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Abstract We characterize the soliton solutions and their interactions for a system of coupled
evolution equations of nonlinear Schrödinger (NLS) type that models the dynamics in one-
dimensional repulsive Bose–Einstein condensates with spin one, taking advantage of the
representation of such model as a special reduction of a 2×2 matrix NLS system. Specifically,
we study in detail the case in which solutions tend to a nonzero background at space infinities.
First we derive a compact representation for the multi-soliton solutions in the system using
the Inverse Scattering Transform (IST). We introduce the notion of canonical form of a
solution, corresponding to the case when the background as x → ∞ is proportional to
the identity. We show that solutions for which the asymptotic behavior at infinity is not
proportional to the identity, referred to as being in non-canonical form, can be reduced to
canonical form by unitary transformations that preserve the symmetric nature of the solution
(physically corresponding to complex rotations of the quantization axes). Then we give a
complete characterization of the two families of one-soliton solutions arising in this problem,
corresponding to ferromagnetic and to polar states of the system, and we discuss how the
physical parameters of the solitons for each family are related to the spectral data in the IST.
We also show that any ferromagnetic one-soliton solution in canonical form can be reduced
to a single dark soliton of the scalar NLS equation, and any polar one-soliton solution in
canonical form is unitarily equivalent to a pair of oppositely polarized displaced scalar dark
solitons up to a rotation of the quantization axes. Finally, we discuss two-soliton interactions
and we present a complete classification of the possible scenarios that can arise depending
on whether either soliton is of ferromagnetic or polar type.

1 Introduction

Over the past 2 decades, the platform of atomic Bose–Einstein condensates (BECs) has
emerged as a ripe one for exploring numerous aspects of nonlinear phenomena [1–3]. More
recently, within this framework, the realm of multicomponent systems has been gaining
considerable traction [4,5]. This is a topic that has been of considerable interest not only in
atomic physics, but also in optics and in nonlinear waves, more generally [6]. Indeed, this
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setting provides a natural testbed for the exploration, both theoretically and experimentally,
of various intriguing structures, such as dark–bright solitons, or domain walls, as well as
for instabilities such as phase separation that cannot arise in the simpler, single-component
settings.

Multicomponent BECs, more concretely, may be composed by two or more atomic gases,
and may have the form of various (homonuclear or even heteronuclear) mixtures [4,5].
Unlike what happens in multicomponent nonlinear optics [7,8], where (typically) Kerr-type
nonlinearities depend on the squared moduli of the components, the equations describing
spinor condensates exhibit nonlinear terms reflecting the SU (2) symmetry of the spins: the
spin–exchange interactions that are the sources of the spin-mixing within condensates deviate
from the above-mentioned intensity-coupled nonlinearity, when more than two components
are involved.

Spinor BECs have been realized by employing optical trapping techniques, which allow
for the confinement of atoms regardless of their hyperfine spin state [4,5]. Spinor BECs
formed by atoms with spin F are described by a macroscopic wave function with 2F + 1
components. Experimental works summarized in the above reviews have considered both
F = 1, (3-component states), and F = 2, (5-component states); indeed, even spin-3 cases
in Cr have been considered [9]. Exploiting the nonzero hyperfine spin of the gas as an
additional accessible degree of freedom, various experimental studies demonstrated new
fundamental phenomena (e.g., paramagnet-to-ferromagnet, and polar-to-antiferromagnetic
phase transitions, Dirac monopoles, quantum knots, condensation of magnon excitations, etc),
as well as various types of solitonic structures (e.g., bright and dark solitons, topological states,
polar-core spin vortices, and topological Wigner crystals of half-solitons), as summarized,
e.g., in [6]. The ability of recent, state-of-the-art experiments to capture numerous among
these exotic states, including knots [10], merons and skyrmions [11], and monopoles [12]
only adds to the appeal of this rich setting.

Atoms in F = 1 spinor BECs can be described by the three-component macroscopic
condensate vector wave function (�1,�0,�−1)

T, where each of the � j (x, t) is a scalar
wave function describing atoms with magnetic spin quantum number j . In a mean-field
approximation, � j is shown to satisfy the following system of PDEs [4,5]:

i h̄
∂�±1

∂t
+ h̄2

2m

∂2�±1

∂x2 = (c̄o + c̄2)(|�±1|2 + |�0|2)�±1

+(c̄o − c̄2)|�∓1|2�±1 + c̄2�
∗∓1�

2
0 , (1a)

i h̄
∂�0

∂t
+ h̄2

2m

∂2�0

∂x2 = (c̄o + c̄2)(|�1|2 + |�−1|2)�0 + c̄o|�0|2�0 + 2c̄2�
∗
0�1�−1 ,

(1b)

where c̄ j are the coupling constants (related to the scattering lengths), and asterisk denotes
complex conjugate. The above system admits special reductions which are integrable. Specif-
ically, the case c̄2 = 0 yields the three-component generalization of the Manakov system [7],
whose properties and solutions were studied analytically in [13–16]. Conversely, the case
c̄o = c̄2 = ν = ±1 is a special reduction of the matrix NLS (MNLS) equation, which we
write here in normalized, dimensionless form as

i Qt + Qxx − 2νQ Q† Q = 0 , (2a)
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where subscripts x and t denote partial differentiation and the dagger denotes Hermitian
conjugate, when Q(x, t) is a symmetric 2 × 2 matrix:

Q(x, t) =
(

q1 q0

q0 q−1

)
. (2b)

Here, the values ν = ±1 identify the defocusing/focusing nonlinearity regimes, respectively,
q j (x, t) are suitable normalizations of the scalar wave functions � j (x, t) for j = 0,±1,
Q† is the Hermitian conjugate of Q; subscripts x, t denote partial derivatives with respect
to the spatial variable x and the time variable t , respectively. Indeed, the system (2) was
proposed as a model to describe hyperfine spin F =1 spinor BECs with either repulsive
interatomic interactions and anti-ferromagnetic spin–exchange interactions (ν = +1), or
attractive interatomic interactions and ferromagnetic spin–exchange interactions (ν = −1),
and the fields q1, q0, q−1 are related to the vacuum expectation values of the three components
of the quantum field operator in the three possible spin configurations 1, 0,−1 [17,18]. The
system was subsequently extended to include repulsive mean field interactions and anti-
ferromagnetic spin exchange interactions (ν = 1), as well as finite background (i.e., Q →
Q± �= 0 as x → ±∞) [4,19–25], and higher spin cases, e.g., spin F = 2 condensates when
Q(x, t) is a 4 × 4 complex, symmetric potential [26–28]. Solitons and soliton interactions
in symmetric spaces were studied in [29–32].

While dark–dark (DD) and dark–bright (DB) solitons and soliton trains in 2-component
BECs have been studied theoretically and observed experimentally for over a decade [33–39],
an extension to 3 components and spinor systems had not been realized in experiments until
very recently. In [40], the existence of robust DBB and DDB solitons in a defocusing spinor
F = 1 condensate of 87Rb atoms was reported. In general, the systems considered in the
experiments are non-integrable, and as such researchers have often relied on perturbation-
based techniques of related integrable systems to study solitons and their evolution: the
theoretical predictions for the soliton solutions in integrable cases are an extremely valuable
tool for the investigation of the non-integrable solitary waves in regimes that are not too
far from the integrable ones. For instance, in [40] the coupling coefficients for “symmetric”
spin–independent and “antisymmetric” spin–dependent interaction terms λa and λs , respec-
tively, are such that λa/|λs | ∼ 10−2 is a small parameter up to which the model equation
can be considered a small perturbation of a 3-component Manakov system; see also [41].
While the role of the spin–dependent term is often central to the observed spinor dynamics,
experimentally it is also possible to eliminate the impact of the relevant term and realize the
genuine 3-component Manakov model. Indeed, this was achieved in a recent experimental
work [42], where pairs of 3-component dark–bright–bright solitons in a BEC were prepared
using a method based on local spin rotations which simultaneously imprint suitable phase and
density distributions. This enabled the observation of the striking collisional properties of the
emerging multi-component solitons, and the results showed a remarkable quantitative agree-
ment with the analytical predictions of collision-induced polarization shifts in the repulsive
3-component Manakov model in [15,16]. Equation (2) in the defocusing case is another, dis-
tinct integrable model which one can use as the basis to obtain analytical predictions for the
above-mentioned experimental results. Additionally, the spinor model may provide insight
on domain-wall type solutions which are of interest in their own right [43], but which have
no analog in the form of exact solutions of the Manakov system. Very recently, additional
solitonic excitations in the form of magnetic solitons have also been considered in the realm
of spinor BECs [44,45].

This work is concerned with the study of the defocusing MNLS equation, namely (2)
with ν = 1, within the framework of the Inverse Scattering Transform (IST), with the main
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goal of providing a complete spectral characterization of the physical parameters of its dark
soliton solutions, and of the soliton interactions. The results obtained in this work pave
the way for a comparison with the above-mentioned experimental observations of solitons,
domain walls and other coherent structures in F = 1 spinor BECs. Indeed, we envision this
as a starting point for the potential future consideration numerically and theoretically of a
homotopic continuation (in a parameter such as c̄2/c̄0) of the present solutions towards the
F = 1 physical limit. This would be a potentially fruitful direction towards identifying novel
solutions that might be even experimentally observable.

The paper is organized as follows. In Sect. 2 we briefly review the IST for the defocusing
MNLS with nonzero boundary conditions as developed in [46], and we then use it to derive a
compact, explicit representation for the multi-soliton solutions of the system. In this context,
we refer to the canonical form of a solution when the background Q+ is proportional to the
identity. Solutions for which Q+ is not proportional to the identity are referred to as being
in non-canonical form, and we show they can be reduced to canonical form by unitary trans-
formations that preserve the symmetric nature of the solution Q(x, t) (physically, complex
rotations of the quantization axes). In Sect. 3 we study the one-soliton solutions: the nature of
the solitons depends on whether the associated norming constants (polarization matrices) are
rank-one matrices (giving rise to ferromagnetic solitons) or full rank (corresponding to polar
solitons), and we discuss their canonical and non-canonical forms as related to the boundary
conditions, and the characterization of their physical properties in terms of scattering data for
both ferromagnetic and polar states. We also show that the invariance of the system (2) under
arbitrary unitary transformations allows one to reduce any ferromagnetic one-soliton solution
to a single dark soliton of the scalar NLS equation, and any polar one-soliton solution to a
pair of oppositely polarized displaced scalar dark solitons up to a rotation of the quantization
axes, similarly to what was found for the solitons, breathers and rogue waves of the focusing
spinor system in [24,25,47–50]. In Sect. 4 we investigate two-soliton solutions in the long-
time asymptotics, and we determine how the polarization matrix of each soliton changes
because of the interaction. Explicit formulas for the soliton interactions are obtained for all
possible types of interacting solitons, namely ferromagnetic–ferromagnetic, polar–polar, and
polar–ferromagnetic soliton interactions. Finally, Sect. 5 contains some concluding remarks
and some more technical aspects are considered in the appendix.

