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Abstract: We present a rigorous theory of the inverse scattering transform (IST) for the
three-component defocusing nonlinear Schrödinger (NLS) equation with initial condi-
tions approaching constant values with the same amplitude as x → ±∞. The theory
combines and extends to a problem with non-zero boundary conditions three funda-
mental ideas: (i) the tensor approach used by Beals, Deift and Tomei for the n-th order
scattering problem, (ii) the triangular decompositions of the scattering matrix used by
Novikov, Manakov, Pitaevski and Zakharov for the N -wave interaction equations, and
(iii) a generalization of the cross product via the Hodge star duality, which, to the best
of our knowledge, is used in the context of the IST for the first time in this work. The
combination of the first two ideas allows us to rigorously obtain a fundamental set of
analytic eigenfunctions. The third idea allows us to establish the symmetries of the eigen-
functions and scattering data. The results are used to characterize the discrete spectrum
and to obtain exact soliton solutions, which describe generalizations of the so-called
dark-bright solitons of the two-component NLS equation.

1. Introduction

The vector nonlinear Schrödinger (VNLS) equation, i q̃t + q̃xx − 2ν‖q̃‖2q̃ = 0 (where
q̃ : R × R+ → CN , ‖ · ‖ is the Euclidean norm, subscripts x , t , and z denote partial
differentiation and the values ν = −1 and ν = 1 denote, respectively, the focusing and
defocusing cases), belongs to the class of infinite-dimensional completely integrable
systems, which possess a remarkably richmathematical structure (e.g., see [1,3,7,26,29,
41] and references therein). In particular, the scalar (N = 1) version is referred to as the
nonlinear Schrödinger (NLS) equation, and the two-component version as the Manakov
system. Scalar and vector NLS systems also appear in many physical contexts, such as
deepwater waves, nonlinear optics, acoustics, and Bose–Einstein condensation (e.g., see
[3,31,45,48] and references therein). As a result, these systems have been the object of
considerable study over the last 50 years. Themajority ofworks in the literature deal with

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-016-2626-7&domain=pdf


476 G. Biondini, D. K. Kraus, B. Prinari

“localized” initial conditions, i.e., situations such that q̃(x, t) → 0 as x → ±∞. On the
other hand, problems in which the limit of q̃(x, t) as x → ±∞ is non-zero are also of
great applicative interest in most fields in which the NLS and VNLS equations arise. For
example, recent experiments in Bose–Einstein condensates have shown a proliferation
of dark-dark solitons in the dynamics of two miscible superfluids experiencing fast
counterflow in a narrow (cigar-shaped) condensate [30,49].Moreover, cases inwhich the
solutions do not vanish at infinity are relevant for the study ofmodulational instability [4,
34,50,53] in the focusing dispersion regime. Such problems are less well characterized
fromamathematical point of view, and their study is the subject of thiswork. Specifically,
we consider the above VNLS equation with the following boundary conditions (BC):
limx→±∞ q̃(x, t) = qo eiθ±+2iνq2o t , with θ± ∈ R arbitrary and with qo = ‖qo‖ ≥ 0.
(Note that the time dependence of the BC is dictated by the partial differential equation.)
We refer to qo = 0 as the case of zero boundary conditions (ZBC) and to qo �= 0 as that
of nonzero boundary conditions (NZBC). When qo �= 0, it is convenient to consider a
slightly modified VNLS equation, namely

iqt + qxx − 2ν(‖q‖2 − q2o )q = 0, (1.1)

obtained via the simple change of dependent variable q̃(x, t) = q(x, t)e2iνq
2
o t . The

corresponding BC are

lim
x→±∞ q(x, t) = q± = qo e

iθ± , (1.2)

and are now independent of time, which simplifies the analysis that follows.
Recall that the initial-value problem (IVP) for integrable nonlinear partial differential

equations (PDEs) can be solved via the inverse scattering transform (IST). In turn, the
IST is based on formulating the PDE as the compatibility condition of a Lax pair [39].
In particular, (1.1) is associated with the following Lax pair:

φx = X φ, φt = T φ, (1.3)

where

X(x, t, k) = −ikJ + Q, T(x, t, k) = 2ik2J − iJ(Qx − Q2 + q2o ) − 2kQ, (1.4a)

J =
(
1 0
0 −I

)
, Q(x, t) =

(
0 rT

q 0

)
, (1.4b)

and r = νq∗. [In other words, (1.1) is equivalent to the zero-curvature condition Xt −
Tx +XT−TX = 0, which in turn is equivalent to the compatibility condition φxt = φt x
of (1.3).] The first of (1.3) [which amounts to the eigenvalue problem for the first-
order matrix ordinary differential operator iJ(∂x − Q)] is called the scattering problem,
φ(x, t, k) is referred to as the scattering eigenfunction, k ∈ C as the scattering parameter,
and the solution q(x, t) of the VNLS equation (1.1) appearing in both X and T above as
the scattering potential. The second of (1.3) is simply called the time evolution equation.

The IST for the focusing NLS equation with ZBC was developed in [51] (see also
Refs. [1,3,41]). The theory was then made rigorous in [5] (see also [6,21]). The IST
for the defocusing scalar case with NZBC was developed in [52], and was subsequently
rigorously revisited in [24,26], while the focusing case with NZBCwas recently done in
[14,25]. The IST for theManakov system for the focusing case with ZBCwas developed
in 1974 [40], and the theory can be extended to an arbitrary number of components in
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a straightforward way [2]. The vector case with NZBC is very different, however. Note
that, already in the scalar case, the ISTwith NZBC is considerably more involved than in
the case of ZBC [24,26], and even though the IST with ZBCwas settled a long time ago,
some questions are still outstanding in the case of NZBC (e.g., see [11,17]). Moreover,
the IST for vector systems with NZBC is significantly more challenging than that for the
scalar case. As a result, the IST for VNLS systems with NZBC remained by and large
open for a long time.

