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Abstract We investigate the generation and propagation of solitary waves in the context
of the Hertz chain and Toda lattice, with the aim to highlight the similarities, as well as
differences between these systems. We begin by discussing the kinetic and potential energy
of a solitary wave in these systems and show that under certain circumstances the kinetic and
potential energy profiles in these systems (i.e., their spatial distribution) look reasonably close
to each other. While this and other features, such as the connection between the amplitude
and the total energy of the wave, bear similarities between the two models, there are also
notable differences, such as the width of the wave. We then study the dynamical behavior
of these systems in response to an initial velocity impulse. For the Toda lattice, we do so
by employing the inverse scattering transform, and we obtain analytically the ratio between
the energy of the resulting solitary wave and the energy of the impulse, as a function of the
impulse velocity; we then compare the dynamics of the Toda system to that of the Hertz
system, for which the corresponding quantities are obtained through numerical simulations.
In the latter system, we obtain a universality in the fraction of the energy stored in the resulting
solitary traveling wave irrespectively of the size of the impulse. This fraction turns out to only
depend on the nonlinear exponent. Finally, we investigate the relation between the velocity
of the resulting solitary wave and the velocity of the impulse. In particular, we provide an
alternative proof for the numerical scaling rule of Hertz-type systems.

1 Introduction

The existence of traveling solitary waves (SWs)—namely, localized energy pulses that travel
without dispersing—is a common property of many nonlinear systems, which goes all the
way back to the seminal work of Kortweg and de Vries [1] on the equation that now bears
their name. In the past three decades, a significant focus of interest on such structures and
their connections to numerous physical and engineering applications has emerged in the
context of nonlinear dynamical lattices, i.e., in spatially discrete settings. This can be to a
significant degree attributed to the emergence of the notion of “granular crystals,” through
the experimental as well as theoretical work of Nesterenko and collaborators [2,3] that was
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subsequently expanded by numerous other groups, as summarized, e.g., in [4]. Importantly,
developments have also continued along other veins, including the systematic study of het-
erogeneous lattice settings [5] and the consideration of various other structures including
shock waves and discrete breathers [6,7]. It is thus clear that this remains a booming field.

In the present work we build on this line of ongoing efforts. More concretely, we explore
the one-dimensional lattices of particles with nearest-neighbor interactions. We consider
lattices in which each particle has equal mass (i.e., homogeneous ones), denoted by m. We
denote by yn the displacement of the n-th particle with respect to its equilibrium and by
φ(r) the interaction potential between adjacent particles. The equation of motion for the n-th
particle is then given in this general formulation by

mÿn = φ′(yn+1 − yn) − φ′(yn − yn−1), (1)

where n ∈ Z, the dot denotes temporal derivative and φ′ is the derivative of φ. For such
discrete lattices—also referred to as semi-discrete systems, or coupled oscillator chains—it
is well known that SWs exist in lattices with superquadratic potentials [8,9]. Among lattices
with superquadratic potentials, the Toda lattice [10–14] and Hertz chain [2–7] have been the
subject of intense research over the past several decades, each for different reasons. The Toda
model corresponds to (1) with

φ(rn) = a

b

(
e−brn − 1

)
+ arn, (2)

where a and b are constants, rn = yn+1 − yn is the relative displacement, and the additive
constant was chosen so that φ(0) = 0. In this case, (1) yields

mÿn = a e−b(yn−yn−1) − a e−b(yn+1−yn). (3)

The Hertz model [15], on the other hand, corresponds to (1) with

φ(rn) = c(� − rn)
α, (4)

where c is a constant, and � is the so-called precompression displacement, corresponding
to the case where the chain may be compressed at its ends, inducing a displacement prior to
the initiation of the nonlinear wave patterns. In this case, (1) yields

mÿn = α c[(� − (yn − yn−1))
α−1 − (� − (yn+1 − yn))

α−1]. (5)

It is also important to note in the latter case the dual nature of the nonlinearity stemming
from the geometric exponent α of the elastic contact (Hertzian) interaction, as well as the
piecewise definition of the relevant force reflecting the absence of force in the absence of
contact [2].

The Hertz chain is important from a practical point of view [16–20], since it serves as a
model to characterize how the repelling force in the contact area of two bodies is effected
by the compression between them. For much of what will be considered below, we will
limit consideration to the case of spherical contacts associated with α = 5/2 in our above
notation, although some of our results will use α as a parameter motivated by a number of
recent experimental developments enabling a certain tunability of the value of the relevant
exponent [6,7]. Analytical studies of Hertz systems are necessarily limited due to the lack
of complete integrability. This Hertzian system is rendered more difficult to tackle in a
way in the case where the precompression displacement is absent � = 0, since in that
case the system becomes “highly nonlinear” and has no linear limit from which to obtain
perturbative results, e.g., in the spirit of [21]. I.e., in the case with precompression, one
can envision a potential Taylor expansion when � � (yn − yn±1) and the usage of KdV or
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Toda results as a guiding principle for single solitary wave dynamics or multiple solitary wave
interactions [22]. In the case of � = 0, this is no longer the case and to avoid resorting to quasi-
continuum approximations [2,3,23], entirely different suites of mathematical techniques
based on Fourier iterative [24] and variational methods [9] have been developed recently.

It should be clear from the above discussion that on the one hand, this class of systems
is of wide recent physical and engineering interest [2,5–7], yet at the same time there is a
limited set of mathematical tools and techniques in order to address such settings. It is the
aim of the present work to enhance this toolbox by exploring similarities and differences
to one of the most prototypical analytically tractable models in the mathematical physics
of nonlinear discrete systems, namely the Toda lattice. The Toda lattice, as a completely
integrable Hamiltonian system, possesses a rich mathematical structure which enables one
to develop powerful analytical tools to obtain explicit solutions and study their behavior [25–
31].