2 The defocusing spinor NLS equation with NZBC and its multi-soliton solutions

In this work, we study the solutions of the defocusing spinor system (1) with nonzero back-
ground, i.e., with nonzero boundary conditions (NZBC) as x → ±∞. To this end, it is
convenient to rewrite the corresponding matrix NLS system (2) as

i Qt + Qxx − 2(Q Q† − κ2
o I2)Q = 0 . (3)

where κo is a real constant, In is the n × n identity matrix and Q(x, t) is the 2 × 2 sym-
metric matrix-valued potential in (2b), as before. The term proportional to κ2

o I2 in (3) can

be removed by the simple gauge transformation Q(x, t) �→ Q(x, t)e2iκ2
o t , but it ensures that

the background values of the potential are independent of time. Namely, Q(x, t) satisfies the
following constant NZBC:

Q(x, t) → Q± as x → ±∞ . (4)
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Furthermore, we assume that the boundary conditions (i.e., the asymptotic values for the
potential) Q± satisfy the constraint

Q†
±Q± = Q±Q†

± = κ2
o I2 . (5)

In terms of the individual entries of the matrices Q±, (5) corresponds to the following
equivalent set of constraints:

|q1,±|2 = |q−1,±|2 , (6a)

q1,±q∗
0,± + q0,±q∗−1,± = 0 , (6b)

|q0,+|2 + |q±1,+|2 = |q0,−|2 + |q±1,−|2 = κ2
o , (6c)

for some real nonzero constant κo. In the following we assume κo > 0 without loss of
generality. Note that the above conditions imply that Q± are both normal matrices, and unitary
up to normalization. Once the norm κo of the background is given, each of the boundary
conditions Q+ and Q− is then specified by three additional real parameters: the (common)
amplitude of the diagonal entries and their two phases, with the amplitude and phase of
the off-diagonal entry completely determined by (6c) and (6b), respectively. We emphasize
that, even in the much simpler case of the scalar defocusing NLS equation with NZBC, the
formulation of the IST depends crucially on the constraint |q+| = |q−|, which ensures that
only two branch points appear, and without which the IST is much more complicated [51].
Also, the analogue of the constraints (6) in the Manakov system is the requirement that the
boundary conditions as x → ±∞ be given by parallel vectors [14,52,53]. Departures from
these constraints change substantially the analyticity properties of the eigenfunctions and
scattering data in the IST, but this limitation is common to all these models. In principle,
small deviations could be addressed perturbatively, but such an analysis is outside the scope
of the present work.

2.1 Canonical versus non-canonical solutions and conserved quantities

Recall that the MNLS equation is invariant under unitary transformations. Namely, if Q(x, t)
is a solution of (3), then Q̃(x, t) = U Q(x, t)V is also a solution, with U and V arbitrary
unitary matrices. On the other hand, these transformations are admissible only if they preserve
the symmetry of Q(x, t), namely, if Q̃(x, t) is symmetric whenever Q(x, t) is, in which case,
as we show in Appendix A.1, the transformations correspond physically to complex rotations
of the quantization axes.

We say that a solution is in canonical form when Q+ = I2, and in non-canonical form if
Q+ �= I2. As we show next, any solution can be reduced to canonical form by rescaling and
a suitable rotation of the quantization axes. (Note that we singled out the matrix Q+, but an
equivalent definition could be given using Q−.) Since the background matrix Q+ is a normal
matrix (by virtue of (5)), it is unitarily diagonalizable. Moreover, one can easily show that
the eigenvalues of Q+ are κoei(α1+α−1)±iδ , where α±1 are determined by the phases of the
diagonal entries of Q+, namely, α1 = 2 arg q1,+ and α−1 = 2 arg q−1,+, and

sin δ =
√

1 − (|q+,1|2/κ2
o ) cos(α1 + α−1) . (7)

Furthermore, the orthogonal eigenvectors of Q+ can be chosen to be the real vectors

v± =
(

a± ,

√
κ2

o − |q+,1|2
)T

,

a± = |q+,1| sin(α1 − α−1) ±
√

κ2
o − |q+,1|2 cos2(α1 − α−1) , (8)
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where the T denotes matrix transpose. We can therefore write the background as Q+ =
κoV T	+V , where 	+ = ei(α1+α−1)+iδσ3 , with σ3 = diag(1,−1) the third Pauli matrix,
and V = (v+/‖v+‖ , v−/‖v−‖) is the real matrix of orthonormal eigenvectors of Q+. Now
consider the transformation

Q̃(x, t) = 	
−1/2
+ V Q(x, t)V T	

−1/2
+ . (9)

It is easy to show that Q̃(x, t) is symmetric whenever Q(x, t) is, and by construction Q̃+ =
κo I2. As a consequence, without loss of generality one can take the background to be Q+ =
κo I2 up to admissible unitary transformations of the form (9), i.e., complex rotations of
the quantization axes. Finally, recall that the MNLS equation is scale invariant. Namely, if
Q(x, t) is a solution of (3), so is Q̂(x, t) = cQ(cx, c2t) for any constant c ∈ R. Therefore,
we can take κo = 1, which implies that Q(x, t) is in canonical form.

The complete integrability of the MNLS equation implies that the system (3) has an
infinite number of conserved quantities in involution. Of particular importance for describing
the physical properties of the condensate are the total number of holes/particles N , and the
total spin F, which can be expressed, respectively, as integrals over the spatial domain of the
particle number density n̄(x, t) and of the spin densities in the three components, f1, f0, f−1,
namely

N =
∫
R

n̄(x, t) dx , n̄(x, t) = tr(Q†
±Q±) − tr(Q† Q) , (10a)

F =
∫
R

f(x, t) dx , f(x, t) ≡ ( f1, f0, f−1) := tr(Q†σ Q) , (10b)

where σ = (σ1, σ2, σ3) are the Pauli matrices. For future reference, we note that the particle
number density is invariant under arbitrary unitary transformations and remains the same if a
complex rotation of the quantization axes is performed to reduce the background Q+ to the
identity. The spin density, on the other hand, is not invariant under unitary transformations
from the left. Indeed, one can easily verify that multiplying Q by an arbitrary unitary matrix
from the right does not change the spin density, while multiplication from the left results in
the spin density changing covariantly. More specifically, under the transformation (9), which
reduces the solution to canonical form up to the rescaling of κo, the spin density becomes

f̃(x, t) = Sθ,δ f(x, t) (11a)

where, writing the orthogonal matrix V as V = cos θ I2 − i sin θ σ2 (σ2 being the second
Pauli matrix, see Appendix A.1),

Sθ,δ =
⎛
⎝cos δ cos(2θ) − sin δ cos δ sin(2θ)

sin δ cos(2θ) cos δ sin δ sin(2θ)

− sin(2θ) 0 cos(2θ)

⎞
⎠ , (11b)

It is worth noticing that Sθ,δ is indeed an orthogonal matrix, and the transformation to canon-
ical form amounts to a rotation of the quantization axes (again, see Appendix A.1).

2.2 Overview of the IST for the defocusing MNLS equation with NZBC

In order to derive an expression for the multi-soliton solutions of the defocusing MNLS
equation (2), and to fully characterize the physical parameters of the solitons in terms of
spectral data, it is convenient to first briefly review the IST for (2) with NZBC that was
developed in [46].
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As originally shown in [17], the MNLS equation (3) for a 2 × 2 potential matrix Q(x, t)
is equivalent to the compatibility condition (φxt = φt x ) of the following 4 × 4 Lax pair:

φx = Uφ , φt = Vφ , (12)

with

U(x, t, k) = −ikσ 3 + Q, V(x, t, k) = −2ik2σ 3 + 2kQ + iσ 3[Qx + κ2
o I4 − Q2],

(13a)

σ 3 =
(

I2 02

02 −I2

)
, Q =

(
02 Q
Q† 02

)
, (13b)

where 0n is the n × n zero matrix. As usual, one refers to the first equation of the Lax pair
(12) as the scattering problem. The IST for the MNLS (3) with nonzero boundary conditions
was developed in [20,24,46]. Next we give a brief overview of the IST formulation following
[46], which we will then use to obtain a formula for the multi-soliton solution.

Importantly, note that the constraint (5) on the boundary conditions plays the same role
as the “equal amplitude” boundary condition in the scalar and vector NLS equations, and it
ensures that the asymptotic scattering problems as x → ±∞ are equal and only have two
branch points. Indeed, taking into account (5), the asymptotic scattering problems (which are
obtained by replacing Q with Q± in (13a)) have eigenvalues ±iλ with λ = (k2 −κ2

o )1/2, and
each eigenvalue has multiplicity 2. As in the IST for the Manakov system [54], is convenient
to introduce uniformization variable z defined by the conformal mapping

z = k + λ, (14a)

whose inverse transformation is

k = 1

2
(z + κ2

o /z), λ = 1

2
(z − κ2

o /z). (14b)

Consequently, Im λ > 0 corresponds to the region C
+ in the z-plane, and Im λ < 0 corre-

sponds to the region C
− in the z-plane. The Jost solutions are defined as the simultaneous

solutions of both parts of the Lax pair identified by the BCs:

�(x, t, z) ≡ (ϕ(x, t, z), ϕ̄(x, t, z)) = X−(z)e−iθ(x,t,z)σ 3(1 + o(1)), x → −∞, (15a)

�(x, t, z) ≡ (ψ̄(x, t, z), ψ(x, t, z)) = X+(z)e−iθ(x,t,z)σ 3(1 + o(1)), x → ∞, (15b)

where ϕ(x, t, z), ϕ̄(x, t, z), ψ̄(x, t, z) and ψ(x, t, z) are 4 × 2 matrices,

θ(x, t, z) = λ(z)(x + 2k(z)t), (15c)

and

X±(z) = I4 − i

z
σ 3Q±, X−1± (z) = 1

γ (z)

(
I4 + i

z
σ 3Q±

)
, z ∈ R\{0,±κo},

(16a)

det X±(z) =
(

2λ

λ + k

)2

= (γ (z))2, γ (z) = 1 − κ2
o

z2 . (16b)

As usual, the continuous spectrum of the scattering problem corresponds to values of (k, λ),
or, equivalently, z, such that all four eigenfunctions above are bounded for all x ∈ R, which
requires λ(k) ∈ R\ {0} and hence k ∈ (−∞,−κo)∪(κo,+∞). In the z-plane, the continuous
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spectrum is � := R\ {±κo}. A complete set of modified analytic eigenfunctions with constant
limit as x → ±∞ can be defined as

M(x, t, z) ≡ (M(x, t, z), M̄(x, t, z)) = �(x, t, z) eiθ(x,t,z)σ 3 , (17a)

N(x, t, z) ≡ (N̄ (x, t, z), N (x, t, z)) = �(x, t, z) eiθ(x,t,z)σ 3 , (17b)

One can express the modified eigenfunctions M , M̄ , N and N̄ as solutions of suitable
Volterra-type integral equations, and show that under some mild integrability conditions of
Q(x, t)− Q± for x ∈ (xo,±∞) and any fixed t ≥ 0, the modified eigenfunctions M(x, t, z)
and N (x, t, z) can be analytically extended to C

+ in the z-plane. Similarly, the modified
eigenfunctions M̄(x, t, z) and N̄ (x, t, z) can be analytically extended to C