The IST for the defocusingManakov systemwithNZBCwas outlined in [42],making
use of an idea introduced in [33] to solve the IVP for the three-wave interaction equations.
The problem was then rigorously revisited in [15], and the focusing Manakov system
with NZBCwas studied in [38] using similar methods. Unfortunately, the approach used
in [15,38,42] does not extend to the VNLS equation in more than two components.

A significant step towards the IST for the defocusing N -component VNLS equation
with NZBC with N > 2 was recently presented in [43]. There, the methods of [6]
were generalized to systems with NZBC and degenerate eigenvalues. More precisely,
by formulating extended eigenvalue problems for suitably defined tensors, existence
and uniqueness of solutions of such extended problems were rigorously proved. In turn,
solutions of the original scattering problem were recovered in terms of these tensors. In
this way, a complete set of meromorphic eigenfunctions was rigorously constructed. On
the other hand, several issues were left open in [43], most notably the symmetries of the
eigenfunctions and scattering data, a complete characterization of the spectral data and
of the discrete spectrum, and a discussion of the resulting soliton solutions. The purpose
of this work is to overcome those difficulties and present a complete and rigorous theory
of IST for the defocusing VNLS equation with NZBC.

It turns out that a combination of three fundamental ideas is needed in order to
develop a full IST for the multi-component VNLS equation with NZBC. The first idea
is the use of tensors to construct a fundamental set of meromorphic eigenfunctions,
as discussed above. The second idea is the use of triangular decompositions of the
scattering matrix (generalizing the ideas of [41] to systems with NZBC and degenerate
eigenvalues) in order to construct fundamental analytic eigenfunctions (FAE) in terms
of the meromorphic ones. Indeed, a first contribution of this work is to combine these
two ideas, which allows for a rigorous characterization of the analyticity properties of
the minors of the scattering matrix. As it will be shown, these properties are significantly
more involved than for 2 × 2 or 3 × 3 scattering problems.

For the problem at hand, however, even a combination of the above two ideas is
not enough to formulate a complete theory of IST. Indeed, it is well known that a full
characterization of the symmetries of the eigenfunctions and scattering data is needed in
the inverse problem in order to correctly recover the actual solution of the PDE from the
IST. Until now, such a characterization was still missing for the multicomponent VNLS
equation with NZBC. The third and final idea, which is introduced here for the first time
in the context of the IST to the best of our knowledge, is the use of a generalized cross
product (based on the Hodge star duality) to determine the symmetry properties of the
eigenfunctions and, as a result, of the scattering data. As it will be shown, these properties
are also significantly more involved than for 2 × 2 or 3 × 3 scattering problems.

In this work we then combine all of these three ideas to develop a complete, rigorous
theory of IST for the defocusing three-component VNLS equation with NZBC. Several
results are obtained: (i) the precise analyticity properties of the Jost eigenfunctions and
scattering matrix are given; (ii) a complete set of fundamental analytic eigenfunctions is
obtained for each half plane of the appropriate spectral variable; (iii) the behavior of the
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Jost eigenfunctions and scattering coefficients at the branch points is discussed; (iv) the
symmetries of the eigenfunctions are derived rigorously using a generalized version of
the familiar cross product; (v) these symmetries are used to rigorously characterize the
discrete spectrum and to obtain the associated norming constants in certain cases; (vi) the
asymptotic behavior of the Jost eigenfunctions is derived systematically; (vii) the inverse
problem is formulated in terms of a Riemann–Hilbert problem (RHP); (viii) explicit
relations among all reflection coefficients are given, and all entries of the scattering
matrix are determined in the case of reflectionless solutions; (ix) Explicit dark-bright
soliton solutions are obtained; (x) a comparison between the small-deviation limit of
the IST and the linearization of the VNLS equation is presented; (xi) the reduction of
the present approach to the defocusing Manakov system with NZBC is presented and
compared to the approach presented in [15,42].

The following notation will be used throughout this work: asterisk denotes complex
conjugation, boldface denotes vectors and matrices of appropriate size, superscripts T
and † denote respectively matrix transpose and matrix adjoint; Ad , Ao, Abd , and Abo
denote respectively the diagonal, off-diagonal, block-diagonal, and block-off-diagonal
parts of a square matrix A. In addition, we use the notation (A1, . . . , AN ) to denote the
columns of amatrixA, and I and 0 denote appropriately-sized identity and zeromatrices,
respectively. Importantly, subscripts ± will be used to denote quantities normalized as
x → ±∞, whereas superscripts ± will be used to denote regions of analyticity—or,
more generally, meromorphicity. More precisely (with a lone exception that will be
pointed out in Sect. 2.2) the superscripts ± will denote quantities that are analytic (or,
more generally, meromorphic) in the upper-half plane (UHP) or the lower-half plane
(LHP) of the complex plane, denoted respectively as C±. The proofs of all theorems,
lemmas, corollaries, etc. are found in the appendix.

2. Direct Problem

For simplicity, in thisworkwewill consider the case inwhich the asymptotic polarization
vectors q± at x → ±∞ are parallel. (Note that the case in which q± are not parallel
is still an open problem even in the 2-component case, cf. [15].) In this case, thanks to
the U (N ) invariance of (1.1), without loss of generality they can be chosen to be of the
form

q± = (0, 0, q±)T , (2.1)

with q± = qo eiθ± . We will formulate the IST in a way that the reduction qo → 0 can
be taken explicitly throughout.