As mentioned above, both of these systems support the propagation of SWs. This paper
is devoted to characterizing in a systematic fashion the similarities and differences of the
dynamics of SWs in these two models. On the one hand, because of the universal characters
of SWs on nonlinear lattices, the explicit one-soliton solution of the Toda lattice can help to
shed light on some of the properties of SWs in the Hertz chain. On the other hand, these two
models are intrinsically different from each other; therefore, studying the differences among
them can help us to better understand the dynamics in each of these models.

The structure of this paper is the following. In Sect. 2 we begin by discussing the kinetic
energy (KE) and potential energy (PE) of a SW in these two models. We show how the
oscillatory behavior of the KE and PE of a SW arises due to the discrete nature of the lattices,
and we show such behavior can be characterized by elliptic functions. We also show that the
PE and KE profiles of a SW in these systems look reasonably close to each other under certain
circumstances. In Sect. 3 we then discuss the dynamics of these systems under a velocity
impulse, for the Toda system by employing the inverse scattering transform (IST) we obtain
an analytical expression of the ratio, between the energy of the resulting SW and the energy
of the impulse, as a function of the impulse velocity, and we compare such ratio in the Toda
system to numerical results in the Hertz system. Details of various calculations are relegated
to the appendices. In particular, in “Appendix C” we study the relation between the velocity
of the impulse and that of the resulting SW in these systems, and in particular, we provide
an alternative proof of a scaling rule in Hertz-type system by using the virial theorem. We
end this work with some final remarks in Sect. 4.

2 Kinetic and potential energy of a SW

Recall that the KE and PE associated with any given system configuration are given by

KE = 1

2

∑
n∈Z

mẏ2
n , PE =

∑
n∈Z

φ(yn+1 − yn) . (6)

In both the Hertz system and the Toda lattices, the total KE and PE of the system oscillate in
time as the SW propagates through the lattice. This naturally reflects the shift translational
invariance of the lattice and how the traveling wave “reshuffles” itself from a configuration
centered on a lattice site to one centered between two lattice sites and back to the one centered
on the next site, as it traverses the discrete substrate. We next show this oscillatory behavior
due to the discrete nature of the lattice in a quantitative fashion.
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Fig. 1 Left: the displacement profile yn(t = 0) for a SW of the Toda lattice with κ = 1.3606. Right: the
relative displacement profile rn = yn+1 − yn for the SW in the left panel

2.1 SWs in the Toda lattice

Recall that, in both systems, the displacement profile of a SW has a kink shape. In this work,
we use the term “profile” to refer to the spatial distribution of certain physical quantity at
fixed time t . In the Toda lattice, SWs correspond to the pure one-soliton solutions of the
system, for which the displacement is explicitly given by [10]

yn(t) = log
1 + e2κ(n−1−vswt)

1 + e2κ(n−vswt)
+ const, (7)

where the soliton parameter κ > 0 parameterizes the family of one-soliton solutions, and for
simplicity, a, b and m were set to 1. The velocity of the SW is

vsw = −σ(sinh κ)/κ . (8)

The sign σ = ±1 determines the direction of propagation. A plot of the displacement profile
at t = 0 is shown in Fig. 1. The plot also shows the relative displacement of the pulse, defined
as rn = yn − yn−1, which has the form of a pulse. The KE and PE carried by the above SW
of the Toda lattice are given by

KE = sinh2 κ

2

∑
n∈Z

[tanh (κ(n − 1) + σ sinh κ t) − tanh (κn + σ sinh κ t)]2 , (9a)

PE =
∑
n∈Z

[
sinh2 κ sech2 (κn + σ sinh κ t)

] +
∑
n∈Z

(yn+1 − yn), (9b)

respectively. The total energy, i.e., the sum of the KE and PE, is a constant, namely

Etot = 2(sinh κ cosh κ − κ). (10)

(To see this, note that the sum of the two infinite series in (9) can be written as a telescoping
series.)

The discrete nature of lattice induces an oscillatory behavior in the KE and PE. First off,
notice how the pulse alternates between an onsite and an intersite spatial structure in Fig. 2,
as discussed above. Figure 3 shows the temporal oscillations of the PE for a few different
values of the soliton parameter κ . At t = 0, the peak of p(n, t) as a function of n overlaps
with the particle placed at n = 0, as shown in the left panel of Fig. 2. Moreover, the sum
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Fig. 2 Left panel: the function p(n, t) for the Toda lattice as a function of n at t = 0. Right panel: p(n, t) as
a function of n at t = T/2. Note that the peak of p(n, 0) is at n = 0, and PE goes to maximum; right panel:
at t = T/2, the peak of p(n, t) is between n = 0 and n = 1, and PE goes to minimum
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Fig. 3 The PE for a SW in the Toda lattice as a function of time (red solid line) for a few values of the soliton
parameter κ , together with cnoidal fitting function (13) (blue dotted line). One can clearly observe the exact
nature of the analytical result which is perfectly overlapping with the numerical one. Left: κ = 0.6. Right:
κ = 5

in (11) reaches its maximum value as function of time at t = 0. Conversely, at t = 1/(2vsw)

the peak of p(n, t) lies at the midpoint between the particles located at n = 0 and n = 1, as
shown in the right panel of Fig. 2. At this point in time, the sum in (11) reaches its minimum
value. Finally, at t = 1/vsw, the peak of p(n, t) overlaps with the particle at n = 1 and the
sum goes back to its maximum value. Therefore PE and KE oscillate periodically in time,
with period given by T = 1/|vsw|.

