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Abstract The transverse instability of line solitons of a multicomponent nonlocal defocusing
nonlinear Schrödinger (NLS) system is utilized to construct lump and vortex-like structures
in 2D nonlocal media, such as nematic liquid crystals. These line solitons are found by means
of a perturbation expansion technique, which reduces the nonintegrable vector NLS model to
a completely integrable scalar one, namely to a Kadomtsev–Petviashvili equation. It is shown
that dark or antidark soliton stripes, as well as dark lumps, are possible depending on the
strength of nonlocality: dark (antidark) solitons are formed for weaker (stronger) nonlocality,
relatively to a threshold that is analytically determined in terms of the parameters of the
system and the continuous-wave amplitude. Direct numerical simulations are used to show
that dark lump-like- and vortex-like-structures can spontaneously be formed as a result of
the transverse instability of the dark soliton stripes.

1 Introduction

Natural occurring phenomena are often described by systems exhibiting complicated non-
linear features. It is, therefore, expected that there is much interest in the development of
methods to investigate the associated nonlinear mathematical problems. One of the main dif-
ficulties in the study of nonlinear phenomena is that the underlying equations are extremely
difficult to analyze even numerically. Typical examples are the Navier–Stokes equations or
the Euler system [1] in the theory of water waves, and the Maxwell’s equations in electro-
magnetics [2]. As such, one usually employs perturbation methods to asymptotically reduce
these systems to nonlinear evolution equations, which are much simpler than the specific
problem at hand [3].

Asymptotic multiscale expansion methods have led to a number of such reductions, for
example, the Euler system is reduced to the Korteweg–de Vries (KdV) equation for shal-
low water waves, and to the nonlinear Schrödinger (NLS) equation for deep water. In a
similar fashion, Maxwell’s equations lead to the NLS equation under the paraxial and quasi-
monochromatic approximations in optics [1,2]. These new, simplified, systems not only
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provide accurate descriptions of the physical situation under which they are derived, but also
exhibit remarkable mathematical properties. Indeed, the KdV and NLS equations spawned
a completely new field in evolution equations, namely integrable systems and the concept of
integrability under the so-called inverse scattering transform (IST) [4].

One very interesting observation [5] in the theory of integrable systems led to the con-
nection between such systems. While these connections are fascinating, linking equations
and their properties are a very limited and rather challenging (if even possible) process. As
such, asymptotic methods may also be used to reduce several integrable models to other also
integrable equations [6]; a characteristic example in this context is the asymptotic reduction
in the defocusing NLS to the KdV equation (see also the recent work [7] and references
therein).

The IST has in turn proven to be an invaluable tool for the solution of the initial-value prob-
lem for integrable nonlinear systems, and, as a byproduct, it also provides exact solutions.
However, the class of such integrable systems is rather narrow; most physically relevant
systems are non-integrable. Thus, even more interestingly, relevant connections between
integrable and nonintegrable models may provide a tool to construct approximate of noninte-
grable models in terms of exact solutions of the related integrable ones. This practice has been
proven extremely useful in providing important information on the existence, stability and
dynamics of solutions in various physical settings, such as nonlinear optics [8] and atomic
Bose–Einstein condensates (BECs) [9,10].

A particularly interesting example is the NLS equation featuring a spatially nonlocal
nonlinear response. Such nonlocal NLS models arise in a variety of physical contexts, where
they describe optical beam dynamics and solitons in plasmas [11], atomic vapors [12], lead
glasses with a thermal nonlinearity [13], as well as in media with long-range inter-particle
interactions. The latter include nematic liquid crystals that exhibit long-range molecular
reorientational interactions [14], as well as dipolar BECs [15]. Notice that a variant of a
nonlocal NLS model, namely the Schrödinger–Poisson equation, appears also in cosmology,
where it may describe the dynamics of coherent dark matter made up of ultralight axions
(see, e.g., the recent review [16] and references therein).

An important issue in the construction of exact or approximate solutions is their stability
or lack thereof. Instabilities are physical phenomena that may occur in nonlinear systems
and provide a mechanism to observe the manifestation of strongly nonlinear effects. For
example, the Benjamin–Feir instability [17] in water waves (alias modulation instability in
optics) leads to the generation of a train of localized waves and is believed to be the main
mechanism of rogue wave generation [18]. In higher dimensions, instabilities may be proven
to be catastrophic leading to wave collapse in the focusing NLS, or to decay into vortical
patterns in the defocusing NLS.

