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Abstract. The periodic, traveling wave solutions of all four versions of the Davey-

Stewartson system (namely the focusing and the defocusing cases of both the Davey-

Stewartson I and the Davey-Stewartson II equations) are derived and classified. For all

four versions, these solutions are described in terms of elliptic functions. Special reduc-

tions and limiting cases, including harmonic limits, soliton limits, and one-dimensional

solutions, are also explicitly discussed.
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1. Introduction and Background

Equations of nonlinear Schrödinger (NLS) type arise as physical models in a number of

different physical contexts, ranging from water waves, to optics, Bose-Einstein condensates,

plasmas and more [11,31,35,39]. The simplest and most well-known case is of course that

of the cubic NLS equation itself in one spatial dimension. There are also many physical

contexts, however, in which the system is not confined to just one coordinate, and two

spatial dimensions are necessary to accurately describe the dynamics. In these situations,

more general systems of equations of NLS type often arise, in which the dynamics of an

NLS-type weakly nonlinear envelope to that of a “mean field” [10, 14, 54]. One such case

is that of the equations that model the evolution of wave packets in shallow water [10],

a special limit of which gives rise to the Davey-Stewartson system [20]. Similar systems of

NLS-type equations with coupling to mean fields have also been derived in optical materials

with quadratic nonlinearity [1,2].

Like the NLS equation [56,57], the Davey-Stewartson system of equations is also an in-

tegrable system [6]. As such, it possesses a deep mathematical structure — cf. [6], including

the existence of a Lax pair, the Painlevé property [8,9,47,49], the amenability of its initial

value problem to inverse scattering [26, 27], the existence of a rich family of solutions,
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including solitons as well as exponentially localized objects called dromions [17,28], even

more exotic solutions [48] and more. Because of this, the Davey-Stewartson system contin-

ues to a very active topic of study [12,29,36,37,42,52,53]. Nonlocal variants of the Davey-

Stewartson system have also been a subject of study in recent years — cf. [25, 43, 44, 50]

and references therein.

Like most other integrable evolution equations, the one-dimensional NLS equation also

admits a rich family of traveling wave periodic solutions [13,32–34], which are expressed

in terms of elliptic functions. The well-known soliton solutions are simply the limiting

case of this more general family of solutions. In turn, these solutions provide the starting

point for further investigations such as stability [18, 19, 21] as well as dispersionless or

semiclassical limits [12,36,37]. It would be safe to expect that a similar class of solutions

also exists for the Davey-Stewartson system. Surprisingly, however, no such solutions have

been presented in the literature to the best of our knowledge. Further compounding the

issue is that four variants of the Davey-Stewartson system exist, and that different authors

write the system in different ways, which can often create confusion. The present work

aims at addressing this issue and presenting the periodic, traveling wave solutions of all

four variants of the Davey-Stewartson system in a concise but self-contained manner.

This work is organized as follows. In Section 2 we introduce the four variants of the

Davey-Stewartson and we briefly review their Lax pair, invariances, and reductions, and

one-dimensional reductions. In Section 3 we derive the periodic, traveling wave solutions of

the defocusing DSII system. In Section 4 we present various examples, and in Section 5 we

discuss various distinguished limits, including one-dimensional reductions, the plane-wave

and soliton limits, and trivial-phase solutions. In Section 6 we generalize the calculations

to all four variants of the Davey-Stewartson system, and in Section 7 we end this work with

a few concluding remarks.

2. Preliminaries: Davey-Stewartson Systems, Lax Pair, Symmetries and

Reductions

The four variants of the Davey-Stewartson system. The general Davey-Stewartson equa-

tions are the system

iqt +
1

2
(qx x −σqy y ) +ψq = 0, (2.1a)

ψx x +σψy y = −ν
�

|q|2
�

x x
+σν
�

|q|2
�

y y
(2.1b)

for a complex-valued function q and a real-valued functionψ of x , y and t. The parameters

σ = ±1 and ν = ±1 determine the four possible variants of the system. Specifically, the

values σ = −1 and σ = 1 denote respectively the so-called Davey-Stewartson I (DSI) and

the Davey-Stewartson II (DSII) systems. Likewise, the values ν = −1 and ν = 1 identify

the focusing and defocusing cases, although in this case the distinction is more ambiguous,

since in this case one has focusing or defocusing behavior depending the particular spatial

reduction is considered (see below for further details). For convenience, we list the four

variants of the Davey-Stewartson system explicitly:
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(i) Focusing DSI equation (σ = −1 and ν = −1):

iqt −
1

2
(qx x + qy y) +ψq = 0,

ψx x −ψy y =
�

|q|2
�

x x
+
�

|q|2
�

y y
.

