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We present a transform method for solving initial-boundary-value problems (IBVPSs) for linear semidis-
crete (differential-difference) and fully discrete (difference-difference) evolution equations. The method

is the discrete analogue of the one recently proposed by A. S. Fokas to solve IBVPs for evolution lin-
ear partial differential equations. We show that any discrete linear evolution equation can be written as
the compatibility condition of a discrete Lax pair, namely, an overdetermined linear system of equations
containing a spectral parameter. As in the continuum case, the method employs the simultaneous spectral
analysis of both parts of the Lax pair, the symmetries of the evolution equation and a relation, called the
global algebraic relation, that couples all known and unknown boundary values. The method applies for

differential-difference equations in one lattice variable as well as for multi-dimensional and fully discrete
evolution equations. We demonstrate the method by discussing explicitly several examples.
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1. Introduction

Initial-boundary-value problems (IBVPs) are of interest both theoretically and in applications. In par-
ticular, the solution of IBVPs for integrable non-linear partial differential equations (PDES) has been
an ongoing problem for over 30 years. Several approaches have been proposed for solving IBVPs

for integrable non-linear PDEs on semiinfinite spatial domains (e.g.Abémvitz & Segur, 1975;
Bikbaev & Tarasoy1991;Biondini & Hwang,2009;Degasperiet al.,2001,2002;Khabibullin, 1991;

Sabatier2006;Skylanin,1987;Tarasoy1991and references therein). In particular, a transform method

was recently developed by Fokas and collaborators Fe#@s,1997,2000; Fokas & Gelfand,1994;

Fokaset al., 2005 and references therein). The method uses three key ingredients: (i) simultaneous
spectral analysis of the Lax pair of the PDE in question, (ii) the global algebraic relation that cou-
ples all known and unknown boundary values and (iii) the symmetries of the associated dispersion
relation. Interestingly, the method also provides a new and powerful approach to solve IBVPs for ‘linear’

PDEs in one and several space dimensions [&#as,2002, 2005; Fokas & Pellonj 1998, 2001;

Treharne & Fokas2004 and references therein). At the same time, it is generally accepted that dis-
crete problems are often more difficult and than continuum ones and also in some sense more fun-

damental (e.g., seRblowitz, 1977; Ablowitz et al., 2000; Ablowitz & Ladik, 1975,1976; Ablowitz
et al, 2003; Biondini & Hwang, 2008; Flaschka,1974a,b;Habibullin, 1995; Hirota et al,, 1988a,b;
Maruno & Biondini 2004; Ragnisco & Santini1990; Toda 1975). The purpose of this work is to

show that an approach similar to the one mentioned above for linear PDEs can also be used to solve
IBVPs for a general class of discrete linear evolution equations (DLEES). The method is quite gen-
eral, and it works for many IBVPs for which Fourier or Laplace methods are not applicable. Even
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when such methods can be used, the present method has several advantages, in that it provides a
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representationof the solution which is convenient for both asymptotic analysis and numerical
evaluation.

The work is organized as follows. First, we describe the general method for semidiscrete (i.e.
differential-difference) evolution equations in 1 + 1 dimensions, namely in one discrete lattice variable
and one continuous time variable. We then solve explicitly several examples to illustrate the method.
Next, we discuss the extensions of the method to systems of equations, higher-order problems and
forced equations, and we present the extensions of the method to linear semidiscrete evolution equa-
tion in two lattice variables and to fully discrete (difference-difference) evolution equations. Finally, we
conclude this work with some final remarks.

2. Differential-difference equations in one lattice variable

Consider an arbitrary linear discrete evolution equation in one lattice variable, namely
ith = @(€”)an, (2.1)

for a sequence of functiorg (t)}nen With gn: R — C, where é is the shift operator (namely’q, =
On+1), and the dot denotes differentiation with respect to timhe=£ df/dt), andw(z) is an arbitrary
discrete dispersion relation, namely

J
@)= > o, (2.2)

j=—x

whereJ; and J; arearbitrary non-negative integers. Equatiénl( is the discrete analogue of a linear
evolution PDE. Indeed, whame Z, (2.1) admits the solutiog, (t) = z" e~ @@t which is the analogue

of the plane-wave solutiond(&-»®V for linear PDEs. Note that, in order for the IBVP fd2.{) to

be well posed orfn,t) € N x R, one must assign not only an initial conditign(0), Vn e N but

also J; boundaryconditions (BCs)j—j,+1(1), ..., go(t). Indeed, these conditions are necessary and
sufficient to ensure thaR(1) can be evaluatedn € N andVt € Rg. Below we first present the Lax

pair formulation of 2.1) and we derive a formal expression for the solution. We then discuss the issue
of the unknown boundary data and the symmetries of the equation. Finally, we combine those results t
obtain the solution of the IBVP. Sectierwill illustrate the method with various examples.

2.1 Lax pair and compatibility form

Equation 2.1) can be written via a discrete Lax pair, i.e. as the compatibility relation of the overdeter-
mined linear system
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¢n+1 - Z@n = qn, én =+ |a) (Z)@n = Xn, (23)
whereXn(z, 1) is given by
Xn(2,1) = —i [M] (). 2.4)
zZ— f f=ed

Thatis, requiring thatd;(®n41) = €(P) implies that gn(t) satisfies(2.1). Equation (2.3) is a
generalization of the Lax pair for the discrete linear Schrdinger (DLS) equation obtaiBéshidini &
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Hwang (2008) by taking the linear limit of the Lax pair for the Ablowitz—Ladik system. Note that the
differencew (z) — w(S) is always divisible byz — s. Thus, the Laurent series of,(z, t) asa function
of £ always truncates. In fact,

Jo—1
Xa(zt) =1 D bj(@Dn+ (1), (2.5a)
i==x
where
Jo _
bj@=- > emz™ ™, j=0,....%-1, (2.5b)
m=j+1
and
3 _
bj@= > omz™I™ j=-0,..., -1 (2.5¢)
S~

The solution of the IBVP can be obtained by performing spectral analysis of the Lax pair. (Indeed,
this was the method used Biondini & Hwang, 2008 because it can be non-linearized.) For linear
problems, however, a simplified approach is possible. For this purpose, it is useful to rewrite the Lax
pair (2.3) by introducing?,(z, t) = z~" * @@, (z, t). The modified eigenfunctiot;, (z, t) satisfiesa
simpler Lax pair in which the homogeneous part is trivial:

Yoo =2 €O, ¥, =7 (zX,, — 2 Xn_1). (2.6)
The compatibility condition of (2.6), which also yield2.(L), can be written as
(27" €2 @gy) = 27" 0@ (Xnpq — 2Xn).
Theabove condition can be written more conveniently as
a@z " e @lan) = 4@z VDX, (2.7)

where 4Qn = Qnt1 — Qp is the finite-difference operator. Equatic {) is the discrete analogue of
the closure condition for a differential 1-form that arises in the continuum casé-@¢é@s,2002) and
provides the starting point for the solution of the IBVP.

2.2 Global relation and reconstruction formula

We now obtain an expression for the solutionfl(). We introduce the spectral transforms of the initial
condition and BC as

oo t . ,
AE0 = X w02 GEb = [ EW g, (2.8a)
n=1 0
defined respectively, for allz] > 1 and for allz # 0, together with

LI /
X1(z,t) = z / @V X, (z,t")dt'. (2.8b)
0
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(Throughoutthis work, primes will not denote differentiation.) Henceforth, we require théd) <

I1(N) (thespace of absolutely summable sequences). This ensuréithat is boundedr z e C with

|zl > 1 and is analytic foifz] > 1. Similarly, we require that the BCs are continuous functiont of
which ensures thaX1(z, t) is analytic everywhere in the punctured complex pl&@#g, and is bounded

Vz e D, whereD = {z € C: Imw(2) > 0}. (Throughout this work, we will use the notatid{*) =

R — {0}. As usual, the overbar denotes closure.) In what follows it will be convenient to decompose
D = D4 U D_, whereD. denoteghe portions oD inside and outside the unit disk:

Di={zeC:|zl $1AImw(2) > O}.

We now sum 2.7) fromn = 1 to oo, obtaining, for|z| > 1,

a(€°@'G(z, 1) = D Az MY @Xn) = - zXy(z,1). (2.9)

n=1
Integrating .9) fromt’ = Otot’ =t wethen get, foriz| > 1,
e°@'q4(z,1) = 4(z,0) - Xa(z,1). (2.10)

Equation(2.10) is the global algebraic relation, which combines all known and unknown initial and
boundary data.

