (3/z2 − 1/z2
2)qm,n−1 + 1/z2qm,n−2.

Thedomains are

D(1)
± = {z1 ∈ C: |z1| ≶ 1 ∧ Im z1 ≷ 0}, D(2)

± = {z2 ∈ C: |z2| ≶ 1 ∧ Im ω2(z2) > 0},

with D(2)
± coincidingwith the domain shown in Fig.2 (right). The solution is given by (6.9) with

X̂(1)
1 (z1, z2, t) = b[z1q̂1,n(z1, z2, t) − q̂0,n(z1, z2, t)], (6.11a)

X̂(2)
1 (z1, z2, t) = z2q̂m,1(z1, z2, t) − (3 − 1/z2)q̂m,0(z1, z2, t) + q̂m,−1(z1, z2, t). (6.11b)

Substituting(6.11) into (6.7). The global relation is, for∀ z1 ∈ D̄(1)
− and∀ z2 ∈ D̄(2)

− ,

b[z1q̂1,n(z1, z2, t) − q̂0,n(z1, z2, t)] + z2q̂m,1(z1, z2, t) − (3 − 1/z2)q̂m,0(z1, z2, t)

+ q̂m,−1(z1, z2, t) + eiω(z1,z2)t q̂(z1, z2, t) = q̂(z1, z2, 0).

We then eliminate the unknown boundary data by transformationz1 → 1/z1 asfor (4.2) and transfor-
mationz2 → ξ0(z2) asfor (4.14). We obtain,∀ z1 ∈ D̄∗(1)

− , ∀ z2 ∈ D̄∗(2)
− ,

b[1/z1q̂1,n(z1, z2, t) − q̂0,n(z1, z2, t)] + z2q̂m,1(z1, z2, t) − (3 − 1/z2)q̂m,0(z1, z2, t)

+ q̂m,−1(z1, z2, t) + eiω(z1,z2)t q̂(1/z1, z2, t) = q̂(1/z1, z2, 0),

b[z1q̂1,n(z1, z2, t) − q̂0,n(z1, z2, t)] + ξ0(z2)q̂m,1(z1, z2, t) − (3 − 1/ξ0(z2))q̂m,0(z1, z2, t)

+ q̂m,−1(z1, z2, t) + eiω(z1,z2)t q̂(z1, ξ0(z2), t) = q̂(z1, ξ0(z2), 0),

we can then solve forq̂m,1(z1, z2, t) and q̂1,n(z1, z2, t) with q̂m,0(z1, z2, t), q̂m,−1(z1, z2, t) and
q̂0,n(z1, z2, t) andsubstitute in (6.11) to obtain the reconstruction formula.

7. Fully discrete evolution equations

We now show how the method can be extended to solve IBVPs for a general class of fully DLEEs of
the type i(qm+1

n −qm
n )/Δt = ω(e∂n)qm

n , which are the fully discrete analogue of (2.1). Equivalently, we
write these equations as

qm+1
n = W(e∂n)qm

n , (7.1)
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whereW(z) = 1 − iΔtω(z) is an arbitrary fully discrete dispersion relation:

W(z) =
J2∑

j =−J1

cj z
j , (7.2)

Equation(7.1) admits the solutionqm
n = znWm. It should then be clear that the role of the condition

Im ω(z) ≷ 0 will now be played by the condition|W(z)| ≷ 1.

7.1 The general method

Equation (7.1) can be written as the compatibility relation of a fully discrete Lax pair, i.e. an overdeter-
mined linear system

Φm
n+1 − zΦm

n = qm
n , Φm+1

n − WΦm
n = Xm

n , (7.3)

whereXm
n (z) is given by the explicit formula

Xm
n (z) =

[
W(z) − W(s)

z − s

]

s=e∂n

qm
n .