(ii) Defocusing DSI equation (σ = −1 and ν= 1):

iqt −
1

2
(qx x + qy y) +ψq = 0,

ψx x −ψy y = −
�

|q|2
�

x x
−
�

|q|2
�

y y
.

(iii) Focusing DSII equation (σ = 1 and ν = −1):

iqt +
1

2
(qx x − qy y) +ψq = 0,

ψx x +ψy y =
�

|q|2
�

x x
−
�

|q|2
�

y y
.

(iv) Defocusing DSII equation (σ = ν= 1):

iqt +
1

2
(qx x − qy y) +ψq = 0,

ψx x +ψy y = −
�

|q|2
�

x x
+
�

|q|2
�

y y
.

Note that the Davey-Stewartson equations appear written in many different ways in the

literature. For example, the equations are often written using the auxiliary field — cf. [6],

p(x , y, t) =ψ(x , y, t)− ν|q(x , y, t)|2 (2.2)

instead of ψ, which we will also employ later. Different sign choices for the dependent

and independent variables are also quite common. It might therefore be useful to briefly

review how the above four versions are obtained from their Lax pair, since this might make

it easier to switch from the present normalization choice to others. We do so next.

Lax pair. The Davey-Stewartson system (2.1) is the reduction r(x , y, t) = νq∗(x , y, t) of

the following more general system:

iqt +
1

2

�

qx x −σ2
oqy y

�

+ψq = 0, (2.3a)

−irt +
1

2

�

rx x −σ2
o ry y

�

+ψ r = 0, (2.3b)

ψx x +σ
2
o
ψy y = −(qr)x x +σ

2
o
(qr)y y , (2.3c)
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where the star denotes complex conjugation and σ = σ2
o
, so that the DSI system corre-

sponds to σo = i and the DSII system to σo = 1, respectively. We next show that the Lax

pair for the system (2.3) is given by

vx = Qv− iσoJvy , (2.4a)

vt = Av+σo

�

Qvy − iσoJ vy y

�

, (2.4b)

where

J =

�

1 0

0 −1

�

, Q(x , y, t) =

�

0 q

r 0

�

, A(x , y, t) =

�

a11 a12

a21 a22

�

,

and with

ψ = i(a22 − a11), (2.5a)

�

∂x + iσoJ∂y

�

Ad = −
1

2
iJ
�

∂x − iσoJ∂y

�

(qr). (2.5b)

Above and below, the matrices Ad and Ao denote respectively the diagonal and off-diagonal

parts of a matrix A= Ad +Ao. That is, we show that (2.3) is equivalent to the compatibility

condition vt x = vx t of (2.4), together with the constraints (2.5a) and (2.5b). (Note that one

does not have the freedom to assign Ao, since Ao is already determined by the requirement

that the two parts of the Lax pair be compatible, see (2.7) below.)

It is immediate to verify that (2.3c) follows from (2.5a) and (2.5b). We must therefore

show that (2.3a) and (2.3b) are equivalent to the constraint vt x = vx t . To this end, note

that

[Q,Ad] = (a22 − a11)JQ, [Q,Ao] = (a21q− a12r)J ,

where [M , N] = MN − N M is the matrix commutator. Direct computation yields

vx t =
�

Q t +QA− iσoJAy

�

v+σo

�

Q2 − iσoJQ y − iJA
�

vy −σ3
o
vy y y ,

vt x =
�

Ax + AQ+σoQQ y − iσ2
0JQ y y

�

v+σo

�

Q x +Q2 − iAJ − 2iσoJQ y

�

vy −σ3
ovy y y .

The compatibility condition vx t = vt x is therefore equivalent to the two equations

iQ t + i[Q,A]− i
�

∂x + iσoJ∂y

�

A− iσoQQ y −σ2
o
JQ y y = 0, (2.6a)

[A, J] + i
�

∂x − iσoJ∂y

�

Q = 0. (2.6b)

(Note that terms containing higher derivatives of v cancel automatically.) Since [A, J] =

−2JAo, it then follows from (2.6b) that

Ao =
1

2
iJ
�

∂x − iσoJ∂y

�

Q, (2.7)

which shows that, as anticipated, Ao is not an independent quantity. In turn, using (2.7),

we have

[Q,Ao] =
1

2

�

σo(qry − qy r)− i(qr)x
�

J .
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Splitting (2.6a) into its diagonal and off-diagonal parts then yields

1

2

�

iσo(qry − qy r) + (qr)x
�

J − i
�

∂x + iσoJ∂y

�

Ad − iσoQQ y = 0, (2.8a)

iQ t + i(a22 − a11)JQ− i
�

∂x + iσoJ∂y

�

Ao −σ2
oJQ y y = 0. (2.8b)

One can now verify that the left-hand-side of (2.8a) is equivalent to (2.5b). Similarly, using

(2.5a) and (2.7) one can simplify (2.8b) to yield

iJQ t +ψQ+
1

2

�

∂x x −σ2
o
∂y y

�

Q = 0,

whose off-diagonal entries are precisely (2.3a) and (2.3b).