Nonlocal nonlinearity plays a key role on the soliton properties and its stability. In par-
ticular, in settings with focusing nonlocal nonlinearities, collapse can be arrested in higher-
dimensions [19,20]. This results in the formation of stable solitons that were observed in
experiments [12,13] and predicted in theory, even in (3 + 1)-dimensions [21]—see, e.g.,
reviews [20,22] and references therein. On the other hand, if the nonlocal nonlinearity is of
defocusing type, dark solitons may exist [23–26] and can exhibit an attractive interaction
[23] rather than a repulsive one, as is the situation in the case of a local nonlinearity—see
the reviews [8–10] and references therein. Furthermore, dark solitons which are unstable in
higher-dimensions due to the onset of transverse (or “snaking”) instability [10,27–29] can
be stabilized in a setting exhibiting a nonlocal nonlinearity [30].

Motivated by the above, in this work we study a multicomponent nonlocal NLS system
in (2 + 1)-dimensions. Notice that although multicomponent NLS systems have been exten-
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sively investigated in the literature (see, e.g., the recent review [31] and the book [32]) and
corresponding nonlocal problems have been far less studied (see, e.g., Refs. [33–37]). Here,
we use a multiscale expansion method to asymptotically reduce the vector NLS model to a
scalar Kadomtsev–Petviashvili (KP) equation. This is a completely integrable extension of
the KdV equation in two spatial dimensions [38], which is used to describe shallow-water
waves, ion-acoustic solitons in plasmas, and other physical systems [1,39–41]. Exact soliton
solutions of the KP equation, such as line solitons and lumps, are then used to construct
pertinent approximate soliton solutions of the original nonlocal NLS system; this way, we
find solutions in the form of dark and antidark line solitons and dark lumps. Specifically,
the organization of the presentation, as well as a brief description of our main results and
findings is as follows.

In Sect. 2, we present the model, which finds applications in the interaction between two
optical beams of different frequencies propagating in nonlocal media, such as nematic liquid
crystals [42–44]. The nonlocal NLS system is assumed to exhibit a defocusing nonlinearity,
as is the case of azo-dye-doped nematics [25]. First, we present the continuous-wave (cw)
solution and discuss its stability, and then we use a multiscale expansion methods to derive
an asymptotic reduction in the model at hand, namely a KP equation. It is found that both
versions, KP-I and KP-II (see, e.g., Ref. [1]), are possible, and this depends on the degree
of nonlocality. In particular, if the nonlocality parameter of the system is larger (smaller)
than a characteristic critical value (which is analytically found in terms of the parameters
of the system and the cw amplitude)—or, in other words, if nonlocality is relatively strong
(weak)—then the KP is of KP-II (KP-I) type.

In Sect. 3, we use the exact soliton solutions of the KP equations and construct approximate
solitons of the original nonlocal model. These approximate solutions are found to be of
antidark- or dark-soliton-type, for a strong or weak nonlocality (in the sense mentioned
above), respectively. We thus find antidark and dark stripe solitons, as well as dark lump
solitons. Direct numerical simulations have already confirmed that all the aforementioned
solutions do exist and propagate undistorted in the nonlocal medium [45].

In Sect. 4, we study numerically the transverse dynamics of the soliton stripes. Our moti-
vation stems from the fact that the KP-I line solitons are unstable against long-wavelength
transverse perturbations (see, e.g., [4,29]) and decay into lumps [46]. We thus investigate, at
first, the transverse dynamics of the dark soliton stripes, which also obey an effective KP-I
equation. We find that, typically, relatively shallow dark stripes decay into dark lumps, while
deeper stripes decay into vortex–antivortex pairs, as well as into transient dark lumps. On the
other hand, antidark soliton stripes are not found to be prone to transverse instability, which
can be explained by the fact that they obey an effective KP-II equation, whose line solitons
are stable [4]. Thus, antidark solitons decay into radiation under the action of the transverse
perturbation.

Finally, in Sect. 5 we summarize our findings, present our conclusions, and discuss pos-
sibilities for future work.

2 The model and its analytical consideration

2.1 Linear regime

As mentioned above, the nonlocal NLS model under consideration is motivated by the physics
of nematic liquid crystals, where it describes the interaction between two polarized, coherent
light beams of two different frequencies evolving in a cell filled with a nematic liquid crystal
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[44]. In particular, if u and v are the complex electric field envelopes of the two light beams,
and θ is the perturbation of the optical director angle from its static value due to the light
beams, then the system is described by the following dimensionless equations [44,47]:

iut + d1

2
Δu − 2g1θu = 0, (1a)

ivt + d2

2
Δv − 2g2θu = 0, (1b)