− in the z-plane.
Because det �(x, t, z) = det �(x, t, z) = det X± = (γ (z))2 for all x, t, z ∈ R, � and �

are both fundamental solutions of the scattering problem. Hence there exists a proportionality
matrix S(z) between the two fundamental solutions, such that

�(x, t, z) = �(x, t, z)S(z), S(z) =
(

a(z) b̄(z)
b(z) ā(z)

)
, x, t ∈ R, z ∈ R\{±κo}, (18)

where S(z) is referred to as the scattering coefficient matrix and a, b, ā, b̄ are 2 × 2 block
matrices. Since det � = det � we have det S(z) = 1 for z ∈ R\{±κo}. In turn, from (18) it
also follows that:

det a(z) = Wr(ϕ, ψ)/Wr(ψ̄, ψ) ≡ det(ϕ, ψ)/ det � = det(ϕ, ψ)/(γ (z))2, (19a)

det ā(z) = Wr(ψ̄, ϕ̄)/Wr(ψ̄, ψ) ≡ det(ψ̄, ϕ̄)/ det � = det(ψ̄, ϕ̄)/(γ (z))2, (19b)

where Wr(u, v) denotes the Wronskian determinant of 4 × 2 vector functions u and v.
The Jost eigenfunctions satisfy the following symmetry relations with respect to the invo-

lution z �→ z∗:

�†(x, t, z∗)σ 3�(x, t, z) = �†(x, t, z∗)σ 3�(x, t, z) = γ (z)σ 3 . (20)

We will use the following notation to denote the 2 × 2 blocks of the eigenfunction matrices
� and �:

�(x, t, z) =
(

ϕup ϕ̄up

ϕdn ϕ̄dn

)
, �(x, t, z) =

(
ψ̄up ψup

ψ̄dn ψdn

)
, (21)

so (20) can be written in block-matrix form

γ (z)a(z) = ψ̄†
up(z

∗)ϕup(z) − ψ̄
†
dn(z

∗)ϕdn(z), (22a)

γ (z)ā(z) = ψ
†
dn(z

∗)ϕ̄dn(z) − ψ†
up(z

∗)ϕ̄up(z), (22b)

γ (z)b(z) = ψ
†
dn(z

∗)ϕdn(z) − ψ†
up(z

∗)ϕup(z), (22c)

γ (z)b̄(z) = ψ̄†
up(z

∗)ϕ̄up(z) − ψ̄
†
dn(z

∗)ϕ̄dn(z) , (22d)

where the x, t dependence of the eigenfunctions on the right-hand side has been omitted for
shortness. The above relations show that a(z) can be analytically extended to C

+, and ā(z)
can be analytically extended to C

−. Also, we obtain

S−1(z) = σ 3S†(z∗)σ 3, S−1(z) =
(

c̄(z) d(z)
d̄(z) c(z)

)
, (23)

which provides symmetries for the scattering coefficients:

a†(z∗)a(z) − b†(z∗)b(z) = I2, a†(z∗)b̄(z) − b†(z∗)ā(z) = 02, (24a)
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b̄†(z∗)a(z) − ā†(z∗)b(z) = 02, b̄†(z∗)b̄(z) − ā†(z∗)ā(z) = −I2. (24b)

and

c̄(z) = a†(z∗), d(z) = −b†(z∗), d̄(z) = −b̄†(z∗), c(z) = ā†(z∗). (25)

The scattering problem also admits a second involution: z �→ κ2
o /z. The corresponding

symmetries for the eigenfunctions are given by:

�(x, t, z) = − i

z
�(x, t, κ2

o /z)σ 3Q− , �(x, t, z) = − i

z
�(x, t, κ2

o /z)σ 3Q+, z ∈ � .

(26)
Explicitly, each of the 4 × 2 Jost eigenfunctions satisfies

ϕ(x, t, z) = i

z
ϕ̄(x, t, κ2

o /z)Q†
−, ϕ̄(x, t, z) = − i

z
ϕ(x, t, κ2

o /z)Q− , (27a)

ψ̄(x, t, z) = i

z
ψ(x, t, κ2

o /z)Q†
+, ψ(x, t, z) = − i

z
ψ̄(x, t, κ2

o /z)Q+ . (27b)

These symmetries imply the following relations for the scattering data:

a(κ2
o /z) = 1

κ2
o

Q+ā(z)Q†
− , ā(κ2

o /z) = 1

κ2
o

Q†
+a(z)Q− , (28a)

b(κ2
o /z) = − 1

κ2
o

Q†
+b̄(z)Q†

− , b̄(κ2
o /z) = − 1

κ2
o

Q+b(z)Q− . (28b)

A third symmetry follows from the fact that we assume the potential Q(x, t) to be a symmetric
matrix. Correspondingly, the eigenfunctions satisfy the following symmetries:

�T(x, t, z)σ 2�(x, t, z) = �T(x, t, z)σ 2�(x, t, z) = γ (z)σ 2, σ 2 =
(

02 −i I2

i I2 02

)
,

(29)
which implies that

ST(z)σ 2S(z) = σ 2, z ∈ � , (30)

and consequently

c(z) = aT(z), c̄(z) = āT(z), d(z) = −b̄T(z), d̄(z) = −bT(z). (31)

The discrete spectrum is the set of all values z j ∈ C\R where det a(z) = 0 or det ā(z) = 0.
Since the scattering operator is self-adjoint, z j ∈ Co := {z ∈ C : |z| = κo}. Moreover, the
symmetries of the scattering data imply that det a(z) = 0 if and only if det ā(z∗) = 0. Suppose
that det a(z) has a finite number J of zeros z1, . . . , z J in C+

0 = C0∩{z ∈ C : Im > 0} and, by
symmetry, det ā(z) has a finite number J of zeros z∗

1, . . . , z∗
J in C−

0 = C0∩{z ∈ C : Im < 0}.
Let us define

P(x, t, z) = (ϕ(x, t, z), ψ(x, t, z)), P̄(x, t, z) = (ψ̄(x, t, z), ϕ̄(x, t, z)) . (32)

As we will discuss next, the nature of the discrete eigenvalue z j (or, equivalently, z∗
j ) depends

on the rank of the matrix P(x, t, z j ) (equivalently, P̄(x, t, z∗
j )).

Norming constants and residue conditions: Case 1, rank P(x, t, zn) = 3. As shown in
[46], the Wronskian representation (19) in this case yields

ϕ(x, t, zn)α(zn) = ψ(x, t, zn)cn, ϕ̄(x, t, z∗
n)ᾱ(zn) = ψ̄(x, t, z∗

n)c̄n, (33)
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where cn and c̄n are constant 2 × 2 rank-1 matrices, and α(z), ᾱ(z) denotes the adjugate (or
cofactor) matrix of a(z) and ā(z), respectively, such that a(z)α(z) = α(z)a(z) = det a(z)I2

and similarly for ā(z). These provide the residue relations

Res
z=zn

[M(x, t, zn)a−1(z)] = e2iθ(x,t,zn)N (x, t, zn)Cn,

Cn = cn

(det a)′(zn)
, det Cn = 0, (34a)

Res
z=z∗

n

[M̄(x, t, z)ā−1(z)] = e−2iθ(x,t,z∗
n) N̄ (x, t, z∗

n)C̄n,

C̄n = c̄n

(det ā)′(z∗
n)

, det C̄n = 0, (34b)

where prime denotes the derivative with respect to z.

Norming constants and residue conditions: Case 2, rank P(x, t, zn) = 2. It is possible, on
the other hand, to have double zeros of det a(z) and det ā(z) for which the matrices Ma−1

and M̄ā−1 still have a simple pole for such a value of z. When this happens, a(zn) = ā(z∗
n) =

02×2 and rank P(x, t, zn) = rank P̄(x, t, z∗
n) = 2. In this scenario a stronger condition of

proportionality between the eigenfunctions holds, namely:

ϕ(x, t, zn) = ψ(x, t, zn)bn, ϕ̄(x, t, z∗
n) = ψ̄(x, t, z∗

n)b̄n, (35)

where bn, b̄n are constant, non-singular 2 × 2 matrices. In this case, the residue conditions
read

Res
z=zn

[M(x, t, z)a−1(z)] = e2iθ(x,t,zn)N (x, t, zn)Cn, Cn = 2bnα′(zn)

(det a)′′(zn)
, (36a)

Res
z=z∗

n

[M̄(x, t, z)ā−1(z)] = e−2iθ(x,t,z∗
n) N̄ (x, t, z∗

n)C̄n, C̄n = 2b̄n ᾱ′(z∗
n)

(det ā)′′(z∗
n)

, (36b)

and although the residue conditions formally have the same expression as in the rank-1 case
(cf (36)), here the norming constants Cn, C̄n need not be rank-1 matrices.

The asymptotic behaviors of the eigenfunctions and the scattering data as z → ∞ and
z → 0 are needed in order to properly formulate the inverse problem for the eigenfunctions,
and subsequently reconstruct the potential matrix. They are given in [46] as:

M(x, t, z) =
(

I2 + i
z

∫ x
−∞[Q(x ′, t)Q†(x ′, t) − κ2

o I2]dx ′ + O(1/z2)
i
z Q†(x, t) + O(1/z2)

)
z → ∞, z ∈ C

+,

(37a)

M̄(x, t, z) =
(

− i
z Q(x, t) + O(1/z2)

I2 − i
z

∫ x
−∞[Q†(x ′, t)Q(x ′, t) − κ2

o I2]dx ′ + O(1/z2)

)
z → ∞, z ∈ C

−,

(37b)

N̄ (x, t, z) =
(

I2 + i
z

∫ ∞
x [Q(x ′, t)Q†(x ′, t) − κ2

o I2]dx ′ + O(1/z2)
i
z Q†(x, t) + O(1/z2)

)
z → ∞, z ∈ C

−,

(37c)

N (x, t, z) =
(

− i
z Q(x, t) + O(1/z2)

I2 − i
z

∫ ∞
x [Q†(x ′, t)Q(x ′, t) − κ2

o I2]dx ′ + O(1/z2)

)
z → ∞, z ∈ C

+,

(37d)
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M(x, t, z) =
(

Q Q†
−/κ2

o + O(z)

i Q†
−/z + O(1)

)
, N (x, t, z) =

( −i Q+/z + O(1)

Q† Q+/κ2
o + O(z)

)
as z → 0, z ∈ C

+,

(37e)

M̄(x, t, z) =
( −i Q−/z + O(1)

Q† Q−/κ2
o + O(z)

)
, N̄ (x, t, z) =

(
Q Q†

+/κ2
o + O(z)

i Q†
+/z + O(1)

)
, as z → 0, z ∈ C

−,

(37f)

implying

S(z) = I2 + O(1/z), z → ∞, S(z) = 1

κ2
o

(
Q+Q†

− 02

02 Q†
+Q−

)
+ O(z), z → 0,(38)

with both limits taken along the real axis.
The inverse problem can be formulated as a matrix Riemann–Hilbert problem (RHP) in

terms of the uniformization variable:

μ−(x, t, z) = μ+(x, t, z)(I4 − G(x, t, z)), z ∈ �, (39)

where the sectionally meromorphic matrices are

μ(x, t, z) =
{

(Ma−1, N ), Im z > 0 ,

(N̄ , M̄ā−1), Im z < 0 ,
(40)

with μ±(x, t, z) denoting the projection of μ(x, t, z) to the real z-axis from above/below,
the jump matrix is

G(x, t, z) =
(

02 −e−2iθ(x,t,z)ρ̄(z)
e2iθ(x,t,z)ρ(z) ρ(z)ρ̄(z)

)
, (41)

and the reflection coefficients are ρ(z) = b(z)a−1(z) and ρ̄(z) = b̄(z)ā−1(z). The matrices
μ±(x, t, z)− I2 are O(1/z) as z → ∞. After regularization, to account for the pole at z = 0
and at the discrete eigenvalues {z j , z∗

j }N
j=1, the RHP can be solved via Cauchy projectors,

and the asymptotic behavior of the upper 2 × 2 block of N (x, t, z) as z → ∞ yields the
reconstruction formula

Q(x, t) = Q+ + i
J∑

j=1

e−2iθ(x,t,z∗
j ) N̄up(x, t, z∗

j )C̄ j − 1

2π

∫
R

e−2iθ(x,t,ζ ) N̄up(x, t, ζ )ρ̄(ζ )dζ.