Symmetries. All four cases of the DS equations are invariant under a number of trans-

formations. Specifically, if q(x , y, t) and ψ(x , y, t) are any solutions of (3.1), so are the

following, where all the transformation parameters are assumed to be real:

1. Space-time translations:

q̃(x , y, t) = q(x − x0, y − y0, t − t0),

ψ̃(x , y, t) =ψ(x − x0, y − y0, t − t0).

2. Galilean transformations:

q̃(x , y, t) = q(x − kt, y +σl t, t)ei(kx+l y− 1
2 (k

2−σl2)t), (2.9a)

ψ̃(x , y, t) =ψ(x − kt, y +σl t, t). (2.9b)

3. Phase rotations:

q̃(x , y, t) = q(x , y, t)eiC t , (2.10a)

ψ̃(x , y, t) =ψ(x , y, t) + C . (2.10b)

4. Scaling:

q̃(x , y, t) = aq(ax , a y, a2 t),

ψ̃(x , y, t) = a2ψ(ax , a y, a2 t).

The above symmetries will allow us to identify the physical meaning of the parameters

appearing in the periodic solutions. Importantly, however, unlike the two-dimensional NLS

equation, none of the variants of the Davey-Stewartson system are rotationally invariant.
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One-dimensional reductions of the Davey-Stewartson system. The Davey-Stewartson

system (2.3) admits self-consistent reductions to various one-dimensional systems, as we

discuss next.

Let us first consider fields that are independent of y. In this case (2.3c) yields simply

(for bounded solutions and up to phase rotations)ψ = −qr, and (2.3a) and (2.3b) become

iqt +
1

2
qx x − q2r = 0, −irt +

1

2
rx x − r2q = 0.

The self-consistent reduction r = νq∗ then yields the one-dimensional defocusing and fo-

cusing nonlinear Schrödinger equation when ν= 1 and ν= −1, respectively, as usual.

Now consider the reduction to fields that are independent of x . In this case (2.3c) yields

ψ= qr, and now (2.3a) and (2.3b) become

iqt −
1

2
σqy y + q2r = 0, −irt −

1

2
σry y + r2q = 0.

Interesting, whether one gets the defocusing or the focusing NLS equation now also de-

pends on the sign of σ, and not only on whether r = q∗ or r = −q∗. Specifically, let r = νq∗

with ν = ±1 as before. When σ = 1 the cases ν = 1 and ν = −1 yield respectively the

defocusing and focusing NLS equation, as before. However, when σ = −1 the situation

is reversed, and ν = 1 and ν = −1 yield respectively the focusing and defocusing NLS

equation.

Periodic solutions of the y-independent reductions of the Davey-Stewartson system.

As discussed above, when q andψ are independent of y both the DSI and the DSII systems

reduce to the one-dimensional NLS equation. For later purposes, it is useful to briefly recall

the periodic solutions of these one-dimensional systems.

Specifically, when ν = 1 and q and ψ are independent of y, both DSI and DSII reduce

to the defocusing NLS equation

iqt +
1

2
qx x − |q|2q = 0. (2.11)

Eq. (2.11) has stationary solutions of the form — cf. [18],

q(x , t) = R(x)ei(φ(x)−ωt), (2.12)

where the relevant functions and the corresponding parameters read

R2(x) = A−m cn2 (x , m), φ(x) =

∫ x

0

J1

R2(s)
ds, (2.13a)

ω =
1

2
(3A− 2m+ 1), J2

1 = A(A−m)(A−m+ 1), (2.13b)

together with the constraint A≥ m. Conversely, when ν = −1, the y-independent reduction

of the DSI and DSII system yields the focusing NLS equation

iqt +
1

2
qx x + |q|2q = 0. (2.14)
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Stationary solutions of (2.14) in the form (2.12) yields (e.g., see [21])

R2(x) = A+m cn2 (x , m), φ(x) =

∫ x

0

J1

R2(s)
ds,

ω= −1

2
(3A+ 2m− 1), J2

1 = −A(A+m)(A+m− 1)

with the constraint 0≤ A≤ 1−m. We will recover all of the above solutions as reductions

of the more general solutions of the focusing DSII system.

3. Periodic Traveling Wave Solutions of the Defocusing DSII Equation

For concreteness, we begin by considering the case ofσ = ν = 1, namely, the defocusing

DSII equation, of the general Davey-Stewartson system, which we now find it convenient

to rewrite using the auxiliary field p(x , y, t) introduced in (2.2) as

iqt +
1

2

�

qx x −σqy y

�

+σ
�

p+ ν|q|2
�

q = 0, (3.1a)

px x +σpy y + 2ν
�

|q|2
�

x x
= 0. (3.1b)

Later on we will see in Section 6 that similar calculations can be carried out for all four

variants of the Davey-Stewartson system.