The inverse transform df(z, t) is obtained by noting that thg, (t) arethe Laurent coefficients of
4(z t), implying simply

On(t) = i/ 2"Y4(z,t)dz, VneN.
2ri Izl=1

Useof (2.10) then yieldsy n € N andvt € Ry,

1 : 1 - 5
an(t) = —/ 2" leT o@D (z, 0)dz — — 2" leTo @R, (z, t)dz. (2.11)
27 |z=1 2ri |zI=1

Equation(2.11) allows one to obtain the solution of the IBVP in terms of the spectral data. Indeed, one
can easily verify that the functiag (t) definedby the right-hand side o(11) solves the DLEE and sat-
isfies the initial condition and the BC. The right-hand side1(), however, involves both known and
unknown boundary data vi)il(z, t), which depends og_j 4+1(t), ..., qi,(t) via their spectral trans-
forms (cf. @.5a) and 2.8b)). Since onlyg_ 3 11(t), ..., do(t) areassigned as BCsjy(t), ..., qi,(t)
must be considered as unknowns. Thus, in order for the expres&id)(to provide an effective
solution of the IBVP, we must be able to expréégz, t) only in terms of known ones.

As we show below, the elimination of the unknown boundary data is made possible by using
both the global relation and the symmetries of the differential-difference evolufidk). (A key
part of the method, however, is the use of contour deformation to move the integration contour for
the second integral in2(11) away from the unit circle. The integrand in the last term 21.1)
is analyticVz # 0 and continuous and bounded fore D. Moreover,§(z,t) — go(t) asz — oo
and gn(z,t) > 0asz— 0 andz — oo in D. Thus, we can deform that integration contour from
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|zl = 1toz € 6D, obtaining the reconstruction formula:

1 ; 1 ; A
On(t) = —/ 2" leT@lg(z, 0)dz — —/ 2" leT0 @R (z,t)dz,
2zl Jig=1 27i Jap,

vn e Nandvt e Rg. We next show that, whene D, it is indeed possible to eliminate the unknown
boundary data. When this is dong,12) then provides the solution of the IBVP in terms of the spectral
functions.

2.3 Symmetries

The spectral functiong(z, t) (andwith them X1(z, t)) are invariant under any transformation that
leaves the dispersion relatioB.R) invariant; i.e. they are invariant under any nzap> ¢(z) such that
®(¢(2)) = w(2). (Note that, under any such transformation, we hé¢e.) = D..) The equation
0 (2) = w(£(2)) hasJy + J2 — 1 non-trivial roots, of course, in addition to the trivial ofie= z. Using
these symmetries in the global relation will allow us to eliminate the unknown boundary data. To do
so, however, one needs to identify which of thet J, — 1 non-trivial roots are useful for this purpose.
In general, it is not possible to express these roots in closed form except in the simplest cases. One
must therefore look at the asymptotic behaviour of these roats-as0 andz — oo. (Note thatz =0
andz = oo are both images d = oo underz = €N, whereh is the lattice spacing.)

As z — oo, we havew(2) ~ 03,22, and az — 0, itisw(z) ~ w_3z 1. Thus, az — oo, D_ is
asymptoticallyequivalent toS©, and asz — 0, D.. is asymptotically equivalent t8©), where

Jo—1 0
s =) Sj(oo)’ Sy SJ_(O)’
j=0 j=—d+1

wherefor j =0,...,Jo—1andforj = —J; +1,...,0, respectively, itis
S™ = (zeC: 27/% — agwy,/d < Az < j+1)7/% — agey,/ ),
SY={zeC: Qj-Dz/h +agw_y/h < ayz < 2jz/d +age_y,/ A},

To study the asymptotic behaviour of the symmetries, note that

0@ -0@= D 0j¢ -2)=¢-2Q¢ /N2,
j==3
where,owing to (2.5a),
h+d-1 _
Q¢ =-2" > bji_y@¢, (2.12)
j=0

andthe coefficientdj (z) areas in @.5c). Thus,Q(¢, z) is a polynomial of degred, + J, — 1in ¢.
Its J; + Jo» — 1 roots, which we denote b§_311(2), ..., ¢3,-1(2), yield the non-trivial roots of the
equationm (&) = w(z). In Section3, we compute the asymptotic behaviour of these non-trivial roots
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via a singular perturbation expansion. In particular, we show tha-as0, theJ; + J, — 1 non-trivial
roots behave as follows:

£ i/ hz, n=-h+1,...,-1, 2.1
z) ~ . .

" (-3, /0y, 2N/ 2z=0/%  n=0,. . J—1.

In particular, £.13) implies that each afy(2), ..., £3,—1(2) mapsone of theJ; sectorsof SJ(O) (and

thereforeD. ) onto one of thel, sectorsof S (andthereforeD_). These roots are precisely those
needed to eliminate the unknown boundary data. Using similar arguments, one can also show that, as
Z — o0, these roots behave as follows:

(w—Jl/wJZ)l/Jl eZﬂin/le_JZ/Jlﬂ n= _Jl + 1: ceey 0’
Z) ~ .
“n(@ 2rin/J2z, n=1,...,%b -1,
wheres = (01, ...,03+3,-1) iSa permutation of-J; + 1, ..., J» — 1. The behaviour of the roots as

z — oo andthatag — 0 could of course be connected if desired using matched asymptotic expansions.
This, however, is not necessary for our purposes.

2.4 Elimination of the unknown boundary data

The solution in (2.12) depends ofy(z, t), which involves thel, unknavn functionsoa (t), . . ., gy, (1)
via these spectral transforms. Applying the transformatons ¢j(z), with j =0, ..., J — 1,in the

discrete global relation (2.10), we obtainz € D7, the J, algebraicequations:

X1 (). 1) + €@ (2. 1) = 4(& (2), 0), (2.14)
i.e.vze D* andforn=0,...,J — 1,

X _

5@ D b @)z t) + €24 (2. 1) = 4(& (2), 0).
n=—J1+1

Thesecan be regarded as a linear systemJpequationgor the J, unknavns §1(z, t), ..., §3,(z, t).
In fact, they are precisely these equations that allow us to solve for these unknown boundary data i
terms of the given BC§_3,+1(z, 1), ..., §o(z t). (Or, we can solve for any other combination &f

unknavn boundary data with anyy given BCs.) Indeed, the determinant of the coefficient ma¢tigf
the system (2.14) is
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detM = (03)2 ] &@ - (@),

o<n<n’< -1

which is always non-zero as long as the rogj%z) are distinct. Here, we assume that this condi-
tion is satisfiedvz € D,. (This condition is always satisfied in the limit —» 0.) By substituting
01(z, 1), ..., 03(z 1) into (2.12), one then finally obtains the solution of IBVR.X) only in terms of
known initial-boundary data.

A careful reader will obviously note that the terffi @4 (&, (2), t) appearingn the left-hand side of
(2.14) is (apart from the change— &n(2)) just the transform of the solution we are trying to recover.
Note, however, that for alh € N this term gives zero contribution to the reconstruction formglaZz)
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sincetermz™~1d*@-1)§(&,(2), t') is analytic and bounded iB. andtherefore its integral overD .
is zero. This is exactly the same as to what happens for the method in the continuurfdikais 2002).

3. Asymptotic behaviour of the symmetries

Here, we briefly show how to obtain the asymptotic behaviour of the g3 of w(£(2)) = w(2). As
z — 0, collecting the lowest powers afin Q(¢, z), we obtain

Ji+Jr—1 Ji—1
. i
Q.2 ~ > wj_y12" = > w gzt It (3.1)
=X j=0

We therefore look for the values df(z) that make the right-hand side a8.{) zero. Two possible
situations arise:

(i) If z172¢ ~ 211 itis ¢ = O(z) asz — 0. This is a consistent assumption becan$e?,
2h72g L zéh72 #h-lgreall Oz 1), ie. all these terms are the highest order terms in (3.1), and
other termszigd, zhightl zhEhth=2 7hehth-1 gre negligible compared with @11,
Letting £(z) = zk, for some non-zero constaktand substituting (z) into (3.1) gives

n-1 h
w_leJl—l Z k] — ZJl Zw] ZJl+j—lle+j—l’
j=0 j=1

or, equivalently,

31 . _

DK =D (0)/0_y)? KL (3.2)

= iz
As z — 0, the right side of §.2) goes to zero. Thus, we nele 1 + k%12 + ... + k+1 = 0. We
therefore havel; — 1 non-trivial rootsk, = €21 forn = —J; +1,..., —1. Thus & (z) ~ €27/ a1z
forn=-J3+1,...,-1.