If Ψ m
n (z) = z−nW−mΦm

n (z), thenΨ m
n satisfiesthe modified fully discrete Lax pair:

Ψ m
n+1 = z−nW−m+1qm

n , Ψ m+1
n = z−n+1W−mXm

n . (7.4)

UsingΨ m
n , the compatibility of (7.4) (namely, the conditionΔm(Ψ m

n+1) = Δn(Ψ
m+1
n )) can be written

asqm+1
n − Wqm

n = Xm
n+1 − zXm

n or equivalently as:

Δm(z−nW−m+1qm
n ) = Δn(z

−n+1W−mXm
n ), (7.5)

whereΔmQm = Qm+1 − Qm andΔnQn = Qn+1 − Qn arethe finite-difference operators.
Let q̂m(z), ĝm

n (z) and X̂m
1 (z) bethez-transforms of the initial condition and BC, respectively:

q̂m(z) =
∞∑

n=1

z−nqm
n , ĝm

n (z) =
m∑

m′=0

W−m′
qm′

n , X̂m
1 (z) =

m∑

m′=0

zW−m′
Xm′

1 . (7.6)

Summing(7.5) fromn = 1 to∞, we obtain, for|z| > 1,

Δm(W−m+1q̂m(z)) = −zW−mXm
1 (z). (7.7)

Supposeq0
n ∈ l 1(N). Then,q̂m(z) is defined∀ z ∈ C with |z| > 1 and is analytic for|z| > 1, while

X̂m
1 (z) is defined∀ z ∈ D̄ and is analytic∀ z ∈ D, whereD = {z ∈ C: |W(z)| > 1}. Similar to the

semidiscrete case, we decomposeD asD = D+ ∪ D−, whereD± = {z ∈ C: |z| ≶ 1 ∧ |W(z)| > 1}.
Summing (7.7) fromm′ = 0 to m, we get, for|z| > 1,

q̂m(z) = Wm−1(z)[W(z)q̂0(z) − X̂m
1 (z)]. (7.8)

Equation(7.8) is the fully discrete version of the global relation, which contains all known and unknown
initial-boundary data. Again, the inverse transform ofq̂m(z) is obtained by noting that theqm

n arethe
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Laurentcoefficients ofq̂m(z). Using (7.6) then yields,∀ n ∈ N, ∀ m ∈ N0,

qm
n =

1

2πi

∫

|z|=1
zn−1Wm(z)q̂0(z)dz −

1

2πi

∫

|z|=1
zn−1Wm−1(z)X̂m

1 (z)dz. (7.9)

Again, we use contour deformation to move the integration contour for the second integral in (7.9) away
from the unit circle. SinceznWm−1X̂m

1 (z) is analytic∀ z 6= 0 and bounded and continuous forz ∈ D̄,
we can deform that integration contour from|z| = 1 to z ∈ ∂ D+ to obtain the reconstruction formula,
∀ n ∈ N, ∀ m ∈ N0,

qm
n =

1

2πi

∫

|z|=1
zn−1Wm(z)q̂0(z)dz −

1

2πi

∫

∂ D+

zn−1Wm−1(z)X̂m
1 (z)dz. (7.10)

As in the semidiscrete case, the solution in (7.10) depends on the unknown dataqm
1 , . . . , qm

J2
via

their spectral transformŝqm
1 (z), . . . , q̂m

J2
(z) appearingin X̂m

1 (z). Thus, in order for the method to yield
an effective solution, one must be able to express these unknown boundary values in terms of known
quantities. In fact, an immediate consequences of the method is that it allows one to verify that, to
make the IBVP (7.1) well posed on the naturals, one needs to assign exactlyJ1 BCs at n = 0.
As before, the elimination of the unknown boundary data can be accomplished using the global re-
lation (7.8) together with the symmetries of the equation. The spectral functionX̂m