Stationary solutions. Taking advantage of the Galilean invariance of the Davey-Stewart-

son system, we first look for stationary solutions for the defocusing DSII equation, i.e.,

solutions for which both |q|2 and p are independent of time. That is, we look for solutions

in the form

q(x , y, t) = R(z)ei(φ(z)−ωt), (3.2a)

p(x , y, t) = P(z), (3.2b)

z = ax + b y (3.2c)

with R, φ and P real functions of z and a, b and ω are real parameters. We also look for

the functions R and P to be periodic.

Using the definitions of q and p in the form of (3.2), (3.1b) becomes (a2 + b2)P ′′ +
2a2(R2)′′ = 0, which in turn yields

�

a2 + b2
�

P + 2a2R2 = E1z + E2. (3.3)

Since we want the left-hand side of (3.3) to be periodic, we need to take E1 = 0. Also,

without loss of generality, the phase rotation symmetry allows us to neglect the constant

E2, or equivalently take E2 = 0, thus obtaining simply

P(z) = − 2a2

a2 + b2
R2(z). (3.4)
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Note that P is time-independent, as anticipated. Next, substituting (3.4) in (3.1a), us-

ing (3.2a) and separating the real and imaginary parts yields, respectively,

ωR+
1

2

�

a2 − b2
� �

R′′ − R(φ′)2
�

− a2 − b2

a2 + b2
R3 = 0, (3.5a)

Rφ′′ + 2R′φ′ = 0. (3.5b)

Eq. (3.5b) can be solved immediately for φ′, to give

φ′(z) =
J1

R2(z)
, (3.6)

where J1 is an arbitrary integration constant.

In turn, substituting (3.6) in (3.5a) reduces it to

ωR+
1

2

�

a2 − b2
�

�

R′′ −
J2

1

R3

�

− a2 − b2

a2 + b2
R3 = 0. (3.7a)

Multiplying by 2R′, integrating,

�

a2 − b2
� �

g′
�2
+ 4

�

b2 − a2

a2 + b2
g3 + 2ωg2 + 2J2 g −

�

a2 − b2
�

J2
1

�

= 0, (3.7b)

where J2 is another arbitrary integration constant. Eq. (3.7b) is a differential equation of

the form (g′)2 = 4P3(g), where P3(·) is a cubic polynomial. Looking for solutions in the

form g(z) = A+ BY 2 maps (3.7b) into the ODE

(Y ′)2 =
c−2

Y 2
+ c0 + c2Y 2 + c4Y 4, (3.7c)

where the coefficients are

c4 =
B

a2 + b2
, (3.8a)

c2 =
3A(a2 − b2)− 2ω(a2 + b2)

a4 − b4
, (3.8b)

c0 =
3A2(a2 − b2)− (4ωA+ J2)(a

2 + b2)

(a4 − b4)B
, (3.8c)

c−2 =
(a2 − b2)A3 − (2ωA2 + J2A)(a2 + b2)− (a4 − b4)J2

1

(a4 − b4)B2
. (3.8d)

Imposing that (3.7c) matches the ODE satisfied by the Jacobian elliptic cosine [41], namely,

(Y ′)2 = (1− Y 2)(1−m+mY 2), yields

c−2 = 0, c0 = 1−m, c2 = 2m− 1, c4 = −m. (3.9)

This way we finally obtain

R2(z) = A+ B cn2(z, m), (3.10)
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where

B = −m
�

a2 + b2
�

, (3.11a)

ω =
(a2 − b2)
�

3A+ (1− 2m)(a2 + b2)
�

2(a2 + b2)
, (3.11b)

J2
1
=

A
�

A−m(a2 + b2)
� �

A+ (1−m)(a2 + b2)
�

a2 + b2
, (3.11c)

J2 = −
a2 − b2

a2 + b2

�

3A2 + 2A(1− 2m)(a2 + b2) +m(m− 1)(a2 + b2)2
�

. (3.11d)

Therefore, the stationary solution (3.2) is completely determined by four parameters:

a, b, A and m. Importantly, however, self-consistency requires that some of the parameters

must satisfy certain constraints. In particular, J2
1

and R2(z) must be positive (cf. (3.6) and

(3.10)). It is easy to see that both requirements are satisfied when

A≥ m
�

a2 + b2
�

. (3.12)

It should be noted that (3.11c) leaves the sign of J1 undetermined. However, both sign

choices for J1 yield valid solutions. This is because changing the sign for J1 is equivalent

to changing the sign of z (as per (3.6), since (3.10) implies that R(z) is even in z), and the

Davey-Stewartson system is invariant under x 7→ −x and/or y 7→ −y.