νΔθ − 2qθ + 2(g1|u|2 + g2|v|2) = 0, (1c)

where subscripts denote partial derivatives, t plays the role of the propagation distance
(assumed to be along the z-direction) and Δ ≡ ∂2

x + ∂2
y is the transverse Laplacian. Here,

the coefficients d1,2 and g1,2 characterize, respectively, the diffraction and nonlinearity for
the two frequencies, with their relative sign in Eqs. (1a) and (1b) determining the nature of
the equation: focusing or defocusing, as in the case of the usual scalar or vector NLS model.
Notice that although, typically, nematics exhibit a focusing nonlinearity, they can become
defocusing upon inclusion of azo-dye doping [25]. Finally, the parameter q is related to the
square of the imposed static field which pretilts the nematic dielectric, while the nonlocality
parameter ν measures the strength of the response of the nematic liquid crystal in space. In
particular, large ν corresponds to a highly nonlocal response, while in the limit of ν → 0,
Eqs. (1) is reduced to the following vector NLS with a local, Kerr-type nonlinearity:

iut + d1

2
Δu − 2g1

q

(
g1|u|2 + g2|v|2) u = 0, (2a)

ivt + d2

2
Δv − 2g2

q

(
g1|u|2 + g2|v|2) v = 0. (2b)

Below, we will focus on the case of defocusing nonlinearity, and we will thus assume that
all parameters involved in Eqs. (1) are positive. In addition, as we are interested in dark
or antidark soliton solutions, we supplement the system (1) with the following boundary
conditions:

|u| → ρ0, |v| → σ0, θ → θ0, as x, y → ±∞, (3)

where ρ0, σ0 and θ0 are real constants.
The steady state solution of Eqs. (1a)–(1c) is composed of the continuous-waves (cw’s)

for the u- and v-components,

u = ρ
1/2
0 exp(−2ig1θ0t), (4)

v = σ
1/2
0 exp(−2ig2θ0t), (5)

and the constant function

θ = θ0 = 1

q
(g1ρ0 + g2σ0). (6)

The above constitutes the “background” solution, on top of which we will seek soliton
solutions below. Considering small perturbations of this solution behaving like exp[i(k ·
r⊥ − ωt)], with r⊥ = (x, y), we find that the perturbations’ wavevector k = (kx , ky) and
frequency ω obey the dispersion relation:

p1(k)ω
4 + p2(k)ω

2 + p3(k) = 0, (7)
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where the polynomials p j (k) ( j = 1, 2, 3) are given by:

p1(k) = 16(νk2 + 2q), (8)

p2(k) = −4ν(d2
1 + d2

2 )k6 − 8q(d2
1 + d2

2 )k4 − 64(d1g
2
1ρ0 + d2g

2
2σ0)k

2, (9)

p3(k) = d2
1d

2
2νk10 + 2d2

1d
2
2qk

8 + 16d1d2(d2g
2
1ρ0 + d1g

2
2σ0). (10)

and k2 = k2
x +k2

y . It is straightforward to find that, in the defocusing case under consideration
(i.e., for positive diffraction and nonlinearity coefficients), the dispersion relation (7) has
always real roots, i.e., the cw solution is modulationally stable.

2.2 Nonlinear regime: the KP equations

Next, we proceed by analyzing Eqs. (1a)–(1c) by means of a multiscale expansion method.
This way, we will derive an effective KP equation, the solutions of which will be exploited
for the construction of soliton solutions of the original nonlocal NLS system.

First, we introduce the Madelung transformation for the fields u and v, namely,

u = ρ1/2 exp(iφ), v = σ 1/2 exp(iψ), (11)

where the real functions ρ = ρ(r, t) and σ = σ(r, t), as well as φ = φ(r, t) and ψ =
ψ(r, t), denote amplitudes and phases of the fields u and v, respectively; here, r = (x, y).
Then, Eqs. (1) is reduced to the following hydrodynamic form:

ρt + d1∇ · (ρ∇φ) = 0, (12a)

φt + 2g1θ + d1

2

(|∇φ|2 − ρ−1/2Δρ1/2) = 0, (12b)

σt + d2∇ · (σ∇ψ) = 0, (12c)

ψt + 2g2θ + d2

2

(|∇ψ |2 − σ−1/2Δσ 1/2) = 0, (12d)

νΔθ − 2qθ + 2(g1ρ + g2σ) = 0, (12e)

where ∇ ≡ (∂x , ∂y) is the gradient operator. Next, we seek small-amplitude solutions on top
of the background solution (4)–(6) in the form of the following asymptotic expansions in ε:

ρ = ρ0 + ερ1 + ε2ρ2 + · · · , (13a)

φ = −2g1θ0t + ε1/2φ1 + ε3/2φ2 + · · · , (13b)

σ = σ0 + εσ1 + ε2σ2 + · · · , (13c)

