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Abstract

We characterize the long-time asymptotic behavior of the focusing nonlinear
Schrödinger (NLS) equation on the line with symmetric, nonzero boundary con-
ditions at infinity by using a variant of the recently developed inverse scattering
transform (IST) for such problems and by employing the nonlinear steepest-
descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems.
First, we formulate the IST over a single sheet of the complex plane without in-
troducing the uniformization variable that was used by Biondini and Kovačič in
2014. The solution of the focusing NLS equation with nonzero boundary condi-
tions is thereby associated with a matrix Riemann-Hilbert problem whose jumps
grow exponentially with time for certain portions of the continuous spectrum.
This growth is the signature of the well-known modulational instability within
the context of the IST. We then eliminate this growth by performing suitable de-
formations of the Riemann-Hilbert problem in the complex spectral plane. The
results demonstrate that the solution of the focusing NLS equation with nonzero
boundary conditions remains bounded at all times. Moreover, we show that,
asymptotically in time, the xt -plane decomposes into two types of regions: a left
far-field region and a right far-field region, where the solution equals the condi-
tion at infinity to leading order up to a phase shift, and a central region in which
the asymptotic behavior is described by slowly modulated periodic oscillations.
Finally, we show how, in the latter region, the modulus of the leading-order solu-
tion, initially obtained as a ratio of Jacobi theta functions, can be reduced to the
well-known elliptic solutions of the focusing NLS equation. These results pro-
vide the first characterization of the long-time behavior of generic perturbations
of a constant background in a modulationally unstable medium. © 2017 Wi-
ley Periodicals, Inc.

1 Introduction
The present work is devoted to the study of the long-time asymptotic behavior

of the one-dimensional focusing nonlinear Schrödinger (NLS) equation formulated
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on the line with symmetric, nonzero boundary conditions at infinity:

iqt C qxx C 2
�
jqj2 � q2o

�
q D 0;(1.1)

with q D q.x; t/ complex-valued, .x; t/ 2 R �RC, q.x; 0/ given, and with

(1.2) lim
x!˙1

q.x; 0/ D q˙:

Hereafter, q˙ are complex constants with jq˙j D qo > 0, and

(1.3) q.x; 0/ � q˙ 2 L
1;1.R˙/;

where

(1.4) L1;1.R˙/ D

�
f W R! C

ˇ̌̌̌ Z
R˙
.1C jxj/jf .x/jdx <1

�
:

The NLS equation is an important model in applied mathematics and theoretical
physics due to both its surprisingly rich mathematical structure and its physical
significance and broad applicability to a number of different areas, ranging from
nonlinear optics to water waves and from plasmas to Bose-Einstein condensates.
In particular, recall that the NLS equation is a universal model for the evolution
of almost monochromatic waves in a weakly nonlinear dispersive medium [9, 20].
Specifically, the equation was derived in the context of nonlinear optics [25,26,71],
and in the framework of fluid mechanics for water waves of small amplitude over
infinite depth [76] and finite depth [10, 49]. A rigorous justification of the model
in the latter case was also given in [29]. The equation has also been suggested
as a model for rogue waves [24, 68]. Further references on the physical aspect of
the NLS equation can be found in [63, 70]. Moreover, the NLS equation is also
one of the prototypical infinite-dimensional, completely integrable systems. A Lax
pair for the equation was derived in [81], where it was also shown that the equation
admits an infinite number of conservation laws as well as exactN -soliton solutions
for arbitrary N .

The initial value problem for the NLS equation has been studied extensively dur-
ing the past five decades and a plethora of results are available. Assuming sufficient
smoothness of the initial data, Zakharov and Shabat [81] developed in 1972 the in-
verse scattering transform (IST) for the solution of the NLS initial value problem
on the line for initial conditions with sufficiently rapid decay at infinity. In 1974
Ablowitz, Kaup, Newell, and Segur [3] generalized those results by introducing the
so-called AKNS system, which contains the NLS equation as a special case. The
IST for first-order systems was also developed rigorously by Beals and Coifman
in 1984 [6]. The periodic problem for NLS was studied by Its and Kotlyarov in
1976 [51], while the half-line and the finite interval problems were analyzed via an
appropriate extension of IST for bounded domains by Fokas and others [41, 42].
Problems with nonzero boundary conditions (NZBC) at infinity of the kind (1.2)
have also been studied. The IST for the defocusing NLS equation on the line with
nonzero boundary conditions at infinity was developed soon after the case of zero
boundary conditions [38, 82]. The IST for the focusing NLS equation on the line
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with nonzero boundary conditions at infinity was recently developed by Kovačič
and the first author [12]. (Partial results were contained in [44, 59, 65].) From a
different point of view, sharp well-posedness of the NLS equation on the line with
initial data in Sobolev spaces H s for any s � 0 was proved by Bourgain [15]
(see also [16]). Well-posedness of the NLS equation on the half-line with data
in Sobolev spaces was established independently and via different approaches by
Holmer [50]; Bona, Sun, and Zhang [14]; and Fokas, Himonas, and the second
author [40]. Further functional-analytic results for NLS can be found in Craig,
Kappeler, and Strauss [28]; Cazenave [22]; Cazenave and Weissler [23]; Kenig,
Ponce, and Vega, [58]; Ghidaglia and Saut [46]; Linares and Ponce [64]; Carroll
and Bu [21]; Kato [57]; Ginibre and Velo [47]; Tsutsumi [73]; and the references
therein.

The motivation for the present work stems from its intriguing connection with
the physical phenomenon of modulational instability (MI, also known as Benjamin-
Feir instability in the context of deep water waves [8]), namely, the instability of
a constant background with respect to long-wavelength perturbations. Modula-
tional instability is one of the most ubiquitous phenomena in nonlinear science
(e.g., see [80] and the references therein). In many cases, the dynamics of systems
affected by modulational instability is governed by the one-dimensional focusing
NLS equation. Hence, the initial (i.e., linear) stage of modulational instability can
be studied by linearizing the focusing NLS equation around the constant back-
ground. It is then easily seen that all Fourier modes below a certain threshold are
unstable, and the corresponding perturbations grow exponentially. However, the
linearization ceases to be valid as soon as perturbations become comparable with
the background. A natural question is therefore what happens beyond this linear
stage. Surprisingly, despite some early work [59–62], this question, which is re-
ferred to as the characterization of the nonlinear stage of modulational instability,
has remained essentially open for about 50 years.

Since the focusing NLS equation is a completely integrable system, a natural
conjecture (by analogy with the case of localized initial conditions) is that modu-
lational instability is mediated by solitons [45, 78]. On the other hand, Fagerstrom
and the first author [11] employed the recently developed IST for the focusing
NLS equation with nonzero boundary conditions at infinity in order to study mod-
ulational instability by computing the spectrum of the scattering problem for sim-
ple classes of perturbations of a constant background. In particular, it was shown
in [11] that there exist classes of perturbations for which no solitons are present.
Therefore, since all generic perturbations of the constant background are linearly
unstable, solitons cannot be the mechanism that mediates modulational instability,
contradicting the conjecture of [78]. Instead, in [11] the instability mechanism was
identified within the context of IST. More precisely, it was shown that the insta-
bility emerges from certain portions of the continuous spectrum of the scattering
problem associated with the focusing NLS equation. At the same time, [11] did
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not offer any insight about the actual nonlinear dynamics of the solutions of the
focusing NLS equation past the linear stage of modulational instability.

The aim of the present work is to address this challenge and characterize the
nonlinear stage of modulational instability. We do so by computing the long-time
asymptotic behavior of the solution of the focusing NLS equation. Recall that
formal but ingenious results for the long-time asymptotics of the NLS equation
with zero boundary conditions at infinity were obtained in 1976 by Segur and
Ablowitz [69] and Zakharov and Manakov [79]. In 1993, Deift and Zhou [34]
introduced a method for the rigorous asymptotic analysis of oscillatory Riemann-
Hilbert problems like those arising in the inverse problem for the solution of in-
tegrable evolution equations via IST. The Deift-Zhou method can be regarded as
the nonlinear analogue of the classical steepest-descent method used in the analy-
sis of the long-time asymptotics for linear evolution equations. The method relies
on appropriate factorizations of the jump matrices of the Riemann-Hilbert prob-
lem and suitable deformations of the associated jump contours in order to extract
the leading-order asymptotic behavior as well as obtain rigorous estimates for the
corrections.

The Deift-Zhou method was first used to compute the long-time asymptotics of
the modified KdV equation [34], and was subsequently extended and employed
in numerous works, including the study of the long-time asymptotics of the KdV
equation [32], of the defocusing NLS equation [35], and of the Toda lattice [55],
all with decaying data at infinity, as well as the analysis of the zero dispersion
(semiclassical) limit of the KdV equation [33] and the focusing NLS equation [67,
72]. We also note that the Deift-Zhou method has found useful applications in
the theory of orthogonal polynomials [30, 31]. Recent results concerning the NLS
equation were also presented in the works of Buckingham and Venakides [18];
Boutet de Monvel, Kotlyarov, and Shepelsky [17]; Jenkins and McLaughlin [53];
and Jenkins [52]. On the other hand, none of those works studied the problem
considered in the present work, namely, the long-time asymptotics of the solution
of the focusing NLS equation (1.1) with generic initial conditions satisfying (1.2)
and (1.3). Our results are summarized by the following theorems.

THEOREM 1.1 (Plane wave region). Let q.x; 0/ satisfy (1.2), (1.3), and (3.1) with
� D qo and be such that no discrete spectrum is present. For x < �4

p
2qot , the

long-time asymptotic behavior of the solution of the focusing NLS equation (1.1) is
given by

(1.5) q.x; t/ D e2ig1q� CO
�
t�

1
2

�
; t !1;

where the real quantity g1 is defined by equation (5.47) and depends only on the
initial datum q.x; 0/ via the reflection coefficient (2.28) and on the ratio x=t via
the stationary point k1 defined by equation (3.9).

For x > 4
p
2qot , the leading-order asymptotic behavior of the solution q is

given by a formula analogous to formula (1.5), with q� replaced by qC and with
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k1 in the definition of g1 replaced by the stationary point k2, also defined by
equation (3.9).

THEOREM 1.2 (Modulated elliptic wave region). Let q.x; 0/ satisfy the hypotheses
of Theorem 1.1. For �4

p
2qot < x < 0, the long-time asymptotic behavior of the

solution of the focusing NLS equation (1.1) is given by

(1.6)

q.x; t/ D
qo.qo C ˛im/

xq�

�

‚
�p

qo˛im

mK.m/
.x � 2˛ret / �Xo C 2v1 �

1
2

�
‚
�
1
2

�
‚
�p

qo˛im

mK.m/
.x � 2˛ret / �Xo �

1
2

�
‚
�
2v1 �

1
2

� e2i.g1�G1t/
CO

�
t�

1
2

�
; t !1;

where ‚ is defined in terms of the third Jacobi theta function as

(1.7) ‚.k/ D �3.�k; e
i�� /; � D

iK.
p
1 �m2/

K.m/
;

and K.m/ is the complete elliptic integral of the first kind with elliptic modulus m.
The real quantities m, ˛re, and ˛im are independent of the initial datum and are
given by the unique solutions of the algebraic system of equations

x

2t
D 2˛re C

q2o � ˛
2
im

˛re
; m2 D

4qo˛im

˛2re C .qo C ˛im/
2
;(1.8a) �

˛2re C .qo � ˛im/
2
�
K.m/ D

�
˛2re � ˛

2
im C q

2
o

�
E.m/;(1.8b)

E.m/ being the complete elliptic integral of the second kind. The real quantityG1
and the complex quantity v1 are also independent of the initial conditions and are
given, respectively, by equations (5.41) and (5.77). The real quantities g1 and Xo
are defined, respectively, by equation (5.47) and by

(1.9) Xo D
1

2�

�
! � i ln

�
q�

qo

��
C
1

4
;

where the real quantity ! is given by equation (5.44), and they depend only on the
initial datum q.x; 0/ via the reflection coefficient (2.28) and on the ratio x=t .

For 0 < x < 4
p
2qot , the leading-order asymptotic behavior of the solution q

is given by a formula analogous to formula (1.6), with xq� replaced by xqC and the
remaining quantities modified accordingly.

THEOREM 1.3 (Elliptic representation). The modulus of the leading-order asymp-
totic solution (1.6) in the modulated elliptic wave region can be expressed in terms
of the Jacobi elliptic function sn via the formula

jqasymp.x; t/j
2
D .qo C ˛im/

2

� 4qo˛im sn2
�
2
p
qo˛im

m
.x � 2˛ret / � 2K.m/Xo; m

�
;

(1.10)
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FIGURE 1.1. Left: The plane wave and modulated elliptic wave regions
of the xt -plane. Right: The leading-order modulus jq.x; t/j in the mod-
ulated elliptic wave region, as given by equation (1.10), for qo D 1

2
and

.x=t; t/ 2 Œ�2
p
2; 0� � Œ1; 20�.
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FIGURE 1.2. The leading-order modulus jq.x; t/j in the modulated el-
liptic wave region, as given by equation (1.10), as a function of x=t 2
Œ�4
p
2qo; 0�. Left: For qo D 1

2
and t D 10. Right: For qo D 1 and

t D 10.

where the real quantities ˛re, ˛im,K.m/,m, andXo are defined as in Theorem 1.2.

Plots of jq.x; t/j against x=t and t in the modulated elliptic wave region, ob-
tained using the elliptic representation (1.10), are provided in Figures 1.1 and 1.2.

Remark 1.4. Together, Theorems 1.1 and 1.2 demonstrate that the solution of the
focusing NLS equation with nonzero boundary conditions remains bounded at all
times.

Remark 1.5. The modulated elliptic wave solution in equation (1.10) in the special
case in which the phase shiftXo is absent had been formally obtained by Kamchat-
nov (see [54, p. 234, eq. (5.29)]) using Whitham’s modulation theory. The motion
of the branch points for said solution was also formally derived in [36] using simi-
lar methods. No connection with initial conditions was provided in either of those
works, however. In contrast, Theorems 1.1 and 1.2 rigorously establish the validity
of the solution (1.6) as the long-time asymptotic state of generic initial conditions
satisfying the hypotheses of said theorems.
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Remark 1.6. The leading-order asymptotic solution (1.5) in the plane wave region
depends on the initial condition q.x; 0/ only through the phase shift g1, which
is defined in terms of the reflection coefficient r.k/ by equation (4.25). Simi-
larly, the modulated elliptic wave solution (1.6) depends on q.x; 0/ only via the
phase shift g1 and the slowly varying offset Xo, defined, respectively, by equa-
tions (4.25) and (1.9). Conversely, the envelope of the modulated elliptic wave
solution is completely described by the parameters ˛re and ˛im, which are deter-
mined by (1.8) and are independent of the initial datum. Hence, the results of this
work show that a large class of localized perturbations of the constant background
in modulationally unstable media on the infinite line exhibits the same long-time
asymptotic behavior as described by equations (1.5) and (1.6). Therefore, the as-
ymptotic stage of modulational instability is universal.

The rest of this paper is organized as follows. In Section 2 we provide an al-
ternative formulation of the IST for the initial value problem for the focusing NLS
equation (1.1) with nonzero boundary conditions, without making use of the uni-
formization variable employed in [12]. In Section 3 we give an outline of the
derivation of the long-time asymptotics of this problem, and we show that the xt -
plane decomposes into two regions, namely a plane wave region and a modulated
elliptic wave region. Sections 4 and 5 establish Theorems 1.1 and 1.2, respectively,
while Section 6 provides the proof of Theorem 1.3. Section 7 contains some final
remarks—including further comments on the issues mentioned in Remarks 1.4–
1.6 above—a discussion of the physical significance of the results, and a few open
problems. Finally, a rigorous estimation of the leading-order error is provided in
the Appendix.

2 Inverse Scattering Transform with Nonzero Boundary Conditions
In this section we formulate the IST for the initial value probelm for the NLS

equation (1.1) with nonzero boundary conditions (1.1), which we then use in the
subsequent sections to compute the long-time asymptotic behavior of the solutions.
In [12], the IST relied on introducing a two-sheeted Riemann surface and a suitable
uniformization variable, following the approach of [38]. Here, instead, we work
directly in the spectral plane, which is more advantageous for our purposes.

The focusing NLS equation is typically written in the form

(2.1) iut C uxx C 2juj
2u D 0;

in which case the corresponding nonzero boundary conditions are

(2.2) lim
x!˙1

u.x; t/ D q˙e
2iq2ot :

Equation (2.1) is trivially converted into (1.1) via the transformation

(2.3) u.x; t/ D q.x; t/ e2iq
2
ot :
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On the other hand, the advantage of equation (1.1) over equation (2.1) for our
purposes is that, for the former case, the boundary conditions (1.2) at infinity are
constant, while in the case of (2.3) they depend on t . That is, (1.1), (1.2), and (1.3)
imply that limx!˙1 q.x; t/ D q˙ for all t > 0.