(i) If ZhghtR-1 ~ #h-1itis ¢ = O(z~/%2) asz — 0. This is also a consistent assumption

because the other terms in the equation, naraély1t%2-2  zhghtl zzh-2 " 7h-1greneg-

ligible compared withzl11+92-1 andgh—1, Letting ¢(z) = z~%/J1k, for some non-zero constakj
and substituting into (3.1), we get

P J1
Zwi 7= 11—+ -1)/ By hi+j-1 _ w_3, Z z0(=j+D)/R=jyi-1} — o
j=1 j=1

Asz — 0,the leading order yields, after simplificatiohs? ~1(w3,k/2 — w_3,) = 0.Itis then clear that
we havel, non-trivial rootskn = (w_j, /w3,)Y/%2 €N/ 2 forn = 0,..., J — 1. Hence,

&@) ~ (o-p /0y Rz W% n=0,.. k-1

Summarizing,asz — 0, the J; + Jo» — 1 non-trivial roots behave as ir2(13). The asymptotic
behaviour of the roots as— oo can be obtained in a similar way. A similar approach can also be used
for multi-dimensional and fully discrete evolution equations.
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4. Examples

We now illustrate the method by discussing various examples that are discretizations of physically sig-

nificant PDEs. For simplicity, we set the lattice spacing constatd 1 whenever this can be done
without loss of generality by rescaling dependent and/or independent variables.

4.1 Discrete one-directional wave equations

We start by considering two different semidiscretizations of the one-directional wave equation. (Of

course, both these could also be solved using more traditional methods. This will not be the case for

many of the other examples, however.)
Consider first the forward-difference DLEE
Gn = (On+1 —0an)/h.

We takeh = 1, as mentioned earlier. The dispersion relatiom {g) = i(z— 1) and itisJ; = 0 and
Jo = 1, implying Xn(z,t) = gn(t) (including X1(z,t) = §1(z,t)). The domainD is the union of
Di =@ andD_ = {ze C: Rez > 1} (see Figl). The global relation yields, fde| > 1,

e”M4(z,1) + G1(2. 1) = G(z, 0).
Hence, we have

1 ; 1 ;

On(t) = — / 2" leTo@tg(z, 0)dz — —— 2" te 0@ty (z, t)dz. (4.1)
27l lzl=1 27l |zl=1

SinceJ:1 + J; = 1, the equatiom (¢) = w(2) has only one root, i.e. the trivial ode= z. SinceD . = 0,

however,z"~1e~®(2tg, (z, t) is analyticY z # 0 and bounded for alz| < 1, so the second integral in

(4.1) vanishe¥ n e N. We therefore obtain the solution simply as

On(t) = i/ " 1emio@tg(z 0)dt.
2ri lzZl=1

2 i 2f; i
; :
1 I
i i
! - 1 e
£ hy .
A B / P —\
[ ; { \
e e memmens e 0 frmemmemm oo oo R
\ ; \ N A
\ -
Y i 4 \ i /
" I 1
- bl I L
1 1
i i
i i
i i
2l i 2 ! |
=2 -1 0 1 2 -2 -1 0 1 2

FiG. 1. The dispersion relation (z) for the discrete one-directional wave equation in the complplane. Left: The forward-
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difference DLEE. Right: The backward-difference DLEE. Here, and in all subsequent figures, the shaded regions show the

domainsD+ where Imw(z) > 0.
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Thatis, no BC is needed in this case, as expected.
Consider now the backward-difference DLEE

Gn = (Gn — On-1)/h.

Again, leth = 1. In this case, the dispersion relations$z) = i(1 — 1/z) and itisJ; = 1 and
Jo = 0. We haveX,(z,t) = gy-1(t)/z and Xl(z,t) = @o(z,t). The domainD is now the union of
Dy ={zeC:|zl <1A|z—1/2| > 1/2}andD_ = {z € C: |z| > 1} (see Figl). The global relation
(2.10) is, for|z| > 1,

eiw(z)tq(z’ t) + Go(z,t) = 4(z,0)

from which we obtain the solution as

1 : 1 .
on(t) = —/ 2" leT @G (z, 0)dz — — 2" lemo@tgy(z, t)dz.
2ri |z=1 2ri |z1=1

Theboundary ofD_. includesall the unit circle, so it is not necessary to use contour deformation. Since
J1 + J» = 1 as before, however, the equatioit’) = w(z) has no non-trivial root. Hence, in this case
no elimination is possible, with the result that as expected, we need ongBL,

4.2 DLSequation
A discrete analogue of the linear Schrdinger equatipA-igxx = 0 is
idn + (On+1 — 200 + Gn-1)/h? = 0. (4.2)

Again, leth = 1. Here, the dispersion relationdgz) = 2 — (z+ 1/z), implying J; = J» = 1 and
Xn = i(gn — On-1/2). Thus, we have

X1(z,1) = i(zG1(z. 1) — Go(z, 1)) (4.3)

for |z| > 1, which contains the unknown boundary datgp(t) via its spectral transform. The domains
D4 aresimply Dy = {z€ C: |z] s 1 Almz = 0} (see Fig2). The global relation is

i[261(z,t) — Go(z, )] + €°P'4(z,t) = §(z,0), Vze D_. (4.4)

Theelimination of the unknown boundary data is simple becau@9 = »(2) is a quadratic equation,
whose only non-trivial root i§ = 1/z, and (4.4) withz — 1/z gives,Vz € D%,

i[81(z,1)/2 - Go(z, O] + € @'4(L/2, 1) = 4(1/2, 0). (4.5)
We then solve fog; (z, t) toget,Vz € D*,
01z 1) = Zdo(z. 1) +i(€”P'G(1/z 1) — G(1/2 0))].
We therefore obtain the following expression for the solution:e N andvt € R,

On(t) = i. 2" leTo@tg(z, 0)dz + 1 / 2 lemlo@t [izzq(l/z, 0) — (% — 1)do(z, t)] dz.
2ri |zj=1 2r oDy (4.6)
4.6
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2f ' T " 7 2F

w2 -1 0 1 2
FiG. 2. Left: The dispersion relation(z) for the DLS @.2) in the complex-plane. Right: The dispersion relatien(z) for the
discrete linear Korteweg-de Vries (4.10) in the comptegdane. The shaded regions show the dom&aswhere Imw(z) > 0.
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The above solution could also be obtained by using Fourier sine series. Unlike Fourier sine/cosine seriefgh
however, the present method applies to any discrete evolution equation. Moreover, the method can alsg

deal with other kind of BCs just as effectively, as we show next. Consider (4.2) with BCs

adu(t) + go(t) = b(t), 4.7)

Bio°sjeuino

with b(t) given, andx e C an arbitrary constant. Such kinds of BCs, which are the discrete analogue of g
Robin BCs for PDEs, cannot be treated using sine/cosine series. The present method, however, works

equally well; one just needs to solve the global relation for a different unknown. Indeed, N and
vVt e Rg, the solution of this IBVP is given by (cBiondini & Hwang,2008)

() = —— | 2ieetae o
|z|=1

2ri
1 Gzt . .
- 2t e-'w@‘ﬁdz —vealt e WG (1/q,1), (4.8)
271 Jap, 1/z—a
where
Gz t) =i(2a —z—1/2)b(z,t) —i(z— a)§(1/z, 0) (4.9)

and where, =1ifa € D_,v, =1/2if a € dD_ andv, = 0 otherwise, and where the integral along
oD, isto be taken in the principal value sense whea 6 D_. As before, one can easily verify that the
expression in (4.8) indeed solvesZ) and satisfies the initial condition and the BIC7(). One can verify
that, in the limita — oo with b(t)/a = b/(t) finite, the solution (4.6) of the IBVP with ‘Dirichlet-type’
BCs is recovered.

4.3 Discrete linear Korteweg-de Vries equations

A discrete analogue of the linear Korteweg-de Vries equatioa gxxx is given by

Gn = (Gnt2 — 20n+1 + 20n—1 — Gn—2)/ 3. (4.10)
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Note that the IBVP for 4.10) cannot be solved with Fourier methods. Again, wehset 1. The
dispersion relatiom (z) = i(z22 — 22+ 2/z — 1/7%), implying J; = J, = 2 and

Xn(z,1) = —(Ont1 + (2= 2)0n + (1/22 = 2/2)Gn-1 + On—2/2).

The domainsD. are now significantly more complicated (see FB). However, az — 0, D is
asymptoticallyequivalent to

SO = {zeC: (x/4 < argz < 3z /4) U (57 /4 < argz < Tz /4)}
and az — oo, D_ is asymptotically equivalent to
S®) = {ze C: (—n/4 < argz < 7 /4)U (3x /4 < argz < 5z /4)}.
Then we have that, fde| > 1,
X1(z,t) = —282(2,1) — 22— 2)01(2, 1) — (1/2— 2)B0(2, 1) — §-1(2, ). (4.11)
Insertingthe above intoZ.10), we get

~202(2, 1) — 2z - 2)G1(2. 1) — (1/2 = 2)Go(z 1) — §-1(z. 1) + € P4z, 1) = G(z,0), VzeD_.

(4.12)
Theuse of the symmetries of the discrete linear Korteweg-de Vries to eliminate the unknown boundary
data is more complicated than in the previous examples &iti¢e = w(2) yields a quartic equation.
Note [ (&) — 0 (2)]/(¢ — ) = Ois equivalent ta?3 + 22(z — 2)E2 + (1 — 22)¢ +z= 0. Leté_q1, &
and¢£; bethe non-trivial roots 0f4.3) in our case. One can show thatzas 0,

&1=i/z2+1-0) —iz+0@), é=-2+0@). &=-i/z+ 1+ +iz+0@),
while,asz — oo,
1=-2424001/2), &=-i/2+0Q1/7), &=i/z+01/2).