1 (z) is invariant
under any transformation that leaves the dispersion relation (7.2) invariant; i.e. any mapz 7→ ζ(z)
such thatW(ζ(z)) = W(z). Note that, as a result, we haveζ(D±) ⊆ D±. The equationW(z) =
W(ζ(z)) has J1 + J2 − 1 non-trivial roots in addition to the trivial rootζ = z. Using these symme-
tries in the global relation will allow us to eliminate the unknown boundary data. In order to do so,
however, one needs to identify which of theJ1 + J2 − 1 non-trivial roots are useful for this pur-
pose. As before, we look at the asymptotic behaviour of these roots asz → 0 and z → ∞. As
z → ∞, we haveW(z) ∼ cJ2zJ2. Similarly, asz → 0, we haveW(z) ∼ c−J1z−J1. Thus, as
z → ∞ and asz → 0, the domainsD− and D+ are, respectively, asymptotically equivalent to the
domains

S(∞) =
J2−1⋃

j =0

S(∞)
j , S(0) =

0⋃

j =−J1+1

S(0)
j ,

where,for j = 0, . . . , J2 − 1,

S(∞)
j = {z ∈ C: 2 j π/J2 < argz < (2 j + 1)π/J2}.

while, for j = −J1 + 1, . . . , 0,

S(0)
j = {z ∈ C: (2 j − 1)π/J1 < argz < 2 j π/J1}.

Again, the asymptotic behaviour of theJ1 + J2 − 1 non-trivial roots of the equationW(ζ ) = W(z) can
be found by a singular perturbation expansion. Using similar arguments as in Section2, we have that
the J1 + J2 − 1 non-trivial roots for equationW(ζ(z)) = W(z) asz → 0

ζn(z) ∼
{

e2πin/J1z, n = −J1 + 1, . . . , −1,
(c−J1/cJ2)

1/J1 e2πin/J2z−J1/J2, n = 0, . . . , J2 − 1.
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Fromthe above calculations we now see that, usingζ0(z), . . . , ζJ2−1(z), each of theJ1 sectorsin S(0)
j

is mapped onto one of theJ2 sectorsof S(∞)
j . Applying transformationsz → ζn(z), n = 0, . . . , J2 − 1

in the discrete global relation (7.8), we then obtainJ1 algebraicequations:

X̂m
1 (z) + W−m+1(z) q̂m(ζn(z)) = W(z)q̂0(ζn(z)) (7.11)

for n = −J1 + 1, . . . , 0. These are precisely the equations that allow us to solve for the unknown
boundary datâqm

1 (z), . . . , q̂m
J2

(z) with q̂m
−J1+1(z), . . . , q̂m

0 (z) given, and then substitute them in (7.10),
we gain the solution of (7.1) with given boundary data. Again, the left-hand side of (7.11) contains
the unknown termW−m+1(z)q̂m(ζn(z)). As before, however, this term gives zero contribution to the
reconstruction formula (7.10) thanks to analyticity.

EXAMPLE. Consider the fully discrete convection–diffusion equation

(qn+1
n − qm

n )/Δt = c(qm
n+1 − qm

n−1)/h + (qm
n+1 − 2qm

n + qm
n−1)/h2, (7.12)

with c ∈ R. LettingΔt = h = 1, we have

qm+1
n = (1 + c)qm

n+1 − qm
n + (1 − c)qm

n−1.

The fully discrete dispersion relationW(z) = (1 + c)z − 1 + (1 − c)/z, implying J1 = J2 = 1 and
Xm

n (z) = (1 + c)qm
n − (1 − c)qm

n−1/z. The domainsD± = {z ∈ C: |z| ≶ 1 ∧ |W(z)| > 1}. We obtain,
for |z| > 1,

X̂m
1 (z) = (1 + c)zĝm

1 (z) − (1 − c)ĝm
0 (z), (7.13)

which contains the unknown datumqm
1 . The domainsD± andtheir boundary for some values ofc are

shown in Fig.6. Forc 6= 1, asz → 0, D+ is asymptotically equivalent toS(0) = {z ∈ C: 0 < argz <
2π}, while asz → ∞, the domainD− is asymptotically equivalent toS(∞) = {z ∈ C: 0 < argz < 2π}.
Note that the valuesc = ±1 are special cases sinceD± changecharacter at these two points
(see Fig.6).