ψ = −2g2θ0t + ε1/2ψ1 + ε3/2ψ2 + · · · , (13d)

θ = θ0 + εθ1 + ε2θ2 + · · · , (13e)

where the unknown fields ρ j , φ j , θ j , σ j and ψ j (with j = 1, 2, . . .) depend on the slow
variables:

X = ε1/2(x − ct), Y = εy, T = ε3/2t. (14)

Here, c is the velocity of linear plane waves propagating on top of the background solution
(so-called speed of sound), which will be determined below in a self-consistent manner.
Notice that, according to the original boundary conditions (3), the unknown fields must
satisfy ρ j , φ j , θ j , σ j , ψ j → 0 as X, Y → ∞. Substituting the expansions (13) into
Eqs. (1a)–(1c), and using the variables (14) we obtain, at each order of ε, a hierarchy of
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equations. These equations are consistently solved at each order (see details in “Appendix”),
and the following results are obtained.

First, to the leading-order approximation, we obtain the speed of sound, which is given
by:

c2 = 2

q
(d1g

2
1ρ0 + d2g

2
2σ0), (15)

as well as the following equations connecting the fields ρ1, σ1, φ1 and ψ1:

ρ1X = d1g1ρ0

d2g2σ0
σ1X , (16)

φ1X = c

d1ρ0
ρ1, (17)

ψ1X = c

d2σ0
σ1. (18)

Second, to the next order of approximation, we derive the KP equation:

(ρ1T + Aρ1XXX + Bρ1ρ1X )X + c

2
ρ1YY = 0, (19)

where the coefficients A and B are given by:

A = νc4 − (d3
1g

2
1ρ0 + d3

2g
2
2σ0)

4qc3 , (20a)

B = 3(g3
1d

2
1ρ0 + g3

2d
2
2σ0)

cd1g1ρ0q
. (20b)

Importantly, the above analysis ends up with a single KP equation for the unknown field ρ1.
Once this function assumes the form of a KP soliton, the unknown field σ1, as well as the
phases φ1 and ψ1 can be obtained from Eqs. (16)–(18).

We can now further normalize the KP equation (19) in order to express it in its “standard”
form [38,40]. We thus introduce the scale transformations:

T �→ AT, Y �→
√

6|A|
c

Y, ρ1 �→ B

6A
ρ1, (21)

and put Eq. (19) into the form:

(ρ1T + ρ1XXX + 6ρ1ρ1X )X + 3σρ1YY = 0, σ ≡ sgn(A). (22)

It is thus clear that the type of KP equation is determined by the value of σ , i.e., the sign
of parameter A (notice that B is always positive): For σ = +1 (A > 0), the KP equations
are of KP-II type, while for σ = −1 (A < 0) the KP equations are of KP-I type. It is
important to point out that σ not only characterizes the equation, but also the type of the
soliton themselves: indeed, the solitons may be of bright (A > 0) or dark (A < 0) type on
top of the background solution—see normalization of ρ1 in Eq. (21). Note that σ depends
on the degree of nonlocality—see below.

3 Approximate soliton solutions

We now proceed by constructing approximate [valid up to order O(ε)] soliton solutions of
the original nonlocal system (1). This can be expressed in terms of the soliton solutions ρ1
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of the KP equation (19) as follows:

u ≈ (ρ0 + ερ1)
1/2 exp

[
− 2ig1θ0t + iε1/2 c

d1ρ0

∫
ρ1dX

]
, (23a)

v ≈
(

σ0 + ε
d2g2σ0

d1g1ρ0
ρ1

)1/2

exp

[
− 2ig2θ0t + iε1/2 cg2

d1g1ρ0

∫
ρ1dX

]
, (23b)

θ ≈ θ0 + ε
g1

q

(

1 + d2g2
2σ0

d1g2
1ρ0

)

ρ1, (23c)

where it is reminded that the background amplitudes ρ0 and σ0 are arbitrary O(1) parameters,
while θ0 is given in Eq. (6). Next, we will present certain types of these approximate soliton
solutions, which will play an important role in the study of the transverse dynamics below.