The functionsgn(z, t) areinvariant under the transformatioas— ¢ (z) for j = —1,0, 1. Moreover,
z € D_ implies&p(2), £1(2) € D4+ andviceversa._Then, substitutimg— & andz — &1 in (4.12) and
solving for@1(z, t) and@z(z, t), we obtain,vz € D7

Guef (2, 1) = {E&10(&1, 0) — &&fa(Co. 0) + [E§¢1 — 0&10-1(2. 1)

+ 16§ — & — 28 & + 288160z V) /[E5EE (G — Q). (4.13a)
G.eff (2. 1) = {&F (&1 — 2)[¢0G(%0, 0) + S0§-1(2. 1) + (1 — 28)Go(2. V)]

— &5 — 108, 0) + &6-1(2. ) + (1 — 28)80(z, D]}/ [E§E5(E — o). (4.13D)

wherethe z-dependence ofp and¢; was omitted for brevity. As before, terms containigg’, t)
give no contribution to the solution and have been neglected. The solutieghl®) (is then given by
(2.12) with X1(z, t) given by @.12) with@1(z, t) and§o(z, t) replaceddy (4.13).
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Consider now the following alternative discretization of the linear Korteweg-de Vries equation:

Gn = (Ong1 — 30 + 3Gn—1 — On—2)/ h®. (4.14)

Note that in this case, the truncation error is dissipative rather than dispersive. (The right-hand side

of (4.14) is asymptotic toxxx — hOkxxx/2+ O(h?) ash — 0, as opposed Wy xx+ h20xxxxx/4+ O (h®)
for (4.10).) Seth = 1 as before. The dispersion relatiorni$z) = i(z — 3 + 3/z — 1/z%), implying
Ji=2andJ; = 1. Also,

Xn = 0n = (3/2+1/2%)tn-1+ 1/20h-2.
We have, folz| > 1,
X1(z,t) = 201(z. 1) = B+ 1/2)Go(z. 1) + §-1(z. 1), (4.15)

which contains one unknown datug(t). The domainD shown in Fig.3 are somewhat complicated.
As z — 0, howeverD. is asymptotically equivalent to

SO = (ze C: (x/4 < argz < 37 /4)U (57 /4 < argz < Tx /4)},
and az — oo, D_ is asymptotically equivalent to
S*®) —{zeC: —n/2 <argz < n/2}.
Owing to @.15), the global relatior2(10) is,vz € D_,
201(z,t) — B3+ 1/2)80(z. 1) + §-1(z, t) + €°P4(z,t) = 4(z,0), Vze D_. (4.16)
We now use the symmetries ¢f.(4). The equatiornef(¢) — w(2)]/(¢ — z) = O yields

2% — (3z4+1)¢+z=0. (4.17)

r
(3%

—1F

i i
I 1
i i
i i
l, . | ‘ Il . E . !
=2 =1 0 1 2 -2 =il 0 1 2

FiG. 3. Left: The dispersion relation(z) for (4.14) in the complex-plane. Right: the dispersion relation(z) for (4.18) with
¢ = 0. As before, the shaded regions show the domBinsvhere Imw(z) > 0.
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Let£_1 and&p bethe roots of 4.17). Asz — 0, itis
E1=2-3%+9224+0F, &=1/22+3/z—z+ 322 -9+ 0,

while,asz — oo, itis

&= —i/yZ+3/(22) +9i/(82%?) + 1/(22%) + O(1/2%),

& =i/J/Z+3/(22) — 9i/(827%2) + 1/(22%) + O(1/2%).
Moreover,z € D_ implies& e D... Then (4.16) withe — & vyields,vz e D,
&1z ) — B+ 1/ ) + §-1(2. 1) + €4, ) = 40, 0).
We can then solve fofi(z,t), Vz € D*,
01(z 1) = [(3+ 1/@)Go(z 1) — §-1(z. 1) — €@ 4(%, )]/<o,

whereas before the-dependence afp was omitted. As beforej(¢j, t) gives no contribution to the
solution, which is therefore given b.02) with X1(z, t) replacedby

X1ef(z,t) = [23+ 1/%) /%0 — B+ 1/2)]do(z. 1) — (z/¢0 — 1-1(2, 1) + G(o, 0) /%o

4.4 Adiscrete convection—diffusion equation

Consider the semidiscrete equation

On = €(On+1 — On—-1)/ N+ (On+1 — 200 + On-1)/ h?, (4.18)

with ¢ € R beingthe group speed in the continuum limit. Again, we tdke- 1, which can be done
without loss of generality by rescaling the time variable and redefining the comstahé dispersion
relation isw(z) =i[(14+¢)z— 2+ (1 —¢)/z], implying J; = J» = 1 and

Xn = —i[(1+ ) — (1 — C)Gn-1/2].
Thenwe obtain, forjz| > 1,
X1(z, 1) = —i[(1+©)z01(z. 1) — (1 - ©)Go(z, 1)], (4.19)

which contains the unknown datum (t). The domainsD. for ¢ = 0 are shown in Fig3 and their
boundary for some values ofin Fig. 4. Asz — 0, D, is asymptotically equivalent to

{zeC: —n/2 <argz < w/2}, c<1,
SO -
{ze C:7/2 < argz < 3z /2}, c> 1.
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2:F 2F

FIG. 4. The boundaries of the regiofs; for (4.18) for various values df. Left: ¢ = 0 (solid),c = 1/4 (dot-dashed); = 1
(dashed) and = 2 (dotted). Right:c = 0 (solid),c = —1/4 (dotted),c = —1 (dashed) and = —4 (dot-dashed). The shaded
regions show the domairi3y for c = 1/4 (left) andc = —1/4 (right).

As z — oo, the domainD_ is asymptotically equivalent to

() {ze C: /2 < argz < 37 /2}, c< -1,
| zeC: —z/2<argz<x/2), c> —1.
Asc — oo, itis D+ = {z € C: |z] £ 1ARez < 0} (where the upper/lower inequalities in the right-hand
side go with the upper/lower signin the left-hand side)cAs —oo, D+ = {z € C: |z| < 1ARez = 0}.
Note thatc = +1 are special cases since the domdihs change character at these two points
(see Fig4). )
Inserting (4.19) intoZ.10), givesy z € D_, the global relation as

—i[(1+ 0201z 1) — (1 — 0do(z V)] + €P'4(z, 1) = 4(2, 0). (4.20)
The elimination of the unknown boundary datum here is simple, siné@ = w(2) is a quadratic

equation, whose only one non-trivial rooti&) = v¢/z, whereve = (1—c¢)/(1+c) for c # —1. Using
the same arguments as before, (4.20) with vc/z yields,Vz € D?,

—i[(1-09G1(z, 1)/2 = (1 - ©)0(z, V)] + €@ G(ve/2, 1) = 4(ve/2, 0) G

Then after some algebra, we obtain the solutiorafg),vn € Nandvt € R},

2mi

1
2 oDy

(D) = — / 21 g0 (7, 0)dz
|z|=1
" Le @ @Uiz24(ve /2, 0) /ve + [(1 + ©)Z% — (1 - ©)]Go(z, 1)} dz.

Hence, only one BC is neededrat= O for ¢ # £1, i.e.qo(t).
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Thingschange ifc = +1. Forc = 1, we haveX1(z, t) = —2izf1(z, t) for |z| > 1. The domainD
is the union ofD, = @ andD_ = {z € C: Rez > 1}. The global relation is, fojz| > 1,

d2@G(z, 1) + 2iz(z, 1) = §(z, 0).

But the termz"~1 &2 @tg, (z 1) is analyticV z # 0 and bounded fojz| < 1. Using @.12), the solution
of (4.18) is then

1 .
On(t) = — / 2"~leT 0 @g(z, 0)dz.
2ri |z=1

Thus,no BC is needed foc = 1. A
Whenc = —1 instead forjz]| > 1, we getXi(z,t) = 2ido(z, t). The domainD is the union of
Dy ={zeC:|z—-1/2| < 1/2} andD_ = @. The global relationZ.10) yields, foriz| > 1,

e”@'q(z,1) + 2ido(z, t) = 4(z, 0).
The equationn(¢) = w(z) has no non-trivial root, hence, no elimination is possible here. Thus, we

obtain the solution as

27i T

1 : 1 :
%m=——/ z“%“@%@mm——/ =10 @t gy(z, t)dz,
|zl=1 oD,

by deforming the integration contour frofg| = 1 toz € oD.. Thus, in this case, we need one BC,
do(t).

5. Systems of equations, higher-order equations and forced problems

The method presented in Secti®doan be extended in a straightforward way to solve more general kinds
of IBVPs, as we show next.