(42)
Using the reconstruction formula and the second symmetry we obtain the symmetry relations
for the norming constant

C̄n = C†
n , Q+Cn = e2i arg(zn)C̄n Q†

+ (43a)

CT
n = Cn, C̄T

n = C̄n (43b)

where n = 1, . . . , J . We are interested in potentials Q(x, t) where the reflection coefficient
ρ(z) is identically zero for z ∈ R, which implies that ρ̄(z) is also zero for z ∈ R. Under this
assumption of reflectionless potentials, we have

Q(x, t) = Q+ + i
J∑

j=1

e−2iθ(x,t,z∗
j ) N̄up(x, t, z∗

j )C̄ j , (44)
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with

N̄up(x, t, z∗
n) = I2 +

J∑
j=1

e2iθ(x,t,z j )Nup(x, t, z j )C j

z∗
n − z j

, (45a)

Nup(x, t, zn) = − i

zn
Q+ +

J∑
j=1

e−2iθ(x,t,z∗
j ) N̄up(x, t, z∗

j )C̄ j

zn − z∗
j

. (45b)

Solving the linear system (45) for the eigenfunctions and substituting into the reconstruction
formula (42) yields the J soliton solution for the defocusing MNLS.

2.3 Multi-soliton solutions

Using the IST formalism above, we now derive an explicit formula for the general multi-
soliton solution of (3) with ν = 1 and NZBC. First, substituting (45b) into (45a) we have

N̄up(x, t, z∗
n) = I2 − i Q+

J∑
j=1

e2iθ(x,t,z j )C j

z j (z∗
n − z j )

+
J∑

j=1

J∑
l=1

e2i(θ(x,t,z j )−θ(x,t,z∗
l ))

(z∗
n − z j )(z j − z∗

l )
N̄up(x, t, z∗

l )C̄lC j . (46)

Note that the exponents iθ(x, t, z j ) and iθ(x, t, z∗
j ) appearing in (44) and (45) are all real.

For convenience let us take the transpose of Eq. (46),

N̄ T
up(x, t, z∗

n) = I2 − i
J∑

j=1

e2iθ(x,t,z j )C j

z j (z∗
n − z j )

Q+

+
J∑

j=1

J∑
l=1

e2i(θ(x,t,z j )−θ(x,t,z∗
l ))

(z∗
n − z j )(z j − z∗

l )
C j C̄l N̄ T

up(x, t, z∗
l ). (47)

Introducing Y = (Y1, Y2, . . . , YJ )T and V = (V1, V2, . . . , VJ )T where

Yn = N̄ T
up(x, t, z∗

n), Vn = I2 − i
J∑

j=1

e2iθ(x,t,z j )C j

z j (z∗
n − z j )

Q+, n = 1, . . . , J,

with Y and V being 2J × 2 matrices, and defining the 2J × 2J matrix A = (An,l), where

An,l =
J∑

j=1

e2i(θ(x,t,z j )−θ(x,t,z∗
l ))

(z∗
n − z j )(z j − z∗

l )
C j C̄l , n, l = 1, 2, . . . , J,

the system (47) becomes simply RY = V, where R = I2J − A = (R1, R2, . . . , R2J ) and
Y,V, and A consist of J block matrices, each of size 2 × 2. We can then rewrite this system
as

R X1 = B1, R X2 = B2, (48)

with Y = (X1, X2) and V = (B1, B2), where now X j and B j for j = 1, 2 are 2J -
component vectors, whose solution (48) gives for each component of the vectors X1, X2:
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Xn,1 = det R̂ext
n / det R and Xn,2 = det Řext

n / det R for n = 1, 2, . . . , 2J , where

R̂ext
n = (R1, R2, . . . , Rn−1, B1, Rn+1, . . . , R2J ) ,

Řext
n = (R1, R2, . . . , Rn−1, B2, Rn+1, . . . , R2J ).

It then follows that

N̄ T
up(x, t, z∗

n) =
(

X2n−1,1 X2n−1,2

X2n,1 X2n,2

)
, n = 1, 2, . . . , J, (49)

and Eq. (44) yields

Q(x, t) = Q+ + i
J∑

j=1

e−2iθ(x,t,z∗
j )C̄ j N̄ T

up(x, t, z∗
j ). (50)

Finally, upon substituting into the above formula, the resulting expression for the potential
can be written compactly as

Q(x, t) = 1

det R

(
det N aug

11 det N aug
12

det N aug
21 det N aug

22

)
, (51)

where the augmented (2J + 1) × (2J + 1) matrices are given by

N aug
jk =

(
Q+, jk −i DT

j
Bk R

)
, j, k ∈ {1, 2}, (52a)

and

Q+ = (Q+,i j ) , i, j ∈ {1, 2} , (D1, D2) = (E1, E2, . . . , EN )T ,

En = e−2iθ(x,t,z∗
n)C̄n , n = 1, . . . , J . (52b)

3 One-soliton solutions

In this section we discuss and classify the one-soliton solutions, namely the solutions obtained
from (51) with J = 1.

3.1 Classification of one-soliton solutions

Solving (44) when J = 1 we have

Q(x, t) = Q+ + ie2iθ(x,t,z1)

z1

(
I2 + ie2iθ(x,t,z1)

(z∗
1 − z1)

�1

)−1
�1 Q+, x ∈ R, t ∈ R

+ , (53)

where θ(x, t, z) is as in (15c), z1 = κoeiϕ with ϕ ∈ (0, π) and

�1 = 1

z1
Q+C1 , (54)

with �1 = �
†
1 thanks to (43a). Since �1 is Hermitian, there exists a unitary matrix U such

that U �1 U † = diag(γ1, γ−1) where γ1 and γ−1 are the (real) eigenvalues of �1, and (53)
can be written as:

Q(x, t) = U †
[

I2 + ie2iθ(x,t,z1)

z1

(
I2 + ie2iθ(x,t,z1)

(z∗
1 − z1)

diag(γ1, γ−1)
)−1

diag(γ1, γ−1)
]
U Q+ .
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(55)

This solution is regular for all x, t ∈ R, if and only if γ1 ≤ 0 and γ−1 ≤ 0. Further
simplification yields,

Q(x, t) = U † diag(qdark,1(x, t), qdark,−1(x, t)) U Q+ , (56)

whenever det �1 �= 0, (i.e. γ1 < 0 and γ−1 < 0) and

qdark, j (x, t) = e−iϕ{cos ϕ + i sin ϕ tanh[κo sin ϕ(x − x j + 2κo t cos ϕ)]} (57)

with x j such that e−2x j κo sin ϕ = −2κo sin ϕ/γ j , for j = 1,−1. Furthermore, if det �1 = 0
then without loss of generality one can assume γ−1 = 0, which yields,

Q(x, t) = U † diag(qdark,1(x, t), 1) U Q+ . (58)

Exploiting the invariance of MNLS under unitary transformations, we can consider

Q̃(x, t) = U Q(x, t) U † ≡ diag(qdark,1(x, t), qdark,−1(x, t)) U Q+U † , (59)

and if the quantization axes have been chosen so that Q+ = I2 (cf. Sec. 2.1), then

Q̃(x, t) = diag(qdark,1(x, t), qdark,−1(x, t)) . (60)

(The unitary transformations (59) are obviously admissible, since Q̃ is diagonal.) The same
obviously holds for (58), in which case

Q̃(x, t) = diag(qdark,1(x, t), 1) . (61)

Specifically, to derive (60) we have to use two subsequent unitary transformations, first
reducing Q+ to identity and secondly, diagonalizing �1. Notice that when we reduce (53)
to its canonical form (i.e., when Q+ = I2), �1 becomes a real symmetric matrix, therefore
we can find an orthogonal matrix W that diagonalizes �1. Thus using the discussion in Sect.
2.1 one can show that the Q̃(x, t) defined in (60) can be written as:

Q̃(x, t) = Ũ Q(x, t)Ũ T , (62)

with the unitary matrix Ũ := W	
−1/2
+ V , where 	+ and V are defined in equation (8) and

W is the orthogonal matrix which diagonalizes �1.
As shown in Appendix A.1, the transformation (62) is equivalent to a complex rotation

of the quantization axes. Thus, without loss of generality (i.e., up to admissible unitary
transformations), any one-soliton solution can be reduced to a superposition of two oppositely
polarized shifted dark solitons of the scalar NLS equation.

It should be noted that, even though any one-soliton solution is unitarily equivalent to
the simpler, diagonal solutions (60) or (61), when more than one soliton are present in
general it is not possible to simultaneously reduce both solitons to diagonal forms via unitary
transformations. In particular, �1 and �2 can be simultaneously diagonalized if and only
if they commute, which obviously is a very special case. For this reason, it is important
to discuss the form of the one-soliton also in the generic case in which �1 is an arbitrary
Hermitian matrix, not necessarily diagonal. And for similar reasons, i.e., in order to elucidate
soliton interactions, it is also important to characterize one-soliton solutions that are not in
canonical form. This will be done in the next subsections, where we will distinguish between
ferromagnetic solitons and polar solitons. From the mathematical point of view, we will refer
to a ferromagnetic soliton when the associated norming constant is such that det �1 = 0, and
to a polar soliton when det �1 > 0 which is the full rank case. As we will explain below, the
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terminology corresponds to the standard one in the physical literature, where a ferromagnetic
soliton has nonzero total spin, while the total spin of a polar soliton is zero.

Finally, using (53) and the fact that Q+ = I2, one can obtain an explicit expression for
the particle number density (10a) and the spin density (10b) for a one-soliton solution:

n̄(x, t) = e2iθ(x,t,z1)−ρ

D2

(
− e2(2iθ(x,t,z1)+�) det �1 tr �1 + 4 e2iθ(x,t,z1)+� det �1 − tr �1

)
, (63a)

f(x, t) = e2iθ(x,t,z1)−� tr(σ�1)

D2

(
1 − e2(2iθ(x,t,z1)+�) det �1

)
, (63b)

where D = e2(2iθ(x,t,z1)+�) det �1 − e2iθ(x,t,z1)+� tr �1 + 1, and e−� = 2 sin ϕ with σ as
in (10).