3.1 Antidark and dark stripe solitons

We start with the simplest soliton solution of Eq. (19), the so-called line soliton, which is
actually a tilted KdV soliton in the xy-plane. The one-line soliton solution of Eq. (19) reads:

ρ1 = 12A

B
κ2sech2ξ, (24)

ξ ≡ κ

[

X + λ

√
6|A|
c

Y − A(4κ2 + 3λ2)T + δ0

]

, (25)

where the free, O(1), parameters κ and λ control the propagation direction in the plane, and
δ0 sets the initial soliton location. Using Eqs. (20), it can readily be found that the soliton
amplitude is given by:

12A

B
κ2 = (ν − νc)

c2d1g1ρ0

d3
1g

2
1ρ0 + d3

2g
2
2σ0

κ2, (26)

where the critical value νc is given by:

νc = 1

c4 (d3
1g

2
1ρ0 + d3

2g
2
2σ0). (27)

Observe that, since the fraction in the right-hand side of Eq. (26) is always positive, the type
of soliton of Eq. (19) depends on the sign of ν − νc, which is:

sgn(ν − νc) = sgn(σ ). (28)

This means that both the type of KP equation and the stability of its line soliton solution
depend on the degree of nonlocality, and specifically:

– If ν > νc (σ = +1), i.e., for a relatively strong nonlocality, Eq. (19) is of KP-II type, and
its line soliton solution (24) gives rise to antidark stripe solitons [see Eqs. (23)], namely
intensity elevations on top of the cw background.

– If ν < νc (σ = −1), i.e., for a relatively weak nonlocality [in other words, closer to the
local NLS limit—see Eqs. (2)], Eq. (19) is of KP-I type and its line soliton solution (24)
leads to approximate dark soliton stripes [see Eqs. (23)], i.e., intensity dips off of the cw
background.

Examples of the profiles of the approximate antidark and dark line soliton solutions are
given in Figs. 1 and 2, respectively. Regarding the antidark solitons, we have made the
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Fig. 1 The spatial profile of the modulus of the antidark stripe solitons at t = 0; parameter values are given
in the text. Left (right) panels depict the u- (v-)component

following choice for the parameter values: for the NLS system d1 = 2d2/3 = g1 = g2 =
ν/5 = q/5 = 1, for the background amplitudes ρ0 = σ0 = 1, and for the soliton parameters
λ = δ0 = 0 and κ = 1. Note that this choice leads to A = 1/32 > 0, B = 39/20 > 0, and
νc = 35/8 < ν (i.e., σ = +1), which means that the solitons are indeed of antidark type and
the amplitude function ρ1 obeys the KP-II equation.

On the other hand, in the case of dark solitons, we used the parameter values d1 = 2d2/3 =
g1 = g2 = ν = q/5 = 1, background amplitudes ρ0 = σ0 = 1, and soliton parameters
λ = δ0 = 0, κ = 1 as before. For this choice, one obtains A = −27/160 < 0, B = 39/20
and νc = 35/8 > ν = 1 (i.e., σ = −1), which corresponds to the regime where dark solitons
can be formed. Finally, in both cases of antidark and dark solitons, we used ε = 0.1.

3.2 Dark lump solitons

Apart from the 1D stripe soliton solutions that were presented above, the KP-I equation (for
A < 0, or σ = −1, corresponding to the weakly nonlocal regime) supports also genuinely
2D solitons. These states, known as “lumps” [38], are weakly localized, i.e., algebraically
decaying at infinity. A lump solution of Eq. (19) is of the form:

ρ1(X, Y, T ) = 24A

B

− 3A
α

− (X + αT )2 + 2αY 2

c(
− 3A

α
+ (X + αT )2 + 2αY 2

c

)2 , (29)

where α is a O(1) free parameter linking the soliton amplitude with its velocity and transverse
width. Notice that, since here σ = −1, we have A < 0, meaning that the vector soliton
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Fig. 2 Similar to Fig. 1, but for the case of dark stripe solitons

solution (23) is of dark type; in other words, in this case, the approximate 2D soliton solutions
supported by the nonlocal NLS system are dark lumps. An example of this type of solution
is shown in Fig. 3; here, we used α = 1, while the rest of the parameter values are as in the
case of the dark soliton stripe.

Direct numerical simulations have shown [45] that all the above types of approximate
soliton solutions do exist and propagate undistorted up to the numerical horizon (i.e., up to
t = 50). Thus, if no additional perturbations are present, the dark and antidark line solitons
and the dark lumps are supported by the nonlocal system. Below, we will numerically study
the transverse instability of the line solitons and show, in particular, that sufficiently weak
dark line solitons decay into dark lumps under the action of transverse perturbations; this
highlights the connection between these solutions, as well as their relation to known results
regarding the line solitons of the KP equation.