5.1 Systems of DLEEs

Consider the linear system of semidiscrete evolution equations

i = Q(€°)an, (5.1)
whereqgp = (qrﬂl), cee, qr(,'\"))t is an M-component vector an@ (z) is anM x M matrix. One can easily
verify that a Lax pair for (5.1) is given by

Vnil1 — 2V =0n, Vn+1Q(2Vh = Xp, (5.2)
where
. Q2(2) — Q(s
Xn(z,t) = —IM an(t),
Z—-S s=¢

andas in the scalar cask¥;, hasa finite-principal part. The compatibility of (5.2) can also be written as

at (Z—n eIQ(Z)tqn) — A(Z_n+l eIQ(Z)tXn).
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Following similar steps as in the scalar case, one then obtains

1 1 : N
=— 2" le P @g(z, 0)dz — — 2" 1eT @K (2, t)dz, (5.3)
2zl Jig=1 |zI=1

where
020 =D /7. szt =z 2O @ v,
0
n=1

respectiely, for |z| > 1 and for allz # 0. The global algebraic relation is
e2@q(z 1) = 4z 0) - Xa(z. V).

For simplicity, we consider the case of a simple matf#Xz). Cases with non-trivial Jordan blocks
can be treated similarly. Leb1(2), ..., wm(2) andvi(2), ..., vm(2) arethe eigenvalues of2 (z) and
the corresponding eigenvectors. That is Qdtz) = V AV ~1, whereV (z) = (vy, ..., vwm) and

A(2) =diag(ar, ..., om) = A1+ -+ Aw,
with 4n(2) = diag(@, ..., 0, wm, 0, ..., 0). We use the spectral decompositiont®fz) to write
Q@ =VAW + . VAW = oviw! + -+ + opmvmwl,,
whereW = (V1T = (wi(2), ..., wm(2)), and the dagger denotes conjugate transpose. Hence,

g IADt _ grim(2)ty, WI 4+ 4 e_i“”"'(Z)'[VMWT,\/I

Now define the domain@im) ={zeC:|z1 2 1AImwn(z) > 0}, m = 1,..., M. Note that the
rootswi(2), ..., wwm(z) mayhave branch cuts. If that is the case, one must carefully integrate around

these branch cuts. We discuss one such case later. If, instead, there are no branch cuts, we can
contour deformation to move the integration contour in the second integral3)fffom|z| = 1 to
ze an)U, e U@Der), obtainingvn € N andvt € RY,

e

1
On(®) = >— /II 1z e APy (2, O)dz - 5 Z/ e om@ly wl X1(z, t)dz.  (5.4)
7|=

p{™
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Equation(5.4) is the analogue of the reconstruction formal?) of the scalar case. One can now
use the symmetries of the roatg(2), . .., wm(2) to eliminate the unknown boundary data, following
similar steps as in the scalar case.

5.2 Higher-order problems

Now, consider higher-order equations of the type systems

dM Qn d"gn

Z Pm(e))——" G (5.5)
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wherethe Py (2) arerational functions. We can convert this into a matrix system of first-order (in time)

DLEEs. More precisely, introducing the vector dependent variaiple (qn, . .., dMgn/dtM)T, where
the superscript denotes matrix transpose, (5.5) can be written in the forrd daf)( with

0 1 0 ... 0
0 0 1 . . 0
Q@2 =i : : . . :
0 0 0o ... 1

Po(z2) Pi1(2) PaA2z) --- Pm-1(2

Onecan then use the methods presented for systems of DLEEs.

5.3 Forced problems
Supposey, (t) satisfieghe forced version ofa.1), i.e.

ign(t) — w(ea)Qn(t) = hp(t), (5.6)

vn e NandVvt e Rg, whereq_j,+1(t), ..., go(t) aregiven boundary data, arth(t) is a sequence of
functions with sufficient smoothness.

The solution of this problem can be reduced to the solutio@.4f)(Indeed using spectral transforms,
it is relatively easy to show that a particular solution of (5.6) is given by

1 i U o~
Hn(t) = —— Zn—l e—lw(z)t/o ela)(Z)t Z hm(t’)/Zm dr’ dz,

2n |z|=1 m=1

Vv n e Z. SinceH,(0) = 0,V n € N, the solution of the IBVP defined b (6) is then given by
an(t) = Gn(t) + Hn (1),

whered, (1) satisfieshe homogeneous equatich 1) with the given initial condition and BC.

5.4 Example

We illustrate the above results by solving the IBVP for the discrete wave equation

Gn = On+1 — 20n + On-1. (5.7)
Letgn = (Gn, Gn) ' . Then 6.7) becomess( 1), with

0 i 0
0= (i(z+ 1/2-2) 0)’ o= (Qn —qn—l/z)'

The eigenvalues of2(z) are w+(z) = +/2— (z+ 1/2), and the corresponding eigenvectors are
vi(z) = (1,—iw+)". So the spectral decomposition 6f(z) is Q(z) = VAV~ where A4(z) =
diag(ey, o_), V(2) = (v4,v_) andV~! = (wy,w_)T, wherew.(z) = (1,i/w+)T /2. Now, intro-
duce the projection operators

P.(2) = vawl(2) = (_iiu/f/z i /(]?/c;i)) |
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Then, we have @A@t = g=0+@tp, (7) 4 e~ @-(@P_(Z). Inserting this into the reconstruction for-
mula, one obtains

qn(t)z—l./ "1 1 A@g(z, 0)dz
2ri |z=1

3 1

27i

/ " leTo+@tp (7)X1(z, t)dz + / 2" leTio-@tp_(7)X1(z t)dz | .
ap{H oD
(5.8)

The deformation of the integrals to obtain (5.8) is not trivial, however, as we discuss next.
ItislImw@)(z) > 0forze D) = fo) U D ands = +, where the domains a@{"” = {z e
C:lzl s 1Almz 2 0}and D(i_) ={ze C:|z1 £ 1AImz £ 0}. Note also thatos (z) have branch

points atz = 0,1, co. Taking the branch cut of the square root to be along negative real values of its

argument, the branch cuts@f (z) are along0, 1)U (1, co). Since the first of these branch cuts is inside
the unit circle|z] = 1 in (5.3), we can decompose the integration contomlhg) U aDS:) UC, where

C = C~ U (=C™T) andC* = (4ie, 1 + ie) andaDSri) are above/below the branch cut, respectively
(see Figh).
Using the symmetry ob4(2), i.e. 0+ (X +iy) = wx(X —iy), we have

/ 2" lemo+@tp, (7)X4(z, t)dz :/ 2" leTo-@p_(7)X1(z, t)dz.
ct cF

Thus,

/ 2" lemo+@p, (2)X4(z, t)dz + / " le7io-@tp_(2)X1(z,t)dz = 0.

C c

Thatis, the sum of the integrals around the branch cuts is zero. Thus, we obtaib.@jttaé anticipated.
We now discuss the elimination of the unknown boundary data. Let

o ’
G0 = [ e
0
We have, forjz| > 1,

(2. t) = (207 (z,t) — 65 (2 O]/ [204+ @)] +i[20] (z, 1) — 85 (2, D]/ [20-(2)]
T (267 (z,t) — 6F (z t) + 207 (z. 1) — G5 (z. 1)]/2 ’

Q_CBUU@

FIG. 5. Integration contour for(7).
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which contains the unknown boundary datagit). The global relation forg.7) is,vz € pPuD?,
X1(z, 1) + €424z, 1) = 42, 0). (5.9)
The elimination of the unknown boundary datum is not difficult becaus&) = w+(2) is a quadratic
equation whose only non-trivial root &= 1/z. Replacingz — 1/zin (5.9) and solving fo@f(z, t)
andg; (z, t) wethen obtain the solution vié(8) with X1(z, ) replacecby
%1 2D (d(l/z, 0)+i(Z2 = VIG5 (2. 1)/0+(D + G5 (Z. t)/w_(z)]/Z)
l,eff ] = ~ A A— :
2%4(1/2,0) + (ZZ = D[G5 (2. ) + G5 (z 1)]/2
Thus,the only BC needed igo(t).

6. Differential-difference equations in two lattice variables

We now show how the method presented in Secioan be extended to solve IBVPs for linear separable
differential-difference evolution equations for a double sequence of fundiigs(t) }m nen. Consider
a multi-dimensional analogue of (2.1) in the form

iGmn = @ (€™, €M) qmn, (6.1)

whereemgm n = Gm+1.n aNde™gmn = gm.n+1 andw (2, ) isan arbitrary discrete dispersion relation.
In particular, we will restrict our attention to the class of so-called ‘separable’ equations for which the
dispersion relation can be written as the sum

0(21,22) = 01(21) + 22(2) = Y, o1mZ + D, w202 (6.2)

Thisclass includes many physically significant examples. An identical restriction exists for the method
in the continuum case (Foka)02).