2.1. Riemann surface, uniformization, Jost solutions and scattering matrix. In order to
introduce the Jost eigenfunctions, onemust first study the asymptotic scattering problems
as x → ±∞, which are given by

φx = X± φ, (2.2)

whereX± = limx→±∞ X = −ikJ+Q±. The eigenvalues ofX± are ik (withmultiplicity
2) and ±iλ, where

λ(k) = (k2 − q2o )
1/2. (2.3)
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As in the scalar case [52], these eigenvalues are branched. The branch points are the
values of k for which λ(k) = 0, i.e., k = ±qo.We deal with this issue as in [15,17,26,42]
by introducing the two-sheeted Riemann surface defined by (2.3), taking the branch cut
on (−∞,−qo]∪[qo,∞), andwe define λ(k) so that Im λ ≥ 0 on sheetCI and Im λ(k) ≤
0 on sheetCII (see [42] for further details). Next, we introduce a uniformization variable
via the conformal mapping

z = k + λ. (2.4)

Importantly, the inverse map yields both k and λ as rational functions of z:

k = 1
2 (z + q2o/z), λ = 1

2 (z − q2o/z). (2.5)

One can then express all the k-dependence of eigenfunctions and scattering data (includ-
ing the one resulting from λ) in terms of z, thereby eliminating all branching. The branch
cuts on the two sheets of the Riemann surface are mapped onto the real z-axis; CI is
mapped onto the upper-half plane of the complex z-plane;CII is mapped onto the lower-
half plane of the complex z-plane; z(∞I) = ∞ if Im(k) > 0; z(∞I) = 0 if Im(k) < 0;
z(∞II) = 0 if Im(k) > 0; z(∞II) = ∞ if Im(k) < 0; z(k, λI)z(k, λII) = q2o ; |k| → ∞ in
the upper-half plane ofCI corresponds to z → ∞ in the upper-half z-plane; |k| → ∞ in
the lower-half plane ofCII corresponds to z → ∞ in the lower-half z-plane; |k| → ∞ in
the lower-half plane ofCI corresponds to z → 0 in the upper-half z-plane; and |k| → ∞
in the upper-half plane of CII corresponds to z → 0 in the lower-half z-plane. Finally,
the segments k ∈ [−qo, qo] in each sheet correspond, respectively, to the upper-half and
lower-half of the circle Co of radius qo centered at the origin in the complex z-plane.

We are now ready to introduce the Jost solutions over the continuous spectrum �,
which consists of all values of k (in either sheet) such that λ(k) ∈ R; that is, k ∈
R\(−qo, qo). In the complex z-plane, the corresponding set is the whole real axis. We
write the eigenvalues and the corresponding eigenvector matrices of the asymptotic
scattering problems (2.2) as

i�(z) = diag(−iλ, ik, ik, iλ), E±(z) =
(

1 −(i/z)q†
±

(i/z)q± I

)
= I − (i/z)JQ±,

(2.6)

respectively, so that

X±E± = iE±�. (2.7)

This normalization is the generalization of the one used in [15,17] for the scalar case.
For future reference, note that

det E±(z) = 1 − q2o/z
2 := γ (z),

E−1± (z) = 1

γ (z)

[
diag(1, γ (z), γ (z), 1) + (i/z)JQ±

]
. (2.8)

We now discuss the asymptotic time dependence. As x → ±∞, the time evolution of
the solutions of the Lax pair is asymptotic to

φt = T±φ, (2.9)

where T± = limx→±∞ T = 2ik2J + iJQ2± − iq2oJ − 2kQ±. The eigenvalues of T±
are −i(k2 + λ2) (with multiplicity two) and ±2ikλ. Since the BC are constant, the
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consistency of the Lax pair (1.3) impliesX±T± = T±X±, soX± andT± admit common
eigenvectors. Indeed,

T±E± = −iE±�, �(z) = diag(−2kλ, k2 + λ2, k2 + λ2, 2kλ). (2.10)

Thus, ∀z ∈ R, we can define the Jost solutions φ±(x, t, z) as the simultaneous solutions
of both parts of the Lax pair satisfying the BC

φ±(x, t, z) = E±(z)ei�(x,t,z) + o(1), x → ±∞, (2.11)

where

�(x, t, z) = �(z)x − �(z)t = diag(θ1(x, t, z), θ2(x, t, z), θ2(x, t, z),−θ1(x, t, z)).

(2.12)

As usual, the advantage of introducing simultaneous solutions of both parts of the Lax
pair is that all of the scattering data will be independent of time.

Of course one must still rigorously prove that such Jost eigenfunctions are well-
defined. The above discussion can be made rigorous by defining the Jost eigenfunctions
as the solutions of appropriate Volterra linear integral equations. One can remove the
asymptotic exponential oscillations and introduce modified eigenfunctions:

μ±(x, t, z) = φ±(x, t, z)e−i�(x,t,z), (2.13)

so that

lim
x→±∞ μ±(x, t, z) = E±(z). (2.14)

Using the modified eigenfunctions, in Appendix A.1 we show that, for all z ∈
R\{0,±qo}, μ−(x, t, z) exists, is unique, and is uniformly continuous over the interval
x ∈ (−∞, a] for all a ∈ R if q(x, t) − q− ∈ L1(−∞, a). Similarly for μ+(x, t, z) over
[a,∞) if q(x, t)−q+ ∈ L1(a,∞). Moreover, the columns φ−,1(x, t, z) andφ+,4(x, t, z)
can be analytically continued onto the upper-half z-plane, with continuous limit to the
real z-axis (except possibly at the branch points), while φ+,1(x, t, z) and φ−,4(x, t, z)
can be analytically continued onto the lower-half z-plane, again with continuous limit
to the real axis. Finally, if (1 + |x |)(q(x, t) − q±) ∈ L1(R±), the Jost solutions are also
well-defined at both of the branch points ±qo.