4 Transverse dynamics

Before proceeding with the numerical investigation of the line solitons’ transverse dynamics,
it is relevant to make the following comments. As is well known (see, e.g., [4,29] and
references therein), the line soliton solutions of KP-II (KP-I) are stable (unstable) under
the action of long-wavelength transverse perturbations; in such a situation, the line solitons
develop strong undulations and eventually decay—see, e.g., the review [29] for analysis and
references therein, as well as Ref. [46] for results of numerical simulations.
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Fig. 3 Similar to Fig. 2, but now for the dark lump soliton, with α = 1

In addition, it should be pointed out that the asymptotic reduction in the defocusing 2D
NLS (with a local nonlinearity) to the KP-I equation [27,28] was used to better understand
the transverse instability of the dark solitons of NLS: indeed, these structures are also sub-
ject to transverse instability and, upon developing undulations, they eventually decay into
vortex pairs [28,29] or, in the case of shallow dark solitons, into 2D vorticity-free structures
resembling KP lumps [28,48]. Furthermore, it was recently shown [30] that nonlocality can
partially suppress the transverse instability, in the sense that it manifests itself at later times
compared to the local NLS case. It is thus relevant to investigate whether the above features
can also be met in the framework of the present model.

To investigate the above, we perform direct numerical simulations by means of a high
accuracy spectral method [49], with the following parameter values: d1 = d2 = g1 = g2 =
q = 1, and set the nonlocality parameter ν = 10, so as to ensure that we are sufficiently far
away from the local limit (ν → 0). As for the initial condition, we consider a dark stripe
soliton pair on top of a background of unit amplitude, located along the y-direction, of the
following form:

u =
√

1 − w2
1 tanh

(√
1 − w2

1x

)
+ iw1, (30a)

v =
√

1 − w2
2 tanh

(√
1 − w2

2x

)
+ iw2, (30b)

where w j and 1 − w2
j (with j = 1, 2) denote the dark solitons’ velocities and amplitudes,

respectively. Notice that the above form is motivated by the vector dark soliton of the local
NLS; this choice is made in order to highlight the generic nature of our findings. In addition,
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we assume that w j are modulated along the transverse (y) direction as follows:

w j = w
(0)
j [1 + δ cos(κ0y)], (31)

where w
(0)
j are the unperturbed values of w j , the parameter δ is the modulation strength, and

κ0 is the perturbation wavenumber. Below, we use the values δ = 0.1 and κ0 = 3.
We start by presenting results pertaining to relatively weak dark stripe solitons, with

w
(0)
1 = 0.6 and w

(0)
2 = 0.8. As seen in Fig. 4, where the evolution of the dark stripe soliton

pair is shown, the transverse instability manifests itself, and the stripe solitons are eventually
destroyed. Although the perturbation induces emission of a relatively strong radiation—
compared to the solitons’ amplitudes—which propagates on top of the background, it is clear
that a chain of 2D structures is formed in both components: see the snapshots corresponding
to t = 50 and t = 100.

A zoom of a pair of the 2D states, at t = 100, that are generated due to the manifestation
of the instability, is presented in Fig. 5; there, both the moduli and the phases of the fields u
and v are shown. Despite the radiation-induced perturbation, it is clearly observed that the
generated structures are vorticity-free states (see the phase profiles in the bottom panels),
resembling the dark lump solitons discussed above.

Let us now proceed by investigating the case of relatively deep dark soliton stripes. For
this case, we again consider the initial conditions (30) and use w

(0)
1 = 0.3 and w

(0)
2 = 0.4.

The results of the relevant simulations are shown in Fig. 6. Once again, it is observed that the
transverse instability causes the stripes to undergo strong modulations and, as a result, they
are eventually destroyed. In this case, the radiation on the background is relatively smaller
compared to the solitons’ amplitudes, and the resulting patterns that are formed out of the
instability can easier be identified.

In particular, first we note that the destruction of the dark stripes results in the formation
of a chain of pairs of 2D structures, located close to x = 30, that are clearly visible in both
components at t = 75. Figure 7 shows a zoom-in of Fig. 6, where the moduli profiles (top
panels) and the relevant phases (bottom panels) of the fields u and v are depicted. Clearly,
the structure of these profiles corresponds to vortex–antivortex pairs—see, e.g., Ref. [31].
This clearly highlights the fact that the transverse instability of relatively deep dark soliton
stripes of the nonlocal NLS leads to the formation of vortex pairs, similarly to the case of the
local NLS (see, e.g., the review [29]).

In addition to the array of vortex antivortex pairs, the formation of another chain of 2D
structures is also observed. Such chains are seen, e.g., close to x = 55 at t = 75 in the
v-component, or close to x = 80 at t = 100 in the v-component. Contrary to the case of
the vortex arrays that show a slow motion, the chains of 2D density dips continue to travel
in the x direction, and form a propagating front modulated along the y direction. A zoom
of these structures in the v-component, close to x = 55 for t = 75, is shown in Fig. 8. It is
observed that both the modulus and phase of these density dips resemble those of the dark
lump solitons. Thus, even in the case of relatively deep dark stripes, the transverse instability
leads to the formation of transient dark lump solitons.