Recall that equation (1.1) admits the Lax pair representation

‰x D X‰; X D ik�3 CQ; k 2 C;(2.4a)

‰t D T‰; T D �2ik2�3 C i�3
�
Qx �Q

2
� q2oI

�
� 2kQ(2.4b)

(namely, equation (1.1) is the compatibility condition Xt � Tx C ŒX; T � D 0 of
equation (2.4)), where ‰.x; t; k/ is a 2 � 2 matrix-valued function and

(2.5) �3 D

�
1 0

0 �1

�
; Q.x; t/ D

�
0 q.x; t/

�xq.x; t/ 0

�
;

with the overbar denoting complex conjugation as usual.
Direct problem. LetX˙ D limx!˙1X.x; t; k/ and T˙ D limx!˙1 T .x; t; k/.

It is straightforward to see that the eigenvector matrix of X˙ can be written as

(2.6) E˙.k/ D

 
1 i.��k/

xq˙
i.��k/
q˙

1

!
;

while the associated eigenvalues˙i� are defined by the complex square root

(2.7) �.k/ D
�
k2 C q2o

� 1
2 :

Specifically, introducing the branch cut

(2.8) B D i Œ�qo; qo�;

we take �.k/ to be the unique, single-valued function defined by equation (2.7)
with a jump discontinuity across B , identified with its limiting value from the right
along B so that

(2.9) �.k/ D

(p
k2 C q2o ; k 2 RC [ B;

�
p
k2 C q2o ; k 2 R�;

where the square root sign denotes the principal branch of the real square root.
Motivated by the above remarks, and observing that T˙ D �2kX˙, we seek

simultaneous solutions ‰˙ of the Lax pair (2.4) such that

(2.10) ‰˙.x; t; k/ D E˙.k/ e
i#.x;t;k/�3.1C o.1//; x !˙1;

where we define

(2.11) #.x; t; k/ D �.x � 2kt/:

It is straightforward to see from equations (2.9) and (2.11) that the exponentials in
the normalization (2.10) of‰˙ remain bounded as x !˙1 provided that k 2 †,
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with † D R [ B . It is convenient to also introduce the matrix-valued functions
�˙ defined by

(2.12) �˙.x; t; k/ D ‰˙.x; t; k/e
�i#.x;t;k/�3 :

The normalization (2.10) of ‰˙ implies

(2.13) �˙.x; t; k/ D E˙.k/C o.1/; x !˙1; k 2 †:

Using standard methods, we then obtain linear integral equations of Volterra type
for �˙:

��.x; t; k/ D E�.k/(2.14a)

C

Z x

�1

E�.k/e
i�.x�y/�3E�1� .k/

��Q�.y; t/��.y; t; k/e
�i�.x�y/�3 dy;

�C.x; t; k/ D EC.k/(2.14b)

�

Z 1
x

EC.k/e
i�.x�y/�3E�1C .k/

��QC.y; t/�C.y; t; k/e
�i�.x�y/�3dy;

where �Q˙.x; t/ D Q.x; t/ �Q˙ and Q˙ D limx!˙1Q.x; t/.
The analysis of the Neumann series for the integral equations (2.14) (see [12] for

more details) allows one to prove existence and uniqueness of the eigenfunctions
�˙ for all k 2 † provided that .q.x; t/�q˙/ 2 L1;1.R˙x /. Moreover, denoting by
�˙1 and �˙2 the first and second column of �˙, respectively, one can conclude
that �C1 and ��2 (and, respectively, ��1 and �C2) can be analytically continued
as functions of k in CC n BC (and, respectively, C� n B�), where

(2.15) C˙ D fk 2 C W =.k/ >< 0g; B˙ D B \C˙:

Consequently, definition (2.12) implies that ‰�1 and ‰C2 are analytic for k 2
C� n B�, while ‰C1 and ‰�2 are analytic for k 2 CC n BC.

Scattering matrix. Since X and T are traceless, by Abel’s theorem the deter-
minants of ‰˙ are independent of x and t . Thus, using the asymptotic conditions
(2.10) we have

(2.16) det‰˙.x; t; k/ D lim
x!˙1

det‰˙.x; t; k/ D
2�

�C k

:
D d.k/:

The definition (2.7) of � implies that d is nonzero and nonsingular for all k 2 †�,
where

(2.17) †� D † n f˙iqog:
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Therefore, the matrices ‰˙ are fundamental matrix solutions of both parts of the
system (2.4) for all k 2 †�. It then follows that there exists a matrix S.k/ inde-
pendent of x and t , hereafter called the scattering matrix, such that

(2.18) ‰�.x; t; k/ D ‰C.x; t; k/S.k/; k 2 †�:

Note that S is unimodular as

(2.19) detS.k/ D
det‰�.x; t; k/
det‰C.x; t; k/

� 1:

Moreover, we will see that the diagonal entries of S.k/ can be analytically contin-
ued off †�.

Symmetries. The identity

X.q; xq; xk/ D ���X.q; xq; k/��

implies that
‰˙.x; t; xk/ D ���‰˙.x; t; k/��

for k 2 †�, which in turns yields the symmetry condition

(2.20) S.xk/ D ���S.k/��; k 2 †�; �� D

�
0 1

�1 0

�
:

In fact, by letting s11.k/ D a.k/ and s21.k/ D b.k/, the scattering matrix S takes
the form

(2.21) S.k/ D

�
a.k/ �xb.k/

b.k/ xa.k/

�
; k 2 †�;

where xa.k/ D a.xk/ and xb.k/ D b.xk/ denote the Schwartz conjugates. The deter-
minant condition (2.19) then becomes

(2.22) a.k/xa.k/C b.k/xb.k/ D 1; k 2 †�:

Finally, equations (2.18) and (2.21) imply

a.k/ D .1=d.k//wr.‰�1.x; t; k/; ‰C2.x; t; k//; k 2 †�;(2.23a)

xa.k/ D .1=d.k//wr.‰C1.x; t; k/; ‰�2.x; t; k//; k 2 †�;(2.23b)

b.k/ D .1=d.k//wr.‰C1.x; t; k/; ‰�1.x; t; k//; k 2 †�;(2.23c)
xb.k/ D .1=d.k//wr.‰C2.x; t; k/; ‰�2.x; t; k//; k 2 †�;(2.23d)

where wr denotes the Wronskian determinant. Thus, recalling that d.k/ in equation
(2.16) is analytic for k … B , we infer that the function a.k/ is analytic in C� nB�.
Similarly, the Schwartz conjugate xa.k/ is analytic in CC nBC. On the other hand,
the function b.k/ cannot be analytically continued away from †� in general.

Jumps of the eigenfunctions and scattering data across the branch cut. The jump
discontinuity of � across the branch cut B induces a corresponding jump for the
eigenfunctions and scattering data. (This is one of the points in which the present
formulation of the IST differs most significantly from that in [12].) Since � has
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been taken to be continuous from the right of B , the same is true for the analytic
eigenfunctions and scattering data. That is, taking B to be oriented upwards,

���1.k/ D lim
"!0C

��1.k C "/ D ��1.k/;

��C2.k/ D lim
"!0C

�C2.k C "/ D �C2.k/;
k 2 B�;

with similar relations for the function a defined by (2.23a) and the eigenfunctions
analytic in CC n BC.

Noting that the pairs f‰C1; ‰C2g and f‰�1; ‰�2g are both fundamental sets of
solutions of equation (2.4a), we find that the jumps of �˙ across B are given by

�C
�1.x; t; k/ D

�C k

iq�
��2.x; t; k/;

�C
C2.x; t; k/ D

�C k

ixqC
�C1.x; t; k/;

k 2 B�;(2.24a)

�C
�2.x; t; k/ D

�C k

ixq�
��1.x; t; k/;

�C
C1.x; t; k/ D

�C k

iqC
�C2.x; t; k/;

k 2 BC:(2.24b)

It then follows that the function a satisfies the following condition across BC:

(2.25) xaC.k/ D .q�=qC/ a.k/; k 2 BC:

Inverse problem. Exploiting the analyticity properties of �˙1;2 in the spectral
plane, we proceed to define the sectionally analytic matrix-valued function

(2.26) M.x; t; k/ D

8<:
�
�C1
xad
; ��2

�
D

�
‰C1
xad
; ‰�2

�
e�i#�3 ; k 2 CC n BC;�

��1;
�C2
ad

�
D

�
‰�1;

‰C2
ad

�
e�i#�3 ; k 2 C� n B�;

where the dependence on the variables x; t; k on the right-hand side has been sup-
pressed for brevity. Note the presence of d in definition (2.26) (as compared to [12]
and other standard formulations of the inverse problem), which implies that M is
unimodular, i.e.,

(2.27) detM.x; t; k/ � 1; k 2 C n B:

As usual, the inverse problem is formulated in terms of an appropriate Riemann-
Hilbert problem. To define this Riemann-Hilbert problem, one needs an appropri-
ate jump condition forM . We first compute the jump ofM across k 2 R. Denoting
by M˙ the limits of M as =.k/ ! 0˙, recalling that # , a, and d are continuous
across R, and using the scattering relation (2.18) and the determinant condition
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(2.22), we obtain the jump condition

MC.x; t; k/ DM�.x; t; k/

 
1
d.k/

Œ1C r.k/xr.k/� xr.k/e2i#.x;t;k/

r.k/e�2i#.x;t;k/ d.k/

!
; k 2 R;

where the real k-axis is oriented from left to right as usual, # is defined by equa-
tion (2.11), and the reflection coefficient r.k/ with Schwartz conjugate xr.k/ is
defined by

(2.28) r.k/ D �
b.k/

xa.k/
:

Next, we note that the jump of M across the branch cut B is also affected by
the discontinuities of ��1 and �C2 across B� and of �C1 and ��2 across BC.
Hence, starting from the definition (2.26) of M and employing equations (2.24)
and (2.25) in combination with straightforward algebraic computations, we obtain
the jump conditions

MC.x; t; k/ D

M�.x; t; k/

0@���kiq�
xr.k/e2i#.x;t;k/ 2�

ixq�

xq�
2i�
Œ1C r.k/xr.k/� �

�Ck
ixq�

r.k/e�2i#.x;t;k/

1A; k 2 BC;

MC.x; t; k/ D

M�.x; t; k/

 �Ck
iq�
xr.k/e2i#.x;t;k/ q�

2i�
Œ1C r.k/xr.k/�

2�
iq�

��k
ixq�

r.k/e�2i#.x;t;k/

!
; k 2 B�;

with B oriented upwards as before, and with # and r as above.
Finally, to complete the formulation of the Riemann-Hilbert problem one must

specify a normalization condition and, if a discrete spectrum is present, appropriate
residue conditions. The latter will not be necessary in our case, since in what
follows we will assume that no discrete spectrum is present. Using the integral
equations (2.14) for �˙ and the relationship (2.26) between M and �˙, it can be
shown (see [12]) that the function M admits the large-k asymptotic expansion

(2.29) M.x; t; k/ D I C
M1.x; t/

k
CO

�
1

k2

�
; k !1:

Combining equations (2.4a), (2.26), and (2.29), one can also recover the solution
of the focusing NLS equation (1.1) in the form

(2.30) q.x; t/ D �2i.M1.x; t//12:

Based on the above discussion, the function M satisfies the following Riemann-
Hilbert problem.
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Riemann-Hilbert problem 2.1. Suppose that a.k/ ¤ 0 for all k 2 C� [† so that
no discrete spectrum is present. Determine a sectionally analytic matrix-valued
function M.k/ DM.x; t; k/ in C n† satisfying the jump conditions

MC.k/ DM�.k/V1; k 2 R;(2.31a)

MC.k/ DM�.k/V2; k 2 BC;(2.31b)

MC.k/ DM�.k/V3; k 2 B�;(2.31c)

and the normalization condition

M.k/ D I CO.1=k/; k !1;(2.31d)

where

V1.x; t; k/ D

 
1
d.k/

Œ1C r.k/xr.k/� xr.k/e2i�.�;k/t

r.k/e�2i�.�;k/t d.k/

!
;(2.32a)

V2.x; t; k/ D

0@���kiq�
xr.k/e2i�.�;k/t 2�

ixq�

xq�
2i�
Œ1C r.k/xr.k/� �

�Ck
ixq�

r.k/e�2i�.�;k/t

1A;(2.32b)

V3.x; t; k/ D

0@�Ckiq�
xr.k/e2i�.�;k/t q�

2i�
Œ1C r.k/xr.k/�

2�
iq�

��k
ixq�

r.k/e�2i�.�;k/t

1A;(2.32c)

the reflection coefficient r is defined by equation (2.28), the similarity variable is

(2.33) � D x=t;

and the function �.�; k/ D #.x; t; k/=t is given by

(2.34) �.�; k/ D �.� � 2k/:

3 Long-Time Asymptotics: Preliminaries
We now compute the long-time asymptotic behavior of the solution q of the

focusing NLS equation, as obtained by equation (2.30), by analyzing the Riemann-
Hilbert Problem 2.1 via the Deift-Zhou nonlinear steepest descent for oscillatory
Riemann-Hilbert problems [34]. Recall that, in general, the Deift-Zhou method is
based on deforming the jump contours of the Riemann-Hilbert problem to contours
in the complex k-plane across which the relevant jumps have a well-defined limit
as t ! 1. In our case, it turns out that, after the appropriate deformations have
been performed, the majority of the jumps across the deformed contours tend to
the identity matrix, while those that yield the leading-order contribution to the
asymptotics tend to constant matrices.

Analyticity in a neighborhood of the continuous spectrum. Hereafter, in order
to be able to deform the contours away from the continuous spectrum †, we place
an additional restriction on the initial datum q.x; 0/ that ensures that the reflection
coefficient r can be analytically extended off the continuous spectrum.
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FIGURE 3.1. Contour plot of =.�/ for qo D 1
2

.

LEMMA 3.1 (Analyticity of the reflection coefficient). Suppose that there exists a
constant � > 0 such that

(3.1) e˙�x.q.x; 0/ � q˙/ 2 L
1.R˙/;

where q.x; 0/ and q˙ are the initial and boundary conditions, respectively, of the
focusing NLS equation (1.1). Then, all the eigenfunctions and the spectral func-
tions a and b are analytic in the region

†� D fk 2 C n B W jIm.�/j < �g;

where � is defined by equation (2.7). The same conclusion follows for the reflection
coefficient r defined by equation (2.28) as long as a.k/ ¤ 0 for all k 2 †�.

The region †� in Lemma 3.1 is the analogue of what is known as the Bargmann
strip in the case of zero conditions at infinity [48]. Lemma 3.1 can be established
by employing a Neumann series for the integral equations (2.14) that define �˙,
using similar arguments as in [12]. It is important to note that the contour lines of
=.�/ do not intersect the branch cut B; e.g., see Figure 3.1. Hence, the existence of
any � > 0 ensures that r is analytic in a neighborhood of B (except possibly at the
branch points), which is the domain of analyticity required for the deformations in
the Deift-Zhou method.

When the hypothesis of Lemma 3.1 is satisfied, the jump condition (2.25) also
holds across B�. In addition, (2.23) and (2.24) yield a similar jump condition
for b, namely, bC.k/ D �.xqC=q�/xb.k/ for all k 2 B . Hence, we obtain the jump
condition for the reflection coefficient r across B , namely,

(3.2) rC.k/ D �.xq�=q�/xr.k/; k 2 B:
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An example of an initial condition satisfying the hypothesis of Lemma 3.1 is the
following boxlike initial datum considered in [11]:

(3.3) q.x; 0/ D

(
qo; jxj > L;

ˇei�; jxj < L;

with ˇ > 0, L > 0, and � 2 R, which gives rise to the reflection coefficient

(3.4) r.k/ D
e2i�LŒ.ˇ cos� � qo/k � iˇ� sin��

�
p
k2 C ˇ2 cot.2L

p
k2 C ˇ2/ � i.k2 C qoˇ cos�/

:

The sign structure of <.i�/. The choice of deformations of the Deift-Zhou
method depends crucially on the sign structure of the quantity <.i�/, which is
involved in all three jump matrices (2.32) of the Riemann-Hilbert problem 2.1.
From the definition (2.34) of � we have

(3.5) <.i�/ D ��im.� � 2kre/C 2�rekim:

The above expression simplifies significantly in the special cases jkimj � 1 and
jkimj � 1. When jkimj � 1, recalling that � � k as k !1, we have

(3.6) <.i�/ D .4kre � �/kim CO.1=kim/; kim !˙1:

Thus, as kim ! ˙1, the sign of <.i�/ is determined by that of kre � �=4. When
0 < kim � 1, on the other hand, the situation is more complicated. The definition
of � implies

� D sign.kre/

q
k2re C q

2
o

�

�
1 �

q2o
2.k2re C q

2
o/
2
k2im C

ikre

k2re C q
2
o

kim CO.k
3
im/

�
:

(3.7)

Hence,

(3.8) <.i�/ D
sign.kre/p
k2re C q

2
o

�
4k2re � � kre C 2q

2
o

�
kim CO.k

3
im/; kim ! 0C:

For j�j < 4
p
2qo the quadratic expression in the leading-order term of (3.8) is

always positive, while for j�j > 4
p
2qo it has real roots k1; k2 equal to

(3.9) k1;2 D
1

8

�
� ˙

q�
� � 4

p
2qo

��
� C 4

p
2qo

��
;

where we take k1 < k2. A similar expansion is obtained when kim ! 0�, leading
to the same roots as in equation (3.9). The overall sign structure of <.i�/ in the
complex k-plane is illustrated in Figure 3.2.