As explained before, the point z = 0 is the image of the points at infinity in the k, λ
variables, and therefore the behavior of the Jost solutions as z → 0 will be analyzed
separately, together with the behavior as z → ∞. Anticipating the results in Sect. 2.4,
μ±,1(x, t, z) and μ±,4(x, t, z) behave like 1/z as z → 0, while the remaining columns
of μ±(x, t, z) and the scattering coefficients are all finite as z → 0 [cf. (2.48), (2.49)
and (2.51)].

Remark 2.1. As in the focusing and defocusingManakov systemwithNZBC [15,38,42],
in general, the remaining columns of the Jost eigenfunctions do not admit analytic
continuation off the real z-axis. The difference between the 2-component case and the
3-component case is that, for theManakov system, this defect of analyticity only affected
one of the columns of each of φ±, and it was obviated by using the adjoint scattering
problem to obtain two auxiliary analytic eigenfunctions [15,42]. That approach, though,
cannot be extended to the three-component case. The resolution of this problem will be
discussed in Sect. 2.2.
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The scatteringmatrix is introduced in a standardway. If φ(x, t, z) solves (1.3), Abel’s
formula implies ∂x (det φ) = trX det φ and ∂t (det φ) = trT det φ. Since trX = 2ik and
trT = −2i(k2 + λ2), we have

∂

∂x
det(φ±(x, t, z)e−i�(x,t,z)) = ∂

∂t
det(φ±(x, t, z)e−i�(x,t,z)) = 0.

Then (2.11) implies

det φ±(x, t, z) = γ (z) e2iθ2(x,t,z), (x, t) ∈ R2, z ∈ R. (2.15)

Thus, for all z ∈ R\{±qo} , φ−(x, t, z) and φ+(x, t, z) are both fundamental matrix
solutions of the Lax pair, so there exists a 4 × 4 matrix A(z) such that

φ−(x, t, z) = φ+(x, t, z)A(z), z ∈ R\{±qo}. (2.16)

As usual, A(z) = (ai j (z)) is referred to as the scattering matrix, and its entries as
scattering coefficients. Note that with our normalizations for the Jost eigenfunctions,
A(z) is independent of time. Moreover, (2.15) and (2.16) imply

det A(z) = 1, z ∈ R\{±qo}. (2.17)

It is also convenient to introduce B(z) := A−1(z) = (bi j (z)). In the scalar case, the
analyticity of the diagonal scattering coefficients follows from their integral represen-
tations in terms of analytic eigenfunctions, while for the Manakov system, alternative
integral representations of the Jost eigenfunctions can be used to prove analogous results
(see [15] for more details). In the N -component case, however, it will be necessary to
use a different approach, which was introduced in Ref. [43], and which will also yield
more general results (that are also applicable to the Manakov system, as we will see in
Sect. 6.2).

So far, the setup is essentially the same as for theManakov system,with the deficiency
in the number of analytic Jost eigenfunctions being the most glaring difference. As
mentioned above, however, the method of circumventing this defect of analyticity here
is completely different from the one used in the Manakov case. We turn to this issue
next.

2.2. Tensors and fundamental meromorphic eigenfunctions. In this section and the next
we show how a combination of the methods of [6] and the approach of [41] can be used
to construct a complete set of analytic eigenfunctions in each half plane. We begin by
briefly recalling some results from [43], where, generalizing the approach introduced in
[6] for the N -th order scattering operator, a rigorous formalism was derived to obtain a
fundamental set of meromorphic eigenfunctions. First, following [43] we introduce the
following quantities:

Definition 2.2. Given the columns of the matrices μ±(x, t, z), for all n = 1, . . . , 4 and
all z ∈ R we define the totally antisymmetric fundamental tensors

f +n (x, t, z) = μ−,1(x, t, z) ∧ · · · ∧ μ−,n(x, t, z),

f −
n (x, t, z) = μ−,n(x, t, z) ∧ · · · ∧ μ−,4(x, t, z),

g+n (x, t, z) = μ+,n(x, t, z) ∧ · · · ∧ μ+,4(x, t, z),

g−
n (x, t, z) = μ+,1(x, t, z) ∧ · · · ∧ μ+,n(x, t, z),

where the symbol “∧” denotes the wedge product as in [43].
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The following result was proved in [43]:

Theorem 2.3. For all n = 1, . . . , 4, the fundamental tensors f ±
n (x, t, z) and g±

n (x, t, z)
can be extended analytically to the following regions:

f +n (x, t, z), g+n (x, t, z) : Im z > 0, f −
n (x, t, z), g−

n (x, t, z) : Im z < 0,

with continuous limit to the real axis.

Remark 2.4. The definitions of the tensors f −
n (x, t, z) and g−

n (x, t, z) differ slightly
from those in [43]. More precisely, in [43] the ordering of the eigenvalues of X± was
reversed in the LHP, and as a result the same definition was used for f ±

n and g±
n in the

UHP and LHP. It will be apparent later how these changes affect the analysis to our
benefit.

Theorem 2.3 also leads to the following result [43]:

Theorem 2.5. There exist scalar functions 	±
1 (z), 	±

2 (z), and 	±
3 (z), analytic in C±,

respectively, with smooth extensions to R\{±qo} from their respective regions of ana-
lyticity, such that the following hold for all n = 1, 2, 3:

f +n (x, t, z) ∧ g+n+1(x, t, z) = 	+
n(z)γn(z) e1 ∧ · · · ∧ e4, Im z > 0, (2.18a)

g−
n (x, t, z) ∧ f −

n+1(x, t, z) = 	−
n (z)γ ∗

n (z∗) e1 ∧ · · · ∧ e4, Im z < 0, (2.18b)

where

γn(z) = det(E−,1(z), . . . , E−,n(z), E+,n+1(z), . . . , E+,4(z)) (2.19)

and {e j }4j=1 is the standard basis for R4.