Inserting (7.13) into (7.8), we have,∀ z ∈ D̄−,

Wm−1[(1 + c)zĝm
1 (z) − (1 − c)ĝm

0 (z)] + q̂m(z) = Wmq̂0(z). (7.14)

Takingz → νc/z in (7.14) (whereνc = (1 − c)/(1 + c) for c 6= ±1), we then get,∀ z ∈ D̄∗
+,

Wm−1[(1 − c)ĝm
1 (z)/z − (1 − c)ĝm

0 (z)] + q̂m(νc/z) = Wmq̂0(νc/z).

After straightforward calculations, forc 6= ±1, we then obtain the solution of the IBVP as

qm
n =

1

2πi

∫

|z|=1
zn−1Wmq̂0(z)dz

−
1

2πi

∫

∂ D+

zn−1Wm−1{[(1 + c)z2 − (1 − c)]ĝM
0 (z) + z2Wq̂0((2 − c)/[z(2 + c)])/νc}dz.
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FIG. 6. The boundaries of the regionsD± for (7.12) for various values ofc. Left: c = 0 (solid), c = 1/4 (dashed),c = 1
(dot-dashed) andc = 2 (dotted). Right:c = 0 (solid),c = −1/4 (dotted),c = −1 (dashed) andc = −4 (dot-dashed). The shaded
regions show the domainsD± for c = 1/4 (left) andc = −1/4 (right).

Therefore, only one BC is needed atn = 0 for c 6= ±1, i.e.qm
0 . For c = ±1, we can use similar

methods as in (4.18) to find the solution of IBVPs (7.12), as we show next.
When c = 1, we haveX̂m

1 (z) = 2zĝm
1 (z) for |z| > 1. The domainD is the union ofD+ =

{z ∈ C: |z| < 1 ∧ |z − 1/2| > 1/2} andD− = {z ∈ C: |z| > 1}. The global relation is, for|z| > 1,

2Wm−1zĝm
1 (z) + q̂m(z) = Wmq̂0(z).

But the termzn−1Wm−1(z)ĝm
1 (z) is analytic∀ z 6= 0 and bounded for|z| 6 1. By (7.10), the solution is

qm
n =

1

2πi

∫

|z|=1
zn−1Wmq̂0(z)dz.

Whenc = −1, we getX̂m
1 (z) = −2ĝm

0 (z). The domainD is the union ofD+ = {z ∈ C: |z| < 1} and
D− = {z ∈ C: Rez < 1 ∧ |z| > 1}. The global relation (7.8) yields, for|z| > 1,

−2Wm−1ĝm
0 (z) + q̂m(z) = Wmq̂0(z).

Now W(ζ ) = W(z) has nontrivial root, so no elimination is possible. The solution is thus

qm
n =

1

2πi

∫

|z|=1
zn−1Wmq̂0(z)dz +

1

π i

∫

∂ D+

zn−1Wm−1ĝm
0 (z)dz.

Summarizing, no BC is needed whenc = 1, and the BCqm
0 is needed whenc = −1.