Note that the first term in (9b) depends on time, while the second term is constant and
equals −2κ . Therefore, it is convenient to express the PE as

PE(t) = −2κ + sinh2 κ
∑
n∈Z

p(n, t), p(n, t) = sech2(κn + σ sinh κ t). (11)

We now make use of the identity [32]

∞∑
n=−∞

[
sech2

(
π

2K ′
m

(z − 2Kmn)

)]
=

(
2K ′

m

π

)2[(
E ′
m

K ′
m

− m

)
+ m cn2(z;m)

]
, (12)

where cn(·) is one of the Jacobian elliptic functions,m is the elliptic parameter (i.e., the square
of the elliptic modulus), Km = K (m) and Em = E(m) are the complete elliptic integral of
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Fig. 4 Left: same as Fig. 3, but for κ = 10. Right: the elliptic parameter m in (12) as a function of the soliton
parameter κ

the first and second kind, respectively, K ′
m = K (

√
1 − m) and E ′

m = E(
√

1 − m). Thus, the
oscillatory behavior of the PE is characterized by elliptic oscillations. Indeed, comparing (11)
and (12), we obtain the PE as a function of t is given by

PE(t) = PEmin + �PE cn2(�t;m), (13)

where

PEmax = sinh2 κ

(
2K ′

m

π

)2 E ′
m

K ′
m

− 2κ , PEmin = sinh2 κ

(
2K ′

m

π

)2( E ′
m

K ′
m

− m

)
− 2κ ,

(14a)

the oscillation amplitude is

�PE = PEmax − PEmin = sinh2 κ

(
2K ′

m

π

)2

m , (14b)

and the elliptic parameter m is implicitly determined by the relation

κ = πKm/K ′
m . (15)

The value of m as a function of κ is shown in Fig. 4, The oscillation frequency is � =
2Km/(κ/ sinh κ), and the oscillation period is therefore given by T = κ/ sinh κ ≡ 1/vsw.
Note that the PE attains the maximum at t = 0, T, 2T . . . and attains the minimum at
t = T/2, 3T/2 . . . . It is worthwhile to note here that summations of infinite series have been
previously performed in the context of theories bearing SWs (including integrable ones, such
as the so-called Ablowitz–Ladik lattice) in the work of [33]. There, the principal technique
used involves the Poisson summation formula. However, the Poisson summation formula
requires translational invariance, which does not apply to our case.

2.2 SWs in the Hertz system and comparison

No analytical expression is known for the shape of SWs in the Hertz system. Here, we
therefore discuss the similarities and differences between SWs in the Toda system and the
Hertz system.

The displacement profile of SWs in the Hertz system is also kink-shaped, like that in the
Toda system. An expression for the SWs in the Hertz system without precompression (i.e.,
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Fig. 5 Left: red line represents the displacement profile for a SW of the Toda lattice with κ = 1.3606 at
t = 0 and the blue dotted line represents the displacement profile for a SW of the Hertz chain with the same
amplitude when α = 2.5. Right: difference between the two curves in the left panel
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Fig. 6 Left: amplitude of the PE profile for a SW in the Toda system (blue line) and the Hertz system with
α = 2.5 (red line) as a function of energy. Right: width of the PE profile for a SW in the Toda system (blue
line) and the Hertz system (red line) as a function of energy

with � = 0) was given in [34] as

yn(t) = Y (n − vswt) , Y (z) = A

2

{
1 − tanh

[
f (z)

2

]}
, f (z) =

∞∑
q=0

C2q+1z
2q+1,

(16)

where A denotes the SW amplitude, and the constants Cm are obtained numerically via an
iterative algorithm. For α = 2.5, one finds C1 = 2.39536, C3 = 0.268529, C5 = 0.0061347
[34]. It should be noted that this is not the only representation of this approximate kind of the
SW. An alternative one has been offered on the basis of Padé approximations, e.g., in [35].
On the other hand, the exact numerical form (up to a controllable numerical tolerance) of the
SW on the basis of an iterative Fourier technique was identified in [24].

The overall shape of SWs in the two systems is qualitatively very similar, as shown in Fig. 5.
Nonetheless, there are important differences. In the Toda system, SWs with higher energy
are narrower. In contrast, the width of SWs in the Hertz system is independent of the energy
of the SW, as shown in Fig. 6. This is because the coefficients Cm—and therefore f (z)—are
independent of the SW energy. Thus, in this sense, in the Hertz system the shape of SWs
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Fig. 7 Left panel and middle panel: the PE (red curve) of a SW for the Hertz chain with α = 2.5 as a function
of time at E = 4.83 and E = 19.32, respectively. The blue dotted line represents the sinusoidal fitting function.
It can be clearly seen that the relevant fit is excellent. Right panel: the relative difference between the PE and
the sinusoidal fitting function at E = 4.83 (blue line) and E = 4.96 (black line), respectively

is universal and only the amplitude (and speed) scales, while the width remains unchanged.
Moreover, Fig. 6 also shows that the amplitude of the PE profile is linearly proportional to
energy. A direct consequence of (16) is that the PE of SWs in the Hertz system scales like
Aα . Thus, we immediately obtain that the total energy of a SW in the Hertz system also scales
like Aα .

Because of the kink-shaped displacement profile, the KE and PE profiles in the Hertz
system are also bell-shaped, like those in the Toda system. The amplitude and the full width
at half maximum of the PE profile as a function of E for both systems are shown in Fig. 6.
Therefore, just like in the Toda system, the PE and KE of a SW in the Hertz system also
demonstrate oscillatory behavior. In fact, as shown in Fig. 7, such behavior is well character-
ized by sinusoidal functions at all values of energy. (The relative difference between the PE
and the fitting function is given in the right panel of Fig. 7.) Recall that, in the Toda system,
the oscillatory behavior of the PE is instead characterized by an elliptic cn, and the elliptic
parameter m is determined by the soliton parameter κ which is in one-to-one correspondence
with the width of the SW. Also recall that the elliptic cn reduces to a sinusoidal function
when m → 0. Thus, one way to interpret the difference between the oscillatory behavior in
the Toda system and in the Hertz system is to recall that the width of the SW in the Hertz
system is independent of energy, and therefore so is the shape of the temporal oscillations of
the PE.