We finally mention that we have also performed relevant simulations with transversely
perturbed antidark soliton stripes, using the initial condition for u:

u =
√

1 − w2sech(
√

1 − w2x) + iw, (32)

and a similar form for v, as in the case of dark stripe solitons. Once again, w is taken in
the form of Eq. (31), while the considered parameter values are the same as before. As one
should expect from the fact that these states are governed by an effective KP-II equation,
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Fig. 4 Contour plots showing the evolution of perturbed, relatively shallow dark soliton stripes, with w
(0)
1 =

0.6 and w
(0)
2 = 0.8 (see text). From top to bottom, left (right) panels depict the modulus of the field u (v) at

t = 0, 25, 50, and 75. The dark solitons in both components decay into 2D structures resembling KP-I lumps
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Fig. 5 A zoom of Fig. 4 depicting the modulus (top panels) and phase (bottom panels) of the fields u (left
panels) and v (right panels), at t = 75. Despite the radiation-induced perturbation, it is observed that the
emerged 2D waveforms are vorticity-free structures resembling KP-I lumps

we found that these solitons are not prone to transverse instability. In particular, as seen in
Fig. 9, the perturbation destroys the antidark stripes, which eventually decay into radiation.
Contrary to the case of dark solitons, here the instability of the antidark stripes does not give
rise to the formation of 2D structures.

5 Conclusions and discussion

In this work, we studied the formation and dynamics of vector solitons in media with a
spatially nonlocal nonlinear response. The considered model, namely a two-component non-
local nonlinear Schrödinger (NLS) equation featuring a defocusing nonlinearity, finds appli-
cations in the interaction of two optical beams of different frequencies, which propagate in
an azo-dye-doped nematic liquid crystal. We considered solutions that propagate on top of
a continuous-wave solution in both components, and we employed a multiscale expansion
method to asymptotically reduce the original vector model to a completely integrable scalar
one, namely to the well-known Kadomtsev–Petviashvili (KP) equation. This way, line and
lump KP solitons were used for the construction of approximate stripe soliton and lump
solitons on the cw background.
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Fig. 6 Similar to Fig. 4, but now for relatively deep dark soliton stripes, with w
(0)
1 = 0.3 and w

(0)
2 = 0.4
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Fig. 7 A zoom of Fig. 6 depicting the modulus (top panels) and phase (bottom panels) of the fields u (left
panels) and v (right panels), at t = 75. It is observed that the 2D waveforms in both components are vortex–
antivortex pairs

Fig. 8 A zoom of Fig. 6 showing the modulus (left panel) and phase (right panel) of 2D structures, located
close to x = 55, that are formed in the field v at t = 75. These structures are density dips resembling KP-I
lumps

Our analysis revealed that the version of the KP equation (KP-I or KP-II), as well as the type
of solitons (dark or antidark) on the background, is determined by the degree of nonlocality
of the original system. In particular, we found that if ν is the parameter characterizing the
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Fig. 9 Contour plots depicting the evolution of the modulus of the field u, carrying a perturbed antidark
soliton; shown are snapshots at t = 0 [initial condition—see Eq. (32)], t = 25, t = 50, and t = 75

degree of nonlocality, then there exists a critical value νc (depending on the parameters of the
system and the background amplitudes) such that: if ν > νc, then the KP equation is of KP-II
type, and the solitons are antidark; on the other hand, if ν < νc (i.e., when nonlocality is weak
and we are thus closer to the local NLS limit), then the KP equation is of KP-I type, and the
solitons are dark. The change of character of the KP equation below or above the nonlocality
threshold is reminiscent of a similar situation in the shallow water wave problem: if surface
tension is weak, then the KP is of KP-II type, while if it is strong (in the sense that it dominates
gravity), then the KP is of KP-I type. This suggests that the degree of nonlocality plays the
role of an analog of surface tension, similarly to the case of the pertinent single-component
nonlocal NLS model [50].