6.1 The general method

Similar to Sectior2, we can write §.1) in the discrete version of a divergence equation as
oy " €Y ARy )] = Am(zy ™" e ARIX D) 4 A (z7 M e @R X (2 1 (6.3)

where 4mQm = Qm+1 — Qm and 4,Qn = Qn+1 — Qn arethe difference operators, and where

01(21) — w1(S1)

XM (21, 20, 1) = —i
m,n( 1, 22, 1) 21—

|, amnt0. (6.43)
sp=e/m

. [wz(zz) — w2()

XI(T%)H(Z]" 2y, t) = —I Z—s :| o qm’n(t). (64b)
sp=edn

Let (z1, 22, 1), Gmn(z1, 22, ), X (21, 22, 1) and X P (z1, 2, t) bethe z-transforms of the initial con-
dition and BC, respectively. That is,

oo o0

421,22, = D > 7% "gma(®), (6.52)

m=1n=1
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t ,
(21, 72.1) = [ €@ g (01 (6.5b)
0
t ’
)2:([1)(213 2, t) — / ela)(Z]_,ZZ)t le:(l.lr)1(zl’ 22, t/)dt/’ (65C)
0 ,
t )
)252)(21’ 2,1) = / do (2.2t szr(nZ)l(Zl’ 2, t")dt'. (6.5d)
0 )

For (|z1] > 1) A (Jzz| > 1), summing (6.3) fromm = 1 toco andn = 1 to oo, it is

o (o.¢]
ale@2NG(z1, 22, 0] + D @R XN (21,25, 1) + D @R X D (2,25, 1) = 0. (6.6)

n=1 m=1

Again, note that ifjn n(0) € I1(N x N), then§(zy, 22, t) is definedv (z1, z) € C x C with |z1], |z2| > 1
andis analytic for|zy|, |z2| > 1, while )A(gl)(zl, 2, 1) and)A(gz)(zl, 25, t) aredefinedvz; e DU,V 2z, €
D@, and are analytiv¥z; € DD, vz, ¢ D@, whereD® = {z; € C: Imw1(z1) > 0} andD®@ =
{zo € C: Imwa(z2) > 0O}. ' _
As in Section2, we decompos® () = Dfr” u DY for j =1,2,where
DY) = {zj € C: |zj| S 1A Imwj(z)) > O}.

Now integrate (6.6) from’ = Otot’ =t to get, for(|zz| > 1) A (|22 > 1),

&o@2G(z1, 25,1) = G(z1, 22, 0) — X (@1, 22, 1) — XP (@1, 22, 1). (6.7)

Equation (6.7) is the discrete global relation in two lattice variables.
Sincegm,n(t) arethe Laurent coefficients @(z1, z, t), the inverse transform @f(z1, z, t) is:

1 —1on—1x
Om,n (1) ZW/ | 1/| | 1ZT 127Y6(z1, 22, )dzodzg, Vm,neN.
z1|=1J|z|=
Then(6.5) providesym,n € N andvt € RY,

1 —1_n—1 i A
Om,n(t) = (27!—I)2/| | 1/| | 1Zrln 122 lg Iw(21,22)tq(21, 2, 0)dz; dz
Z1|= Z2|=

1 . . .
- G / / 1At @2 KW (21, 25, 1) + X{P (21, 22, )]dz1 dz1.
|z2]1=1/|z2|=1

(6.8)

Asin Section2, we now use contour deformation to move the integration contour for the second integral

in (6.8) away from the unit circle. The integrand in the last term6o8) is analyticv z1, zo # 0 and

continuous and bounded fai € D@ andz; € D@. Thus, we can deform that integration contour

from |z = 1toz; € aDS}) and|z] = 1toz € an) obtaining,vm,n € N andVvt e ]RO*, the
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reconstructiorformula for the solution of the IBVP:

Gmn(t) = / / 4t e @R 4(2, 2, 0)dzo dzy
m,n (27r|)2 1z11=1J|z2]=1

-1 n 1g-io(z.22)t o (1) v (2)

- Zm—lZn—l e—iW(Zl,Zz)t)A((l) 21, 7, t)dzo dz
(27r|)2 /8D<+1>/|22|_1 12 1 (21, 22, t)dzp dzg

1 11 ~(2
- W/H/ 2t e @S 2y, 25,z G 69
= +

..........

express these unknown boundary values in terms of known quantmes

The spectral functlonx(l)(zl, Zp,t) and )A(f)(zl, Zp, ) areinvariant under any transformation that
leaves the dispersion relatiof.) invariant; i.e. any map; — ¢W(z1) andz, — ¢®)(z,) suchthat
01(ED) = w1(z1) andwa(E@) = wy(z). Note that, as a result, we hayé)(D) ¢ D and
7@(Dx)® c DY

The equationmw:(z1) = w1(¢D) hasM; + M, — 1 non-trivial roots in addition to the trivial one
D = 7z, andwo(z2) = w2(6@) hasNy + Na — 1 non-trivial roots in addition to the trivial one
@ = z,. Using these symmetries in the global relation allow us to eliminate the unknown boundary
data. To do so, however, one must identify which of thg + M2 — 1)(N; + N2 — 1) non-trivial roots
are useful for this purpose. As in Secti@nit is not possible to find these roots in closed form except
in the simplest cases. As before, we then look at the asymptotic behaviour of these rpots>a8,
Zo — 0,21 > oo andz; —» oo. Asz; — oo, we havew1(z1) ~ wl,Mzzyz. Similarly, asz; — 0, we
havews(z1) ~ wl,_Mlzl'Ml. Thus, ag; — oo andz; — 0,the domairD(_l) and DSP are,respectively,
asymptotically equivalent to

Mpy—1

0
gLoo) U Sileo) gL0) - U SLo),
m=0

m=—My+1
whereform=0,..., My —1,

S = {21 € C: 2ma /M3 — argwr m,/M2 < agz; < (2m+ 1)z /Mg — argwi, v,/ M2},
whileform=-M;+1,...,0,

S = {z1 € C: 2m— 1)7/M1 + agw1,—m, /M1 < agzy < 2mz /M1 + agwr —m,/Ma}.

Similarly, aszp — oo, we havew,(z2) ~ wz’NZZZNZ andasz, — 0, we havews(zp) ~ wz,_lez_Nl
Thus,aszp — oo andz; — 0, the domainD® and Df) are,respectively, asymptotically equivalent to
domains

No—1

0
52.%) _ U s 520 U S0,

n=0 n=-— N1+l
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whereforn=0,...,N> -1,

%) = {25 € C: 2n /N2 — agw N,/ N2 < argzz < (2n+ 1)z /Ny — argwz,n,/ N2},
whileforn=—-N1+1,...,0,

S?9 = {2 € C: (2n— 1)z/Ny + amgwy,—n, /N1 < argzz < 2nz /Ny + agwz,—n, /Ni}.

The asymptotic behaviour of théM; + M2 — 1)(N1 + N2 — 1) non-trivial roots of the equations
01EW) = w1(z1) andwz(£@) = wo(22) canbe found via a singular perturbation expansion as before.
Namely, using similar arguments to Sectidnwe find that agz; — 0, the M1 + M2 — 1 non-trivial
roots ofw1(¢M(z1)) = wi(z1) become

g27im/ Mz, m=-My+1,...,-1,

1
&P () ~ [ —My/M,

(@1, My /01,m,) /M2 €271/ M2 7 m=0,...,M2—-1;

aszp — 0,the N1 + N» — 1 non-trivial roots ofwy (5@ (22)) = wa(z2) are

Dy~ [ 2 n=—Ni+1,..,-1,

¢ (22) ~ - _

A (a)z,_Nl/a)z,Nz)l/N2 e27r|n/N222 Nl/NZ, n=0,...,N>—1.
Thus,usingfél)(zl), e éﬁz)_l(zl), each of theM; sectorsin 3%1,0) is mapped onto one of thél,
sectorof S(nl’oo), and usingféz)(zz), e f,ﬂlzz)_l(zz), each of theN; sectorsn 3(12’0) is mapped onto one
of the N, sectorof S((12’°°). We can then perform the substitutions— §,§11>(zl) andzy — 5&2)(22) in
theglobal relation fom =0, ...,M2 —1,n = 0,..., N2 — 1. Applying these transformations in the

discrete global relation (6.7), we then d@t N, algebraicequations

XM (@, 22,0) + XP (21, 22, 1) + €2 @GP (21), P (22), 1) = 4P (20). P (22),0)  (6.10)

form=0,...,M2—-1;n=0,..., N2 — 1. These are precisely the equation that allow us to solve for
the unknown boundary dat@im n(z1, 22, t)}ﬂz1 """ ,\'}’2' 2 with {Gm.n(z1, 22, t)}ﬂ”:__'\"1+11"“c’,0 given, then

we can get the solution o6(1) with given boundary data. As in Sectianthe left-hand side 0f6(10)
contains é’(zl’ZZ)IQ(g"&l)(zl), frﬁz)(zz), t), which is (apart from the changa — ér(nl)(zl) andz, —
552)(22)) just the transform of solution we are trying to recover. As before, however, this term gives
zero contribution to the reconstruction formuag). This is because the terzfl 125! g (@.22(-)

X Q(@%l)(zl), Q‘éz)(zz), t") is analytic and bounded if) N Df), and therefore its integral OVéDS_l) U

an) is zero.