There is also a significant deviation in the nature of the tails of the different waves which is
partially reflected in Fig. 5. The Toda soliton is exponential in its decay reflecting the linear
“component” of the exponential interaction force between adjacent beads. On the other
hand, the highly nonlinear Hertzian model and hence the associated SW possess no linear
component (for � = 0). Thus, the decay of the wave is doubly exponential and generally
considerably faster in a semilog plot than its Toda counterpart [9,24].

Since the properties of SWs in the Toda system and the Hertz system have a different
dependence on energy, there are several different ways to compare the two systems. So far,
we have identified three possible criteria: matching the SW energy, matching its amplitude
and matching its width. A fourth criterion, however, is related to how a SW in each of these
systems distributes the total energy Etot between the kinetic and potential energy. For this
purpose, it useful to look at the value of PE/Etot , where

PE = 1

T

∫ T

0
PE(t)dt, (17)

denotes the temporal average of the potential energy over a period.
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For the Hertz chain we simply have PE = PEmean, where PEmean = 1
2 (PEmax + PEmin).

This is because the temporal oscillations of the PE in the Hertz chain are sinusoidal. For
the Toda lattice, however, PE only equals PEmean in the limit κ → 0, because the temporal
oscillations only become sinusoidal in that limit. On the other hand, the integral in (17) can
be computed explicitly using (13), to obtain

PE = PEmin + 4 sinh2 κ

π2 K ′2
m

(
Em

Km
− 1 + m

)
(18)

for the Toda lattice.
The virial theorem [36] states that any bounded system with interaction potential φ(r) =

rα satisfies the relation 2KE − αPE = 0. As a result, for the Hertz system without precom-
pression (i.e., with � = 0), one has PE/Etot = 4/9 for all SWs. The virial theorem does
not apply to the Toda lattice, because the interaction potential is not simply a power law. In
that case, instead, PE/Etot decreases monotonically as the soliton parameter κ increases as
shown in Fig. 8. In particular, in “Appendix B” we show that the limiting values of the ratio
are
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lim
κ→0

PE

Etot
= 1

2
, lim

κ→∞
PE

Etot
= 0. (19)

In particular, at κ = 1.3603, one has PE/Etot = 4/9. For this value of κ , a SW in the Toda
system distributes its energy in the same ratio as a SW in the Hertz system. This suggests
that one could use this value of κ to compare SWs in the two systems. A SW in the Toda
lattice with κ = 1.3603 has a total energy of Etot = 4.8412. We thus compare it to the SW
in the Hertz system that has the same value of total energy. The KE and PE profiles for the
SW in the two systems are shown in Fig. 9. Beyond this point, the profiles of the SWs in the
Toda system vary, while those of the SWs in the Hertz system remain the same, except for a
scaling of the SW energy. Therefore, capturing the profile of the SW in the Hertz system at
a specific energy is equivalent to capturing its profile at an arbitrary energy.

3 Response to a velocity impulse

After having discussed and compared the properties of SWs in the Toda lattice and the Hertz
system in the previous section, we now discuss how these SWs can be excited from suitable
initial conditions. We first consider the response of an infinite chain to an initial velocity
impulse. That is, we consider the following initial condition (ICs):

yn = 0 , ẏn = v δk,n, ∀n ∈ Z , (20)

where δk,n is the Kronecker delta. Without loss of generality, we take k = 0 (i.e., we apply
the impulse at the origin). The corresponding kinetic energy is Eimp = v2/2. Part of the
reason for considering such a scenario is the experimental ability to produce such conditions
via a boundary excitation in the granular crystals [2,4,7]. While the controlled distributed
initialization of such a system is not yet within reach, the ability to drive one of the bound-
aries/walls of the granular chain to induce an initial velocity has been since early on one of
the most canonical ways for exciting the SWs.

Since the Toda potential is superquadratic, it is reasonable to expect that, under suitable
conditions, the initial velocity impulse generates one or more SWs. On the other hand, for
small deviations, the Toda potential is approximately quadratic. Since no SWs are possible
in this limit, one could expect that the SWs generated by (20) disappear in the limit of weak
impulses. Conversely, as the velocity impulse increases, one can expect the Toda system
deviates from linear limit, and the SW to become more pronounced. These predictions are
borne out by numerical simulations. Figure 10 shows the response of the Toda system (3)
under different velocity impulses. The left panel shows the dynamics produced by v = 0.01,
while the right panel corresponds to v = 10. From these figures, it is clear that, with a weak
impulse, most of the energy is dispersed, while with a stronger impulse the majority of the
energy stays localized. Below we show how one can make the above claims more precise.
To do so, we will use the IST to compute the portion of the impulse energy that goes into
the SW, i.e., the quantity Esw/Eimp, as a function of an arbitrary impulse velocity v. We will
then compare these findings to the nonintegrable Hertzian case.

3.1 Toda lattice: integrability and scattering problem

Using the IST for the Toda lattice, we can compute the soliton parameter κ of the SW
generated by an arbitrary velocity impulse v. This will allow us to obtain a quantitative
characterization of the relation between Esw/Eimp and v.
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Fig. 10 The KE of Toda lattice with perturbation v = 0.01 (left) and v = 10 (right), respectively. (To make
the figure in the right panel cleaner, the solution was sampled at integer multiples of the temporal period of
the oscillations of the KE.)