(Again, note the slight difference betweenwhat is presented here andwhat was presented
in [43].) In Sect. 2.3 we will establish a precise connection between these functions and
the scattering matrix, which will allow us to determine the analyticity properties of the
scattering data.Wewill also see that the functions	±

n (z)will provide part of the spectral
data of the problem.

Definition 2.6 (Discrete spectrum). Define

Z± = {z ∈ C± :
3∏
j=1

	±
j (z) = 0}. (2.20)

We will show in Sect. 3.2 that Z± is in fact the discrete spectrum. First, however, we
need to construct a fundamental set of analytic eigenfunctions. To this end, we need the
following results [43]:

Theorem 2.7 (Fundamental meromorphic eigenfunctions). For all z ∈ C±\Z±, there
exist unique analytic fundamental matrix solutions
±(x, t, z) of the scattering problem,
with columns 
±

n (x, t, z) for n = 1, . . . 4, defined by

f +n (x, t, z) = f +n−1(x, t, z) ∧ 
+
n(x, t, z), 
+

n(x, t, z) ∧ g+n (x, t, z) = 0,

(2.21a)

f −
n−1(x, t, z) = 
−

n−1(x, t, z) ∧ f −
n (x, t, z), g−

n (x, t, z) ∧ 
−
n (x, t, z) = 0,

(2.21b)
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together with the weak boundary conditions

lim
x→−∞ E−,1(z) ∧ · · · ∧ E−,n−1(z) ∧ 
+

n(x, t, z) = E−,1(z) ∧ · · · ∧ E−,n(z), (2.22a)

lim
x→−∞ 
−

n (x, t, z) ∧ E−,n+1(z) ∧ · · · ∧ E−,4(z) = E−,n(z) ∧ · · · ∧ E−,4(z), (2.22b)

and with the following asymptotic behavior at the opposite infinity:

lim
x→∞ 
+

n(x, t, z) ∧ E+,n+1(z) ∧ · · · ∧ E+,4(z)

= γn(z)

γn−1(z)

	+
n(z)

	+
n−1(z)

E+,n(z) ∧ · · · ∧ E+,4(z), (2.23a)

lim
x→∞ E+,1(z) ∧ · · · ∧ E+,n−1(z) ∧ 
−

n (x, t, z)

= γ ∗
n−1(z

∗)
γ ∗
n (z∗)

	−
n−1(z)

	−
n (z)

E+,1(z) ∧ · · · ∧ E+,n(z), (2.23b)

with γn(z) given by (2.19) as before.

Theorem 2.8. For all z ∈ C±\Z±, the matrices m±(x, t, z) = 
±(x, t, z) e−i�(x,t,z)

have the following asymptotic behavior:

lim
x→−∞ m+(x, t, z) = E−(z)α+

o (z), lim
x→∞ m+(x, t, z) = E+(z)β

+
o (z), (2.24a)

lim
x→−∞ m−(x, t, z) = E−(z)β−

o (z), lim
x→∞ m−(x, t, z) = E+(z)α

−
o (z), (2.24b)

where α±
o (z) and β±

o (z) have the following structure:

α+
o (z) =

⎛
⎜⎝
1 0 0 0
0 1 α+

o,23 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , β−

o (z) =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 β−

o,32 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

α−
o (z) =

⎛
⎜⎜⎝

γ̄ ∗(z∗)/	−
1 0 0 0

0 	−
1 /	−

2 α−
o,23 0

0 0 	−
2 /	−

3 0
0 0 0 	−

3 /γ̄ ∗(z∗)

⎞
⎟⎟⎠ ,

β+
o (z) =

⎛
⎜⎝

	+
1/γ̄ 0 0 0
0 	+

2/	
+
1 0 0

0 β+
o,32 	+

3/	
+
2 0

0 0 0 γ̄ /	+
3

⎞
⎟⎠ ,

where the z-dependence in the right-hand side was omitted for brevity, and

γ̄ (z) = γ (z)/(1 − q−r+/z2). (2.25)

Moreover, the matrices α+
o (z), β−

o (z), α−
o (z)�−(z) and β+

o (z)�+(z) are analytic for all
z ∈ C±\R, with the possible exception of the points z = ±qoe−i	θ/2, with

�−(z) = diag(	−
1 ,	−

2 ,	−
3 , 1), �+(z) = diag(1,	+

1 ,	
+
2 ,	

+
3). (2.26)

Finally, both m±(x, t, z) and α±
o (z) and β±

o (z) have smooth projections to R\{±qo}
[43].
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Comparing this result to [43], the slight difference is now clear: Essentially, all that
is done is the switching of the behaviors as x → ±∞ in the lower-half z-plane. The
behavior at the points z = ±qoe−i	θ/2, where γ̄ (z) is singular, can be studied as in [43],
where it was shown that these points do not play any role in the development of the IST.
Taking the limit Im z → 0± one has [43]:

Theorem 2.9 (Projection to the real axis). For z ∈ R,

m+(x, t, z) = E−(z)ei�(x,t,z)α+(z) e−i�(x,t,z) + o(1), x → −∞, (2.27a)

m+(x, t, z) = E+(z)e
i�(x,t,z)β+(z) e−i�(x,t,z) + o(1), x → ∞, (2.27b)

m−(x, t, z) = E−(z)ei�(x,t,z)β−(z) e−i�(x,t,z) + o(1), x → −∞, (2.27c)

m−(x, t, z) = E+(z)e
i�(x,t,z)α−(z) e−i�(x,t,z) + o(1), x → ∞, (2.27d)

where

α±(z) = α±
o +

⎛
⎜⎜⎝
0 α±

12 α±
13 α±

14
0 0 0 α±

24
0 0 0 α±

34
0 0 0 0

⎞
⎟⎟⎠ , β±(z) = β±

o +

⎛
⎜⎜⎝

0 0 0 0
β±
21 0 0 0

β±
31 0 0 0

β±
41 β±

42 β±
43 0

⎞
⎟⎟⎠ ,

(2.28)

and where the z-dependence in the right-hand side was omitted for brevity.