ExampPLE. Consider the diffusive—dispersive DLEE

Gm,n = b(Om+1.n — 20m,n + Qm—l,n)/hz + (Om,n+1 — 3dm,n + 30m,n—1 — Gm,n—-2)/ h3,

whereb € RT andthe same lattice spacing im andn was taken. As before, we take= 1. Here,
M1 = M2 = 1, N7 = 2and Nz = 1. The dispersion relation i®(z1, z2) = w1(z1) + w2(z2) with
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w1(z1) =ib(zs — 2+ 1/z1) andwz(z2) = i(z2 — 3+ 3/20 — 1/25). Note thatw1 (z1) equalsh timesthe
dispersion relation of4.2), andw>(z») is same as the dispersion relation 4f{4). We obtain

Xr(r{)n = b(Qm,n - Qm—l,n/Z), Xr(ri)n = Om,n — (3/22 - 1/ZE)Qm,n—1 + 1/qum’n_2.
Thedomains are
DY =(z1eCilzsl 1AMz 20}, DP ={z e C: |22l S 1A Imwp(z2) > O},

with Df) coincidingwith the domain shown in Fig (right). The solution is given by6(9) with

XV (21, 22,1) = b[z281.n(21, 22, 1) — Gon(Z1, 22, V)], (6.11a)
(21, 22, 1) = 2o0m 1(21, 22, ) — B = 1/22)8m.0(Z1, 22, 1) + Gm.-1(21, 22, 1). (6.11b)

Substituting(6.11) into 6.7). The global relation is, for z; € DY andvz, € D,
b[z101,n(21, 22, ) — Go,n(Z1, 22, V)] + 22Gm,1(21, 22, 1) — (3 — 1/22)Gm,0(Z1, 22, 1)
+Gm—1(21, 22, 1) + €2 G(21, 25, 1) = 4(21, 22, 0).

We then eliminate the unknown boundary data by transformationm 1/z; asfor (4.2) and transfor-
mationz; — &(z2) asfor (4.14). We obtainy z; € D*Y, vz, € D*@,

b[1/z1G1,n(21, 22, t) — Gon(Z1, 22, )] + Z2Gm,1(Z1, 22, 1) — (3 — 1/22)Gm,0(21, 22, 1)
+ Gm.—1(z1, 22, 1) + €2 @2G(1 /21, 25, 1) = §(1/21, 22, 0),

b[21QI,n(Zla 22, t) - qO,n(Zl, Z3, t)] + fO(ZZ)é]m,l(Zla 22, t) - (3 - 1/60(22))qm,0(219 23, t)

+ Gm,—1(21, 22, 1) + €2 @2G(2, &0(22), 1) = Q(21, E0(22), 0),

we can then solve form 1(z1, z2,t) and G1n(z1, 22,t) with Gmo(z1, 22,t), Gm.—1(z1, 22,t) and
Go.n(z1, 22, t) andsubstitute in (6.11) to obtain the reconstruction formula.

7. Fully discrete evolution equations

We now show how the method can be extended to solve IBVPs for a general class of fully DLEEs of

the type i1 — g/ 4t = w(e’")qM, which are the fully discrete analogue @ {). Equivalently, we
write these equations as

e G (7.1)
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whereW(z) = 1 — i4tw(2) is an arbitrary fully discrete dispersion relation:

J2
W@ = > ¢z, (7.2)

j=—%
Equation(7.1) admits the solutiog' = z"W™. It should then be clear that the role of the condition
Imw(z) = 0 will now be played by the conditiofw(z)| = 1.

7.1 The general method

Equation (7.1) can be written as the compatibility relation of a fully discrete Lax pair, i.e. an overdeter-
mined linear system

PNy — 207 =qn, Pyt - W = X[, (7.3)
whereX['(2) is given by the explicit formula

W(z) — W(s
R I
Z—S s—ein
If ¥M(2) =z "W~ "®["(2), then¥" satisfieshe modified fully discrete Lax pair:
P =z "W, gt = M, (7.4)

Using %", the compatibility of 7.4) (namely, the conditiomm(Y’rﬂl) = An(¥"1)) can be written
asgt! — Walt = X, — zX or equivalently as:

Am(Z "W gM) = A (7w XM, (7.5)

where 4mQm = Qmy1 — Qm and 4,Qn = Qn+1 — Qn arethe finite-difference operators.
Letd™(2), 67'(2) and X{'(2) bethe z-transforms of the initial condition and BC, respectively:

[o¢] m m
"@=> 7" @ => WM. XP'@=D zw "Xy (7.6)
n=1 m'=0 m'=0
Summing(7.5) fromn = 1 to co, we obtain, foriz| > 1,
An(W=™14M(2)) = —zW "X (2). (7.7)

Supposey® e 11(N). Then,§™(2) is definedv z € C with |z| > 1 and is analytic fofz| > 1, while
)A(T(z) is definedvz € D and is analytic’ z € D, whereD = {z € C: [W(2)| > 1}. Similar to the
semidiscrete case, we decomp@asD = Dy U D_,whereDy = {z€ C: |z] < 1 A [W(2)| > 1}.
Summing (7.7) fromm’ = 0to m, we get, for|z| > 1,

aM(2) = W™ (2[W(@2)4°%(2) — XT'(2)]. (7.8)

Equation(7.8) is the fully discrete version of the global relation, which contains all known and unknown
initial-boundary data. Again, the inverse transformjf¥(z) is obtained by noting that theT" arethe
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Laurentcoefficients of§™(z). Using (7.6) then yieldsy n € N, Vvm e Ny,

M= i 2"WM(2)§%(2)dz — i 2wz XN(2)dz. (7.9)
27l |zl=1 27l lzl=1

Again, we use contour deformation to move the integration contour for the second integ@a)iaway
from the unit circle. Sincg"Wm- lXm(z) is analyticV z # 0 and bounded and continuous foe D,
we can deform that integration contour frqmh = 1 to z € 6D to obtain the reconstruction formula,
vneN,Vm e Np,

1

m = —
2ri |zZ1=1

2" 'WM(2)§%(z)dz — i / 2wz XN(2)dz. (7.10)
27I'| aDJr

As in the semidiscrete case, the solution Th1Q) depends on the unknown dag, .. ., qﬁ“z via

their spectral transform§f'(z), . .., G5 (2) appearingn )Aq“(z). Thus, in order for the method to yield

an effective solution, one must be able to express these unknown boundary values in terms of known
guantities. In fact, an immediate consequences of the method is that it allows one to verify that, to
make the IBVP 7.1) well posed on the naturals, one needs to assign exactBCsatn = O.

As before, the elimination of the unknown boundary data can be accomplished using the global re-
lation (7.8) together with the symmetries of the equation. The spectral fun&@(z) is invariant

under any transformation that leaves the dispersion relalid?) {nvariant; i.e. any mag — ¢(2)

such thatW(¢(z)) = W(2). Note that, as a result, we hay¢D.) C D.. The equationW(z) =
W(¢(2)) hasJi + J2 — 1 non-trivial roots in addition to the trivial rogt = z. Using these symme-

tries in the global relation will allow us to eliminate the unknown boundary data. In order to do so,
however, one needs to identify which of te + J, — 1 non-trivial roots are useful for this pur-
pose. As before, we look at the asymptotic behaviour of these roots-as 0 andz — oo. As

zZ > oo, we haveW(z) ~ 032232. Similarly, asz — 0, we haveW(z) ~ c_le_Jl. Thus, as

Z — oo and asz — 0, the domaindD_ and D, are,respectively, asymptotically equivalent to the
domains

g®) — U S(°°), sO _ O SJ_(O))
j=—J+1
wherefor j =0,...,J —1,
S(OO) (zeC:2jn/d <amz < (2] + 1)z /).
while,for j = -3 +1,...,0,
SY ={zeC: @] - Vr/h <ayz < 2jz/k).