8. Concluding remarks

We have presented a method to solve IBVPs for DLEEs. The method, which is quite general but simple
to implement, yields an integral representation of the solution of the IBVP. It also provides an easy way
to check the number of BCs that are needed at the lattice boundary in order for the IBVP to be well
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posed.The method also applies for forced equations, DLEEs that are higher order in time, systems of
DLEEs, fully discrete evolution equations and DLEEs with more than one lattice variable. As such, it
works for many IBVPs that cannot be treated with Fourier sine/cosine series and/or Laplace transforms.
In the previous sections, we pointed out several cases that cannot be treated with Fourier methods.
As for Laplace transform methods, they are ineffective for IBVPs for (2 + 1)-dimensional equations
since the application of Laplace transforms in this case yields a boundary-value problem for a partial
difference equation on the same ‘spatial’ domain as the original IBVP. Moreover, Laplace transform
methods are not applicable to IBVPs for fully discrete (difference-difference) equations. Even when a
Laplace transform approach can be used, the present method has several advantages compared to it,
since the use of Laplace transforms: (i) leads to complicated expressions involving termszλ(s)e−st ,
whereλ(s) is the solution of the ‘implicit’ equations + iω(λ) = 0, as opposed to expressions of the
type zne−iω(z)t , whereω(z) is explicit, in the present method; (ii) requirest going to infinity, which
is unnatural for an evolution equation. Finally, unlike Fourier or Laplace methods, the present method
can also be non-linearized to solve IBVPs for integrable non-linear differential-difference evolution
equations, as demonstrated inBiondini & Hwang(2008).

Finally, let us briefly comment on the relation between our method and the Wiener–Hopf (WH)
method. WH problems typically arise in elliptic problems, for regular domains, and when the BCs
change type (e.g., seeLawrie & Abrahams,2007;Noble,1988). The problems treated in our work are
of evolution type. Nonetheless, a relationship between the WH method and our method does exist. As
discussed inFokas(2008), for IBVPs for PDEs in simple domains the global algebraic relation and the
equations obtained using the symmetries of the problem provide a generalization of the WH technique.
The same is true for the discrete evolution equations that are the subject of our work. Moreover, it is
well known that the application of the WH technique isad hocand problem dependent; again, see
Lawrie & Abrahams(2007) and references therein. In contrast, our method is essentially algorithmic:
the analyticity properties of the relevant functions in the spectral domain are determined by construction.
In contrast, one would have to use anad hocapproach on a case-by-case basis to formulate a WH
problem with equivalent properties. So, in this context, one can view our method as an effectivization
and a generalization of the WH method for the kinds of IBVPs considered here.

The integral representation of the solution obtained by the present method is the practical imple-
mentation of the Ehrenpreis principle (e.g., seeEhrenpreis,1970;Henkin,1990;Palamodov, 1970). As
such, it is especially convenient in order to compute the long-term asymptotics of the solution using
the steepest descent method. Also, since the integrals in the reconstruction formula are uniformly con-
vergent, even when they cannot be calculated exactly they provide a convenient way to evaluate the
solution numerically. We therefore believe that this method will also prove to be a useful comparison
test for finite-difference discretizations of IBVPs for linear PDEs.

We showed in detail how the elimination of the unknown boundary data works for a semiinfinite
range of integers. The same techniques can be used to solve IBVPs on finite ranges of integers. Indeed,
using similar arguments as the ones in Section2, it is easy to show that for the IBVP on the finite domain
06 n 6 N, one also needs to assign exactlyJ2 BCsat n = N.

While the main steps of the method are similar to the continuum case, its implementation presents
some significant differences. One such difference arises in the elimination of the unknown boundary
data, where instead of the asymptotic behaviour of the dispersion relationω(k) at the single pointk = ∞
in the continuum case, one needs the asymptotic behaviour ofω(z) asz → ∞ and asz → 0. This
difference is understood intuitively by recalling thatz = eikh, and therefore there are two limiting points
corresponding tok = ∞, depending on whether Imk >< 0. Perhaps more importantly, even when
the DLEE has a continuum limit ash → 0, the number of BCs to be assigned in the discrete case
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is determined by the specific finite-difference stencil considered, and it does not coincide in general
with the number of BCs needed in the continuum case. The unknown boundary data in the continuum
case are the spatial derivatives at the origin, and their number depends on the order and sign of the
highest spatial derivative in the PDE (which also determines its characteristics). In the discrete case, the
unknown boundary data are the firstJ2 values of the solution inside the lattice. Therefore, even when
the discrete dispersion relation is a finite-difference approximation of a continuous one, the number of
unknown boundary values is determined by the order of accuracy of the finite-difference stencil not by
the order of derivative that it represents.
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