One can simplify the spin densities (63b) further for polar and ferromagnetic states sepa-
rately. Specifically, for ferromagnetic solitons (i.e., det �1 = 0) one has

f(x, t) = 1

4
tr(σ�1) e−(ρ+2α0 sin ϕ) sech2[sin ϕ(x − α0 + 2t cos ϕ)] , (64a)

where α0 = (ρ + ln(− tr �1))/2 sin ϕ and we will show in Sect. 3.2 that tr �1 < 0 is a
necessary and sufficient condition for the solution to be regular. This shows that the spin
density is an even function of x , and therefore the total spin of a ferromagnetic soliton in
canonical form is nonzero.

On the other hand, the spin density of a polar soliton in canonical form can be written as

f(x, t) = −2 tr(σ�1) e−(ρ+2β0 sin ϕ)

sinh[2 sin ϕ(x − β0 + 2t cos ϕ)]
{2 cosh[2 sin ϕ(x − β0 + 2t cos ϕ)] − tr(�1)eρ−2β0 sin ϕ}2 , (64b)

with β0 = (2ρ + ln(det �1))/4 sin ϕ, and one can see that all three components of the spin
density are odd functions of x . As a consequence, the total spin of a polar soliton in canonical
form is always zero. [In Sect. 3.3 we show that det �1 > 0 and tr �1 < 0 are necessary and
sufficient conditions for the polar soliton solution to be regular.] Finally, we note that in light
of (11a) and (11b) the transformation to canonical form, while changing the total spin, does
not change the nature of the soliton as being polar or ferromagnetic.

3.2 Ferromagnetic states

We start by considering the case of a one-soliton solution for which �1 (i.e., its associated
norming constant C1) is rank-1, which corresponds to a ferromagnetic state. Since in this
case det �1 = 0, the solution (53) simplifies to:

Q(x, t) = Q+ + 2i sin ϕ e−iϕ

2κ2
o sin ϕ e−2iθ(x,t,z1) − tr(�1)

�1 Q+ , (65)

where z1 = κo eiϕ , with ϕ ∈ (0, π). Taking the limit x → −∞ we have

Q− = VQ+, (66)

where V = I2 − 2i sin ϕ e−iϕ

tr(�1)
�1 and V is a unitary matrix.

The above equation shows that Q− �= Q+ and that in fact, generically, the energy distri-
bution among the components as x → ∞ and x → −∞ is different. As we will see, this is
different from what happens in polar states (i.e., when det �1 �= 0). When Q+ = I2, (65)
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yields the canonical form for the ferromagnetic state as

Q(x, t) = I2 + 2i sin ϕ e−iϕ

2 sin ϕ e−2iθ(x,t,z1) − tr �1
�1 , (67)

where �1 = (ci j ) is now real, symmetric and with zero determinant, and is therefore com-
pletely determined by its diagonal entries. As we said, �1 can always be reduced to a diagonal
form (in this case, �1 = diag(γ1, 0) since det �1 = 0) via rotations of the quantization axes.
The above solution in this case in simply given by (61). However, as we also clarified before,
it is important to understand the properties of the solutions when �1 is not diagonal. There-
fore, we will consider below a general (i.e., non-diagonal) rank-1 matrix �1. In order for
(67) to be regular for all x, t ∈ R, it is necessary and sufficient that tr �1 < 0. Since
det �1 = c11c22 − c2

12 = 0, one can show that c11 < 0 and c22 < 0. In what follows, it
will be convenient to express �1 in terms of the ratio of its diagonal entries, ρ = c11/c22,
and the quantity xo = ln[−c22/(2 sin ϕ)]/(2 sin ϕ) (which amounts to expressing c22 as
c22 = −2e2xo sin ϕ sin ϕ). That is,

�1 = −2e2xo sin ϕ sin ϕ

(
ρ −√

ρ

−√
ρ 1

)
. (68)

The reason why the above parametrization is convenient is that the shape of the solution is
controlled only by ρ, whereas xo corresponds to an overall translation of the solution. Indeed,
the above parametrization yields

Q(x, t) = I − 2i sin ϕ
e−iϕ

e2χ + (1 + ρ)

(
ρ −√

ρ

−√
ρ 1

)
, (69)

where χ(x, t) = −iθ(x, t, z1) − xo sin ϕ. Explicitly,

χ(x, t) = sin ϕ (x − xo + 2t cos ϕ) . (70)

The canonical form (69) of the ferromagnetic one-soliton solutions allows one to characterize
their physical properties, as we show next. Specifically, one can show that |Q12(x, t)| does
not admit minima or maxima, while exactly one between |Q11(x, t)| and |Q22(x, t)| has a
minimum for any choice of ρ �= 1. (Note, however, that these properties do not extend to
solitons in non-canonical form.) More precisely, |Q11(x, t)| has a minimum when ρ > 1,
while |Q22(x, t)| has a minimum when ρ < 1. Moreover, the minimum in either case is
located on the line χ(x, t) = 1

2 ln |1 − ρ|, i.e.:

(x − xo) sin ϕ + t sin(2ϕ) = 1

2
ln |1 − ρ| , (71)

Note that Eq. (70) gives v = −2 cos ϕ = −2 Re(z1) for the soliton velocity.
Finally, the depth of the minimum in both cases is given by:

1 − |Q j j,min(x, t)| = 1 − | cos ϕ| , j = 1, 2 . (72)

Importantly, note that the depth of the minimum is independent of the norming constant C1.
On the other hand, the “soliton center”, i.e., the location of the minimum (as well as and
the information about the component of Q(x, t) which exhibits the minimum, if it exists),
depends on the diagonal entries of the norming constant.

Figure 1 shows the profile of ferromagnetic one-soliton solutions in canonical form for
which: only |Q11(x, t)| has a minimum (ρ > 1); only |Q22(x, t)| has a minimum (ρ < 1);
none of the components of Q(x, t) has a minimum (ρ = 1). For comparison purposes,
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Fig. 2 shows examples of different max/min patterns in ferromagnetic one-soliton solutions
in non-canonical form, corresponding respectively to selected pairs of asymptotic matrices
and norming constants. We want to point out that solutions in non-canonical form (i.e.,
Q+ �= I2) have different max/min patterns. Just to provide some representative examples
of the phenomenology that can arise, in Fig. 2 we use the following choices of boundary
conditions and norming constants:

Q+ = 1

5

(
1 + 4eiπ/3 −2 + 2eiπ/3

−2 + 2eiπ/3 4 + eiπ/3

)
, C1 =

(−√
3 − 3i 2

√
3 + 6i

2
√

3 + 6i −4
√

3 − 12i

)
,

Q+ = 2eiπ/4
(

0 1
1 0

)
, C1 =

( −1 −eiπ/4

−eiπ/4 −i

)
,

Q+ = 1

13

(
9 + 4eiπ/3 6 − 6eiπ/3

6 − 6eiπ/3 4 + 9eiπ/3

)
, C1 = 4

507

( −80
√

3 − 11i 2(86
√

3 + 57i)
2(86

√
3 + 57i) −4(28

√
3 + 37i)

)
,

(73)

However, one can always reduce the solution to canonical form and characterize the solution
in that simpler form, as discussed above. Note that in all the above cases Q+C1 is not a
symmetric matrix.

A key observation is that these ferromagnetic solitary waves arise in the form of domain
walls between the ±1 components and the 0-component. These domain walls “harbor” a
structure reminiscent of a dark soliton in one (Fig. 1) or more (Fig. 2) of the components. For
completeness, in Fig. 3 we show the particle number (this involves the physical particle density
subtracted from that of the background per Eq. (10)) and spin densities for a ferromagnetic
one-soliton solution, illustrating that all of them have a single-hump shape.

3.3 Polar states

We now consider one-soliton solutions with det �1 �= 0, i.e., whose associated norming
constant C1 is full rank, which gives rise to a polar state. In this case, simplifying (53) we
obtain:

Q(x, t) = (e2(2iθ(x,t,z1)+�−iϕ) det(�1) − e2iθ(x,t,z1)+� tr(�1) + 1)κ2
o Q+ + iei(2θ(x,t,z1)−ϕ)�1 Q+

κ2
o (e2(2iθ(x,t,z1)+�) det(�1) − e2iθ(x,t,z1)+� tr(�1) + 1)

(74)

where e−� = 2κ2
o sin ϕ, z1 = κo eiϕ with ϕ ∈ (0, π). When x → −∞ we have

Q− = e−2iϕ Q+ , (75)

showing that for polar solitons the asymptotic states Q+ and Q− always coincide up to an
overall phase factor, determined by the phase of the discrete eigenvalue.

Choosing Q+ = I2 and κo = 1, (74) gives the canonical form of the polar state as

Q(x, t) = (e2(2iθ(x,t,z1)+�−iϕ) det �1 − e2iθ(x,t,z1)+� tr �1 + 1)I2 + iei(2θ(x,t,z1)−ϕ)�1

e2(2iθ(x,t,z1)+�) det �1 − e2iθ(x,t,z1)+� tr �1 + 1
.

(76)

Note that this solution is regular for any real, symmetric matrix �1 = (ci j ) with tr �1 < 0
and det �1 > 0. For future convenience, let us express �1 in terms of ρ1 = c11/c22,

123



 1126 Page 18 of 33 Eur. Phys. J. Plus        (2021) 136:1126 

Fig. 1 One-soliton solution profiles for ferromagnetic states in canonical form generated by a discrete eigen-
value z1 = e0.927i . From left to right: ρ = 4, ρ = 1 and ρ = 4/9. In each plot, the three components |Q11|
(black solid line), |Q12| (red dot-dashed line) and |Q22| (blue dotted line) are shown

Fig. 2 One-soliton solution profiles for ferromagnetic states in non-canonical form, corresponding respec-
tively to each of the three pairs of asymptotic matrices Q+ and norming constants C1 in (73), as well as,
respectively, z1 = eiπ/3 (left), z1 = 2i (center) and z1 = i (right). As in Fig. 1, in each case the black solid
line, red dot-dashed line and blue dotted line correspond respectively to |Q11|, |Q12| and |Q22|

Fig. 3 Particle density n̄ (top row) and spin densities (bottom row) corresponding to a ferromagnetic one-
soliton solution generated by a discrete eigenvalue z1 = e0.927i . Left column: ρ = 4, middle column: ρ = 1,
right column: ρ = 4/9. In the bottom row, the black solid lines and the red dashed lines show respectively the
spin density components f1 and f−1 (dashed line). (Note that f0 is zero everywhere).