Traveling wave solutions. Next we use the invariances presented in Section 2 to gen-

eralize the above stationary solutions and obtain the most general periodic solutions of

the defocusing DSII equation. Specifically, applying Galilean invariance (2.9) yields the

following family of traveling wave solutions:

q(x , y, t) = R(Z)ei(φ(Z)+kx+l y−Ωt), (3.13a)

p(x , y, t) = − 2a2

a2 + b2
R2(Z), (3.13b)

Z(x , y, t) = ax + b y − (ak − bl)t, (3.13c)

where

Ω=ω+
1

2

�

k2 − l2
�

, (3.13d)

φ(·) is still determined by (3.6), R(·) is still determined by (3.10), and the solution param-

eters are determined by (3.11) together with the constraint (3.12). We should note that,

even though we used the symbol Z for the similarity variable in (3.13c), for simplicity we

will usually still denote it as z below. The proper meaning should be clear from the context,

and will anyhow be uniquely determined by the value of the parameters k and l.

Summarizing, up to inessential phase rotations and space translations (which altogether

would add three additional free parameters), the periodic solutions of the defocusing DSII

equations are determined by six independent parameters: a, b, k, l, A and m. Importantly,

each of these parameters has a direct physical interpretation. Specifically:
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• a and b are the scaling parameters for the x and y coordinates, respectively. Namely,

higher values of a and/or b yield thinner solutions with respect to x and/or y.

• k and l are the wavenumbers for the x and y coordinates, respectively, which (by

Galilean invariance) also determine the speed of propagation with respect to x&y.

As a special case, setting k = 0 and/or l = 0 yields solutions that are stationary with

respect to x and/or y.

• A and m determine the solution profile. Indeed, it should be obvious from (3.10) that

the maximum and minimum values of |q(x , y, t)|2 are respectively A and A−m(a2 +

b2).

We will show below that, as with the focusing and defocusing NLS equations, the lim-

iting case m= 0 yields solutions with constant amplitude, whereas the limiting case m = 1

yields the soliton solutions of the Davey-Stewartson system.

4. Examples

In this section and the following one, we elaborate on the traveling wave solutions

q(x , y, t) and p(x , y, t) derived in Section 3. We begin by first presenting some concrete

examples.

The profile of |q(z)| as a function of z only depends on a2 + b2, not on the individual

values of a and b. Figs. 1 and 2 show plots of |q| and p as a function of z for k = l = 0 and

different values of m and different values of a and b satisfying the constraint a2 + b2 = 1.

With these choices, (3.13a) and (3.13b) yield

|q(z)|2 = A−m cn (z, m)2, p(z) = − 2a2

a2 + b2

�

A−m cn (z, m)2
�

. (4.1)

In the limit m = 0, both |q| and p reduce to a constant, whereas, in the opposite limit m= 1,

one obtains the familiar cusp-shaped profile of the black solitons of the defocusing NLS

equation. Both these limits are discussed in detail in Section 5, where we also show that,

with the above parametrization, gray solitons are obtained when A> 1. This is illustrated

by Fig. 2, which shows the same kind of plots as in Fig. 2 but now with A= 2.

While choosing different values of a and b subject to a2+b2 = 1 leaves |q(z)| unaffected,

it is important to realize, however, that doing so does amount to a rescaling of p(z), as is

easily seen in (4.1). The most dramatic manifestation of this phenomenon occurs when a =

0 and b = ±1, in which case p(z) is identically zero. This is an important consequence of

the Davey-Stewartson system not being invariant under rotations of the spatial coordinates.

Similarly, even though the value of |q(z)| as a function of z only depends on the value

of a2 + b2, the spatial profile of |q(x , y, t)| as a function of x and y does depend on the

individual values of a and b. This phenomenon is clearly illustrated in Figs. 3, 4 and 5

which show plots of |q(x , y, t)| and p(x , y, t) as functions of x and y at t = 0 for different

choices of a and b corresponding to the profile for |q(z)| shown in Fig. 1. (Recall that all the

solutions presented in this work are traveling wave solutions; therefore their spatial profile
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Figure 1: Plots of |q(z)| (top row) and p(z) (bottom row) in the reduction A= 1, a = 1, b = 0, k = l = 0.
Left: m = 1/4. Center: m = 1/2. Right: m = 1. Note p(z) was shifted upward by 2 via (2.10) so that
all its values are non-negative.

Figure 2: Same Fig. 1, but now with a = b = 1/
p

2 and A= 2.

is independent of t.) Similarly, Fig. 6 shows plots of |q(x , y, t)| and p(x , y, t) corresponding

to the profile for |q(z)| shown in Fig. 2.