Remark 3.2. Importantly, the points k1 and k2 are the stationary points of � . In
the following sections we will show that the sectors of the xt -plane where j�j >
4
p
2qo correspond to plane wave regions, whereas the sectors where j�j < 4

p
2qo

correspond to modulated elliptic wave regions.
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FIGURE 3.2. The sign structure of <.i�/ in the complex k-plane for
various values of � and qo D 1: (a) � D �6, corresponding to x <

�4
p
2qot ; (b) � D �5:2, corresponding to �4

p
2qot < x < 0; (c) � D

3, corresponding to 0 < x < 4
p
2qot ; (d) � D 6:5, corresponding to

x > 4
p
2qot . In the gray regions <.i�/ < 0, whereas in the white

regions <.i�/ > 0. Cases (a) and (d) correspond to plane wave regions,
while cases (b) and (c) correspond to modulated elliptic wave regions.
The points k1;2 in cases (a) and (d) correspond with the sign changes of
<.i�/ along the real axis away from k D 0.

4 The Plane Wave Region: Proof of Theorem 1.1
In this section we prove Theorem 1.1; i.e., we compute the leading-order long-

time asymptotic behavior of the solution of the focusing NLS equation (1.1) in the
plane wave region jxj > 4

p
2qot . As mentioned earlier, we do so by perform-

ing appropriate deformations of the Riemann-Hilbert problem 2.1 similar to those
employed in [18].

All three jump matrices V .0/1 D V1, V .0/2 D V2, and V .0/3 D V3 of the Riemann-
Hilbert problem 2.1 contain both ei� t and e�i� t . Recall also that �.�; k/ 2 R for all
k 2 †. The first step required in order to take the limit t !1 is to express these
jumps as products of matrices that involve only one of the two aforementioned
exponentials, and with the matrices ordered in such a way that they remain bounded
when the contour is deformed away from †.

Preliminary factorizations: x < �4
p
2qot . We will show that, in this case, the

factorizations of V .0/1 convenient for our purposes are

(4.1) V
.0/
1 D

(
V
.1/
2 V

.1/
0 V

.1/
1 ; kre < k1;

V
.1/
4 V

.1/
3 ; kre > k1;

where

V
.1/
0 D

 
1C rxr 0

0 1
1Crxr

!
;(4.2a)

V
.1/
1 D

 
d�1=2 d1=2 xre2i�t

1Crxr

0 d1=2

!
; V

.1/
2 D

0@ d�1=2 0

d1=2re�2i�t

1Crxr
d1=2

1A;(4.2b)
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V
.1/
3 D

 
d�1=2 0

d�1=2re�2i� t d1=2

!
; V

.1/
4 D

 
d�1=2 d�1=2xre2i� t

0 d1=2

!
:(4.2c)

Moreover, since k1;2 < 0 in this region (cf. Figure 3.2a), the branch cut B lies to
the right of the point k1. Thus, the appropriate factorizations for the jumps V .0/2

and V .0/3 will turn out to be

V
.0/
2 D

�
V
.1/
3�

��1
VBV

.1/
3C ; k 2 BC;(4.3a)

V
.0/
3 D V

.1/
4� VB

�
V
.1/
4C

��1
; k 2 B�;(4.3b)

where V .1/3;4˙ denote the left- and right-sided limits of V .1/3;4 and VB is the constant
matrix

(4.4) VB D

 
0 q�=iqo

xq�=iqo 0

!
:

Remark 4.1 (k1 versus k2). In the case of x < �4
p
2qot , the point k2 is not

significant concerning the choice of factorization of the jump V .0/1 . This is because,
as can be seen from Figure 3.2a, the change of sign at k2 affects only a finite region
of the k-plane, which can therefore be bypassed by suitable deformations of the
jump contours. The opposite is of course true for x > 4

p
2qot .

Remark 4.2 (x < �4
p
2qot versus x > 4

p
2qot ). For x < �4

p
2qot , using

the factorizations (4.1)–(4.3) and performing suitable deformations in the complex
k-plane, we will eventually be able to reduce the jump across the branch cut B to
the constant matrix VB defined above. This reduction is crucial, since it implies that
the Riemann-Hilbert problem that yields the leading-order asymptotic behavior of
the focusing NLS solution can be solved explicitly. For x > 4

p
2qot , however, the

sign structure of <.i�/ is such that the desired reduction cannot be accomplished
using the above factorizations. In that case, it is then necessary to first perform a
rescaling of the original Riemann-Hilbert problem, as discussed next.

Preliminary factorizations: x > 4
p
2qot . In this case we first rescale the

Riemann-Hilbert problem 2.1 as follows. Let

(4.5)

�M.x; t; k/ D

(
M.x; t; k/A.k/; k 2 CC n†C;

M.x; t; k/A�1.k/; k 2 C� n†�;

A.k/ D

�
a.k/ 0

0 a.k/�1

�
:
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Then, �M.k/ D �M.x; t; k/ is analytic in C n† and satisfies the jump conditions

�MC.k/ D �M�.k/�V .0/1 ; k 2 R;(4.6a) �MC.k/ DM�.k/�V .0/2 ; k 2 BC;(4.6b) �MC.k/ D �M�.k/�V .0/3 ; k 2 B�;(4.6c)

and the normalization condition

(4.6d) �M.k/ D I CO.1=k/; k !1;

where

(4.7) �V .0/1 D AV
.0/
1 A; �V .0/2 D .A�/�1V

.0/
2 AC; �V .0/3 D A�V

.0/
3 .AC/�1:

The advantage of considering �M instead of M for x > 4
p
2qot is that, in contrast

to the jumps V .0/1 , V .0/2 , and V .0/3 , the jumps �V .0/1 , �V .0/2 , and �V .0/3 can be factor-
ized in a way that eventually leads to a Riemann-Hilbert problem with a constant
jump across B , just like in the case x < �4

p
2qot . Indeed, we may now use the

factorizations

(4.8) eV .0/1 D
8<:�V

.1/
2
�V .1/0

�V .1/1 ; kre > k2;�V .1/4
�V .1/3 ; kre < k2;

where for �.k/ D �b.k/=a.k/ we define

�V .1/0 D

 
1

1C�x�
0

0 1C �x�

!
;(4.9a)

�V .1/1 D

0@ d�1=2 0

d�1=2�e�2i�t

1C�x�
d1=2

1A; �V .1/2 D

0@d�1=2 d�1=2x�e2i�t

1C�x�

0 d1=2

1A;(4.9b)

�V .1/3 D

 
d�1=2 d1=2x�e2i� t

0 d1=2

!
; �V .1/4 D

 
d�1=2 0

d1=2�e�2i� t d1=2

!
:(4.9c)

Also, since the branch cut B lies to the left of k2 (see Figure 3.2d), the appropriate
factorizations for �V .0/2 and �V .0/3 are

�V .0/2 D
��V .1/3�

��1�VB�V .1/3C ; k 2 BC;(4.10a) �V .0/3 D �V .1/4�
�VB��V .1/4C

��1
; k 2 B�;(4.10b)

where the constant matrix �VB is defined by

(4.10c) �VB D � 0 qC=iqo
xqC=iqo 0

�
:
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Remark 4.3. The factorizations (4.8) and (4.10) are completely analogous to the
factorizations (4.1) and (4.3). Moreover, it is straightforward to see that

.M1.x; t//12 D . �M1.x; t//12

since a.k/ D 1C O.1=k2/ as k ! 1 (e.g., see [12]). Hence, the rescaling does
not affect the reconstruction formula (2.30) of the potential. As a result, once the
rescaling (4.5) has been performed, the steps required for the implementation of the
Deift-Zhou method in the two cases x < �4

p
2qot and x > 4

p
2qot are identical.

Therefore, we hereafter limit ourselves to discussing the case x < �4
p
2qot for

brevity.

First deformation. DefineM .1/ DM .1/.x; t; k/ in terms of the solutionM .0/ D

M of the Riemann-Hilbert problem 2.1 according to Figure 4.1, with the matri-
ces V .1/0 ; : : : ; VB given by equations (4.2) and (4.4). Then M .1/ is analytic in
C n .B [ L0 [ L1 [ L2 [

S4
jD1L3;j [ L4;j / and satisfies the jump conditions

M .1/C.k/ DM .1/�.k/VB ; k 2 B;(4.11a)

M .1/C.k/ DM .1/�.k/V
.1/
j ; k 2 Lj ; j D 0; 1; 2;(4.11b)

M .1/C.k/ DM .1/�.k/V
.1/
3 ; k 2 L3;1 [ L3;2;(4.11c)

M .1/C.k/ DM .1/�.k/
�
V
.1/
3

��1
; k 2 L3;3 [ L3;4;(4.11d)

M .1/C.k/ DM .1/�.k/V
.1/
4 ; k 2 L4;1 [ L4;3;(4.11e)

M .1/C.k/ DM .1/�.k/
�
V
.1/
4

��1
; k 2 L4;2 [ L4;4;(4.11f)

with the jump contours Lj as in Figure 4.1, and the normalization condition

(4.11g) M .1/.k/ D I CO.1=k/; k !1:

Note that the jump across .k1;1/ has been eliminated as a result of the trans-
formation. Furthermore, note that all the jump contours of Figure 4.1 apart from
.�1; k1/ and the branch cut B can be deformed to a single contour that inter-
sects with the continuous spectrum † only at k1, as shown in Figure 4.2. Near the
branch point iqo in particular, we first deform the contoursL3;2 andL3;3 as shown
in Figure 4.3 and then further deform the contours

S4
jD1L3;j of Figure 4.1 to the

contour L3 of Figure 4.2, which does not go through the origin. The point �iqo
is handled in an analogous way, so that the contours

S4
jD1L4;j of Figure 4.1 are

deformed to the contour L4 of Figure 4.2.
Second deformation. The purpose of this deformation is to eliminate the jump

across .�1; k1/. This goal is accomplished by introducing an auxiliary scalar
function ı D ı.k/ that is analytic in C n .�1; k1/ and satisfies the jump condition

(4.12a) ıC.k/ D ı�.k/Œ1C r.k/xr.k/�; k 2 .�1; k1/;
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FIGURE 4.1. The first deformation in the plane wave region.

L4

V (1)
0

M (0)V (1)
4

M (0)

L2

L3V (1)
3

V (1)
4

M (0)

M (0) M (0)

L1

V
(1)

2

V (1)
1

k1

M (0)

M (0)

VB

VB

L0

M (0)
(
V (1)

3

)−1

M (0)V (1)
4

iqo

−iqo

M (0)
(
V (1)

3

)−1

k

M (0)
(
V (1)

1

)−1

M (0)V (1)
2

1

FIGURE 4.2. Final form of the Riemann-Hilbert problem for M .1/ in
the plane wave region.

and the normalization condition

(4.12b) ı.k/ D 1CO.1=k/; k !1:

The solution of this scalar Riemann-Hilbert problem is obtained in explicit form
via the Plemelj formulae [43] as

(4.13) ı.k/ D exp

(
1

2i�

Z k1

�1

lnŒ1C r.�/xr.�/�
� � k

d�

)
; k … .�1; k1/:
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iqo
I(V

(1)
3 )−1V

(1)
3 V

(1)
3 (V

(1)
3 )−1 V

(1)
3 V

(1)
3

1

FIGURE 4.3. The sequence of deformations around the branch point iqo.

Then, the function M .2/ defined by

(4.14) M .2/.x; t; k/ DM .1/.x; t; k/ı.k/��3

does not have a discontinuity across .�1; k1/ since

M .2/C.k/ DM .2/�.k/.ı�/�3V
.1/
0

�
ıC
���3

DM .2/�.k/

for all k 2 .�1; k1/. Moreover, the jumps off the real k-axis become

(4.15a) V
.2/
B D

 
0 q�

iqo
ı2

xq�
iqo

ı�2 0

!
; V

.2/
1 D

 
d�1=2 d1=2 xre2i�t

1Crxr
ı2

0 d1=2

!
;

(4.15b) V
.2/
2 D

0@ d�1=2 0

d1=2re�2i�t

1Crxr
ı�2 d1=2

1A; V
.2/
3 D

 
d�1=2 0

d�1=2 re�2i� t ı�2 d1=2

!
;

(4.15c) V
.2/
4 D

 
d�1=2 d�1=2 xre2i� t ı2

0 d1=2

!
;

and, since ı is analytic away from .�1; k1/, no additional jumps are introduced.
Overall, the functionM .2/ is analytic in C n .

S4
jD1Lj [B/ and satisfies the jump

conditions

M .2/C.k/ DM .2/�.k/V
.2/
B ; k 2 B;(4.16a)

M .2/C.k/ DM .2/�.k/V
.2/
j ; k 2 Lj ; j D 1; 2; 3; 4;(4.16b)

with the jump contours Lj as shown in Figure 4.4, and the normalization condition

(4.16c) M .2/.k/ D I CO.1=k/; k !1:

Third deformation. The next step consists in removing the function d from the
jump matrices (4.15) so that the jumps along the contours Lj eventually tend to
the identity as t ! 1. This is accomplished by switching from M .2/ to M .3/

according to Figure 4.5. It then follows that

M .3/C.k/ DM .3/�.k/V
.2/
j d

�3
2 ; k 2 Lj ; j D 1; 3;

M .3/C.k/ DM .3/�.k/d
�3
2 V

.2/
j ; k 2 Lj ; j D 2; 4:
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L3
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L2

V (2)
3

V (2)
4

L1

V
(2)

2

V (2)
1

k1

V (2)
B

V (2)
B

L4

iqo

−iqo

1

FIGURE 4.4. The jumps of M .2/ in the plane wave region.

M (2)d
σ3
2

M (2)d−σ3
2 M (2)d− σ3

2

L3V (3)
3

V (3)
4

L1

L2
V

(3)

2

V (3)
1

k1

V (3)
B

V (3)
B

L4

iqo

−iqo

k

M (2)

M (2)

M (2)

M (2)

M (2)d−σ3
2

M (2)

M (2)

M (2)d
σ3
2

M (2)d
σ3
2

1

FIGURE 4.5. The third deformation in the plane wave region.

Furthermore, the jump V .2/B of M .2/ across B , which does not involve d , remains
the same for M .3/. Overall, M .3/ is analytic in C n .