Recall that one can formulate the IST for the Toda lattice using the Flaschka–Manakov
variables [10,28]

an = 1

2
e−(yn+1+yn)/2, bn = 1

2
ẏn . (21)

In terms of an and bn , system (3) is written as

ȧn = an(bn − bn+1), (22a)

ḃn = 2(a2
n−1 − a2

n). (22b)

In turn, (22) can be written in matrix form as the Lax equation

dL

dt
= BL − LB, (23)

where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . bn−1 an−1

an−1 bn an

an bn+1
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 0 −an−1

an−1 0 −an

an 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Lax equation (23) is the compatibility condition of the Lax pair

Lφn = λφn, (25a)
dφn

dt
= Bφn, (25b)

or equivalently, in component form,

an−1φn−1 + bnφn + anφn+1 = λφn, (26a)
dφn

dt
= an−1φn−1 − anφn+1. (26b)
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Equation (25a) is known as the scattering problem, and (25b) is known as the time evolution
equation. The eigenvalue λ is called the scattering parameter, and φn = φ(n, t, λ) is the
corresponding eigenfunction.

3.2 Infinite Toda lattice response to a velocity impulse

As usual in the inverse scattering transform, the solitons of the Toda lattice are associated with
the discrete eigenvalues of the scattering problem [25,26], while the continuous spectrum is
associated with the radiative (dispersive) portion of the solution. To characterize the fraction
of the energy of the initial impulse that goes into the SW, we need to compute the discrete
eigenvalues λ of (25a), with an and bn determined by IC (20), which in terms of the Flaschka-
Manakov variables become

an = 1

2
bn = 1

2
v δ0,n, ∀n ∈ Z . (27)

It is convenient to express the scattering problem in terms of a modified eigenvalue z given
by

λ = z + 1/z

2
. (28)

In terms of z, the continuous spectrum of (25a) is the unit circle |z| = 1. Inserting (27)
and (28) into (25a), one can write two sets of linearly independent solutions of the scattering
problem as

φn = zn, φ̄n = z−n, n ≥ 0 , (29a)

and

ψn = z−n, ψ̄n = zn, n ≤ 0 . (29b)

The symmetries of the scattering problem then imply

φ̄(n, t, z) = φ(n, t, 1/z) , φ̄(n, t, z) = ψ(n, t, 1/z) . (30)

Importantly, φn and ψn are analytic in |z| < 1, while φn and ψn are analytic in |z| > 1. These
two sets of fundamental solutions are related to each other by the scattering relation,

(
ψn

ψ̄

)
= S

(
φ̄

φn

)
, n ∈ Z , |z| = 1 , (31)

where the n-independent matrix S(t, z) is known as the scattering matrix. Using the symme-
tries of the problem, one can express S as

S(t, z) =
(

α(z) β(z)
β(1/z) α(1/z)

)
. (32)

The discrete eigenvalues of the scattering problem correspond to the bound states and are
associated with the zeros of α(z) in |z| < 1, at which ψn and φn are proportional to each
other.

Evaluating scattering relation (31) at n = 0 and at n = 1, we can express the scattering
matrix as

S =
(

ψ0 ψ1

ψ̄0 ψ̄1

) (
φ̄0 φ̄1

φ0 φ1

)−1

. (33)
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Fig. 11 Left panel: discrete eigenvalue z of scattering problem (25a) as a function of the impulse velocity v

for the Toda lattice. Right panel: the ratio Esw/Eimp as a function of the impulse velocity v. In both cases, the
solid red lines and dashed black lines represent, respectively, the analytical results for an infinite chain and
a semi-infinite chain case with Dirichlet BC. The blue circles and magenta stars in the right panel represent,
respectively, numerical results for the infinite chain and for a semi-infinite chain with Dirichlet BC; the black
circles represent numerical results for a semi-infinite chain with open BCs (for which no analytical results are
available)

Using (26a) and (29b) we have

ψ1 = 1/z − v, ψ̄1 = z − v. (34)

Combining (29a), (29b), (33) and (34), we then obtain

S = 1

1 − z2

(
1 − z(v + z) vz

−vz 1 + z(v − z)

)
. (35)

Looking for α(z) = 0 and solving the resulting quadratic equation, we then obtain

z± = 1

2

( − v ±
√

v2 + 4
)
.

(36)

Since we need |z| < 1, the root z− is inadmissible. We therefore have a single discrete
eigenvalue z = z+. The dependence of z on v is shown in the left panel of Fig. 11. The
soliton parameter κ relates to z by [10]

κ = − log |z|. (37)

Recalling (10), we obtain

Esw

Eimp
= 2(sinh κ cosh κ − κ)

1
2v2

, (38)

with κ given by (37). A comparison between (38) and numerical results is shown in the right
panel of Fig. 11.

We can show that

lim
v→0

Esw

Eimp
= 1

3
v + O(v3), lim

v→∞
Esw

Eimp
= 1 − O(v−2 log v), (39)

i.e., for small perturbations, only negligible amount of the initial energy goes to the soliton,
while for large perturbations, almost all the initial energy goes to the soliton; this is in line
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with the above-reported numerical observations. Importantly, however, it is relevant to note
that a (single) solitary wave is always excited even if bearing a very small fraction of the
original kinetic energy; i.e., there is no threshold for the excitation of the solitary wave in
this setting.

3.3 Semi-infinite Toda lattice

Next we consider a semi-infinite Toda lattice, and we apply a perturbation to the particle
at the end of the chain with a velocity impulse. Since we are now dealing with an initial-
boundary value problem, we need to specify appropriate boundary conditions (BCs) for the
problem. There are two cases of particular physical interest: the one in which the first particle
is confined by a wall and that of an open boundary.