ρ2 = c12/c22 and the quantity xo = ln[−c22 sin ϕ/(c11c22 − c2
12)]/(2 sin ϕ) as

�1 = −e2xo sin ϕ(c11c22 − c2
12)

sin ϕ

(
ρ1 ρ2

ρ2 1

)
. (77)

Next, we characterize the physical properties of polar states in canonical form, but with
�1 non-diagonal. Unlike the ferromagnetic case, from (76) one can see that for any choice of
z1 and �1, |Q11(x, t)|, |Q22(x, t)| both have a minimum, and the minimum of |Q11(x, t)|
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Fig. 4 One-soliton solution profiles for polar states in canonical form with ϕ = 0.927. ρ1 = 4, ρ2 = −1.94
(left); ρ1 = 4, ρ2 = −1/2 (middle); ρ1 = 3/8, ρ2 = −1/2 (right). For each case, the components shown
are |Q11| (black solid line), |Q12| (red dot-dashed line), |Q22| (blue dotted line)

Fig. 5 One-soliton solution profiles for polar states in non-canonical form, corresponding respectively to each
of the three pair of asymptotic matrices Q+ and norming constants C1 in (81), as well as, respectively, z1 = i
(left), z1 = eiπ/4 (center) and z1 = eiπ/6 (right). For each case, the black solid line, red dot-dashed line and
blue dotted line correspond respectively to |Q11|, |Q12| and |Q22|

(+) or |Q22(x, t)| (-) is located on the line

(x + x0) sin ϕ + sin(2ϕ) t = −1

2
ln

[
± (ρ1 − 1) +

√
(1 + ρ1)2 − 4ρ2

2

]
. (78)

Moreover, |Q12(x, t)| reaches a maximum when c12 �= 0, and the maximum is located on
the line

(x − x0) sin ϕ + sin(2ϕ) t = −1

2
ln

[
± (ρ1 − 1)(ρ1 − ρ2

2 )3/2
]
, (79)

with height

|Q12,max(x, t)| = 2|ρ2| sin ϕ

ρ1 + 1 + 2
√

ρ1 − ρ2
2

. (80)

Note that Eq. (79) implies the velocity of the polar one-soliton is v = −2 cos ϕ = −2 Re(z1),
where the velocity reaches its max and min when ϕ = π and ϕ = 0, respectively. Figure 4
shows the profile of polar one-soliton solutions in canonical form and, for comparison pur-
poses, Fig. 5 shows examples of polar one-soliton solutions in non-canonical form, corre-
sponding respectively to selected pairs of asymptotic matrices and norming constants. In
particular, the following pairs were chosen in Fig. 5 to show the significant difference of
min/max patterns:

Q+ = 1

5

(
1 + 4eiπ/3 2 − 2eiπ/3

2 − 2eiπ/3 4 + eiπ/3

)
, C1 = 1

30

(−4
√

3 − 10i 2
√

3 − 10i
2
√

3 − 10i −√
3 − 25i

)
,

Q+ = eiπ/6
(

0 1
1 0

)
, C1 = eiπ/12

(
7/10 −π/4
−π/4 7/10

)
,
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Fig. 6 Particle density n̄ (top row) and spin densities (bottom row) for polar state with ϕ = 0.927. Left
column: ρ1 = 4, ρ2 = −1.94, middle column:ρ1 = 4, ρ2 = −1/2, right column: ρ1 = 3/8, ρ2 = −1/2.
Spin density components f1 (solid line), f−1 (dashed line), f0 is zero everywhere

Q+ = 1

5

(
4 3
3 −4

)
, C1 = i

5
√

3

(
8
√

3 + 35
√

3 e2iπ/3 −14
√

3 + 10i
−14

√
3 + 10i −8

√
3 − 5

√
3 e2iπ/3

)
. (81)

One can show that Q+C1 is not symmetric in all of the above cases. The relevant patterns
in this setting are far more reminiscent of the dark– or dark–bright solitonic generalizations
that have been identified in the spinorial setting [37,40,42,55], however here, too, there
are differences. In particular, the dark solitons on the ±1 components are not necessarily
collocated (in terms of their density extrema); in addition they may contain “anti-dark”
patterns that may exceed the asymptotic density of the respective species.

However, one can always use canonical form to characterize the solution in non-canonical
form, as discussed above. The particle number with spin densities for polar soliton solutions
are plotted in Fig. 6 as functions of χ := 2iθ(x, t, z1).

4 Soliton interactions

In this section we will discuss the soliton interaction in detail by computing the long-time
asymptotics of the two-soliton solutions, i.e., the solutions obtained from the general expres-
sion (51) with J = 2.

4.1 General set up

The canonical form of a two-soliton solution is given by (44) with J = 2, κo = 1 and
Q+ = I2, namely

Q(x, t) = I2 + i
2∑

j=1

e−2iθ(x,t,z∗
j ) N̄up(x, t, z∗

j )C̄ j , (82a)

where

N̄up(x, t, z∗
n) = I2 − i

2∑
j=1

e2iθ(x,t,z j )C j

z j (z∗
n − z j )

+
2∑

j=1

2∑
l=1

e2i(θ(x,t,z j )−θ(x,t,z∗
l ))

(z∗
n − z j )(z j − z∗

l )
N̄up(x, t, z∗

l )C̄lC j ,

(82b)
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with

Cn=�n eiφn , zn=eiφn , n = 1, 2, φn ∈ (0, π), �1 = (ci j ), �2 = (di j ) , i, j ∈ {1, 2}.
For the rest of the paper, we denote the discrete eigenvalues as follows:

z j = ζ j + iη j , η j > 0, for j = 1, 2, ζ1 > ζ2 .

The assumption ζ1 > ζ2 is obviously without loss of generality, and since the velocities of
the solitons are v j = −2ζ j for j = 1, 2, it corresponds to labeling as soliton 1 the slowest
soliton. Now let χ j = x + 2 ζ j t for j = 1, 2 denote the direction of each soliton. Note that
χ2 = χ1 + 2(ζ2 − ζ1)t . Since z1, z2 ∈ C+

0 , we have ζ j = k j and iη j = λ j for j = 1, 2.
Recalling (15c) we have

e2iθ(x,t,z1) = e−2η1 χ1 = e−2η1 χ2 e4η1(ζ2−ζ1)t , (83a)

e2iθ(x,t,z2) = e−2η2 χ2 = e−2η2 χ1 e4η2(ζ1−ζ2)t . (83b)

Next, we compute the long-time asymptotics as t → ±∞ along the direction of each soliton,
i.e., keeping χ j fixed, first for j = 1 and then for j = 2. When the direction χ1 is fixed,
using (83b) we have

e2iθ(x,t,z2) =
{

0 , t → −∞ ,

∞ , t → ∞ .
(84a)

Conversely, when χ2 is fixed, using (83a)

e2iθ(x,t,z1) =
{

∞ , t → −∞ ,

0 , t → ∞ .
(84b)

After rewriting Eq. (82) in terms of χ1 and χ2, we compute the leading order behavior
as t → ±∞. Using this idea we will analyze the two-soliton solution for the polar–polar,
ferromagnetic–ferromagnetic and polar–ferromagnetic cases in following sections. For future
convenience, before going into the detail of the soliton interactions, we introduce the follow-
ing notations (cf Fig. 7):

∀(x, t) ∈ I : Q(x, t) = Q+ + o(1), x → ∞ , (85a)

∀(x, t) ∈ II : Q(x, t) = Q− + o(1), x → −∞ , (85b)

∀(x, t) ∈ III : Q(x, t) = QIII + o(1), t → ∞ , (85c)

∀(x, t) ∈ IV : Q(x, t) = QIV + o(1), t → −∞ . (85d)

Also, from now on we will use subscripts ± to denote limits as x → ±∞, and superscripts
± to denote limits as t → ±∞.

4.2 Polar–polar soliton interaction

We start by considering the interaction between two polar solitons since, as we shall see,
their interaction is trivial and the computation is straightforward. In this case, we assume
both det C1 �= 0 and det C2 �= 0. The long-time asymptotic expansion of the two-soliton
solution as t → −∞ with χ1 = x + 2ζ1t fixed gives:

Q(x, t) ∼ (e2(−2η1χ1+�1−iϕ1) det �−
1,eff − e−2η1χ1+�1 tr �−

1,eff + 1)I2 + ie−2η1χ1−iϕ1�−
1,eff

e2(−2η1χ1+�1) det �−
1,eff − e−2η1χ1+�1 tr �−

1,eff + 1
,

123



 1126 Page 22 of 33 Eur. Phys. J. Plus        (2021) 136:1126 

Fig. 7 Schematic diagram of a
two-soliton interaction showing
the solitons s1 and s2, the
interaction region, and the
fundamental domains I, . . . , IV
for the analysis in the text

Fig. 8 Plot of a polar–polar soliton interaction. The soliton parameters are as follows: c11 = −8, c12 =
3, c22 = −2 for the norming constant C1, d11 = −9, d12 = 5, d22 = −4, for the entries of the norming
constant C2. Also, κo = 1, and φ1 = π/3, φ2 = 5π/6 are the phases of the corresponding discrete eigenvalues

(86)

where e−�1 = 2 sin ϕ1 and �−
1,eff = �1. On the other hand, the limit as t → ∞ with

χ1 = x + 2ζ1t fixed yields

Q(x, t) ∼ e−2iϕ2
(e2(−2η1χ1+�1−iϕ1) det �+

1,eff − e−2η1χ1+�1 tr �+
1,eff + 1)I2 + ie−2η1χ1−iϕ1�+

1,eff

e2(−2η1χ1+�1) det �+
1,eff − e−2η1χ1+�1 tr �+

1,eff + 1

(87)

where

�+
1,eff = (z1 − z2)(z∗

2 − z∗
1)

(z∗
1 − z2)(z∗

2 − z1)
�1 =

∣∣∣ z1 − z2

z∗
1 − z2

∣∣∣2
�−

1,eff (88)

and e−�1 = 2 sin ϕ1 as before. Figure 8 gives the 2 polar soliton interaction for a specific
choice of the soliton parameters, while Fig. 11 in Appendix A.2 shows the differences between
the solution and the long-time asymptotics in each direction derived above. Hereafter, �±

i,eff
denote the polarization matrix along the direction of soliton i for i = 1 or 2, as t → −∞
(−) and t → ∞ (+). It can be easily seen that the same result holds along the direction
of the second soliton. Specifically, the long-time asymptotic behavior can be obtained from
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(86) and (87) by switching the indices 1 and 2, and the limits t → ±∞, yielding

�−
2,eff =

∣∣∣ z1 − z2

z∗
1 − z2

∣∣∣2
�+

2,eff . (89)

The above asymptotics show that the interaction of polar solitons is always trivial, since the
polarization matrices of each soliton are affected by the interaction only by an overall phase
factor. Indeed, these results for each component are somewhat reminiscent of the unscathed
interaction of 2-component dark-bright Manakov solitons.