S4
jD1Lj [ B/ and satisfies

the jump conditions

M .3/C.k/ DM .3/�.k/V
.3/
B ; k 2 B;(4.17a)

M .3/C.k/ DM .3/�.k/V
.3/
j ; k 2 Lj ; j D 1; 2; 3; 4;(4.17b)

and the normalization condition

M .3/.k/ D I CO.1=k/; k !1;(4.17c)



2322 G. BIONDINI AND D. MANTZAVINOS

where the jump contours L1; L2; L3; L4 are shown in Figure 4.5 and

V
.3/
B D V

.2/
B ; V

.3/
1 D

 
1 xre2i�t

1Crxr
ı2

0 1

!
; V

.3/
2 D

 
1 0

re�2i�t

1Crxr
ı�2 1

!
;(4.18a)

V
.3/
3 D

�
1 0

re�2i� t ı�2 1

�
; V

.3/
4 D

�
1 xre2i� t ı2

0 1

�
:(4.18b)

Fourth deformation. Next, we eliminate the auxiliary function ı from the jump
V
.3/
B across the branch cut B—and hence turn this jump into a constant—by em-

ploying the so-called g-function mechanism [32, 33]. More precisely, we let

(4.19) M .4/.x; t; k/ DM .3/.x; t; k/eig.k/�3 ;

where the yet-to-be-determined scalar function g is analytic in C n B and satisfies
the discontinuity condition

(4.20) ei.g
C.k/Cg�.k//

D ı.k/2; k 2 B:

It is straightforward to check that if condition (4.20) holds, then the jump of M .4/

across B is constant and equal to

(4.21a) V
.4/
B D VB D

 
0 q�=iqo

xq�=iqo 0

!
; k 2 B:

Moreover, since g is analytic away from B , no new jumps are introduced. The
remaining jump matrices in equation (4.18) are changed into

(4.21b) V
.4/
1 D

 
1 xre2i.�t�g/

1Crxr
ı2

0 1

!
; V

.4/
2 D

 
1 0

re�2i.�t�g/

1Crxr
ı�2 1

!
;

(4.21c) V
.4/
3 D

�
1 0

re�2i.� t�g/ı�2 1

�
; V

.4/
4 D

�
1 xre2i.� t�g/ı2

0 1

�
;

The function g can be determined explicitly as follows. Dividing condition
(4.20) by � and using equation (4.13) for ı, we deduce that the scalar function
g=� D .g=�/.k/ is analytic in C n B and satisfies the jump condition

(4.22a)
�g
�

�C
.k/ �

�g
�

��
.k/ D

1

��

Z k1

�1

lnŒ1C r.�/xr.�/�
� � k

d�; k 2 B;

and the normalization condition

(4.22b)
g

�
.k/ D O.1=k/; k !1:

Plemelj’s formulae then yield g in the explicit form

(4.23) g.k/ D
�.k/

2i�2

Z
�2B

1

�.�/.� � k/

Z k1

�1

lnŒ1C r.�/xr.�/�
� � �

d� d�; k … B:
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In summary, the function M .4/ defined by equation (4.19), with g given by equa-
tion (4.23), satisfies the following Riemann-Hilbert problem.

Riemann-Hilbert problem 4.1 (Final problem in the plane wave region). Deter-
mine a sectionally analytic matrix-valued function M .4/.k/ D M .4/.x; t; k/ in
C n .

S4
jD1Lj [ B/ satisfying the jump conditions

M .4/C.k/ DM .4/�.k/VB ; k 2 B;(4.24a)

M .4/C.k/ DM .4/�.k/V
.4/
j ; k 2 Lj ; j D 1; 2; 3; 4;(4.24b)

and the normalization condition

M .4/.k/ D ŒI CO.1=k/�eig1�3 ; k !1;(4.24c)

where the jump contours Lj are shown in Figure 4.5, the jump matrices are given
by equations (4.21), and the real constant g1 is given by

(4.25) g1 D �
1

2i�2

Z
�2B

1

�.�/

Z k1

�1

lnŒ1C r.�/xr.�/�
� � �

d� d�:

Decomposition of the final Riemann-Hilbert problem and limit t !1. Starting
from formula (2.30) for the solution q of the focusing NLS equation (1.1) in terms
ofM .0/ and applying the four successive deformations that lead toM .4/, we obtain

(4.26) q.x; t/ D �2i
�
M
.4/
1 .x; t/

�
12
eig1 ;

where M .4/
1 is the O.1=k/ coefficient of the large-k expansion of M .4/:

(4.27) M .4/.x; t; k/ D eig1�3 C
M
.4/
1 .x; t/

k
CO

�
1

k2

�
; k !1:

In order to be able to take the limit t ! 1 in formula (4.26), a suitable decom-
position of M .4/ is first required into an asymptotic problem, which will yield the
leading-order contribution to the solution of the NLS equation, and an error prob-
lem, which will yield the leading-order error.

It is evident from the structure of the jump matrices V .4/1 , V .4/2 , V .4/3 , and V .4/4

in equations (4.21b) and (4.21c) and the sign structure of <.i�/ (see Figure 3.2a)
that k1 is the only point at which the above matrices fail to tend uniformly to I
as t ! 1. Hence, a neighborhood of the point k1—in addition, of course, to the
branch cut B—is the only region expected to yield the leading-order contribution
to the long-time asymptotics ofM .4/, while the remaining contours are expected to
contribute only in the error. This reasoning motivates the following decomposition
of the Riemann-Hilbert problem 4.1.

Let D"
k1

be a disk of radius " centered at k1, with " sufficiently small so that
D"
k1
\ B D ¿. Then, write

(4.28) M .4/
DM errM asymp; M asymp

D

(
MB ; k 2 C nD"

k1
;

MD; k 2 D"
k1
;
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where:
� the function MB.k/ D MB.x; t; k/ is analytic in C n B and satisfies the

jump condition

(4.29a) MBC.k/ DMB�.k/ VB ; k 2 B;

and the normalization condition

(4.29b) MB.k/ D ŒI CO.1=k/�eig1�3 ; k !1I

� the function MD is analytic in D"
k1
n Lj , j D 1; 2; 3; 4; with jumps

(4.30) MDC.k/ DMD�.k/V
.4/
j ; k 2 yLj D Lj \D

"
k1
; j D 1; 2; 3; 4I

� the functionM err.k/ DM err.x; t; k/ is analytic in C n .
S4
jD1
{Lj [@D

"
k1
/

and satisfies the jump condition

(4.31a) M errC.k/ DM err�.k/V err; k 2

4[
jD1

{Lj [ @D
"
k1
; {Lj D Lj nD

"
k1
;

and the normalization condition

(4.31b) M err.k/ D I CO.1=k/; k !1;

with the jump V err defined by

(4.32) V err
D

(
MBV

.4/
j .MB/�1; k 2 {Lj ;

M asymp�.V
asymp
D /�1.M asymp�/�1; k 2 @D"

k1
;

where V asymp
D is the jump of M asymp across the circle @D"

k1
, which is yet

unknown.
Under the decomposition (4.28) of M .4/, formula (4.26) becomes

(4.33) q.x; t/ D �2i
�
MB
1 .x; t/e

ig1 CM err
1 .x; t/

�
12
:

Moreover, thanks to the fact that the jump matrix VB is constant, MB is actually
given by the explicit formula

(4.34) MB.k/ D eig1�3

0@ 1
2
.ƒCƒ�1/ �

qo
2xq�

.ƒ �ƒ�1/

qo
2q�

.ƒ �ƒ�1/ 1
2
.ƒCƒ�1/

1A;
where the function ƒ is defined by

(4.35) ƒ.k/ D

�
k � iqo

k C iqo

� 1
4

:

In addition, in the Appendix we show that M err
1 admits the following estimate:

(4.36) jM err
1 .x; t/j D O

�
t�

1
2

�
; t !1:
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Thus, returning to equation (4.33) we conclude that the long-time asymptotic be-
havior of the solution of the focusing NLS equation (1.1) in the plane wave region
is given to leading order by

q.x; t/ D �2i
�
MB
1 .x; t/

�
12
eig1 CO

�
t�

1
2

�
; t !1;

or, explicitly,

(4.37) q.x; t/ D e2ig1q� CO
�
t�

1
2

�
; t !1:

Note that definitions (3.9) and (4.25) of k1 and g1 imply that lim�!�1 g1 D 0.
Hence, in consistency with the infinity condition (1.2), in the plane wave region as
t !1 we have q.x; t/ �! q� in the limit x ! �1, � ! �1.

The proof of Theorem 1.1 is complete.

5 The Modulated Elliptic Wave Region: Proof of Theorem 1.2
In this section we prove Theorem 1.2; i.e., we compute the leading-order long-

time asymptotic behavior of the solution of the focusing NLS equation (1.1) in the
modulated elliptic wave region jxj < 4

p
2qot .

Recall that the sign structure of <.i�/ in this region was discussed in Section 4
and is depicted in Figures 3.2b and 3.2c. As in the plane wave region, we consider
only the case�4

p
2qot < x < 0 since the case 0 < x < 4

p
2qot is entirely analo-

gous after suitably reformulating the Riemann-Hilbert problem 2.1 (see discussion
below Remark 4.2).

Remark 5.1. The main difference between the plane wave and the modulated el-
liptic wave regions is the absence of real stationary points in the latter case. As a
result, the curves identifying the sign changes of <.i�/ in Figure 3.2b as k ! 1
connect directly to the branch cut B . This implies that it is not possible anymore
to use the previous factorizations and deformations to lift the contours off the real
k-axis in such a way that the corresponding jump matrices remain bounded as
t ! 1. In other words, in order to connect the negative real k-axis to the white
region in the upper half-plane, one cannot avoid passing through the gray region, in
which <.i�/ has the “wrong” sign. To circumvent this problem, similarly to [18]
we will introduce an appropriate, artificial change-of-factorization point ko 2 R�,
which will be determined as part of the problem. Importantly, one can also show
that the choice of ko has no effect on the solution of the problem.

First, second, and third deformations. The first deformation, which is defined in
Figure 5.1, is the same as the first deformation in the plane wave region except that
the change of factorization now occurs at the point ko instead of the point k1. The
second and third deformations are also the same as the corresponding deformations
in the plane wave region and lead to the function M .3/.k/ DM .3/.x; t; k/, which
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is analytic in C n .
S4
jD1Lj [ B/ and satisfies the jump conditions

M .3/C.k/ DM .3/�.k/V
.3/
B ; k 2 B;(5.1a)

M .3/C.k/ DM .3/�.k/V
.3/
j ; k 2 Lj ; j D 1; 2; 3; 4;(5.1b)

and the normalization condition

M .3/.k/ D I CO.1=k/; k !1;(5.1c)

with the jump contours Lj shown in Figure 5.2 and the jump matrices V .3/j given
by equations (4.18) after changing the definition of the function ı to

(5.2) ı.k/ D exp

(
1

2i�

Z ko

�1

ln
�
1C r.�/xr.�/

�
� � k

d�

)
; k … .�1; ko/:

Remark 5.2. Importantly, the contour L3 now intersects the curve <.i�/ D 0 in
the second quadrant at a point ˛, as depicted in Figure 5.2, unlike what happens in
the plane wave region. This intersection point will be determined in terms of ko
in due course. Note also that the analyticity condition (3.1) with � D qo ensures
that the reflection coefficient r.k/ admits a unique analytic continuation in the
neighborhood of the entire contours L3 and L4.

Fourth deformation: Elimination of the exponential growth. So far we have
managed to deform the jump contour across R to contours in the complex k-plane
as in the plane wave region. We now encounter a new phenomenon that is not
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V
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FIGURE 5.1. The first deformation in the modulated elliptic wave region.
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FIGURE 5.2. The jumps of M .3/ in the modulated elliptic wave region.
The jump matrices V .3/3 and V .3/4 grow exponentially as a function of t
on the green-colored contours.

present in the plane wave region; however, the jumps V .3/3 and V .3/4 grow expo-
nentially with t along the green-colored segments of the deformed contours shown
in Figure 5.2.

To address this issue, we employ the following new factorizations for these
jumps:

(5.3) V
.3/
3 D V

.3/
5 V

.3/
7 V

.3/
5 ; V

.3/
4 D V

.3/
6 V

.3/
8 V

.3/
6 ;

where

(5.4a) V
.3/
5 D

 
1 ı2

r
e2i� t

0 1

!
; V

.3/
6 D

 
1 0

1
xrı2

e�2i� t 1

!
;

(5.4b) V
.3/
7 D

 
0 �

ı2

r
e2i� t

r
ı2
e�2i� t 0

!
; V

.3/
8 D

 
0 xrı2 e2i� t

�
1
xrı2

e�2i� t 0

!
:

These factorizations allow for the deformation of the green contours of Figure 5.2
into the green contours shown in Figure 5.3, where for j D 1; : : : ; 8 we denote by
V
.3/
j the jump associated with the contour Lj .

Observe that the jumps V .3/5 and V .3/6 are now bounded along the contours L5
and L6, respectively. On the other hand, the 21-entry of the jump V .3/7 and the
12-entry of the jump V .3/8 are still unbounded along the contours L7 and L8, re-
spectively. To resolve this issue, we employ once again the g-function mechanism
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FIGURE 5.3. The fourth deformation in the modulated elliptic wave region.

as in the previous section (cf. transformation (4.19)). This time, however, we need
to do so through a t -dependent exponential, namely, by letting

(5.5) M .4/.x; t; k/ DM .3/.x; t; k/e�iG.�;˛;ko;k/t�3

for a function G.�; ˛; ko; k/ that is required to be analytic in C n .B [ L7 [ L8/.
In fact, instead of working with G it will be more convenient to consider the func-
tion h defined by

(5.6) h.�; ˛; ko; k/ D �.�; k/CG.�; ˛; ko; k/:

From the above definition, we infer that hmust be analytic in Cn.B[L7[L8/ and
has jump discontinuities across B and zB . Moreover, according to transformation
(5.5) the jumps of M .4/ read

(5.7)

V
.4/
B D

0@ 0 q�ı
2

iqo
ei.h

CCh�/t

xq�
iqoı2

e�i.h
CCh�/t 0

1A; V
.4/
1 D

 
1 xr ı2

1Crxr
e2iht

0 1

!
;

V
.4/
2 D

 
1 0

r
.1Crxr/ı2

e�2iht 1

!
; V

.4/
3 D

 
1 0

r
ı2
e�2iht 1

!
;

V
.4/
4 D

 
1 xrı2 e2iht

0 1

!
; V

.4/
5 D

 
1 ı2

r
e2iht

0 1

!
; V

.4/
6 D

 
1 0

1
xrı2

e�2iht 1

!
;

V
.4/
7 D

 
0 �

ı2

r
ei.h

CCh�/t

r
ı2
e�i.h

CCh�/t 0

!
;

V
.4/
8 D

 
0 xrı2 ei.h

CCh�/t

�
1
xrı2

e�i.h
CCh�/t 0

!
:
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α
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α
iqo

ᾱ −iqo

k

1

α

−−

+

1

FIGURE 5.4. Left: The basis fα;βg of cycles of the genus-1 Riemann
surface Σ. Right: The desired sign structure of <.ih/ in a neighborhood
of ˛ (cf. Figure 5.3).

The task that we turn to next is to determine ko, ˛ D ˛re C i˛im, and h so that all
these jump matrices remain bounded as t !1.

The definition of h. We begin by introducing the upwardly oriented branch cut
zB D L7 [ .�L8/, and we define the single-valued function 
 with branch cuts B

and zB by

(5.8) 
.k/ D
��
k2 C q2o

�
.k � ˛/.k � x̨/

� 1
2 ;

where we identify 
 with its right-sided limit along B and zB; i.e., we set 
.k/ D

�.k/ D �
C.k/ for k 2 B [ zB , so that 
.k/ � k2 as k ! 1. Then 

gives rise to a genus-1 Riemann surface Σ with sheets Σ1;Σ2 and a basis fα;βg
of cycles defined as follows: the β-cycle is a closed, anticlockwise contour around
the branch cut B that remains entirely on the first sheet Σ1 of the Riemann surface;
the α-cycle consists of an anticlockwise contour that starts on the left of zB , then
approaches B from the right while on the first sheet Σ1, and finally returns to the
starting point via the second sheet Σ2. These cycles are depicted in Figure 5.4 (left).

Next, similarly to [17], we let h be given by the Abelian integral

(5.9) h.k/ D
1

2

�Z k

iqo

C

Z k

�iqo

�
dh.´/;

where the Abelian differential dh is defined by

(5.10) dh.k/ D �4
.k � ko/.k � ˛/.k � x̨/


.k/
dk:

The task is therefore to determine the triplet fko; ˛re; ˛img so that: (a) the function h
defined by equation (5.9) satisfies a Riemann-Hilbert problem that removes the
existing growth from the jumps V .4/7 and V .4/8 of (5.7), and (b) the sign structure
of<.ih/ is such that no new growth is introduced in any of the other jumps of (5.7).
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The sign structure of <.ih/. It is convenient to write the numerator in (5.10) as

(5.11) .k � ko/.k � ˛/.k � x̨/ D k
3
C c2k

2
C c1k C c0;

where the real constants c0; c1; c2 are given by

(5.12) c0 D �ko
�
˛2re C ˛

2
im
�
; c1 D ˛

2
reC 2ko˛reC˛

2
im; c2 D �.ko C 2˛re/:

We then have

(5.13) h.k/ D �2

�Z k

iqo

C

Z k

�iqo

�
´3 C c2´

2 C c1´C c0


.´/
d´:

We next use this representation to study the sign structure of <.ih/ for all k 2 C.
Note that, since h is completely specified in terms of ko and ˛ by (5.9) and (5.10),
determining ko and ˛ is equivalent to determining c0, c1, and c2.