Our analytical approach shows that the soliton amplitudes in the u- and v-components
are connected to each other and thus they are governed by a single KP equation. The soliton
states that were predicted to occur are: antidark and dark soliton stripes (corresponding to
the stable and unstable line solitons of KP-II and KP-I, respectively), as well as dark lump
solitons (pertinent to KP-I). In addition, we performed numerical simulations to study the
transverse dynamics of the stripe solitons. This investigation was motivated by the following
question: are dark (or antidark) soliton stripes of the nonlocal NLS prone to the transverse
instability, given that they obey an effective KP-I (or KP-II) equation, where line solitons
are unstable (stable)? Our simulations revealed that, indeed, relatively shallow dark stripe
solitons decay into dark lumps, which correspond to the stable 2D soliton solutions of the
KP-I equation. In addition, relatively deep dark stripes were found to decay into a chain of
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vortex–antivortex pairs, as well as into a transient array of dark lump solitons. Thus, we can
safely conclude that dark lumps, as well as vortex–states can spontaneously be formed as
a result of the transverse (“snaking”) instability of dark soliton stripes in nonlocal media.
On the other hand, we have found that antidark solitons that are governed by an effective
KP-II equation are not prone to snaking: indeed, under transverse perturbation, they decay
into radiation, without giving rise to the emergence of 2D structures.

Our analysis and results pave the way for other interesting future research themes. For
instance, it would be interesting to investigate if other, quasi-one-dimensional states having,
e.g., the form of dark-bright soliton stripes, or ring solitons of the dark or the antidark type,
as well as purely 2D structures, such as vector vortices or vortex-bright solitons [51] can be
supported in multi-component nonlocal media. Such investigations are currently in progress,
and relevant results will be reported elsewhere.

Appendix: Derivation of the KP equation

Here, we provide details on the perturbation expansion and the derivation of the KP equation.
First, Eq. (12a) yields:

O(ε3/2) : −cρ1X + d1ρ0φ1XX = 0, (33)

O(ε5/2) : ρ1T − cρ2X + d1
[
(ρ1φ1X )X + ρ0φ1YY + ρ0φ2XX

] = 0. (34)

From Eq. (12b), we obtain:

O(ε) : −cφ1X + 2g1θ1 = 0, (35)

O(ε2) : φ1T − cφ2X + 2g1θ2 + d1

2

(
φ2

1X − 1

2ρ0
ρ1XX

)
= 0. (36)

Equation (12c) yields:

O(ε3/2) : −cσ1X + d2σ0ψ1XX = 0, (37)

O(ε5/2) : σ1T − cσ2X + d2
[
(σ1ψ1X )X + σ0φ1YY + σ0ψ2XX

] = 0. (38)

From Eq. (12d), we obtain:

O(ε) : −cψ1X + 2g2θ1 = 0, (39)

O(ε2) : ψ1T − cψ2X + 2g2θ2 + d2

2

(
ψ2

1X − 1

2σ0
σ1XX

)
= 0, (40)

and, finally, Eq. (12e) leads to:

O(ε) : −qθ1 + g1ρ1 + g2σ1 = 0, (41)

O(ε2) : νθ1XX − 2qθ2 + 2(g1ρ2 + g2σ2) = 0. (42)

We consider the linear equations (33), (35), (37), (39) and (41). This system can be simplified
as follows: differentiate Eqs. (35) and (39) with respect to X , and substitute θ1 from Eq. (41),
φ1XX from Eq. (33) and ψ1XX from Eq. (37). This yields the following two equations:

(

− c2

d1ρ0
+ 2g2

1

q

)

ρ1X + 2g1g2

q
σ1X = 0, (43)
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2g1g2

q
ρ1X +

(

− c2

d2σ0
+ 2g2

2

q

)

σ1X = 0. (44)

The above system for the unknown functions ρ1X and σ1X has nontrivial solutions as long
as the determinant of the coefficients is equal to zero. This requirement leads to the speed of
sound, given in Eq. (15).

Next, we proceed with the equations at the next order of approximation, namely with
Eqs. (34), (36), (38), (40) and (42). First, multiply (36) by d1ρ0

c and (40) by d2σ0
c , respectively,

and differentiate them with respect to X . Then, adding the resulting equations with (34) and
(38), respectively, we obtain the following system of equations:

−cρ2X + ρ1T + d1(ρ1φ1X )X + d1ρ0φ1YY + d1ρ0

c
φ1T X + 2d1g1ρ0

c
θ2X

+ d2
1 ρ0

2c
(φ1X )2

X − d2
1

4c
ρ1XXX = 0, (45)

− cσ2X + σ1T + d2(σ1ψ1X )X + d2σ0ψ1YY + d2σ0

c
ψ1T X + 2d2g2σ0

c
θ2X

+ d2
2 σ0

2c
(ψ1X )2

X − d2
2

4c
σ1XXX = 0, (46)

νθ1XX − 2qθ2 + 2(g1ρ2 + g2σ2) = 0. (47)

This system can be further simplified as follows. Multiply Eqs. (45) and (46) by − g1
qc and

− g2
qc , respectively, and add the resulting equations. Then, substituting θ2 from Eq. (47), and

using Eqs. (33), (37) and (43), we derive the KP equation (19).
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