5. Special Cases, Reductions and Distinguished Limits

We now discuss several reductions and distinguished limits of the general traveling

wave solutions (3.13).

One-dimensional solutions. A special case of the traveling wave solutions (3.13) is that

of effectively one-dimensional solutions, namely, solutions whose modulus is independent
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Figure 3: Plots of |q(x , y, 0)| (top row) and p(x , y, 0) (bottom row) in the reduction A = 1, k = l = 0,
and with (a, b) = (1, 0). Left: m = 1/4. Center: m = 1/2. Right: m = 1. Note p(z) was shifted upward
by 2 via (2.10) so that all its values are non-negative.

Figure 4: Same as Fig. 3, but with (a, b) = (0, 1). Since p(x , y, t) is identically zero for all (x , y, t) in
this reduction, the corresponding plots have been omitted for brevity.

of either x or y. Specifically, |q(x , y, t)| is independent of y when b = 0. Note the expres-

sion for q(x , y, t) is still y-dependent if l 6= 0. However, this y-dependence is trivial, as

it is simply a linear exponential (corresponding to a plane wave), and one could also take

l = 0 without loss of generality thanks to Galilean invariance. In any case, (3.13) with

b = 0 yields, up to Galilean boosts in y, the general periodic solutions of the defocusing

NLS equation (2.11) as

q(x , y, t) = R(z)ei(φ(z)+kx+l y−Ωt), (5.1)

where R(z) and φ(z) are given by Eqs. (3.10) and (3.6), respectively, with z = a(x − kt)

and B, Ω and J1 as before. When a = 1 and k = 0, the above parameter dependencies

reduce to (2.13). Also, in the limiting case m = 1, the above yield the soliton solutions

of the defocusing NLS equation as discussed in detail below. Similarly, solutions whose
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Figure 5: Same as Fig. 3, but with (a, b) = (1/
p

2, 1/
p

2). As in Fig. 2, the plots of p(x , y, t) are shifted
by 1.

Figure 6: Same as Fig. 5, but with A= 2. As in Fig. 2, the plots of p(x , y, t) are shifted by 1.

modulus only depends on y and t are obtained when a = 0, in which case the solution

q(y, t) is given by a similar expression as before, namely

q(x , y, t) = R(z)ei(φ(z)+kx+l y−Ωt), (5.2)

where now z = b(y + l t), and B, Ω and J1 as before.

Trivial-phase solutions. Another distinguished limiting case is that of trivial-phase (or

“flat-phase”) solutions, which, as with the focusing and defocusing NLS equations [18,21],
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are obtained J1 = 0. As can be seen from (3.11c) (and again similarly to the case of the

defocusing NLS equations), for the defocusing DSII system there is only one family of flat-

phase solutions, which is obtained when

A= m
�

a2 + b2
�

, (5.3)

in which case φ(Z) is identically zero (cf. (3.6)) and the solution reduces simply to

q(x , y, t) = m
p

a2 + b2 sn(Z , m)ei(kx+l y−Ωt)

with Z and Ω given by (3.13) with (5.3).

Limit m = 0, plane-wave solutions. Next we discuss the reductions of the periodic trav-

eling wave solutions obtained in the limiting cases m = 0 and m = 1, starting with the

former. When m = 0, the radial part of the field q(x , y, t) reduces simply to R2 = A. Ne-

glecting the choice of sign (which can always be taken into account via spatial reflections)

we then have

q(x , y, t) =
p

Ae
i

�

J1
A z+kx+l y− 1

2 (k
2−l2+2ω)t
�

,

p(x , y, t) = − 2a2

a2 + b2
A,

where J1 and ω are given by (3.11) with m= 0.

Limit m = 1, soliton solutions. At the opposite limit, when m= 1, one obtains the soliton

solutions of the defocusing DSII system. For m = 1, the radial part of (3.13) becomes

R2(z) = A−
�

a2 + b2
�

sech2(z), (5.4)

where the constraint (3.12) reduces to

A> a2 + b2, (5.5)

and the other solution parameters are

ω=
1

2

(a2 − b2)
�

3A− (a2 + b2)
�

a2 + b2
, J1 = δA

√

√

√

�

A− (a2 + b2)
�

a2 + b2
, (5.6)

where δ = ±1. (Recall that both signs of δ lead to acceptable solutions.) Integrating (3.6)

with m = 1 from 0 to z and using (5.4), the phase φ(z) reduces to

φ(z) = δ

√

√A− (a2 + b2)

a2 + b2
z + arctan

�

δ

√

√ a2 + b2

A− (a2 + b2)
tanh z

�

.
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Thus, putting everything together, we can write the soliton solutions of the defocusing DSII

equation as

q(x , y, t) =
�

δ
Æ

A− (a2 + b2) + i
p

a2 + b2 tanh z
�

× exp

�

i

�

J1z + kx + l y − 1

2

�

k2 − l2 + 2ω
�

t

��

, (5.7)

p(x , y, t) = − 2a2

a2 + b2

�

A− (a2 + b2) sech2 z
�

(5.8)

with

z(x , y, t) = ax + b y − (ak − bl)t,

J1 and ω given by (5.6), and where A satisfies the constraint (5.5).