We start by studying the sign structure of <.ih/ as k ! 1. Recall that the
deformations of the Riemann-Hilbert problem were chosen according to the sign
structure of <.i�/. Thus, in the transition from � to h, this structure should be
preserved. We can ensure that this is the case by requiring

(5.14) <.ih/ D <.i�/CO.1=k/; k !1:

In this regard, note that since


.k/ D k2
�
1 �

˛ C x̨

2k
C
4q2o � .˛ � x̨/

2

8k2
CO

�
1

k3

��
; k !1;

it follows that
dh

dk
D �4

�
k C .c2 C ˛re/

C
c1 C c2˛re �

1
2

�
q2o C ˛

2
im

�
C ˛2re

k
CO

�
1

k2

��
; k !1:

(5.15)

On the other hand, from the definition (2.34) of � we have

(5.16) �.k/ D �2k2 C �k � q2o CO

�
1

k

�
; k !1:

Hence, to satisfy relation (5.14) we require

(5.17) c1 D
1

2

�
q2o C ˛

2
im
�
C
�

4
˛re; c2 D �

�

4
� ˛re:

Then, integrating expansion (5.15) we find

(5.18) h.k/ D �2k2 C �k CHo CO

�
1

k

�
; k !1;

where the constant Ho can be determined by observing that

(5.19) 2

�Z k

iqo

C

Z k

�iqo

��
´ �

�

4

�
d´ D 2k2 � �k C 2q2o :
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Indeed, combining equations (5.13) and (5.19) we can express h in the form

h.k/ D �2

�Z k

iqo

C

Z k

�iqo

��
´3 C c2´

2 C c1´C c0


.´/
�

�
´ �

�

4

��
d´

�
�
2k2 � �k C 2q2o

�
:

Hence, using also equation (5.18) we deduce

Ho D �2

�Z 1
iqo

C

Z 1
�iqo

��
´3 C c2´

2 C c1´C c0


.´/
�

�
´ �

�

4

��
d´

� 2q2o

(5.20)

with c1 and c2 given by equation (5.17) and c0 yet to be determined. Note that Ho
is well-defined since the relation

´3 C c2´
2 C c1´C c0


.´/
�

�
´ �

�

4

�
D O

�
1

´2

�
; ´!1;

ensures that the integrals in (5.20) are convergent. Moreover, it is evident from the
contours of integration and the fact that c0; c1; c2 2 R that Ho 2 R. Thus the
desired behavior (5.14) of <.ih/ for large k is achieved. Also, combining (5.12)
and (5.17) we have

(5.21) ˛re D �ko C
�

4
; ˛im D

r
2k2o �

�

2
ko C q2o :

It thus remains to determine ko. We do so by analyzing the behavior of h near ˛.
In order for the jumps V .4/3 , V .4/5 , and V .4/6 to be bounded near ˛, <.ih/ should
have the sign structure shown in Figure 5.4 (right). Letting � D k � ˛, we have

�
k2 C q2o

� 1
2 D

�
˛2 C q2o

� 1
2

�
1C

˛�

˛2 C q2o
CO

�
�2
��
; � ! 0;(5.22a)

Œ.k � ˛/.k � x̨/�
1
2 D .˛ � x̨/

1
2

�
�
1
2 C

�3=2

2.˛ � x̨/
CO

�
�
5
2

��
; � ! 0:(5.22b)

Hence, in a neighborhood of ˛, we have

dh

dk
D �

4.˛ � x̨/1=2.˛ � ko/�
˛2 C q2o

�1=2
�
�
1
2 C

�
1

˛ � ko
C

1

2.˛ � x̨/
�

˛

˛2 C q2o

�
�
3
2

CO.�
5
2 /

�
; � ! 0;
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from which, integrating, we obtain the expansion

h.k/ D h.˛/ �
4.˛ � x̨/1=2.˛ � ko/�

˛2 C q2o
� 1
2

�
2

3
.k � ˛/

3
2

C
2

5

�
1

.˛ � ko/
C

1

2.˛ � x̨/
�

˛

˛2 C q2o

�
.k � ˛/

5
2 CO..k � ˛/

7
2 /

�
;

k ! ˛;

where

(5.23) h.˛/ D �2

�Z ˛

iqo

C

Z ˛

�iqo

�
´3 C c2´

2 C c1´C c0


.´/
d´:

On the other hand, in order to obtain the sign structure in Figure 5.4 (right), the
leading-order term of the expansion of <.ih/ near ˛ should be of O.k � ˛/3=2.
Thus, we must have

(5.24) = h.˛/ D 0:

Using contour deformations, we can write h.˛/ in the form

h.˛/ D �2

�Z ˛

iqo

C

Z x̨
�iqo

�
´3 C c2´

2 C c1´C c0


.´/
d´

� 2

Z ˛

x̨

´3 C c2´
2 C c1´C c0


.´/
d´;

(5.25)

where, as before, 
.´/ is taken to be continuous from the right on the branch cut
zB D Œx̨; ˛�. We then note that the first term on the right-hand side of equation

(5.25) is real, while the second term is imaginary. Hence (5.24) is equivalent to the
following condition:

(5.26)
Z ˛

x̨

´3 C c2´
2 C c1´C c0


.´/
d´ D 0:

It is convenient to reformulate the above condition as follows. The integrals of
dh from x̨ to �iqo and from ˛ to iqo are both equal to half of the integral of dh
along the α-cycle. Hence, by analyticity the contour of integration from x̨ to ˛ on
the right of zB can be deformed to the contour from �iqo to iqo on the left of B .
Thus, recalling the fact that 
C D �
� D �
 across B and also equation (5.11),
condition (5.26) takes the equivalent forms

(5.27)
Z iqo

�iqo

´3 C c2´
2 C c1´C c0


.´/
d´ D

Z iqo

�iqo

s
.´ � ˛re/

2
C ˛2im

´2 C q2o
.´ � ko/d´ D 0:
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Finally, recalling equation (5.21), condition (5.27) yields the following integral
equation for ko:

(5.28)
Z iqo

�iqo

p�
´C ko �

�
4

�2
C 2k2o �

�
2
ko C q

2
o

´2 C q2o
.´ � ko/d´ D 0:

The solution of equation (5.28) uniquely determines the points ˛ and ko, and hence
the function h, in terms of � and qo.

Remark 5.3. The integral equation (5.28) is trivially satisfied for:
(i) � D �4

p
2qo (i.e., x D �4

p
2qot ). In this case ko D �qo=

p
2, and

˛re D ko and ˛im D 0. Note that for � D �4
p
2qo equation (3.9) im-

plies that k1 D k2 D ko. Thus, at the interface between the plane wave
and modulated elliptic wave regions, the two asymptotic descriptions are
consistent.

(ii) � D 0 (i.e., either x D 0 or in the limit t !1). In this case, the point ko
collapses to the origin and the branch points ˛ and x̨ collapse to the branch
points˙iqo.

More generally, we can show the following, similarly to [17]:

LEMMA 5.4. For all � 2 .�4
p
2qo; 0/, the integral equation (5.28) has a unique

solution ko D ko.�/.

PROOF. The result essentially follows from the implicit function theorem. The
change of variables

(5.29) x D �
�

8qo
; y D

ko �
�
4

qo
;

and the parametrization ´ D iqo� turn equation (5.28) into

(5.30) f .x; y/ D

Z 1

�1

s
.i� C y/2 C 2y.y � 2x/C 1

1 � �2
.i� C 2x � y/d� D 0:

Since � 2 Œ�4
p
2qo; 0� and ko 2 .�=8; 0/, we consider equation (5.30) only for

.x; y/ 2 D D .�
p
2=2;
p
2/ � .0;

p
2=2/. Since f .0; 0/ D 0 and fx.0; 0/ < 0,

by the implicit function theorem there exists a neighborhood X �Y of .0; 0/ and a
unique function F W X 7! Y such that f.x; F.x// W x 2 X g D f.x; y/ 2 X � Y W
f .x; y/ D 0g: Hence, there exists a unique solution y.x/ of the integral equation
(5.30) in a neighborhood of .0; 0/. Moreover, fx.x; y/ < 0 throughout the do-
main D with the exception of the point .

p
2=2;
p
2=2/. Thus, there exists a neigh-

borhood around every point .x; y/ 2 D in which there exists a unique function
F.x/ such that y D F.x/ represents the unique solution of equation (5.30), and
the only point where uniqueness is violated is .

p
2=2;
p
2=2/. However, this point

is itself a solution of equation (5.30) (see case (i) above for � D �4
p
2qo). Thus,
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for any x 2 .�
p
2=2;
p
2/ there exists a unique y.x/ such that f .x; y.x// D

0, and y.
p
2=2/ D

p
2=2. Equivalently, for any � 2 Œ�4

p
2qo; 0� there ex-

ists a unique solution ko.�/ of the integral equation (5.28) with ko.�4
p
2qo/ D

�.
p
2=2/qo. �

Remark 5.5. We note that

(5.31)
Z iqo

�iqo

d´


.´/
D �

2iK.m/

j˛ C iqoj
;

where K.m/ is the complete elliptic integral of the first kind defined by

(5.32) K.m/ D

Z �
2

0

d´p
1 �m2 sin2 ´

with elliptic modulus m equal to

(5.33) m D
2
p
qo˛im

j˛ C iqoj
:

Moreover, similar expressions in terms of elliptic integrals can be obtained for the
three remaining integrals of condition (5.27) that involve ´, ´2, and ´3. Combining
all of these expressions as well as equations (5.21) then reduces condition (5.27),
and hence the integral equation (5.28), to equation (1.8b).

Global sign structure of <.ih/. In summary, when the points ˛ and ko are
chosen according to equations (5.21) and (5.28), the function h defined by equa-
tion (5.9) eliminates the growth from the matrices V .4/7 and V .4/8 , and the quantity
<.ih/ has the correct sign structure both for large k and for k near ˛ and x̨. Be-
fore formulating the Riemann-Hilbert problem for the functionM .4/, however, one
must check that<.ih/ has the correct sign structure for all finite k 2 C. To confirm
that this is indeed the case, it remains to verify that <.ih/ has the correct behavior
near k D 0. Specifically, we want to show that for any ko; ˛re < 0, there exists a
neighborhood of the origin in which <.ih/ has the required sign structure. To see
this, using the expansions

Œ.k � ˛/.k � x̨/�
1
2 D j˛j

�
1 �

˛rek

j˛j2
C

˛2im
2j˛j4

k2 CO.k3/

�
;

� D sign.kre/ qo

�
1C

k2

2q2o
CO.k4/

�
;

as k ! 0 with kim > 0, we find

dh

dk
D

4j˛jko

sign.kre/qo

�
1�

�
˛re

j˛j2
C
1

ko

�
kC

�
˛2im
2j˛j4

�
1

2q2o
C

˛re

koj˛j2

�
k2CO.k3/

�
;
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+

V (4)
3

V (4)
4

α

ᾱ

−

+
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−

+
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5

−

+

k
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1

V (4)
2

iqo

1

FIGURE 5.5. The sign structure of <.ih/ for all k 2 C.

which implies

(5.34) h.k/ D
4j˛jko

sign.kre/qo

�
k �

1

2

�
˛re

j˛j2
C

1

ko

�
k2 CO.k3/

�
C h.0/

in the same limit. Since by the definition (5.13) of h it follows that h.0/ 2 R,
equation (5.34) yields

(5.35) <.ih/ D �
4j˛jkokim

sign.kre/qo

�
1 �

�
˛re

j˛j2
C

1

ko

�
kre

�
CO.k3/

as k ! 0 with kim > 0. Recalling that ko; ˛re < 0 we thereby deduce that for
small k in the first quadrant we have <.ih/ > 0, while for small k in the second
quadrant <.ih/ < 0 provided that .ko˛re C j˛j

2/kre > koj˛j
2. The treatment of

the lower half-plane is analogous.

Remark 5.6. The analysis of the sign structure of <.ih/ as k ! 1, for k near ˛
and x̨, and as k ! 0 implies that it is always possible to deform the contours of
Figure 5.3 so that they do not go through regions in which <.ih/ has the “wrong”
sign (i.e., a sign that causes exponential growth). This is because <.ih/ is a har-
monic function away from the branch cuts. If there existed a region of “wrong”
sign separating two regions of “correct” sign, then there would be further critical
points of <.ih/ in addition to ˛; x̨; ko. In turn, this would imply additional critical
points for h besides ˛; x̨; ko. This is impossible, however, since the Abelian dif-
ferential (5.9) has exactly three zeros, namely ˛; x̨; ko. Therefore, <.ih/ has the
appropriate sign structure for all k 2 C, as shown in Figure 5.5.
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k−

α

k+

ᾱ

k

−iqo

iqo

1

k+

ᾱ

k−

α

−iqo

iqo

k

1

FIGURE 5.6. Left: The computation of the jump of h across B is done
by recalling that both Abelian integrals in (5.9) change sign due to the
function 
 involved in the Abelian differential dh. Right: The compu-
tation of the jump of h across zB is done by first deforming the contours
of integration of the Abelian integrals in (5.9) as shown in the figure and
then by noting that dh changes sign across zB due to the function 
 .

The jumps of h. Recall that h.k/ D h.�; ˛; ko; k/ is analytic in C n .B[ zB/. We
now compute the jumps of h across the branch cuts B and zB , which are needed to
determine the jump matrices in (5.7). We do so by deforming the contours involved
in equation (5.13) as shown in Figures 5.6, obtaining the jump conditions

hC.k/C h�.k/ D 0; k 2 B;(5.36a)

hC.k/C h�.k/ D �; k 2 L7 [ L8;(5.36b)

where the real constant � is defined by

(5.37) � D �4

�Z ˛

iqo

C

Z x̨
�iqo

�
.´ � ko/.´ � ˛/.´ � x̨/


.´/
d´:

Moreover, recalling the large-k behavior of h specified by equation (5.18), we infer
that h satisfies the normalization condition

(5.38) h.k/ D �2k2 C �k CHo CO.1=k/; k !1;

where, for ˛ and ko given by equations (5.21) and (5.28), the jump contours L7
and L8 are depicted in Figure 5.3, and the real constant Ho is defined by equation
(5.20).

The Riemann-Hilbert problem for M .4/. By the definition (5.5) of M .4/ and
the Riemann-Hilbert problem (5.1) for M .3/, we infer that M .4/ is analytic in
C n .

S8
jD1Lj [ B/ and satisfies the jump conditions

M .4/C.k/ DM .4/�.k/V
.4/
B ; k 2 B;(5.39a)

M .4/C.k/ DM .4/�.k/V
.4/
j ; k 2 Lj ; j D 1; : : : ; 8;(5.39b)

and the normalization condition

(5.39c) M .4/.k/ D ŒI CO.1=k/�e�iG1t�3 ; k !1;
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where the jump contours Lj are shown in Figure 5.3, the jump matrices V .4/j (5.7)
simplify thanks to the jumps (5.36) satisfied by h to

(5.40)

V
.4/
B D

0@ 0 q�ı
2

iqo

xq�
iqoı2

0

1A; V
.4/
1 D

 
1 xr ı2

1Crxr
e2iht

0 1

!
;

V
.4/
2 D

 
1 0

r
.1Crxr/ı2

e�2iht 1

!
; V

.4/
3 D

 
1 0

r
ı2
e�2iht 1

!
;

V
.4/
4 D

 
1 xrı2 e2iht

0 1

!
; V

.4/
5 D

 
1 ı2

r
e2iht

0 1

!
;

V
.4/
6 D

 
1 0

1
xrı2

e�2iht 1

!
; V

.4/
7 D

0@ 0 �
ı2

r
ei�t

r
ı2
e�i�t 0

1A;
V
.4/
8 D

 
0 xrı2 ei�t

�
1
xrı2

e�i�t 0

!
;

and, using the expansions (5.16) and (5.18), the real constant G1 involved in the
normalization condition (5.39c) is equal to

(5.41)
G1 D Ho C q

2
o

D �2

�Z 1
iqo

C

Z 1
�iqo

��
´3 C c2´

2 C c1´C c0


.´/
�

�
´ �

�

4

��
d´ � q2o ;

with the real constant Ho defined by equation (5.20).

Fifth deformation. Our final task is to eliminate the dependence on k from
the three jumps V .4/B , V .4/7 , and V .4/8 across the branch cuts B and zB . This can
be achieved with the help of an additional g-function, this time introduced via a
t -independent exponential, exactly as in the fourth deformation (4.19) for the plane
wave region (as opposed to transformation (5.5)). In particular, we let

(5.42) M .5/.x; t; k/ DM .4/.x; t; k/eig.k/�3 ;

where the function g is analytic in C n .B [ zB/ with jumps

gC.k/C g�.k/ D �i ln.ı2/; k 2 B;(5.43a)

gC.k/C g�.k/ D �i ln.ı2=r/C !; k 2 L7;(5.43b)

gC.k/C g�.k/ D �i ln.ı2xr/C !; k 2 L8;(5.43c)
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with the function ı defined by equation (5.2) and the real constant ! given by

(5.44) ! D i

R
B

lnŒı2.�/�

.�/

d� C
R
L7

ln
�
ı2.�/
r.�/

�

.�/

d� �
R
L8

lnŒı2.�/xr.�/�

.�/

d�R
zB
d�

.�/

:

Proceeding as in the plane wave region, we arrive at a scalar, additive Riemann-
Hilbert problem analogous to problem (4.22), which is solved via Plemelj’s formu-
lae to yield

g.k/ D

.k/

2�

"Z
B

lnŒı2.�/�

.�/.� � k/

d� C

Z
L7

ln
h
ı2.�/
r.�/

i
C i!