Remark 2.10. We emphasize that not all entries of α±(z) and β±(z) are obtained from
the entries of α±

o (z) and β±
o (z). This is because the limits x → ±∞ and z → R do not

commute in general. Also, the additional entries of α±(z) and β±(z) cannot in general be
extended off the real z-axis. In other words, these additional entries are not projections
to the real axis of analytic functions.

Thus, for the matrix entries of α±(z) and β±(z) that appear explicitly in the right-
hand side of (2.28), the superscripts± do not denote analyticity. This is the only instance
in which we will deviate from the convention.

Next, we note that m±(x, z, t)ei�(x,t,z) solve the Lax pair in (1.3). We then compare
the asymptotics in Theorem 2.9 with those in (2.11) to explicitly obtain the decomposi-
tion of the fundamental meromorphic eigenfunctions in terms of the Jost eigenfunctions
for z ∈ R:

m+(x, t, z)ei�(x,t,z) = φ−(x, t, z)α+(z) = φ+(x, t, z)β
+(z), (2.29a)

m−(x, t, z)ei�(x,t,z) = φ−(x, t, z)β−(z) = φ+(x, t, z)α
−(z). (2.29b)

We will show how the matrices m±(x, t, z) and relations (2.29) provide all the informa-
tion needed to formulate the inverse problem.

2.3. Triangular decompositions and fundamental analytic eigenfunctions. The results
of the previous section provide the framework to obtain a set of fundamental analytic
eigenfunctions. Namely, generalizing ideas presented in [41] for a first-order matrix
system with ZBC, we use (2.29) to write triangular decompositions of the scattering
matrix and use these decompositions to obtain the analyticity properties of the scattering
matrix and a complete set of analytic eigenfunctions for each half plane. Indeed, in
Appendix A.1 we show the following:
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Lemma 2.11 (Triangular decomposition of the scatteringmatrix). The scattering matrix
A(z), defined for all z ∈ R\{±qo} by (2.16), admits the following triangular decompo-
sitions:

A(z) = β+(z)[α+(z)]−1 = α−(z)[β−(z)]−1, (2.30)

with α±(z) and β±(z) as in (2.28).

Hereafter, we will use the notation of [28]:

Definition 2.12 (Minors). Let C = (ci j ) be an N × N matrix. A minor of C is a
determinant of the form

C( i1,i2,...,i p
k1,k2,...,kp

) = det

⎛
⎜⎜⎜⎝
ci1k1 ci1k2 . . . ci1kp
ci2k1 ci2k2 · · · ci2kp

...
...

. . .
...

ci pk1 ci pk2 · · · ci pkp

⎞
⎟⎟⎟⎠ , (2.31)

where 1 ≤ i1 < i2 < · · · < i p ≤ N and 1 ≤ k1 < k2 < · · · < kp ≤ N . The upper and
lower principal minors of C are, respectively, determinants of the form

C[1,...,p] = C(1,...,p
1,...,p

), C[p,...,N ] = C(p,p+1,...,N
p,p+1,...,N

), 1 ≤ p ≤ N . (2.32)

The minors of an N × N matrix A and those of its inverse B = A−1 are related as
follows [28]:

Lemma 2.13. For arbitrary 1 ≤ i1 < i2 < · · · < i p ≤ N and 1 ≤ k1 < k2 < · · · <

kp ≤ N,

B( i1,i2,...,i p
k1,k2,...,kp

) = (−1)

p∑
j=1

[i j+k j ]
A(k′

1,k
′
2,...,k

′
N−p

i ′1,i ′2,...,i ′N−p

), (2.33)

where i1 < i2 < · · · < i p and i ′1 < i ′2 < · · · < i ′N−p (and similarly for the k j and k′
j )

form a complete set of indices 1, . . . , N.

In particular, for the scattering matrix A(z) and its inverse, Lemma 2.13 implies the
following identities:

A[1](z) = B[2,3,4](z), A[1,2](z) = B[3,4](z), A[1,2,3](z) = B[4](z), (2.34a)

A[4](z) = B[1,2,3](z), A[3,4](z) = B[1,2](z), A[2,3,4](z) = B[1](z). (2.34b)

In other words, bothA(z) andB(z) have three nontrivial upper principalminors and three
nontrivial lower principal minors [since A[1,2,3,4](z) = det A(z) = 1 = det B(z) =
B[1,2,3,4](z)]; however, only three among these six minors are independent. In Appen-
dix A.1 we use these results to characterize the decomposition (2.30) of the scattering
matrix A(z) while taking into consideration the constraints given in Theorem 2.8:
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Lemma 2.14. The matrices α±(z) and β±(z) in Theorem 2.9 are related to the minors
of the scattering matrices A(z) and B(z) as follows:

α+(z)D+(z) =

⎛
⎜⎜⎜⎜⎜⎝

1 −A(1
2

) A(1,2
2,3

) −A(1,2,3
2,3,4

)
0 A[1] −A(1,2

1,3

) A(1,2,3
1,3,4

)
0 0 A[1,2] −A(1,2,3

1,2,4

)
0 0 0 A[1,2,3]

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 B(1,3,4
2,3,4

) B(1,4
3,4

) B(1
4

)
0 B[2,3,4] B(2,4

3,4

) B(2
4

)
0 0 B[3,4] B(3

4

)
0 0 0 B[4]

⎞
⎟⎟⎟⎟⎟⎠

,

(2.35a)

β+(z)D+(z) =

⎛
⎜⎜⎜⎜⎜⎝

A[1] 0 0 0
A(2

1

) A[1,2] 0 0

A(3
1

) A(1,3
1,2

) A[1,2,3] 0

A(4
1

) A(1,4
1,2

) A(1,2,4
1,2,3

) 1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

B[2,3,4] 0 0 0
−B(2,3,4

1,3,4

) B[3,4] 0 0

B(2,3,4
1,2,4

) −B(3,4
2,4

) B[4] 0

−B(2,3,4
1,2,3

) B(3,4
2,3

) −B(4
3

) 1

⎞
⎟⎟⎟⎟⎟⎠

,

(2.35b)

α−(z)D−(z) =

⎛
⎜⎜⎜⎜⎜⎝

1 A(1,3,4
2,3,4

) A(1,4
3,4

) A(1
4

)
0 A[2,3,4] A(2,4

3,4

) A(2
4

)
0 0 A[3,4] A(3

4

)
0 0 0 A[4]

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 −B(1
2

) B(1,2
2,3

) −B(1,2,3
2,3,4

)
0 B[1] −B(1,2

1,3

) B(1,2,3
1,3,4

)
0 0 B[1,2] −B(1,2,3

1,2,4

)
0 0 0 B[1,2,3]

⎞
⎟⎟⎟⎟⎟⎠

,

(2.35c)

β−(z)D−(z) =

⎛
⎜⎜⎜⎜⎜⎝

A[2,3,4] 0 0 0
−A(2,3,4

1,3,4

) A[3,4] 0 0

A(2,3,4
1,2,4

) −A(3,4
2,4

) A[4] 0

−A(2,3,4
1,2,3

) A(3,4
2,3

) −A(4
3

) 1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

B[1] 0 0 0
B(2

1

) B[1,2] 0 0

B(3
1

) B(1,3
1,2

) B[1,2,3] 0

B(4
1

) B(1,4
1,2

) B(1,2,4
1,2,3

) 1

⎞
⎟⎟⎟⎟⎟⎠

,

(2.35d)

where

D+(z) = diag
(
1, A[1], A[1,2], A[1,2,3]

) = diag
(
1, B[2,3,4], B[3,4], B[4]

)
, (2.36a)

D−(z) = diag
(
A[2,3,4], A[3,4], A[4], 1

) = diag
(
B[1], B[1,2], B[1,2,3], 1

)
, (2.36b)

and where the z-dependence in the right-hand side was omitted for brevity.

Comparing the matrices (2.35) with their definitions in Theorem 2.8 we then obtain:

Corollary 2.15. The scalar analytic functions 	±
j (z) ( j = 1, 2, 3) are given by

	+
1(z)/γ̄ (z) = A[1](z) = B[2,3,4](z), 	−

1 (z)/γ̄ ∗(z∗) = A[2,3,4](z) = B[1](z),
(2.37a)

	+
2(z)/γ̄ (z) = A[1,2](z) = B[3,4](z), 	−

2 (z)/γ̄ ∗(z∗) = A[3,4](z) = B[1,2](z),
(2.37b)

	+
3(z)/γ̄ (z) = A[1,2,3](z) = B[4](z), 	−

3 (z)/γ̄ ∗(z∗) = A[4](z) = B[1,2,3](z),
(2.37c)

with γ̄ (z) = γ (z)/(1 − q−r+/z2), as in (2.25).
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Again in Appendix A.1, comparing these results with the rest of Theorem 2.8, we obtain
the following important result regarding the analyticity of certain minors of A(z) and
B(z):

Theorem 2.16. All the upper principalminors ofA(z) and all the lower principalminors
of B(z) are analytic for Im z > 0, and all the lower principal minors of A(z) and all the
upper principal minors of B(z) are analytic for Im z < 0:

A[1](z), A[1,2](z), A[1,2,3](z) : Im z > 0,

B[1](z), B[1,2](z), B[1,2,3](z) : Im z < 0. (2.38a)

In addition, the following non-principal minors of A(z) and B(z) are also analytic:

A(1,2
1,3

)(z), A(1,3
1,2

)(z) : Im z > 0, B(1,2
1,3

)(z), B(1,3
1,2

)(z) : Im z < 0. (2.38b)

Lemma 2.13 also yields the following identities for the analytic off-diagonal entries of
α±(z) and β±(z):

A(1,2
1,3

)(z) = −B(2,4
3,4

)(z), A(1,3
1,2

)(z) = −B(3,4
2,4

)(z), Im z ≥ 0, (2.39a)

B(1,2
1,3

)(z) = −A(2,4
3,4

)(z), B(1,3
1,2

)(z) = −A(3,4
2,4

)(z), Im z ≤ 0. (2.39b)

Remark 2.17. The connection between this work and [41] should now be clear. Namely,
above we established the analyticity of the principal minors of the scattering matrix,
results which were claimed (but not proved) for a general N×N scattering problemwith
ZBC [41].We also proved the analyticity of certain non-principalminors. In doing so, we
have constructed the proper tools to generate a fundamental set of analytic eigenfunctions
in each half plane. Specifically, Theorem 2.7 yields an explicit correspondence between
the zeros of the 	±

j (z) and the poles of the columns of m±(x, t, z), as we show next.