4.3 Ferromagnetic–ferromagnetic soliton interaction

Next, we consider the interaction between two ferromagnetic solitons. In this case, we assume
both det C1 = 0 and det C2 = 0, and we consider a solution in canonical form, i.e., with
Q+ = I2. The long-time asymptotic expansion of the two-soliton solution as t → −∞ with
χ1 = x + 2ζ1t fixed gives:

Q(x, t) ∼ I2 + 2i sin ϕ1 e−iϕ1

2 sin ϕ1 e2iη1χ1 − tr �−
1,eff

�−
1,eff , (90)

where �−
1,eff = �1. On the other hand, the limit as t → +∞ with χ1 = x +2ζ1t fixed yields

Q(x, t) ∼ Q+
1 + 2i sin ϕ1 e−iϕ1

2 sin ϕ1 e2iη1χ1 − tr(�+
1,eff)

�+
1,eff Q+

1 (91a)

where

Q+
1 = I2 − 2i sin ϕ2e−iϕ2

tr(�2
2)

�2
2 , (91b)

�+
1,eff = (z∗

1 − z1)

z2 tr(�2
2)

√
m tr(�2

2)

{ z1(z∗
2 − z2)

(z∗
1 − z2)(z∗

2 − z1)

[ 2 tr(�2
1�

2
2)

(z∗
1 − z1)(z∗

2 − z2)
− tr2(�1�2)

(z∗
1 − z2)(z∗

2 − z1)

]
�2

2

− tr(�2
2)

[
(z2 B1 + z1 B2)�1 + z2 B3 �2 + z1 �2�

2
1�2

(z∗
1 − z1)(z∗

1 − z2)(z∗
2 − z1)

]}
(Q+

1 )†, (91c)

m = tr2(�1�2)

|z∗
1 − z2|4 + tr(�2

1) tr(�2
2)

16 sin2 ϕ1 sin2 ϕ2
− 2 tr(�2

1�
2
2)

4 |z∗
1 − z2|2 sin ϕ1 sin ϕ2

, (91d)

B1 = �1

(z∗
2 − z2)

( �2
2

(z∗
2 − z1)(z∗

1 − z2)
− tr(�2

2)I2

(z∗
1 − z1)(z∗

2 − z2)

)
, (91e)

B2 = �2

(z∗
2 − z1)

( �2�1

(z∗
1 − z1)(z∗

2 − z2)
− tr(�2�1)I2

(z∗
1 − z2)(z∗

2 − z1)

)
, (91f)

B3 = �1

(z∗
1 − z2)

( �1�2

(z∗
1 − z1)(z∗

2 − z2)
− tr(�1�2)I2

(z∗
2 − z1)(z∗

1 − z2)

)
. (91g)

For soliton 2, the above expressions hold, as before, with indices 1 and 2 switched,
and with the limits t → ±∞ also interchanged. The above asymptotics show that the
interaction of ferromagnetic solitons is nontrivial, as generically the polarization matrices of
the solitons change due to the interaction according to (91), which result in a redistribution
of energy among the spin components of each soliton. Indeed, the domain wall character
of the ferromagnetic solitons plays a central role in this interaction. Note that this is true
even if for one of the solitons one assumes the associated norming constant is diagonal (say,
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Fig. 9 Plot of a ferromagnetic–ferromagnetic soliton interaction. The soliton parameters are: c11 =
−8, c12 = 4, c22 = −2 for the norming constant C1, and d11 = −9, d12 = 6, d22 = −4 for the entries
of the norming constant C2. Also, κo = 1, and φ1 = π/6, φ2 = π − π/3 are the phases of the two discrete
eigenvalues

either �1 or �2 is diagonal), and the corresponding solution in one of the directions is
simply a dark soliton as given by (61). Figure 9 gives the 2 ferromagnetic soliton solution
for a specific choice of the soliton parameters, while Fig. 12 in Appendix A.2 shows the
differences between the solution and the long-time asymptotics in each direction derived
above.

As a special case, assume now both �1 and �2 are diagonal. Note that there are two
possible choices for �1 and �2. First, consider the case when �1 = diag(γ1, 0) and �2 =
diag(0, δ−1) with γ1 < 0 and δ−1 < 0. Note that in this case �1�2 vanishes identically.
Then the asymptotic expansion of the two-soliton solutions as t → −∞, namely (90), gives

Q(x, t) ∼ diag(qdark,1−(x, t), 1) (92)

where diag(qdark,1−(x, t), 1) is as defined in (57), with soliton center x1,− given by
e−2x1,− sin ϕ1 = −2 sin ϕ1/γ1. Also, when t → ∞ (91) simplifies to

Q(x, t) ∼ diag(qdark,1+(x, t), e−2iϕ2) , (93)

where

qdark,1+(x, t) = e−iϕ1{cos ϕ1 + i sin ϕ1 tanh[sin ϕ1(x − x1,+ + 2t cos ϕ1)]} (94)

with x1,+ such that e−2x1,+ sin ϕ1 = −2 sin ϕ2/γ1. The asymptotic expansion of the two-
soliton solutions along the direction of the second soliton can be obtained by switching the
indices 1 and 2, and interchanging the diagonal elements of Q(x, t), with γ1 replaced by δ−1.

Now suppose �2 = diag(δ1, 0) with δ1 < 0 and �1 = diag(γ1, 0) as before. In this
case, the asymptotic expansion when t → −∞ (90) remains the same as in (92), but the
asymptotic expansion along the soliton 1 direction when t → ∞, Eq. (91), yields

Q(x, t) ∼ diag(e−2iϕ2 qdark,1+(x, t), 1) , (95)

where

qdark,1+(x, t) = e−iϕ1{cos ϕ1 + i sin ϕ1 tanh[sin ϕ1(x − x1,+ + 2t cos ϕ1)]} (96)

with x1,+ such that

e−2x1,+ sin ϕ1 = −2 sin ϕ2/(γ1 ω) , ω = |z1 − z2|4
|(z1 − z2)(z∗

1 − z2)|2 + 2|z∗
1 − z2|4 > 0 (97)

To obtain the asymptotic expansion along the direction of the second soliton, one has to
replace γ1 by δ1 in addition to switching the indices 1 and 2.
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4.4 Polar–ferromagnetic soliton interaction

Finally, we discuss the interaction between a polar and a ferromagnetic soliton, i.e., we take
the two norming constants C1, C2 such that det C1 �= 0 and det C2 = 0. As t → −∞ and
when the direction χ1 is fixed, the asymptotic expansion is given by equation (86). The long
time asymptotic expansion of the two-soliton solution after a polar–ferromagnetic interaction
when the direction χ1 is fixed and as t → ∞ is given by

Q(x, t) ∼ (e2(−2η1χ1+�1−iϕ1) det(�+
1,eff) − e−2η1χ1+�1 tr(�+

1,eff) + 1)Q+
1 + ie−2η1χ1−iϕ1�+

1,eff Q+
1

e2(−2η1χ1+�1) det(�+
1,eff) − e−2η1χ1+�1 tr(�+

1,eff) + 1
,

(98a)

where e−�1 = 2 sin ϕ1 with

Q+
1 = I2 + (z∗

2 − z2)

z2 tr(�2
2)

�2
2 , (98b)

�+
1,eff = (z∗

2 − z2)
2

tr(�2
2)

[(
tr(�2

2)I2 − (z∗
2 − z2)

(z∗
1 − z2)

�2
2

) �1

(z∗
2 − z2)2

+
( tr(�1�2)

(z∗
1 − z2)

I2 − �1�2

(z∗
2 − z2)

) �2

(z∗
1 − z2)

]
(Q+

1 )† . (98c)

In the case of polar–ferromagnetic interactions, the soliton solution is obviously not sym-
metric with respect to the interchange of soliton 1 and 2. Therefore the asymptotic behavior
as t → ±∞ along the direction of second soliton has to be computed independently. In
particular, as t → ∞ and when the direction χ2 is fixed, the asymptotic expansion is

Q(x, t) ∼ I2 + 2i sin ϕ2 e−iϕ2

2 sin ϕ2 e2iη2χ2 − tr �+
2,eff

�+
2,eff (99)

where �+
2,eff = �2. On the other hand, the long-time asymptotic when t → −∞ with χ2

fixed has the form

Q(x, t) ∼ Q−
2 + 2i sin ϕ2 e−iϕ2

2 sin ϕ2 e2iη2χ2 − tr(�−
2,eff)

�−
2,eff Q−

2 , (100a)

where

Q−
2 = e−2iϕ1 I2, (100b)

�−
2,eff = z1(z∗

1 − z2)(z∗
2 − z2)(z∗

1 − z1)
2

(z1 − z2)(z∗
1 − z∗

2) tr(�1�2)

√
tr(�2

2)

×

{
(z1 − z2)

2(z∗
2 − z∗

1) tr(�1�2)

(z∗
1 − z2)2(z∗

1 − z1)(z∗
2 − z2)

(
z2(z∗

2 − z∗
1) tr(�2

2)

(z∗
2 − z1)(z∗

2 − z2)
I2 − �2

2

z1(z∗
1 − z1)

)

−(z∗
2 − z1)(z

∗
1 − z1)

[ z2 tr(�2 N2�2)

(z∗
1 − z2)(z∗

2 − z1)
I2 − z2 tr(�1 N1�2)

4 sin ϕ1 sin ϕ2
I2

+ (z1 − z2)

z1(z∗
2 − z1)(z∗

1 − z2)(z∗
1 − z1)

�2 N2�2

] }
, (100c)

with

N1 = tr(�2
2)

(z∗
1 − z1)(z∗

2 − z2)
I2 − �2

2

(z∗
1 − z2)(z∗

2 − z1)
, (100d)
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Fig. 10 Plot of a polar–ferromagnetic soliton interaction. The soliton parameters are: c11 = −8, c12 =
3, c22 = −2 for C1, d11 = −4, d12 = 6, d22 = −9 for the entries of C2. Also, κo = 1, and φ1 =
π/6, φ2 = π − π/3 are the phases of the two discrete eigenvalues

N2 = tr(�2�1)

(z∗
1 − z2)(z∗

2 − z1)
I2 − �2�1

(z∗
1 − z1)(z∗

2 − z2)
. (100e)

Figure 10 gives a two-soliton solution with one polar and one ferromagnetic soliton, while
Figs. 13 and 14 in Appendix A.2 show the differences between the solution and the long-time
asymptotics in each direction derived above

As a special case, assume both �1 and �2 are diagonal. Suppose �1 = diag(γ1, γ−1)

and �2 = diag(δ1, 0) with γ±1 < 0 and δ1 < 0. Then the asymptotic expansion of the
two-soliton solutions after the interaction along the direction of soliton 1 and as t → ∞,
namely, Eq. (98a), gives

Q(x, t) ∼ diag(e−iϕ2 q+
dark,1(x, t), q+

dark,−1(x, t)) (101)

where q+
dark, j (x, t) = e−iϕ1{cos ϕ1 + i sin ϕ1 tanh[sin ϕ1(x − x j + 2t cos ϕ1)]} with x j such

that

e−2x j sin ϕ1 = −2 sin ϕ1/(γ jω j ) j = 1,−1

ω−1 = 1 , ω1 =
(
(z1 − z∗

2 + z∗
1 − z2)/|z∗

1 − z2|2
)2

> 0 .