.�/.� � k/
d�

�

Z
L8

lnŒı2.�/xr.�/�C i!

.�/.� � k/

d�

#
:

(5.45)

The definition (5.44) of ! ensures that g.k/ D O.1/ as k !1. In particular, we
have

(5.46) g.k/ D g1 CO.1=k/; k !1;

where the real constant g1 is given by

g1 D
1

2�

"
�

Z
B

lnŒı2.�/�

.�/

� d� �

Z
L7

ln
� ı2.�/
r.�/

�
C i!


.�/
� d�

C

Z
L8

lnŒı2.�/xr.�/�C i!

.�/

� d�

#
:

(5.47)

Overall, the function M .5/ defined by equation (5.42) satisfies the following Rie-
mann-Hilbert problem.

Riemann-Hilbert problem 5.1 (Final problem in the modulated elliptic wave region).
Determine a sectionally analytic matrix-valued function M .5/.k/ D M .5/.x; t; k/

in C n .
S6
jD1Lj [ B [

zB/ satisfying the jump conditions

M .5/C.k/ DM .5/�.k/VB ; k 2 B;(5.48a)

M .5/C.k/ DM .5/�.k/V zB ; k 2 zB;(5.48b)

M .5/C.k/ DM .5/�.k/V
.5/
j ; k 2 Lj ; j D 1; : : : ; 6;(5.48c)

and the normalization condition

(5.48d) M .5/.k/ D ŒI CO.1=k/�ei.g1�G1t/�3 ; k !1;
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where the jump VB across the branch cut B is defined by equation (4.4), the jump
V zB across the branch cut zB is defined by

(5.49) V zB D

 
0 �ei.�t�!/

e�i.�t�!/ 0

!
;

the jumps V .5/j across the contours Lj shown in Figure 5.3 are given by

(5.50)

V
.5/
1 D

0@1 xr ı2

1Crxr
e2i.ht�g/

0 1

1A; V
.5/
2 D

0@ 1 0

r
.1Crxr/ı2

e�2i.ht�g/ 1

1A;
V
.5/
3 D

 
1 0

r
ı2
e�2i.ht�g/ 1

!
; V

.5/
4 D

 
1 xrı2 e2i.ht�g/

0 1

!
;

V
.5/
5 D

0@1 ı2

r
e2i.ht�g/

0 1

1A; V
.5/
6 D

 
1 0

1
xrı2

e�2i.ht�g/ 1

!
;

the function ı is defined by equation (5.2), the function h is defined by the Abelian
integral (5.9) and satisfies the jumps (5.36), the function g is defined by equation
(5.45), and the real constants �, G1, !, and g1 are given by equations (5.37),
(5.41), (5.44), and (5.47) respectively.

Decomposition of M .5/. As for the final Riemann-Hilbert problem in the plane
wave region, a suitable decomposition of M .5/ is now required. Namely, we de-
composeM .5/ in a way that separates the jumps expected to yield the leading-order
contribution from the jumps expected to contribute only in the error. In particular,
denoting byD"

ko
,D"˛, andD"

x̨
the disks of radius " centred at ko, ˛, and x̨, respec-

tively, with " sufficiently small so that these disks do not intersect with each other
or with B , we write

(5.51) M .5/
DM errM asymp with M asymp

D

(
MB ; k 2 C n .D"

ko
[D"˛ [D

"
x̨
/;

MD; k 2 D"
ko
[D"˛ [D

"
x̨
;

where:

� the functionMB is analytic in Cn.B[ zB/ and satisfies the jump conditions

MBC.k/ DMB�.k/ VB ; k 2 B;(5.52a)

MBC.k/ DMB�.k/ V zB ; k 2 zB;(5.52b)

(see Figure 5.7), and the normalization condition

(5.52c) MB.k/ D ŒI CO.1=k/�ei.g1�G1t/�3 ; k !1;
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−iqo

iqo
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FIGURE 5.7. The jumps of MB in the modulated elliptic wave region.
Note that, since the jump V zB is constant, the contour zB can be deformed
to the straight line segment from x̨ to ˛.
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V
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FIGURE 5.8. The jumps of MD inside the disks D"
˛ , D"

x̨
, and D"

ko
in

the modulated elliptic wave region.

� the function MD is analytic in D"
ko
[ D"˛ [ D

"
x̨
n
S8
jD1Lj with jumps

(see Figure 5.8)

(5.53) MDC.k/ DMD�.k/V
.5/
j ;

k 2 yLj D Lj \
�
D"ko [D

"
˛ [D

"
x̨

�
; j D 1; : : : ; 8;

� the function M err is analytic in C n .
S6
jD1
{Lj [ @D

"
ko
[ @D"˛ [ @D

"
x̨
/ and

satisfies the jump conditions

(5.54a) M errC.k/ DM err�.k/V err; k 2

6[
jD1

{Lj [ @D
"
ko
[ @D"˛ [ @D

"
x̨

(see Figure 5.9), and the normalization condition

(5.54b) M err.k/ D I CO.1=k/; k !1;

with {Lj D Lj n .D"ko [D
"
˛ [D

"
x̨
/ and
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V (5)
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FIGURE 5.9. The jumps of M err in the modulated elliptic wave region.

(5.55) V err
D

(
MBV

.5/
j .MB/�1; k 2 {Lj ;

M asymp�.V
asymp
D /�1.M asymp�/�1; k 2 @D"

ko
[ @D"˛ [ @D

"
x̨
;

where V asymp
D is the jump of M asymp across the circles @D"

ko
, @D"˛, and

@D"
x̨
, which is yet unknown.

Solution of the leading-order asymptotic problem. We now determine MB ,
which yields the leading-order contribution to the asymptotics of the solution of
the NLS equation as t ! 1. Our approach requires the introduction of appro-
priate theta functions, similarly to [18]. In particular, recall that the function 
 ,
defined by equation (5.8), gives rise to the Riemann surface Σ with sheets Σ1;Σ2
and cycles fα;βg depicted in Figure 5.4. Then, consider the Abelian differential

(5.56) dw D
C


.k/
dk; C D

�I
β

dk


.k/

��1
;

which is normalized so that

(5.57)
I
β

dw D 1

and has Riemann period � defined by

(5.58) � D

I
α

dw:
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Note that C 2 iR. In addition, it can be shown that � 2 iRC (see, for example,
[39]). Also, note that the normalization (5.57) and the definition (5.58) of � imply

(5.59)
Z iqo

�iqo

dw D
1

2
;

Z �iqo
x̨

dw D
�

2
; k 2 Σ1:

In fact, using the α- and β-cycles of Figure 5.4 in the definition (5.58) we have

(5.60) � D
iK.
p
1 �m2/

K.m/
;

where K.m/ is the complete elliptic integral of the first kind defined by equation
(5.32).

Next, we introduce the genus-1 theta function ‚ as

(5.61) ‚.k/ D
X
`2Z

e2i�`kCi�`
2�
D �3.�k; e

i�� /;

where �3 denotes the third Jacobi theta function defined by

(5.62) �3.´; %/ D
X
`2Z

e2i`´%`
2

:

The function �3 is analytic for .´; %/ 2 C � fC W j%j < 1g. Hence, since i� < 0,
the function ‚ is analytic for all k 2 C. Moreover, ‚ is even and possesses the
translation properties

(5.63) ‚.k C n/ D ‚.k/; ‚.k C n�/ D e�2i�nk�i�n
2�‚.k/; n 2 Z:

We then define the vector-valued function M as

M.k; c/ D

 
‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
C v.k/C c

�q
iqo
xq�
‚.v.k/C c/

;

‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
� v.k/C c

�q
xq�
iqo

‚.�v.k/C c/

!(5.64)

where the constants � and ! are defined by equations (5.37) and (5.44) as before,
the constant c is for now arbitrary and will be determined in due course, and v is
the Abelian map

(5.65) v.k/ D

Z k

iqo

dw:

Note that since v is analytic for all k … B [ zB and ‚ is analytic for all k 2 C, the
only sources of nonanalyticity of the function M in the k-plane are the branch cuts
B and zB and the possible zeros of the functions ‚.v.k/˙ c/.
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The function M has been introduced in order to satisfy the jumps and the nor-
malization condition of the Riemann-Hilbert problem (5.52) for MB . To compute
the jumps of M note that, using the α- and β-cycles of the Riemann surface Σ, we
have

vC.k/C v�.k/ D n; n 2 Z; k 2 B;(5.66a)

vC.k/C v�.k/ D �� C n; n 2 Z; k 2 zB:(5.66b)

Also, using the translation properties (5.63) of ‚, we find

MC.k/ DM�.k/

 
0 �q�=iqo

xq�=iqo 0

!
; k 2 B;(5.67a)

MC.k/ DM�.k/

 
0 ei.�t�!/

e�i.�t�!/ 0

!
; k 2 zB:(5.67b)

The jumps (5.67) differ from those of Riemann-Hilbert problem (5.52) only by
a negative sign in the 12-entry. Thus, instead of M we consider the matrix-valued
function N defined by

(5.68) N.k; c/ D

1

2

 �
p.k/C p�1.k/

�
M.1/.k; c/ i

�
p.k/ � p�1.k/

�
M.2/.k; c/

�i
�
p.k/ � p�1.k/

�
M.1/.k;�c/

�
p.k/C p�1.k/

�
M.2/.k;�c/

!
;

where

(5.69) p.k/ D

�
.k � iqo/.k � ˛/

.k C iqo/.k � x̨/

� 1
4

:

The function p is analytic away from the branch cuts B and zB , is nonzero away
from k D ˛ and iqo, and has fourth-root singularities at k D x̨ and �iqo. More-
over, p has the same jump discontinuity across both B and zB , namely,

(5.70) pC.k/ D ip�.k/; k 2 B [ zB:

In addition, p admits the large-k expansion

(5.71) p.k/ D 1 �
i.qo C ˛im/

4k
CO

�
1

k2

�
; k !1:

The jumps (5.67) and (5.70) of M and p imply that N has the following jumps
across B and zB:

NC.k/ D N�.k/VB ; k 2 B;(5.72a)

NC.k/ D N�.k/V zB ; k 2 zB:(5.72b)

Therefore, the function N defined by equation (5.68) has the same jumps as MB

across B and zB .
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Regarding the analyticity of N away from B and zB , we observe that the only
possible singularities ofN other than the usual branch points˙iqo, ˛, and x̨ could
arise from the functions‚.v.k/˙ c/ in the denominator of equation (5.64). In this
regard, we note that, from the definition (5.61) of ‚ in terms of the Jacobi �3
function, the zeros of ‚ are simple and located at 1

2
.1C �/C ZC �Z: Moreover,

the function p � p�1 has a unique finite simple zero on the cut complex k-plane
given by

(5.73) k� D
qo˛re

qo C ˛im
:

Then, setting the constant c, which was introduced as an arbitrary constant in the
definition (5.64) of M, equal to

(5.74) c D v.k�/C
1

2
.1C �/;

implies that (i) the function ‚.v.k/ � c/ has a unique zero on the first sheet Σ1
of the Riemann surface Σ, located at the pre-image of k�, and (ii) the function
‚.v.k/ C c/ is nonzero on Σ1 (see, for example, [39], pp. 290–291). Hence, the
choice (5.74) of the constant c ensures that the unique singularity of M.2/.k; c/ and
M.1/.k;�c/ on Σ1 is compensated by the unique zero of p�p�1, while M.1/.k; c/

and M.2/.k;�c/ are nonsingular on Σ1. As a consequence, N is analytic as a
function in Σ1 away from the branch points. Therefore, N is analytic for all k 2
C n .B [ zB/.

Finally, we discuss the large-k behavior of N . Combining the definition (5.68)
of N and the expansion (5.71) for p we find

(5.75) lim
k!1

N.k; c/ D N.1; c/ D

�
M.1/.1; c/ 0

0 M.2/.1;�c/

�
;

where M.j /.1; c/ D limk!1M.j /.k; c/ for j D 1; 2, and

M.1; c/ D

 
‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
C v1 C c

�q
iqo
xq�
‚.v1 C c/

;

‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
� v1 C c

�q
xq�
iqo

‚.�v1 C c/

!(5.76)

with

(5.77) v1 D

Z 1
iqo

dw:

In summary, both of the matrix-valued functions MB and N are analytic away
from B [ zB and satisfy identical jumps across B and zB . Thus, we deduce that the
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unique solution of the Riemann-Hilbert problem (5.52) is

(5.78) MB.k/ D ei.g1�G1t/�3N�1.1; c/N.k; c/;

where the exponential term and the constant matrixN.1; c/ in equation (5.78) are
necessary so as to match the normalization of MB at infinity.

The asymptotic limit t !1. Starting from formula (2.30) for the solution q of
the focusing NLS equation (1.1) in terms of M .0/ and applying the five successive
deformations that lead to M .5/, we find

(5.79) q.x; t/ D �2i
�
M
.5/
1 .x; t/

�
12
ei.g1�G1t/;

where M .5/
1 is the O.1=k/ coefficient in the large-k expansion of M .5/, i.e.,

(5.80) M .5/.x; t; k/ D ei.g1�G1t/�3 C
M
.5/
1 .x; t/

k
CO

�
1

k2

�
; k !1:

Recalling that for large k the decomposition (5.51) ofM .5/ involvesMB andM err,
we have

(5.81) q.x; t/ D �2i
�
MB
1 .x; t/e

i.g1�G1t/ CM err
1 .x; t/

�
12
:

Combining equation (5.78) and the expansion (5.71) for p, we obtain

(5.82)
�
MB
1 .x; t/

�
12
D
1

2
.qo C ˛im/

M.2/.1; c/

M.1/.1; c/
ei.g1�G1t/:

Moreover, as in the plane wave region, the term M err
1 admits the estimate

(5.83) jM err
1 .x; t/j D O.t

� 1
2 /; t !1;

which can be established by constructing appropriate parametrices near the points
˛; x̨; ko and then employing the techniques presented in the Appendix. Since the
construction of these parametrices is similar to the relevant construction presented
in [18], it is omitted here for brevity.

Overall, inserting equation (5.82) and estimate (5.83) in equation (5.81), we
conclude that the long-time asymptotic behavior of the solution of the focusing
NLS equation (1.1) in the modulated elliptic wave region is given by

q.x; t/ D
qo.qo C ˛im/

xq�

�
‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
� v1 C c

�
‚.v1 C c/

‚
�
�
�t
2�
C

!
2�
C

i ln . xq�
iqo

/

2�
C v1 C c

�
‚.�v1 C c/

� e2i.g1�G1t/ CO
�
t�

1
2

�
; t !1;

(5.84)

where the constants ˛im, �, G1, !, g1, c, and v1 are given by equations (5.21),
(5.37), (5.41), (5.44), (5.47), (5.74) and (5.77), respectively.
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The asymptotic solution (5.84) can actually be expressed in a simpler form.
Specifically, similarly to [53], we consider

(5.85) f .k/ D 1 �
.k � ˛/.k � iqo/


.k/
D p.k/Œp�1.k/ � p.k/�

as a function on the Riemann surface Σ such that 
.k/ � k2 as k ! 11, where
11 denotes the point at infinity on Σ1. The function f has singularities at x̨ and
�iqo, and zeros at 11 and at the finite point k�, which was introduced earlier
by equation (5.73) as the unique zero of the function p � p�1. Therefore, f is a
meromorphic function on Σ with divisor .f / equal to

(5.86) .f / D k� C11 � .�iqo/ � x̨:

Since the divisor .f / of a meromorphic function is principal, by Abel’s theorem
(e.g., see [7], theorem 2.14) it follows that v..f // D 0, or, equivalently,

(5.87) v.k�/ D v.�iqo/C v.x̨/ � v.11/:

Recalling the definition of the cycles (see Figure 5.4) and using equations (5.59),
we find that v.�iqo/ D 1

2
C Z and v.x̨/ D 1

2
�
�
2
C Z on Σ1. Hence, v.k�/ D

�
�
2
� v1 on Σ1 and then equation (5.74) implies

(5.88) c D
1

2
� v1 C ZC �Z:

Therefore, the leading-order asymptotic solution in equation (5.84) simplifies to

qasymp.x; t/ D
qo
�
qo C ˛im

�
xq�

�
‚
�
1
2

�
‚
�
1
2�

�
�t � ! � i ln

�
xq�
iqo

��
C 2v1 �

1
2

�
‚
�
2v1 �

1
2

�
‚
�
1
2�

�
�t � ! � i ln

�
xq�
iqo

��
�
1
2

�
� e2i.g1�G1t/;

(5.89)

where the real constants ˛im,G1, !, and g1 are given by equations (5.21), (5.41),
(5.44) and (5.47), respectively, the complex constant v1 is defined by equation
(5.77), and the real constant � is defined in equation (5.37). Finally, note that the
constant� can be calculated explicitly in terms of elliptic functions. Indeed, using
standard results from the theory of Abelian differentials of the second kind, we
obtain the expression

(5.90) � D
�j˛ C iqoj

K.m/
.� � 2˛re/;

where K.m/ and m are defined by equations (5.32) and (5.33).
The proof of Theorem 1.2 is complete.
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6 Representation via Elliptic Functions: Proof of Theorem 1.3

In this section we prove Theorem 1.3; i.e., we express the modulus of the as-
ymptotic solution (5.89) in the modulated elliptic wave region in terms of elliptic
functions.