Again, the asymptotic behaviour of ttd¢ + J» — 1 non-trivial roots of the equatiow () = W(z) can
be found by a singular perturbation expansion. Using similar arguments as in S&ctienhave that
the J; + J» — 1 non-trivial roots for equatioiV (¢ (z)) = W(z) asz— 0

@~ erin/hz . n=-J+1,...,-1,
n (C—Jl/CJz)l/Jl eZﬂln/ng—Jl/Jz’ n= 05 B J—1.
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Fromthe above calculations we now see that, ugis@), . . . , (3,—1(2), each of thel; sectorsn SJ(O)

is mapped onto one of th& sectorsof SJ(‘”). Applying transformationg — ¢n(2),n=0,..., 3 —1
in the discrete global relation (7.8), we then obtajralgebraicequations:

XN(2) + W™ (2) M((n(2) = W(@)E°(¢n(2)) (7.11)

forn = —J1 +1,...,0. These are precisely the equations that allow us to solve for the unknown

boundary datd"(2), ..., 3 (z) with ™) 1 (2), ..., G5'(2) given, and then substitute them in (7.10),
we gain the solution of4.1) with given boundary data. Again, the left-hand sidefL{) contains
the unknown termW—"t1(2)§M(¢(2)). As before, however, this term gives zero contribution to the
reconstruction formula (7.10) thanks to analyticity.

ExamMPLE. Consider the fully discrete convection—diffusion equation

(@ — o)/ 4t = clogiy — dp-o)/h+ (@) — 207 + 70/ 0, (712)
with ¢ € R. Letting 4t = h = 1, we have

m+1

g =A+0)an, — oy + (1 —o)gn ;.

Thefully discrete dispersion relatiow'(z) = (1+c¢)z— 1+ (1 — ¢)/z, implying J; = Jo = 1 and
X{'(2) = (1+0)g)" — (1 —0)q" ;/z. The domaindD. = {z € C: |z S 1 A [W(2)| > 1}. We obtain,
for|z| > 1,

X1(@ = 1+ 0280 — (1 - 0§ (@), (7.13)

which contains the unknown datuqf‘. The domaind . andtheir boundary for some values ofare
shown in Fig.6. Forc # 1, asz — 0, D is asymptotically equivalent t86© = {z € C: 0 < argz <
27}, while asz — oo, the domairD_ is asymptotically equivalent t§(®) = {z € C: 0 < argz < 2x}.
Note that the valueg = =1 are special cases sind®. changecharacter at these two points
(see Fig6).

Inserting (7.13) into7.8), we havey ze D_,

W™ H(1+0)267"(2) — (1 - 985 @] +4™(2) = W"4°(2). (7.14)
Takingz — v¢/zin (7.14) (whereye = (1 — ¢)/(1 + c) for ¢ # +1), we then gety z e D*,
WM (1 - 0)8]'@)/2 ~ (1 - OG5 @] + 4" (ve/D) = WG (ve/2).
After straightforward calculations, fars £1, we then obtain the solution of the IBVP as

m 1

qh = — 2" WM40(2)dz
n 2ri lz1=1

1

=5 | ZTWITHIA 4+ 97 = (- 060" (@) + Z2WE(2 - 0)/[22 + 0D /veldz.
oD,
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FIG. 6. The boundaries of the regiomsy for (7.12) for various values af. Left: ¢ = 0 (solid),c = 1/4 (dashed)c = 1

(dot-dashed) and = 2 (dotted). Rightc = 0 (solid),c = —1/4 (dotted),c = —1 (dashed) and = —4 (dot-dashed). The shaded
regions show the domair34. for c = 1/4 (left) andc = —1/4 (right).

Therefore, only one BC is neededrat= 0 for ¢ # +1, i.e.q{". Forc = %1, we can use similar
methods as in4.18) to find the solution of IBVPs/(12), as we show next.

Whenc = 1, we have)Aqn(z) = 2z87"(2) for |z] > 1. The domainD is the union of D, =
{zeC:|zl <1A|z—=1/2] > 1/2}andD_ = {z € C: |z| > 1}. The global relation is, fojz| > 1,

2W™12M(2) + 4M(2) = WMG2(2).
But the termz"~1W™~1(2)§]"(2) is analyticv z # 0 and bounded foz] < 1. By (7.10), the solution is

m 1

qm = — 2" wmg0(z)dz.
n 2ri |zl=1

Whenc = -1, we get)?’f‘(z) = —20('(2). The domainD is the union ofD, = {z € C: |z] < 1} and
D_ ={ze C: Rez < 1A |zl > 1}. The global relationq.8) yields, for|z] > 1,
—2WM G52 + 4M(2) = WME°(2).

Now W(¢) = W(2) has nontrivial root, so no elimination is possible. The solution is thus

1 1
m 2" WM60(z2)dz + — / ] 2" twm=1g0(2)dz.
oDy

N 2ri |z]=1 Tl

Summarizing, no BC is needed whee= 1, and the BQy' is needed when = —1.

8. Concluding remarks

We have presented a method to solve IBVPs for DLEEs. The method, which is quite general but simple
to implement, yields an integral representation of the solution of the IBVP. It also provides an easy way
to check the number of BCs that are needed at the lattice boundary in order for the IBVP to be well
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posed.The method also applies for forced equations, DLEESs that are higher order in time, systems of
DLEEs, fully discrete evolution equations and DLEEs with more than one lattice variable. As such, it
works for many IBVPs that cannot be treated with Fourier sine/cosine series and/or Laplace transforms.
In the previous sections, we pointed out several cases that cannot be treated with Fourier methods.
As for Laplace transform methods, they are ineffective for IBVPs for (2 + 1)-dimensional equations
since the application of Laplace transforms in this case yields a boundary-value problem for a partial
difference equation on the same ‘spatial’ domain as the original IBVP. Moreover, Laplace transform
methods are not applicable to IBVPs for fully discrete (difference-difference) equations. Even when a
Laplace transform approach can be used, the present method has several advantages compared to it,
since the use of Laplace transforms: (i) leads to complicated expressions involvingztétrasst,
wherei(s) is the solution of the ‘implicit’ equatiors + iw(1) = 0, as opposed to expressions of the
type z"e"*@t wherew(z) is explicit, in the present method; (ii) requiregoing to infinity, which

is unnatural for an evolution equation. Finally, unlike Fourier or Laplace methods, the present method
can also be non-linearized to solve IBVPs for integrable non-linear differential-difference evolution
equations, as demonstrateddiondini & Hwang(2008).

Finally, let us briefly comment on the relation between our method and the Wiener—Hopf (WH)
method. WH problems typically arise in elliptic problems, for regular domains, and when the BCs
change type (e.g., séawrie & Abrahams2007;Noble,1988). The problems treated in our work are
of evolution type. Nonetheless, a relationship between the WH method and our method does exist. A
discussed ifrokas(2008), for IBVPs for PDEs in simple domains the global algebraic relation and the
equations obtained using the symmetries of the problem provide a generalization of the WH technique
The same is true for the discrete evolution equations that are the subject of our work. Moreover, it is:
well known that the application of the WH techniquead hocand problem dependent; again, see
Lawrie & Abrahamg2007) and references therein. In contrast, our method is essentially algorithmic
the analyticity properties of the relevant functions in the spectral domain are determined by construction
In contrast, one would have to use ad hocapproach on a case-by-case basis to formulate a WH
problem with equivalent properties. So, in this context, one can view our method as an effectivization
and a generalization of the WH method for the kinds of IBVPs considered here.

The integral representation of the solution obtained by the present method is the practical imple-
mentation of the Ehrenpreis principle (e.g., &w®enpreis1970;Henkin,1990;Palamodoy1970). As
such, it is especially convenient in order to compute the long-term asymptotics of the solution usmg
the steepest descent method. Also, since the integrals in the reconstruction formula are uniformly con<
vergent, even when they cannot be calculated exactly they provide a convenient way to evaluate thé
solution numerically. We therefore believe that this method will also prove to be a useful comparison ,:
test for finite-difference discretizations of IBVPs for linear PDEs.

We showed in detail how the elimination of the unknown boundary data works for a semiinfinite
range of integers. The same techniques can be used to solve IBVPs on finite ranges of integers. Indee
using similar arguments as the ones in Secfighis easy to show that for the IBVP on the finite domain
0 < n < N, one also needs to assign exaclyBCsatn = N.

While the main steps of the method are similar to the continuum case, its implementation presents
some significant differences. One such difference arises in the elimination of the unknown boundary
data, where instead of the asymptotic behaviour of the dispersion redaii)mat the single poink = oo
in the continuum case, one needs the asymptotic behaviouwfzfasz — oo and asz — 0. This
difference is understood intuitively by recalling ttat €k, and therefore there are two limiting points
corresponding tk = oo, depending on whether Ik = 0. Perhaps more importantly, even when
the DLEE has a continuum limit & — 0, the number of BCs to be assigned in the discrete case
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is determined by the specific finite-difference stencil considered, and it does not coincide in general
with the number of BCs needed in the continuum case. The unknown boundary data in the continuum
case are the spatial derivatives at the origin, and their number depends on the order and sign of the
highest spatial derivative in the PDE (which also determines its characteristics). In the discrete case, the
unknown boundary data are the fitst values of the solution inside the lattice. Therefore, even when

the discrete dispersion relation is a finite-difference approximation of a continuous one, the number of
unknown boundary values is determined by the order of accuracy of the finite-difference stencil not by
the order of derivative that it represents.
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