Reduction to the dark solitons of the defocusing NLS equation. It is instructive to see

how, in the special case b = l = 0, the soliton solutions (5.7) reduce to the well-known dark

soliton solutions of the defocusing NLS equation up to Galilean transformations. Setting

b = l = 0 reduces the constraint (5.5) further to A > a2. To ensure that the resulting

solutions tend to constant values as x →±∞, we then set

k = −δ sgn(a)
p

A− a2 (5.9)

in (5.7) (where the signum function sgn(a) takes value +1 for a > 0, −1 for a < 0 and 0

for a = 0), which yields

q(x , t) =
�

δ
p

A− a2 + i|a| tanh(z)
�

e−iAt , (5.10)

where

z = a
�

x +δ sgn a
p

A− a2t
�

. (5.11)

Specifically, the asymptotic values of the solution (5.11) are

q±∞(t) = lim
x→±∞

q(x , t) =
�

δ
p

A− a2 ± i|a|
�

e−iAt .

We can therefore rewrite (5.10) by introducing the angle 0≤ β ≤ π such that

cosβ = δ

√

√

1− a2

A
, sinβ =

√

√a2

A
.

This allows us to write (5.10) in the familiar form of the dark solitons solutions of the

defocusing NLS equation [57]

q(x , t) =
p

A
�

cosβ + i sinβ tanh
�p

A(x sinβ + t cosβ)
��

e−iAt.
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A wider class of stationary solutions. The stationary solutions derived in Section 3 cor-

respond to setting k = l = 0 in the general expression of the traveling wave solutions

(3.13). A wider class of stationary solutions, however, can be obtained instead by enforc-

ing the constraint

ak − bl = 0 (5.12)

in (3.13), which allows one to eliminate one solution parameter. The possible cases can be

classified as: (i) k = 0, (ii) l = 0, and (iii) k 6= 0 and l 6= 0. We next discuss each of these

cases.

(i) If k = 0, the constraint (5.12) implies l = 0 or b = 0. If k = l = 0, the solutions

reduce back to the stationary ansatz (3.2). If k = b = 0, however, then z = ax ,

the constraint reads A > ma2, and the periodic solutions (3.13) reduce to the y-

independent solutions (5.1).

(ii) A similar situation is obtained if the constraint (5.12) is satisfied by taking l = 0, in

which case the periodic solutions (3.13) reduce to the x -independent solutions (5.2)

(including the stationary solutions as a special case).

(iii) If k 6= 0 and l 6= 0, the stationary solutions are still given by the general traveling

wave expression (3.13), but where Z = ax+ b y is now independent of time, and the

constraint (5.12) allows one to eliminate one of the four parameters a, b, k and l in

terms of the other three.

Summarizing, the defocusing DSII equation possesses a five-parameter class of station-

ary solutions, which generalizes the four-parameter class of solutions found earlier. (This

situation should be compared to that of the defocusing NLS equation, which has a three-

parameter family of stationary solutions, parameterized by A, a and m).

6. Periodic Traveling Wave Solutions of All Four Variants of the DS System

We now extend the calculations of Section 3 to find periodic traveling wave solutions for

all four Davey-Stewartson equations written in the form (2.3) using the modified auxiliary

field p(x , y, t) defined in (2.2). We begin as before from the ansatz (3.2) for the stationary

solutions. Using the same steps as for the defocusing DSII equation, (3.1b) yields

P(z) = − 2νa2

a2 +σb2
R2(z).

Upon substitution into (3.1a), the imaginary part can be solved for φ′(z) as before, to

obtain

φ′(z) =
J1

R2(z)
. (6.1)

In turn, substituting (6.1) into (3.1a) yields an ODE which is then integrated once to obtain

1

2

�

a2 −σb2
�

(R′)2 +
(a2 −σb2)J2

1

2R2
+ J2 +ωR2 − 1

2
ν

a2 −σb2

a2 +σb2
R4 = 0.
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Multiplying this by R2, setting R2 = A + BY 2 and performing the same steps as in the

defocusing DSII case now reduces the above equation to the same form as (3.7c), but where

now

c4 =
Bν

a2 +σb2
, c2 =

3Aν(a2 −σb2)− 2ω(a2 +σb2)