Recall that the function ‚ appearing in equation (5.89) was defined in for-
mula (5.61) in terms of the third Jacobi theta function �3, with the period � given
by equation (5.60) and the nome % of �3 set to

(6.1) % D ei�� D e��K.
p
1�m2=K.m/;

where K.m/ and m are defined by equations (5.32) and (5.33), respectively. It is
also be useful to introduce the three other Jacobi theta functions

�1.´; %/ D
X
`2Z

.�1/`�
1
2 e.2`C1/i´%.`C

1
2
/2 ;(6.2a)

�2.´; %/ D
X
`2Z

e.2`C1/i´%.`C
1
2
/2 ; �4.´; %/ D

X
`2Z

.�1/ne2i`´%`
2

:(6.2b)

With % given by equation (6.1), the above theta functions are associated with the
Jacobi elliptic function sn and the elliptic modulus m via the relations

(6.3) sn.´;m/ D
�3.0/

�2.0/

�1.´�
�2
3 .0//

�4.´�
�2
3 .0//

; m D
�22 .0/

�23 .0/
:

Hereafter, the nome % will be suppressed from the arguments of the theta functions
for brevity. We are now ready to express the asymptotic solution in terms of elliptic
functions.

We begin with the constant v1 defined by equation (5.77). Note that by the
definition of the β-cycle we have

(6.4) 2v1 �
1

2
D

Z 1
�iqo

dw C

Z 1
iqo

dw C ZI

hence 2v1� 12 is imaginary modulo Z. Moreover, we introduce the real quantities

(6.5) � D
1

2

�
�t � ! � i ln

�
xq�

iqo

��
;  D �i�

�
2v1 �

1

2

�
;

with � given by equation (5.90). Then, we note that the identity �3.k; %/ D
�4
�
k C �

2
; %
�
, together with the evenness of �3, implies that �3.�2 / D �3.�

�
2
/ D

�4.0/ and �3.� � �
2
/ D �4.�/: Using these relations as well as the relation (5.61)

between‚ and �3, we can write the leading-order asymptotic solution (5.89) in the
form

(6.6) qasymp.x; t/ D
qo.qo C ˛im/

xq�

�4.0/�3.� C i /

�3.i /�4.�/
e2i.g1�G1t/:
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Moreover, recalling that the constants g1; G1 are real, and employing the addition
formula

(6.7) �3.� C i /�3.� � i /�
2
4 .0/ D �

2
4 .�/�

2
3 .i / � �

2
1 .�/�

2
2 .i /;

we have

(6.8)
ˇ̌
qasymp.x; t/

ˇ̌2
D .qo C ˛im/

2

�
1 �

�21 .�/�
2
2 .i /

�24 .�/�
2
3 .i /

�
:

Thus, according to definition (6.3) we have

(6.9) jqasymp.x; t/j
2
D .qo C ˛im/

2

�
1 �m

�22 .i /

�23 .i /
sn2.�23 .0/�;m/

�
:

It now remains to compute the ratio of the theta functions in equation (6.9) as well
as the constant �23 .0/. For the latter, we simply recall the standard formulae [19]

(6.10) �22 .0/ D
2mK.m/

�
; �23 .0/ D

2K.m/

�
; �24 .0/ D

2
p
1 �m2K.m/

�
;

where �22 .0/ and �24 .0/ were also included for later use.
The calculation of the ratio �22 .i /=�

2
3 .i /, on the other hand, is more involved.

We first note that, using the identities

�1.k; %/ D �ie
ikC i��

4 �4

�
k C

��

2
; %
�
;(6.11a)

�2.k; %/ D �1

�
k C

�

2
; %
�
;(6.11b)

�3.k; %/ D �4

�
k C

�

2
; %
�
;(6.11c)

we have

(6.12)
�22 .i /

�23 .i /
D
�22 .2y �

�
2
/

�23 .2y �
�
2
/
D
�21 .2y/

�24 .2y/
; y D �v1:

Subsequently, using the duplication formulae

�1.2y/�2.0/�3.0/�4.0/ D 2�1.y/�2.y/�3.y/�4.y/;(6.13a)

�4.2y/�
3
4 .0/ D �

4
3 .y/ � �

4
2 .y/;(6.13b)

we find

(6.14)
�21 .2y/

�24 .2y/
D

4�44 .0/

�22 .0/�
2
3 .0/

�21 .y/

�22 .y/

�23 .y/

�22 .y/

�24 .y/

�22 .y/

��
�3.y/

�2.y/

�4
� 1

��2
:

The three ratios

(6.15)
�21 .y/

�22 .y/
;

�23 .y/

�22 .y/
;

�24 .y/

�22 .y/
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appearing in equation (6.14) can be computed in a similar way. Here we present
a detailed derivation of the formula for the third ratio and provide the relevant
formulae for the first two ratios for brevity.

The idea is to express the desired ratio in terms of a meromorphic function,
similarly to [52]. Specifically, to compute the last ratio in equation (6.15), we
consider the function

(6.16) f42.k/ D e
i�
R k
iqo

dw� i��
4

‚
�R k
˛ dw �

1
2
�
�
2

�
‚
�R k
�iqo

dw � 1
2
�
�
2

�
as a function on the Riemann surface Σ. Noting that on the first sheet Σ1 we have

(6.17)
Z k

˛

dw D
�

2
C

Z k

iqo

dw C Z;

Z k

�iqo

dw D
1

2
C

Z k

iqo

dw C Z;

and recalling also the periodicity properties of ‚, we find

(6.18) f42.k/ D e
i�
R k
iqo

dw� i��
4

�3
�
�
R k
iqo
dw � �

2

�
�3
�
�
R k
iqo
dw � ��

2

� :
Employing the second and the third of the identities (6.11), we then obtain

(6.19) f42.k/ D
�4
�
�
R k
iqo
dw
�

�2
�
�
R k
iqo
dw
� :

Observe that f42 evaluated at k D 11 is equal to the ratio �4.y/=�2.y/ that we
wish to compute.

Furthermore, note that the function f42 defined by equation (6.16) is meromor-
phic on Σ1, with a simple pole at k D �iqo and a simple zero at k D ˛. Hence, f
may be expressed in the form

(6.20) f42.k/ D A42.k/
.k � ˛/1=2

.k C iqo/
1=2
;

where A42 is a holomorphic function bounded at11. Now note that f 242.k/ is also
a meromorphic function on the complex k-plane. HenceA242.k/must be a constant
by Liouville’s theorem. Therefore, to determine the function f42 (and hence the
ratio �4.y/=�2.y/) it remains to determine the constant A42.

The computation of A42 is done by evaluating the residue of f42 at k D �iqo
in two different ways. First, using the representation (6.20) we find

(6.21) ResŒf42.k/;�iqo� D A42 � i.iqo C ˛/
1
2 :

Alternatively, employing the form (6.19) and noting that

�2

�
�

Z k

iqo

dw

�
D R.k/.k C iqo/

1
2
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for some function R such that R.�iqo/ ¤ 0, we obtain

(6.22) ResŒf42.k/;�iqo� D
�4
�
�
R iqo
iqo

dw
�

R.�iqo/
D

�4
�
�
2

�
R.�iqo/

:

Actually, we have

ŒR.�iqo/�
2
D

@

@k
�22

�
�

Z k

iqo

dw

�ˇ̌̌̌
kD�iqo

D
Œ2�C � 02.

�
2
/�2

�2iqo.iqo C ˛/.iqo C x̨/
;

(6.23)

where the imaginary constant C is defined by equation (5.56). Thus, equation
(6.22) becomes

(6.24) ResŒf42.k/;�iqo� D �4
�
�
2

�"
�
2iqo.iqo C ˛/.iqo C x̨/�

2�C � 02
�
�
2

��2
# 1
2

:

Matching the expressions (6.21) and (6.24), we deduce

(6.25) A242 D
2iqo.iqo C x̨/�

2
4

�
�
2

��
2�C � 02

�
�
2

��2 :

Finally, evaluating equations (6.19) and (6.20) at k D 11 and using the identities
(6.11), we obtain

(6.26)
�24 .y/

�22 .y/
D
2iqo.iqo C x̨/�

2
3 .0/

Œ2�C� 01.0/�
2

:

The constant C defined by equation (5.56) can be expressed in terms of the com-
plete elliptic integral of the first kind K.m/ via the formula

(6.27) C D
i j˛ C iqoj

4K.m/
:

Thus, using also the identity � 01.0/ D �2.0/�3.0/�4.0/ we can write expression
(6.26) in the form

(6.28)
�24 .y/

�22 .y/
D �

2iqo.iqo C x̨/

m
p
1 �m2j˛ C iqoj

2
:

Computations identical to the above yield the following expressions for the other
two ratios in (6.15):

(6.29)
�21 .y/

�22 .y/
D �

.iqo C ˛/.iqo C x̨/
p
1 �m2j˛ C iqoj

2
;

�23 .y/

�22 .y/
D �

2iqo.iqo C ˛/

mj˛ C iqoj
2
:
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Inserting expressions (6.28) and (6.29) in equation (6.14) we obtain

(6.30)
�21 .2y/

�24 .2y/
D
1

m

4qo˛im

.qo C ˛im/
2
:

Inserting in turn this expression into equation (6.9) yields expression (1.10) for the
modulus of the leading-order solution of the focusing NLS equation (1.1) in the
modulated elliptic wave region.

The proof of Theorem 1.3 is complete.

7 Discussion and Final Remarks

We conclude this work with a discussion of the physical implications of our
results and with some general remarks about how they fit in a broader context.

(1) We have shown that, for all initial conditions that satisfy the hypothesis of
Theorem 1.1, the long-time asymptotics decomposes the xt -plane into two plane
wave regions, in each of which the solution is approximately equal to the back-
ground value up to a phase, separated by a central region in which the leading-order
behavior is given by a slow modulation of the traveling wave solutions of the fo-
cusing NLS equation. As already discussed in Section 1, the spatial structure of the
asymptotic solution (both in the plane wave regions and in the modulated elliptic
wave region) is independent of the initial conditions of the problem, and the initial
conditions only determine the slowly varying offset Xo of the elliptic solution (via
the reflection coefficient), whereas the envelope of the modulated elliptic wave is
independent of it. Thus, the long-time asymptotics of generic localized perturba-
tions of the constant background in modulationally unstable media on the infinite
line displays universal behavior. In this sense, the asymptotic stage of modulational
instability is universal.

(2) The results of this work also show that, even though the jumps along the
branch cut B of the original Riemann-Hilbert problem (2.1) grow exponentially
with t , the solution of this Riemann-Hilbert problem—and hence the solution of the
focusing NLS equation—remains bounded in the limit t !1. We note that this is
a fairly common result of the analysis of Riemann-Hilbert problems via the Deift-
Zhou method, as the factorizations of the jump matrices and the deformations of
the jump contours allow one to eliminate all the terms that exhibit the exponential
growth in the jump conditions.

(3) We reiterate that a special case of the modulated elliptic wave (without the
slowly varying offset parameter Xo and the phase g1) had been previously ob-
tained using Whitham theory [54]. The motion of the Riemann invariants had also
been previously obtained [36]. Compared to those works, however, the present re-
sults represent a significant step forward in that: (i) they establish rigorously the
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validity of the modulated elliptic solution as the long-time asymptotic state of the
problem; (ii) they establish rigorously that the solution of the focusing NLS equa-
tion with nonzero boundary conditions at infinity remains bounded for all times;
and (iii) they establish the universality of the modulated elliptic solution as the
asymptotic state of a large class of perturbations of the constant background. At
the same time, it is remarkable that the particular solution of the genus-1 Whitham
system obtained in [36] is relevant for the long-time asymptotics even though the
Whitham equations for the focusing NLS equation are elliptic (which implies that
the corresponding initial value problem is ill-posed for generic initial data).

(4) The results of this work are relevant in describing the nonlinear evolution
of plain waves in modulationally unstable media in all fields where the focusing
NLS equation applies, ranging from deep water waves to nonlinear fiber optics, to
attractive Bose-Einstein condensates and beyond. A brief summary of some of the
main results of this work recently appeared in [13]. Importantly, an extensive set
of careful numerical simulations with a variety of initial conditions shows that, for
a broad class of localized perturbations of the constant background, the dynamics
is indeed characterized by the asymptotic state described in this work. See item (9)
below for further discussion.

(5) In the physics literature, modulational instability is often studied in the
framework of spatially periodic perturbations of the constant background. The
results of this work should therefore be compared to those available in the case of
periodic boundary conditions. But the IST machinery used to study the periodic
case (namely, the theory of finite-genus solutions [51,66]) is very different from the
one in the initial value problem with nonzero boundary conditions used here. (In
fact, the question of how the IST of the periodic case reduces to that of the infinite
line is an interesting one [74], which does not appear to have a simple answer that
can be used effectively to translate results from one setting into the other.) Also,
the physics in the two cases is markedly different. For example: (i) In the periodic
case, there is an amplitude threshold below which no instability occurs, whereas no
such threshold exists on the infinite line. (ii) In the periodic case, radiation cannot
escape to infinity, and, therefore, it is doubtful that a long-time asymptotic state
exists. Also, sinusoidal excitations are a special case of perturbations with several
Fourier components, each contributing with its own amplitude and phase. Such
generic perturbations are characterized by their spectral data, and this is precisely
the situation studied in this work.

(6) The results of this work can also be compared to the semiclassical limit of
the focusing NLS equation with zero boundary conditions [56]. The study of that
scenario requires more sophisticated analysis, and the results are also more com-
plicated. (Namely, even though there is a similar bifurcation from plane waves
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to modulated genus-2 oscillations in the case of zero boundary conditions, the
genus-2 solution also breaks along a certain caustic curve in the xt -plane, with nu-
merical evidence suggesting the generation of regions of higher and higher genus
in the dispersionless limit.) Moreover, a fundamental difference between the two
physical settings is that numerical simulations of the semiclassical case become
more and more sensitive to roundoff error in this limit. (Essentially, the initial
value problem becomes ill-posed in this limit.) In contrast, the scenario studied
in this work (namely, modulational instability on the line) does not appear to be
as sensitive to numerical issues, as demonstrated by the favorable comparison be-
tween the asymptotic results and direct numerical simulations of a large class of
initial conditions. See also item (9) below.

(7) Of course semiclassical limits and the study of long-time asymptotics are
often studied using Whitham theory [75]. As mentioned above, however, the
Whitham equations for the focusing NLS equation are elliptic, and therefore the
corresponding initial value problem is ill-posed. This is well-known in the case of
zero boundary conditions (e.g., see [56]) and remains true in the case of nonzero
boundary conditions. Interestingly enough, however, special, real-valued solutions
to the Whitham equations also exist in the focusing case, even though the char-
acteristic velocities are complex. Indeed, the modulation equations (1.8) coincide
exactly with those obtained in [36, 54]. It should be clear, however, that the IST-
related methods used here are the only way to study the nonlinear stage of modu-
lational instability for generic perturbations of the constant background.