We first discuss the case where a wall is placed next to the first particle. This is equivalent
to having a particle with infinite mass before the first particle. This imaginary particle is
subjected to Dirichlet BC; therefore, the semi-infinite chain can be oddly extended to an
infinite chain with IC given by

yn = 0 , ẏn = vδ1,n − vδ−1,n , ∀n ∈ Z . (40)

Or, in terms of Flaschka-Manakov variables,

an = 1

2
, bn = 1

2
vδ1,n − 1

2
vδ−1,n , ∀n ∈ Z . (41)

The ability to perform these extensions to a doubly infinite Toda chain amounts to the fact
that the pure Dirichlet BCs is integrable. We can now perform a similar analysis as in 3.2 to
compute the discrete eigenvalue of (25a), obtaining

z±+ = ±
√

−(1 + v2) + √
(1 + v2)2 + 4v2

2v2 , z±− = ±
√

−(1 + v2) − √
(1 + v2)2 + 4v2

2v2 .

(42)

Since we need |z| < 1, only z±+ are admissible. By (37), we see that the soliton parameters
corresponding to z±+ are the same. Further analysis suggests that z±+ correspond to solitons
moving with opposite velocity. This should not be surprising, since (40) implies that we
initialize the chain with two equal and opposite velocity impulses. The value of z = z++ as
a function of v is shown in the left panel of Fig. 11. As before, from z one obtains κ and
therefore Esw/Eimp.

No analytical results are available in the case of open BCs, because the first particle obeys
a different equation of motion, which breaks the integrability of the system. However, a
comparison between the analytical values of Esw/Eimp and results of numerical simulations
is shown in the right panel of Fig. 11. As illustrated in the right panel of Fig. 11, as v increases,
Esw/Eimp in the open BC case approaches the limiting value 1 much faster than in the other
two cases.

3.4 Comparison with the Hertz system

In the previous section we have seen that how, using the IST, for the Toda lattice one can
obtain the resulting soliton parameter κ (and therefore the soliton velocity) produced by an
initial impulse. No such tool is available for the Hertzian system, however. We now therefore
investigate whether the response of the Hertz system to an initial velocity impulse results
in similar dynamics as in the Toda lattice. Notice that this problem is one closely related
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Table 1 Esw/Eimp with different values of α for Hertz-type system (5)

α 2.1 2.2 2.3 2.4 2.5 3 4

Esw/Eimp % 97.60 98.35 98.82 99.14 99.37 99.85 99.99

to case examples that have been studied computationally [37] and even experimentally [38]
previously where a bead at the edge of the chain is impacted by a striker of different masses;
see also [20].

The Hertz system without precompression (i.e., with � = 0) is fundamentally different
from the Toda lattice in this respect, since it is intrinsically nonlinear, i.e., it does not admit a
linear limit, as we discussed above. In that light, the energy cannot be distributed to both linear
and nonlinear waves, but rather is immediately “quantized” in nonlinear wavepackets, i.e.,
in SWs. Indeed, as shown in numerical simulations, the leading SW in the Hertz chain takes
more than 99% of the impulse energy; see also [39]. In fact, our computations indicate that
for the Hertz-type system (i.e., α in (4) is greater than 2) without precompression, the leading
SW acquires a constant portion of the impulse energy under arbitrary impulse. The value of
Esw/Eimp with different values of α is given in Table 1. The dependence on the interaction
exponent α of this universal (among impulses) feature has not been reported previously to
the best of our knowledge.

On the other hand, as discussed above, it is possible to consider the Hertz and the Toda
systems on more proximal footing, when considering in the former the case with precom-
pression. The Hertz system with precompression does admit a linear limit, like the Toda
system. Therefore, in this case we expect that Esw/Eimp increases as v increases. However,
no satisfactory analytical tools are available to characterize such a system beyond the linear
limit. So in this case we will obtain Esw/Eimp as a function of v numerically.

For the purpose of comparing the Hertz system to the Toda system, it is useful to rescale
y and t in (5) so that the equations of motion in these two systems agree up to the square
order as was suggested in the work of [22]. To do so, we introduce dimensionless variables
ξn and τ such that yn = ξn y0 and t = τ t0 with y0 and t0 arbitrary for now. Then (5) becomes
(taking α = 2.5 for definiteness)

d2ξn

dτ 2 = 4

15
c�1/2t2

0

[
(ξn+1 − ξn) − (ξn − ξn−1)

]

− 15

16
c�−1/2y0t

2
0

[
(ξn+1 − ξn) − (ξn − ξn−1)

2] + · · ·
(43)

Setting t0 = √
4/(15c�1/2) and y0 = 2�, we then obtain a system that agrees with Toda

system (3) up to second order in the displacement difference. The IC corresponding to (20)
is given by

ξn = 0 ,
dξn

dτ
= t0

y0
vδk,n , ∀n ∈ Z . (44)

Note that the coefficients of (43) do not depend on �, but rescaled IC (44) depends on
�. Specifically, the rescaled velocity dξn/dτ scales like �−5/4. Therefore, the results are
independent of precompression as long as one rescales the IC accordingly.

For the Hertz system with precompression, one does not have φ(0) = 0, unlike what
happens in the Toda lattice. So, if one used the potential φ(r) to compute energies, the
energy corresponding to velocity impulse (20) would not simply be v2/2. Therefore, for the
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Fig. 12 A comparison of Esw/Eimp vs v between the precompressed Hertz (blue dots) and the Toda systems
(red line). For the Hertz system, v is the rescaled velocity dξn/dτ in (44). The left panel represents the case
of an infinite chain, while the right panel represents the case of a semi-infinite chain with fixed BC

precompressed Hertz system, one must replace φ(r) with

φ̃(r) = φ(r) + αc�α−1 r − c�α, (45)

where c and α are the constants appearing in (5). For an infinite lattice, the potential φ̃(r)
yields the same equation of motion (1) as φ(r). However, unlike φ(r), φ̃(r) satisfies the
constraints φ̃′(0) = φ̃(0) = 0 as required in [8]. The energy of a SW in a precompressed
Hertz system is then [40]

Esw =
∑
n

(
1

2
mẏ2

n + 1

2
(φ̃(yn − yn−1) + φ̃(yn+1 − yn))

)
, (46)

where the summation runs over all the particles involved in the SW.
Figure 12 shows the dependence of the ratio Esw/Eimp on the impulse velocity v in both

the precompressed Hertz system and the Toda system. As can be seen from the figure, the
behavior of both systems is qualitatively the same, both in the case of an infinite chain and in
the case of a semi-infinite chain. Therefore, we can conclude that the precompressed Hertz
system, which admits a linear limit, demonstrates similar dynamics in response to a velocity
impulse as the Toda system.