(a2 −σb2)(a2 +σb2)
, (6.2a)

c0 =
3ν(a2 −σb2)A2 − 4ω(a2 +σb2)A− 2(a2 +σb2)J2

B(a2 −σb2)(a2 +σb2)
, (6.2b)

c−2 =
1

B2

�

ν(a2 −σb2)A3 − 2ω(a2 +σb2)A2 − 2J2(a
2 + b2σ)A

(σa2 − b2)(a2 + b2σ)
− J2

1

�

. (6.2c)

If σ = ν = 1, (6.2) reduce to (3.8). By requiring that the ODE (3.7c) matches that

for the elliptic cosine, as before, one obtains (3.10), and, solving for the parameters, (6.2)

yield (3.11). In the other three cases, by applying the same approach of defocusing DSII, the

above setting allows us to express the periodic solutions in all four cases in the same form

as (3.10). By the same approach (and after some simplification) the general parameter

dependencies read

B = −mν
�

a2 + b2σ
�

,

ω =
(σa2 − b2)
�

3νA+ (1− 2m)(a2 +σb2)
�

2(a2 +σb2)
,

J2
1 =

Aν
�

A−mν(a2 + b2σ)
� �

A+ ν(1−m)(a2 + b2σ)
�

a2 + b2σ
,

J2 = −
ν(σa2 − b2)

2(a2 + b2σ)

�

m(m− 1)(a2 + b2σ)2 − 2ν(2m− 1)(a2 + b2σ)A+ 3A2
�

.

The above calculations show that, for all four variants of the Davey-Stewartson sys-

tem, the stationary solutions are completely determined by four independent parameters

A, m, a, b. The most significant difference between the various cases lies in the precise pa-

rameter dependence (as specified by the above equations) and in the parameter constraints.

Specifically, as with the defocusing DSII equation, we have two such constraints: (i) R2(z)

must be non-negative for all z, and (ii) J2
1

must also be non-negative. If σ = ν = 1, these

constraints obviously reduce to (3.12). Next we proceed to discuss the remaining three

cases in detail, and we will see that in some cases, the constrains end up being consider-

ably more complicated.

Focusing DSII. Here σ = 1 ν = −1, and the matching yields

B = −m
�

a2 + b2
�

with the constraint

0≤ A≤ (1−m)
�

a2 + b2
�

.
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Defocusing DSI. Here σ = −1 ν= 1, and the matching yields

B = −m
�

a2 − b2
�

with the constraints

A−m
�

a2 − b2
�

≥ 0,
A−m(a2 − b2)

a2 − b2
≥ −1.

Focusing DSI. Here σ = −1 ν = −1, and the matching yields

B = m(a2 − b2)

with the constraints

A+m(a2 − b2)≥ 0,
A+m(a2 − b2)

a2 − b2
≤ 1.

Traveling wave solutions, reductions and limiting cases. Now that the stationary so-

lutions of all four variants of the Davey-Stewartson system have been found, the traveling

wave solutions are generated by taking advantage of the Galilean invariance of the system,

namely (2.9). Since the transformation is identical to the one presented in Section 3, we

omit the resulting formulae. Also, one can study the reductions and limiting cases of these

solutions in a similar way as for the defocusing DSII system. Again, since the calculations

are very similar to those presented in Section 5, we omit them for brevity.

7. Concluding Remarks

In conclusions, we presented the full class of periodic solutions of all four versions of the

Davey-Stewartson system, we illustrated these solutions with examples, and we discussed

several distinguished limits, including one-dimensional, linear and solitonic reductions.

The results of this work should pave the way for further investigations on several dif-

ferent fronts. A first obvious question is that of the stability of all these periodic solutions.

One can expect that establishing linear stability should be relatively straightforward, even

though it involves the study of solutions of a linearized PDE, as opposed to an ODE. Indeed,

since the periodic solutions are essentially one-dimensional, it should be possible to carry

it out using similar techniques as for the KP equation [40, 55]. On the other hand, the

study of nonlinear stability might be considerably more difficult than for one-dimensional

systems [18,19,21].

Another possible avenue for further study will be the study of the semiclassical (i.e.,

small-dispersion) limit of the Davey-Stewartson system. Indeed, various studies have al-

ready revealed the emergence of nearly periodic oscillations over small spatial scales [12,

37], which indicates that periodic solutions will play a key role in the analysis.

Yet a further direction for further study will be the development of Whitham modula-

tion theory [24,51] for the Davey-Stewartson system, following the recent development of
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the Whitham modulation equations for the Kadomtsev-Petviashvili equation [4] and other

(2+1)-dimensional equations of KP type [3, 5]. We note that the availability of Whitham

modulation theory has allowed researchers to effectively study a variety of phenomena,

both for one-dimensional systems (e.g., see [7,15,16,22–24,30,38]) as well as for (2+1)-

dimensional ones [45,46]. We hope that this will also prove to be the case for the Davey-

Stewartson systems.
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