(8) The results of this work open up a number of interesting problems, both
from a mathematical and a physical point of view. From a physical point of view,
an obvious question is whether the asymptotic behavior described in this work
is robust. We can reformulate this question in terms of whether the results are
stable under perturbations. Let us briefly elaborate on this issue. The fundamental
dichotomy in this respect concerns whether the underlying dynamics of the system
under study is exactly governed by the NLS equation (1.1). If the answer is yes, the
results of this work rigorously establish the long-time asymptotics of the solution
for any initial conditions satisfying the hypotheses of Theorems 1.1 and 1.2. On
the other hand, if additional terms are present in the governing equations, i.e., if
the NLS equation only provides an approximation of the actual behavior, and the
exact dynamics is governed by a perturbation of equation (1.1), the situation is
different. This is because in many cases perturbed NLS equations give rise to
chaotic behavior [1, 2, 4]. Therefore, it is likely that initially small differences
between the exact solution of the NLS equation and that of the perturbed system
will grow exponentially, and that, as a result, the asymptotic state described in
this work will not persist for all times. Such is the case, for example, when one
solves the focusing NLS equation with periodic boundary conditions numerically.
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Indeed, it is known that such a scenario is characterized by catastrophic roundoff
accumulation [2, 4].

(9) Nonetheless, we next show that even when one integrates the NLS equation
numerically—and therefore the NLS equation is only an approximate description
of the exact dynamics due to truncation error—an intermediate time range exists
for which the nonlinear stage of modulational instability reaches the asymptotic
state described in this work and at the same time catastrophic roundoff has not yet
taken hold.

This claim is borne out both by general estimates and by careful numerical sim-
ulations. Regarding the former, recall that the growth rate of an unstable Fourier
mode � 2 Œ0; 2�� in the focusing case is 
.�/ D �

p
4q2o � �

2 [11]. Therefore

max D 2q2o , which is achieved for � D

p
2qo. A trivial calculation then shows

that, working in double precision, the characteristic time needed for roundoff error
to grow to O.1/ is �roundoff D 16 ln.10/=
max D 8 ln.10/=q2o . One can therefore
expect that the asymptotic state described in this work will be destroyed by round-
off error after this time.

On the other hand, it is possible to observe the asymptotic state numerically up
to t ' �roundoff. Indeed, we verified that this is the case by performing numerical
simulations of the focusing NLS equation (using an eighth-order split-step method)
and a variety of initial conditions representing a localized perturbation of the con-
stant background. The numerical results, shown in Figure 7.1, confirm that in all
cases the dynamics of the system for t < �roundoff is accurately described by the
asymptotic state presented in this work. Remarkably, this is true even when the
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FIGURE 7.1. Numerically computed density plot of jq.x; t/j, describ-
ing the solution of the focusing NLS equation with various choices of
initial condition representing a localized perturbation of a constant back-
ground. Left: q.x; 0/ D 1 C i cos.�x/ for jxj < 1 and q.x; 0/ D 1

otherwise. Center: q.x; 0/ D 1 C ie�x
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2x/. Right: q.x; 0/ D

1C i sech.10x/. Also shown (red lines) are the boundaries between the
plane wave regions and the modulated elliptic wave region. Numerical
simulations performed by Sitai Li.
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initial conditions are not analytic, in which case the initial value problem for the
NLS-Whitham equations has no solution. Note also that no small-norm assump-
tion for the perturbation is required in order for the results of this work to be valid.
In fact, we conjecture that the nonlinear structure called “the beard,” which was
observed to appear seemingly out of nowhere in numerical simulations of the fo-
cusing NLS equation [27, 37], is nothing else but the asymptotic behavior state in
this work. (For example, compare Figure 7.1 with the structure in the center of the
spatial domain in figure 14 of [37].)

(10) From a mathematical point of view, an interesting problem is the gener-
alization of the long-time asymptotics to initial data for which the reflection co-
efficient is not analytic in a neighborhood of the continuous spectrum. This situ-
ation corresponds to the case of initial conditions that tend to the constant back-
ground algebraically as x !˙1. One would hope that such a generalization can
be achieved by employing rational approximations, along similar lines to what is
done in the case of zero boundary conditions [35]. The issue is nontrivial, how-
ever, because the definition of ! in (5.44) for the solution in the modulated elliptic
wave region requires the evaluation of r.k/ along the branch cut zB D Œx̨; ˛�. A
similar requirement is present for the phase g1 in the same region. The con-
dition (3.1) with � D qo ensures that the reflection coefficient is analytic in the
strip j=.k/j < qo, which contains zB for all times and therefore allows ! to be
well-defined. (It is straightforward to show that the solution of the modulation
equations (1.8) satisfies j˛imj < qo.) In this case, the leading-order asymptotics in
Theorems 1.1 and 1.2 is uniform for all x 2 R. On the other hand, if the initial
conditions only decay to qo slowly as x ! ˙1 (and as a result the reflection co-
efficient is not analytic) the process of rational approximation could lead to O.1/
changes in !.

(11) A related question is therefore whether the dynamics of modulationally
unstable systems with initial conditions that are only slowly decaying to the back-
ground as x ! ˙1 is also described by an asymptotic state similar to the one
described in this work. While the observations in the preceding paragraph cast
some doubts that this will be the case, one should also note that changes in ! and
g1 only affect the local position shiftXo and the overall phase of the solution, and
not the structure of the modulated elliptic wave, which, as discussed earlier, is in-
dependent of the initial condition. Note also that, for any fixed x, � ! 0 as t !1
and, correspondingly, ˛ ! iqo. As a result, the analyticity requirements needed
in order to perform the deformations in Section 5 become progressively weaker as
t !1. (That is, essentially any � > 0 is enough for sufficiently large t .) While in
this case the resulting leading-order asymptotics is not uniform in x, it is conceiv-
able that some form of the modulated elliptic wave described in this work could
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also describe those kinds of situations. But of course a definitive answer to this
question will require further work.

(12) Another interesting problem is the generalization of the results to the long-
time asymptotics to initial conditions which generate a nontrivial discrete spec-
trum. Apart from the intrinsic interest of this problem from a mathematical point
of view, the analysis of such kinds of problems is also important from a physical
point of view, since it will allow one for the first time to study the interactions
between solitons and radiation in a modulationally unstable medium. The same
framework will also allow one to address another related important open question,
concerning the stability of solitons on nonzero background in modulationally un-
stable media.

(13) Finally, returning to the more general issue of the behavior of modulation-
ally unstable systems, there are of course many other important open questions, and
it should be clear that much more work is needed until a comprehensive picture can
be pieced together. For example, it remains to be determined what is the precise
role, if any, played in the asymptotic dynamics by the Kuznetsov-Ma solitons, by
the Akhmediev breathers and the Peregrine solitons, and by the NLS-Whitham
equations, in particular regarding how the ellipticity of the NLS-Whitham equa-
tions contributes to the overall picture. Whether and how the results on the infinite
line reduce to those with periodic boundary conditions as the characteristic width
of the perturbations increases without bounds, and the understanding of the pre-
cise connections between the phenomena discussed in this work and the theory of
integrable turbulence [5, 77], also remain as important open questions. Nonethe-
less, it should also be clear that the results of this work represent a significant step
forward on a problem that has remained essentially open for fifty years. In partic-
ular, we find it very remarkable that a broad class of perturbations of the constant
background under the effect of modulational instability gives rise to a universal
asymptotic state corresponding to the slow modulations of the elliptic solutions of
the focusing NLS equation.

Appendix: Estimation of the Error

We now establish estimate (4.36) for the term M err that appears in formula
(4.33) for the leading-order asymptotics in the plane wave region. Note that the
proof also carries over to the estimate (5.83) for M err in the modulated elliptic
wave region once the appropriate parametrices are employed. (See [18] for the
construction of such parametrices.)

Since M err solves the Riemann-Hilbert problem (4.31), using Plemelj’s formu-
lae we may express the O.1=k/ coefficient M err

1 in the large-k expansion of M err
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as

M err
1 .x; t/ D �

1

2i�

Z
S
j
{Lj[@D

"
k1

M err�.�/ŒV err.�/ � I �d�:

By the Cauchy-Schwarz inequality we then find

(A.1)
jM err

1 .x; t/j 6
1

2�

�
kM err�

� Ik
L2
k
.
S
j
{Lj[@D

"
k1
/
kV err

� Ik
L2
k
.
S
j
{Lj[@D

"
k1
/

C kV err
� Ik

L1
k
.
S
j
{Lj[@D

"
k1
/

�
:

We will estimate each of the terms involved in the right-hand side of the above

inequality separately. We begin with kV err � Ik
L
p

k
.{Lj /

. Along the contours {Lj ,

we have V err � I DMB
�
V
.4/
j � I

�
.MB/�1: Thus, we find

(A.2) kV err
� Ik

L
p

k
.{Lj /

6 kMB
k
L1
k
.{Lj /



V .4/j � I



L
p

k
.{Lj /
k.MB/�1k

L1
k
.{Lj /

:

Since MB is analytic away from the branch cut B and MB D O.1/ as k ! 1,
we have

kMB
k
L1
k
.{Lj /
k.MB/�1k

L1
k
.{Lj /

< c <1; c > 0:

Hence, inequality (A.2) becomes

(A.3) kV err
� Ik

L
p

k
.{Lj /

6 c


V .4/j � I




L
p

k
.{Lj /

; c > 0:

The right-hand side of inequality (A.3) can be estimated by exploiting the expo-
nential decay along {Lj . For example, for j D 2 inequality (A.3) reads

(A.4) kV err
� Ik

L
p

k
.{L2/

6 c

0@ 0 0


 re�2i.�t�g/1Crxr
ı�2





L
p

k
.{L2/

0

1A:
Recall that the function ı defined by equation (4.13) is nonzero, analytic away
from .�1; k1� andO.1/ as k !1. Similarly, the function g defined by equation
(4.23) is analytic away from B and O.1/ as k !1. Thus,

(A.5)




re�2i.� t�g/1C rxr

ı�2





L
p

k
.{L2/

6 c





 r

1C rxr
e�2i� t






L
p

k
.{L2/

; c > 0:

Furthermore, since {L2 lies outside the disk D"
k1

, we have k<.i�/k
L1.{L2/

> C >

0: Hence, exploiting also the analyticity of the reflection coefficient r provided by
Lemma 3.1, we find

(A.6)




 r

1C rxr
e�2i� t






L
p

k
.{L2/

< eCe�Ct 8t > T > 0; C;eC > 0:

Combining inequalities (A.4)–(A.6) we then obtain the estimate

kV err
� Ik

L
p

k
.{L2/

6 eCe�Ct 8t > T > 0; C;eC > 0:
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Similar estimates hold along the remaining contours. Overall, we have

(A.7) kV err
� Ik

L
p

k
.{Lj /

6 eCe�Ct 8t > T > 0; C;eC > 0; j D 1; 2; 3; 4:

Next, we wish to estimate V err � I along the circle @D"
k1

. Recall, however, that
now

(A.8) V err
DM asymp�.V

asymp
D /�1.M asymp�/�1;

where V asymp
D is the unknown jump of M asymp across @D"

k1
. Thus, we first need to

estimate this unknown jump.

Lemma. The jump V asymp
D of M asymp across the circle @D"

k1
admits the estimate

(A.9) V
asymp
D D I CO

�
t�

1
2

�
; t !1:

PROOF. Similarly to [34], for jk � k1j 6 " with " sufficiently small we take the
Taylor series of the function � about the point k1 to write

(A.10) �.k/t D �.k1/t C ´
2;

where

(A.11) ´ D
p
t .k � k1/

� 1X
nD0

�nC2.k � k1/
n

� 1
2

; �n D
� .n/.k1/

nŠ
:

Furthermore, as k 2 D"
k1

we can write
�P1

nD0 �nC2.k � k1/
n
� 1
2 D

P1
nD0 ˛n.k � k1/;

˛n 2 CI hence, equation (A.11) implies

(A.12)
´
p
t
D

1X
nD1

˛n�1.k � k1/
n; k 2 D"

k1
:

Moreover, for " sufficiently small, equation (A.12) can be inverted via recursive
approximations to yield

k D k1 C

1X
nD1

ˇn

�
´
p
t

�n
; k 2 D"

k1
:

Next, we let

(A.13) MD.k/ DMB.k/ mD
�
p
t

1X
nD1

˛n�1.k � k1/
n

�
; k 2 D"k1 ;

which equivalently reads

mD.´/ D .MB/�1
�
k1 C

1X
nD1

ˇn

�
´
p
t

�n�

�MD

�
k1 C

1X
nD1

ˇn

�
´
p
t

�n�
; ´ 2 D"0:

(A.14)
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FIGURE A.1. The transformation from the contours yLj to the contours
y†j , j D 1; 2; 3; 4.

Note that the presence of MB does not affect the jump conditions of MD inside
the disk D"

k1
since MB is analytic there. Furthermore, the mapping

(A.15) D"
k1
3 k 7! ´ D

p
t

1X
nD1

˛n�1.k � k1/
n
2 D"0

is conformal and, as such, it preserves angles locally. Hence, there exists an appro-
priate choice of the jump contours yLj that lie inside the diskD"

k1
, which is mapped

under (A.15) to certain contours y†j (see Figure A.1) that lie inside the diskD"0 and
form a cross centered at ´ D 0 such that its extension does not intersect with the
branch cut B . Thus, for k 2 D"

k1
we infer from equations (4.30) and (A.14) that

the function mD.´/ D mD.x; t; ´/ is analytic in D"0 n
S4
jD1
y†j and satisfies the

jump conditions

(A.16)
mDC.´/ D mD�.´/V

.4/
j

�
k1 C

1X
nD1

ˇn

�
´
p
t

�n�
;

´ 2 y†j ; j D 1; 2; 3; 4:

Extending the jump conditions (A.16) in the whole complex k-plane implies that
mD is analytic in C n

S4
jD1†j and satisfies the jump conditions

(A.17)
mDC.´/ D mD�.´/V

.4/
j

�
k1 C

1X
nD1

ˇn

�
´
p
t

�n�
;

´ 2 †j ; j D 1; 2; 3; 4;

and the normalization condition mD.´/ D I C O.1=´/; ´ ! 1; where the con-
tours †j are the extensions of the contours y†j outside the disk D"0.
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Since r.k/ D O.1=k/ as k ! 1 (see [12]), we may now proceed similarly
to [34]. Eventually, we find

mD.x; t; ´/ D ı
y�3
0 emD1.x; ´/CO�t� 12 ln t

�
; t !1;

where for

ν D �
1

2�
ln.1C jr.k1/j2/; χ.k/ D �

1

2i�

Z k1

�1

ln.k � �/d Œln.1C jr.�/j2/�

we define
ı0 D ˇ

iν
1 t
� iν
2 eχ.k1/ei�.k1/t�ig.k1/:

Moreover, the t -independent function emD1.´/ D emD1.x; ´/ is analytic in C nS4
jD1†j and satisfies the jump conditions

emDC1 .´/ D emD�1 .´/ V1j .´/; ´ 2 †j ; j D 1; 2; 3; 4;

and the normalization condition �mD1.´/ D I CO.1=´/; ´!1; with

V11 D

 
1 xr.k1/

1Cjr.k1/j
2 ´

2i�e2i´
2

0 1

!
; V12 D

0@ 1 0

r.k1/

1Cjr.k1/j
2 ´
�2i�e�2i´

2

1

1A;
V13 D

 
1 0

r.k1/´
�2i�e�2i´

2

1

!
; V14 D

 
1 xr.k1/ ´

2i�e2i´
2

0 1

!
:

Thus, since M asympC D MD and M asymp� D MB for k 2 @D"
k1

, using equation
(A.14) we find

V
asymp
D D mD

�
p
t

1X
nD1

˛n�1.k � k1/
n

�
; k 2 @D"k1 :

Then, since ´!1 in the limit t !1 for k 2 @D"
k1

, we use the large-´ expansion
of mD.´/ evaluated at

p
t
P1
nD1 ˛n�1.k � k1/

n to obtain

V
asymp
D D I C

mD1
p
t
P1
nD1 ˛n�1.k � k1/

n

CO

��
p
t

1X
nD1

˛n�1.k � k1/
n

��2�
; t !1;

from which we infer estimate (A.9). �

Returning to equation (A.8) we have

kV err
� IkLp

k
.@D"

k1
/ 6 kV err

� IkL1
k
.@D"

k1
/

�Z
k2D"

k1

jdkj

� 1
p

6 .2�"/
1
pO

�
t�

1
2

�
:

(A.18)
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Combining inequalities (A.7) and (A.18) we thereby obtain the estimate

(A.19) kV err
� Ik

L
p

k
.
S
j
{Lj[@D

"
k1
/

6 O
�
t�

1
2

�
; t !1:

Returning to inequality (A.1), it remains to estimate M err� � I . This is done by
using standard estimates that involve the Cauchy transform (see [18]). Eventually,
we find

(A.20) kM err�
� Ik

L2
k
.
S
j
{Lj[@D

"
k1
/

6 CkV err
� Ik

L2
k
.
S
j
{Lj[@D

"
k1
/
; C > 0:

Inequalities (A.1), (A.19), and (A.20) complete the proof of estimate (4.36).
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