We should point out that numerical measurements with small impulse velocity v are
difficult in both the Toda and Hertz systems, because small SWs take a long time to separate
from the radiation. Nonetheless, in such a regime, the two systems behave similarly, as the
displacement of particles is relatively small and hence the contributions of higher orders
in (43) are negligible. For the Toda system, we have an analytical prediction, which is valid
for all values of impulse velocity v. Hence, one can use the analytical predictions in the Toda
lattice to characterize the behavior of the Hertz system in this regime.

4 Summary and discussion

In conclusion, we have shown that the behavior of the KE and the PE carried by a SW
in both Toda and Hertz systems is oscillatory in time, and that this oscillatory behavior is
due to the lattice shift invariance as the solitary wave travels from site to site. Importantly,
we obtained analytical closed-form expressions for these dependencies, showcasing that
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these oscillations can be captured by cnoidal functions in the Toda system; a corresponding
sinusoidal functional form was numerically illustrated in the Hertz system. We also showed
that the shape of the KE and PE of these systems as a function of n is similar to each other
at Etot = 4.84, and that beyond this point the profiles in the Hertz system remain the same
except for the overall scaling of the SW energy. More generally, we compared the solitary
waves of the Toda and the Hertz system. In the presence of precompression and in the vicinity
of the linear limit, the two can be seen to be rather proximal. In the highly nonlinear cases,
while similarities exist (e.g., in comparable dependencies of the amplitude vs. energy of the
solitary wave), there also exist significant differences, including the width of the waves and
the nature of the decay tails in the different cases.

We then studied the response of the infinite Toda lattice to an initial velocity impulse.
By employing the IST we showed how one can obtain the ratio between the energy of the
resulting SW and the energy of the impulse, and how this ratio depends on the impulse
velocity. We corroborated these exact analytical results with numerical simulations. We then
studied the response of a semi-infinite Toda lattice in which the first particle is perturbed
with a velocity impulse. In this case, the results depend on the specific boundary conditions
(BCs) considered. For fixed BCs, we introduced an odd extension of the semi-infinite chain
and we obtained an analytical expression of the above ratio by employing the IST. For “free”
BCs, however, no such approach was available, and we resorted to numerical simulations.

For the Hertzian chain with zero precompression, following up on earlier work, we con-
firmed that more than 99% of the energy in an arbitrary initial impulse goes to the resulting
SW and discussed the independence of this finding from the size of the impulse. Moreover, we
explored how this fraction is modified for different nonlinear force exponents α, indicating
a weak monotonically increasing dependence (once again independent of the impulse size
v) on α. We then extended the relevant comparison to the Hertz chain with precompression;
there, the percentage of energy that goes to solitary wave exhibits a similar behavior as in
the Toda system. We then performed a quantitative comparison of the values of this ratio
in the Toda and precompressed Hertz systems by nondimensionalizing the precompressed
Hertz system, and rescaling its time and position coordinates so that the equation of motion
in the precompressed Hertz system agrees with that in the Toda system up to second order
in the displacement difference. Our comparison shows that, at relatively small impulse ener-
gies, the ratios in the two systems are close to each other; however, as the impulse energy is
increased, the ratios in these systems deviate, even though they both eventually approach the
same limiting unit value.

The results of this study open a number of interesting theoretical questions. For example:

(a) We demonstrated numerically that the temporal oscillations of the KE and the PE in the
Hertz system are described by trigonometric functions at all energies. However, whether
this dependence can be proven mathematically is still an open question. It is relevant to
note that this is a nontrivial task as there is no closed functional form for the SW in the
highly nonlinear Hertzian case but only approximate ones [34,35].

(b) Similarly, it would be desirable to have a rigorous proof of the fact that the fraction of
the energy that goes to the SW in the Hertz system is independent of the energy of the
initial impulse.

(c) An analytical characterization of the semi-infinite Toda lattice with open BCs and a
velocity perturbation at the first particle is still absent. Note that open BCs are much more
complicated to deal with than fixed BC mathematically, since they break the integrability
of the lattice.
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(d) Another interesting open topic is a detailed characterization of the radiation generated by
a velocity impulse in the Toda lattice, which could be obtained by appropriate use of the
IST as was done in other discrete and continuous integrable systems (e.g., see [41]). More
generally, the vein of “contact” between the Toda chain and the granular chain with pre-
compression can be used for a variety of semi-analytical efforts. One can explore different
types of initial conditions tailored toward exciting multiple solitary waves and explor-
ing their interactions in the Toda lattice and by extension in the granular precompressed
chain. Another vein important for future work concerns the connection of dispersive
shock waves in the Toda lattice (see, e.g., [42]) to the study of analogous features in the
Hertzian chain (for a discussion of the latter see, e.g., [43]). Such directions are currently
under consideration and will be reported in future studies.
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Appendix A: Oscillation of the PE in the Hertzian system at different energies

As we discussed in Sect. 2, the PE and KE of SWs in the Hertzian system also demonstrate
oscillatory behavior, like the SWs in the Toda system. Here, we show that the average value
and oscillation amplitude are proportional to the overall energy.