In a similar way one can simplify the asymptotic expansions along the direction of the second
soliton. First, the asymptotic behavior as t → ∞ when the direction χ2 is fixed simplifies to

Q(x, t) ∼ diag(q+
dark,2+(x, t), 1) (102)

where q+
dark,2+(x, t) = e−iϕ2{cos ϕ2 + i sin ϕ2 tanh[sin ϕ2(x − x2,+ + 2t cos ϕ2)]} with x2,+

such that e−2x2,+ sin ϕ2 = −2 sin ϕ2/δ1. On the other hand, the asymptotic expansion when
t → −∞, Eq. (100) reduces to

Q(x, t) ∼ diag(e−2iϕ1 q−
dark,2−(x, t), 1) , (103)

where q−
dark,2−(x, t) = e−iϕ2{cos ϕ2 + i sin ϕ2 tanh[sin ϕ2(x − x2− + 2t cos ϕ2)]} with x2,−

such that e−2x2,− sin ϕ2 = −2 sin ϕ2/δ1ω with ω = (|z1 − z2|/|z∗
1 − z2|)2 > 0. Indeed, in

this case too, we observe that the dynamics leads to nontrivial changes in the profiles of the
relevant waveforms. While the domain wall of the ferromagnetic soliton seems to maintain
its profile, the dark–bright pattern of the polar soliton seems to change to a dark–antidark
one [56]. That is, it contains a bright structure on top of a nonzero background.
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5 Concluding remarks

In the present work we have revisited the defocusing version of the integrable spinor model
initiated by the work of [17,18]. We have highlighted the relevance as well as the differ-
ences of the present model from the 3-component coupled NLS system, in which solely
density-dependent (i.e., spin–independent) interactions are accounted for. Indeed, this oppo-
site yet still integrable limit involves the case of equal spin–dependent and spin–independent
interactions. The recent experimental manipulation [42] of the spin–dependent interactions
to achieve the Manakov model holds some promise towards varying the relevant ratio of
interactions. Perhaps even more importantly, the availability of gases such as the strongly
ferromagnetic F = 1 7Li [57] creates a platform where the spin–dependent part of the inter-
action is nearly half that of the spin–independent one. In light of this, it becomes progressively
relevant to explore analytically tractable mathematical limits that may yield novel waveforms
that may emerge as being relevant for potential observation in experiments.

It is in this vein that the present work has explored the possible waveforms in the defo-
cusing variant of the MNLS equation. We have leveraged the earlier integrable formulation
of [46] to identify the prototypical soliton solutions which we classified into two major cate-
gories. Polar solitons correspond to waveforms reminiscent of dark– and dark–bright solitons,
although with some key distinguishing features regarding the location of their centers or their
potential to elevate above their asymptotic background. On the other hand, the ferromagnetic
waveforms presented structures that had a fundamentally distinct pattern involving domain
walls asymptoting to different background values between x → −∞ and x → ∞. Going
beyond the single soliton states, we explored also multi-soliton collisions. These were more
straightforward in preserving the nature of the waveforms when same types of solitons (e.g.
polar–polar or ferromagnetic–ferromagnetic) collided. Yet, the scenario was clearly richer
and could involve an apparent change of the density distribution of the profile when a polar
and a ferromagnetic soliton might collide.

There results are a clear basis for numerous further studies at the level of numerical
computation and theoretical analysis and are even suggestive of novel physical experiments.
It would be especially relevant to continue parametrically the solutions identified herein to
explore their range of persistence as the spin–dependent interaction is varied. If these states
could be continued even down to a ratio of 1/2, the recent experiments of [57] might enable
their observation. Another relevant possibility might be to compare these waveforms with the
magnetic waves recently explored for 3-component spinor systems in [44,45]. A comparison
of the latter with dark–bright waves in two-component systems has recently taken place in
[58]. An additional direction of interest concerns the generalization of the patterns considered
herein in higher-dimensional systems. While identifying integrable generalizations in the
higher-dimensional realm would be a major challenge in its own right, it is certainly plausible
that vortical (i.e., topologically charged) generalizations of the states presented herein may
exist in the two-dimensional analogue of the present system. Considering such domain-wall
and vortex-bright soliton structures is a numerical and experimental challenge in its own
right.

Acknowledgements This material is based upon work supported by the US National Science Foundation
under Grants No. DMS-2106488 (BP), DMS-2009487 (GB), PHY-1602994 and DMS-1809074 (PGK).
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Appendix

A.1 Unitary transformations, symmetric matrices and rotation of the quantization axes

Recall that the matrix NLS equation (3) is invariant under unitary transformations from the
left or from the right. That is, if Q(x, t) solves (3), so does

Q̃(x, t) = U Q(x, t)V , (A.1)

for all constant U and V such that U † = U−1 and V † = V −1. On the other hand, in
order for Q̃(x, t) to also represent a spinor wave function, the transformation (A.1) must
preserve matrix symmetry. That is, one must have Q̃T(x, t) = Q̃(x, t) whenever QT(x, t) =
Q(x, t). In this appendix we characterize the set of unitary transformations that preserve the
symmetry constraint. We also show that all such transformations correspond to a rotation of
the quantization axes.

We begin by representing arbitrary unitary matrices U and V without loss of generality
in terms of the Pauli matrices as

U = exp[iu0 I2 + iu · σ ] = eiu0

(
cos u + i û3 sin u i(û1 − i û2) sin u
i(û1 + i û2) sin u cos u − i û3 sin u

)
, (A.2a)

V = exp[iv0 I2 + iv · σ ] = eiv0

(
cos v + i v̂3 sin v i(v̂1 − i v̂2) sin v

i(v̂1 + i v̂2) sin v cos v − i v̂3 sin v

)
, (A.2b)

where σ = (σ1, σ2, σ3)
T is the vector of Pauli matrices, here chosen as

σ1 =
(

0 1
1 0

)
, σ1 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)
, (A.3)

where u0, v0,u = (u1, u2, u3)
T and v = (v1, v2, v3)

T are all real, with û = u/u and v̂ = v/v,
and where

u = √
u · u =

√
u2

1 + u2
2 + u2

3 , v = √
v · v =

√
v2

1 + v2
2 + v2

3 . (A.4)

Since u0 and v0 just produce overall phase rotations, without loss of generality we can set
u0 = v0 = 0 owing to the phase invariance of the MNLS equation. Without loss of generality,
we can also take u and v in [0, 2π ].

Inserting (A.2) in (A.1) and requiring the equality of the off-diagonal entries of Q̃(x, t)
then yields the following three real constraints:

[(û2v̂3 + û3v̂2) sin u + v̂1 cos u] sin v − û1 sin u cos v = 0 , (A.5a)

[(û1v̂3 − û3v̂1) sin u + v̂2 cos u] sin v + û2 sin u cos v = 0 , (A.5b)

[(û1v̂2 + û2v̂1) sin u − v̂3 cos u] sin v + û3 sin u cos v = 0 . (A.5c)

It is relatively straightforward to see that (A.5) are solved by

(v̂1, v̂2, v̂3) tan v = (û1,−û2, û3) tan u . (A.6)

In turn, (A.6) implies that (A.5) admit the following inequivalent classes of solutions, obtained
respectively when v = u and v = 2π − u:

S+ : (v̂1, v̂2, v̂3) = (û1,−û2, û3) , S− : (v̂1, v̂2, v̂3) = (−û1, û2,−û3) . (A.7)

One can now check that S+ implies V = U T while S− implies V = −U T. Since an overall
minus sign can always be rescaled using the phase invariance of the MNLS equation, however,
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without loss of generality we can limit ourselves to considering only those transformations
produced by S+.

Next we show that the unitary transformation (A.1) is equivalent to a complex rotation
of the quantization axes. Let q(x, t) = (q1,

√
2 q0, q−1)

T be the vector wave functions
associated with Q(x, t), and let q̃(x, t) = (q̃1,

√
2 q̃0, q̃−1)

T be the one associated with
Q̃(x, t). Observe that a sign change of Q(x, t) obviously translates into a sign change in
q(x, t) and recall that, in the quantum-mechanical context, an overall phase of the wave
function is immaterial. Therefore, we can again limit ourselves to considering transformations
produced by S+. It is straightforward to show that

q̃(x, t) = R q(x, t) , (A.8a)

where

R =
⎛
⎝ c2+

√
2i(û1 − i û2)c+ sin u −(û1 − i û2)

2 sin2 u√
2i(û1 + i û2)c+ sin u cos2 u − (1 − 2û2

3) sin2 u
√

2i(û1 − i û2)c− sin u
−(û1 + i û2)

2 sin2 u
√

2i(û1 + i û2)c− sin u c2−

⎞
⎠ ,

(A.8b)

and where for brevity we defined

c± = cos u ± i û3 sin u . (A.8c)

It is also straightforward to check that R is a unitary matrix, i.e., R R† = R† R = I3, and that
det R = 1, implying R ∈ SU(3). Finally, it is also important to realize that R corresponds to
a rotation of the quantization axes. Consider again the transformation (A.1) with V = U T,
and again let u0 = 0 without loss of generality. It is straightforward to show that

R = e2iu·f , (A.9)

where f = ( f1, f2, f3)
T, and f1, f2, f3 are representation of the angular momentum opera-

tors in SU(3), namely:

f1 = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , f2 = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠ , f3 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ (A.10)

In closing, we also point out that the above relations are purely local symmetries, and are
therefore completely independent of the boundary conditions satisfied by Q(x, t) as x →
±∞.

A.2 Asymptotics of two-soliton interactions

In this appendix we present a collection of figures to corroborate the asymptotics analysis of
the two-soliton solutions discussed in Sect. 4. Figures 11, 12 and 13 display the difference
between the exact two-soliton solution obtained from (51) with J = 2 and the asymptotic
expressions, presented in Sect. 4, computed along the direction of soliton 1 as t → −∞
(top row of each figure) and as t → ∞ (bottom row). Specifically, Fig. 11 shows the case of
a polar–polar two-soliton interaction, Fig. 12 that of a ferromagnetic–ferromagnetic soliton
interaction, and Fig. 13 that of a polar–ferromagnetic interaction. For completeness, Fig. 14
also shows the same polar–ferromagnetic interaction but where the asymptotic behavior being
subtracted is along the direction of soliton 2, since in this case the two solitons are of different
type. The fact that the soliton leg vanishes in the appropriate limit in each case serves as a

123



 1126 Page 30 of 33 Eur. Phys. J. Plus        (2021) 136:1126 

(a) (b) (c)

(d) (e) (f)

Fig. 11 Plot of the difference between a polar–polar two-soliton solution and its asymptotic expression along
the direction of soliton 1, presented in Sect. 4.2. Top row: t → −∞. Bottom row: t → ∞. The soliton
parameters are the same as in Fig. 8

(a) (b) (c)

(d) (e) (f)

Fig. 12 Same as Fig. 11, but for a ferromagnetic–ferromagnetic two-soliton solution, whose asymptotics was
presented in Sect. 4.3. The soliton parameters are as in Fig. 9

clear visual demonstration of the fact that the asymptotic expressions do indeed capture the
correct behavior of the soliton in both of these limits, including both the redistribution of
mass among the three spin components as well as the position and phase shift.
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Same as Fig. 11, but for a polar–ferromagnetic two-soliton solution, whose asymptotics was presented
in Sect. 4.4. The soliton parameters are as in Fig. 10

(a) (b) (c)

(d) (e) (f)

Fig. 14 Same as Fig. 13, except that the asymptotic is now calculated along the direction of the ferromagnetic
soliton. The soliton parameters are as in Fig. 10
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