Let us denote by P(x − vswt; E) the spatial profile at time t of the PE of a SW in
the Hertzian system with total energy E . (Note that the temporal variation amounts to a
continuous variation of the argument, cf. (16).) Without loss of generality, we can take the
peak of P(x; E) to be located at x = 0. It should be clear that the temporal evolution of the
PE is simply equivalent to a translation of the spatial variable x , and that its maximum and
minimum values occur, respectively, at t = 0 and t = 1/(2vsw).

PE(E) = 1

2

∑
n∈Z

(P(n; E) + P(n/2; E)) , (A.1a)

�PE(E) =
∑
n∈Z

(P(n; E) − P(n/2; E)) . (A.1b)

Recalling that the profile of SWs in the Hertzian system is universal, and that only its ampli-
tude depends on E [cf. (16)], we then have

P(x; aE) = h(a) P(x; E) , (A.2)

where h(a) is a yet-to-be-determined function (see also the discussion in section “Appendix
C”). This relation immediately implies

PE(aE) = h(a) PE(E).

Note, however, that the virial theorem also implies

PE(aE) = a PE(E). (A.3a)

Combining the last two equations, we then immediately have h(a) ≡ a. Thus, P(x; aE) =
a P(x; E), which also implies

�PE(aE) = a �PE(E) . (A.3b)
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Appendix B: Limiting behavior of PE/Etot in the Toda system as κ → 0 and κ → ∞

Recalling (13) and (17), we have

PE = −2κ + sinh2 κ

(
2K ′

m

π

)2( E ′
m

K ′
m

− m

)
+ sinh2 κ

2Km

(
2K ′

m

π

)2

m
∫ 2Km

0
cn2(t;m)dt

= PEmin + 4 sinh2 κ

π2 K ′2
m

(
Em

Km
− 1 + m

)
≡ PEmin + PEintegral

(B.1)
and also recall that κ is related to m by (15).

We first discuss the limit κ → 0. Note that in this limit

κ = − π2

log m
16

+ O

(
m

log2 m

)
, (B.2a)

Etot = 4

3
κ3 + 4

15
κ5 + O(κ7), (B.2b)

as a result we have

Etot = −4

3

(
π2

log m
16

)3[
1 + O

(
1

log2 m

)]
. (B.3)

Also note that

sinh2 κ =
(

π2

log m
16

)2

+ 1

3

(
π2

log m
16

)4

+ O

(
1

log6 m

)
, (B.4a)

(
2K ′

m

π

)2( Em

Km
− 1 + m

)
= O(m log2 m), (B.4b)

(
2K ′

m

π

)2( E ′
m

K ′
m

− m

)
= − 2

π2 log
m

16
+ O(m log2 m), (B.4c)

therefore

PE = −2

3

(
π2

log m
16

)3[
1 + O

(
1

log2 m

)]
. (B.5)

Combining (B.3) and (B.5), we have

lim
κ→0

PE

Etot
= 1

2
+ O(κ2). (B.6)

Next we consider the limit κ → ∞; in this limit, we have m → 1, and we then write
m = 1 − m′. Following a similar discussion, we have

κ = log
16

m′ + O(m′), (B.7a)

lim
κ→∞

PE

Etot
= O

(
1

logm′

)
. (B.7b)

Therefore

lim
κ→∞

PE

Etot
= O(1/κ). (B.8)
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Appendix C: Scaling between vsw and v for different impulses

The discussion in the previous sections raises the obvious question of what is the precise
dependence of the velocity vsw of the resulting SW on the velocity v of the impulse for
the Hertzian chain. Numerical simulations suggest that, for the Hertz chain, one has vsw ∼
v0.2 [44], while for a quartic lattice, one has vsw ∼ v0.5 [45]. Indeed, one can show that, for
lattices with Hertz-type potentials given by (4) with arbitrary values of α > 2 and � = 0,
and for two distinct initial impulses v1 and v2, one can show that the following relation holds
by using scaling analysis [4]:

v(v2)
sw = (v2/v1)

1−2/αv(v1)
sw . (C.1)

In this section we provide an alternative proof by using the virial theorem.
Recalling expression (16) for the shape of the SW, let us denote by Y (v)(n − v

(v)
sw t) the

displacement of a SW resulting from an impulse v. Similarly, let us denote the KE and PE
of the SW by KE(v) and PE(v), respectively, Explicitly,

PE(v) = c
∑
n

|Y (v)(n + 1 − v(v)
sw t) − Y (v)(n − v(v)

sw t)|α , (C.2a)

KE(v) = 1

2

∑
n

(
dY (v)(n − v

(v)
sw t)

dt

)2

, (C.2b)

where c is the constant in (4).
Now recall that in the Hertz-type system, a SW takes a constant portion of the impulse

energy under arbitrary impulse v. The virial theorem [36] immediately implies that

PE
(kv) = k2PE

(v)
, (C.3a)

KE
(kv) = k2KE

(v)
. (C.3b)

Also recall that the width of the displacement profiles of SWs in Hertz-type systems is
independent of the energy of the SW [34]. We therefore have

Y (kv) = g(k) Y (v)(n − v(kv)
sw t), (C.4)

where g(k) is a function yet to be determined. Combining (C.2a) and (C.3a), however, we
immediately have

g(k) = k2/α . (C.5)

From (C.2) and combining the above results, we then have

KE(kv) = 1

2
k

4
α

∑
n

(
dY (v)(n − v

(kv)
sw t)

dt

)2

= 1

2
k

4
α (v(kv)

sw )2
∑
n

(
dY (v)(u)

du

)2

. (C.6)

Evaluating this expression for k = 1 and comparing the two results we then have

KE(kv) = k
4
α

(
v

(kv)
sw

)2

(
v

(v)
sw

)2 KE(v). (C.7)

Recalling (C.3b), we then finally obtain (C.1).
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