Lemma 2.18. Suppose 	+
j−1(z) has a simple zero at zo ∈ C+. Then m+

j (x, t, z) has at

most a simple pole at z = zo. Similarly, if 	−
j (z) has a simple zero at z∗o, m−

j (x, t, z)
has at most a simple pole at z = z∗o.

We therefore have:

Theorem 2.19. A complete set of analytic eigenfunctions is given in each half plane by

χ±(x, t, z) = m±(x, t, z)D±(z)ei�(x,t,z), Im z ≷ 0. (2.40)

Let χ±
j (x, t, z) denote the columns of χ±(x, t, z) for j = 1, . . . , 4. Note that

χ±
1 (x, t, z) = φ∓,1(x, t, z) and χ±

4 (x, t, z) = φ±,4(x, t, z). In addition, similarly to
the Manakov system, we refer to χ±

2 (x, t, z) and χ±
3 (x, t, z) as the auxiliary eigenfunc-

tions.
Next, we find the asymptotic behavior of the auxiliary eigenfunctions as x → ±∞.

This will be useful in characterizing the discrete spectrum in Sect. 3.2. We find the
following for the appropriate regions of the complex plane:
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Lemma 2.20. The analytic eigenfunctions χ±(x, t, z) have the following asymptotic
behavior for all z in their respective domains of analyticity:

lim
x→−∞ χ+(x, t, z)e−i�(x,t,z) = E−(z)α+

o (z)D+(z), (2.41a)

lim
x→∞ χ+(x, t, z)e−i�(x,t,z) = E+(z)β

+
o (z)D+(z), (2.41b)

lim
x→−∞ χ−(x, t, z)e−i�(x,t,z) = E−(z)β−

o (z)D−(z), (2.41c)

lim
x→∞ χ−(x, t, z)e−i�(x,t,z) = E+(z)α

−
o (z)D−(z), (2.41d)

where α±
o (z) and β±

o (z) are given in Theorem 2.8 and D±(z) are given in Lemma 2.14.

The corresponding relations for the columns, which will be useful in the analysis of the
discrete spectrum, are:

lim
x→∞ χ+

1 (x, t, z) e−iθ1(x,t,z) = A[1]E+,1,

lim
x→∞ χ+

2 (x, t, z) e−iθ2(x,t,z) = A[1,2]e2 + A(1,3
1,2

)e3, (2.42a)

lim
x→∞ χ+

3 (x, t, z) e−iθ3(x,t,z) = A[1,2,3]e3,

lim
x→∞ χ+

4 (x, t, z) e−iθ4(x,t,z) = E+,4, (2.42b)

lim
x→∞ χ−

1 (x, t, z) e−iθ1(x,t,z) = E+,1,

lim
x→∞ χ−

2 (x, t, z) e−iθ2(x,t,z) = A[2,3,4]e2, (2.42c)

lim
x→∞ χ−

3 (x, t, z) e−iθ3(x,t,z) = A(2,4
3,4

)e2 + A[3,4]e3,

lim
x→∞ χ−

4 (x, t, z) e−iθ4(x,t,z) = A[4]E+,4, (2.42d)

lim
x→−∞ χ+

1 (x, t, z) e−iθ1(x,t,z) = E−,1,

lim
x→−∞ χ+

2 (x, t, z) e−iθ2(x,t,z) = A[1]e2, (2.42e)

lim
x→−∞ χ+

3 (x, t, z) e−iθ3(x,t,z) = −A(1,2
1,3

)e2 + A[1,2]e3,

lim
x→−∞ χ+

4 (x, t, z) e−iθ4(x,t,z) = A[1,2,3]E−,4, (2.42f)

lim
x→−∞ χ−

1 (x, t, z) e−iθ1(x,t,z) = A[2,3,4]E−,1,

lim
x→−∞ χ−

2 (x, t, z) e−iθ2(x,t,z) = A[3,4]e2 − A(3,4
2,4

)e3, (2.42g)

lim
x→−∞ χ−

3 (x, t, z) e−iθ3(x,t,z) = A[4]e3,

lim
x→−∞ χ−

4 (x, t, z) e−iθ4(x,t,z) = E−,4, (2.42h)

where again the z-dependence in the right-hand side was omitted for brevity, {e j }4j=1

is the standard basis for R4, and, according to (2.6), the first and last columns of the
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asymptotic eigenvector matrices E±(z) are given by:

E±,1 = e1 +
iq±
z

e4, E±,4 = − iq∗±
z

e1 + e4.

The relations (2.42) are valid for all z in the region of analyticity of the corresponding
columns. Also recall that

χ+
1 (x, t, z) = φ−,1(x, t, z), χ−

1 (x, t, z) = φ+,1(x, t, z),

χ+
4 (x, t, z) = φ+,4(x, t, z), χ−

4 (x, t, z) = φ−,4(x, t, z).

In addition, using the definition (2.40) of the analytic eigenfunctions together with the
decompositions of the scattering matrix in Lemma 2.14 and expanding the second and
third columns of χ±(x, t, z), we obtain:

Lemma 2.21. The auxiliary eigenfunctions have the following decompositions for z ∈
R:

χ+
2 (x, t, z) = A[1,2](z)φ+,2(x, t, z) + A(1,3

1,2

)(z)φ+,3(x, t, z)

+A(1,4
1,2

)(z)φ+,4(x, t, z), (2.43a)

χ+
3 (x, t, z) = A(1,2

2,3

)(z)φ−,1(x, t, z) − A(1,2
1,3

)(z)φ−,2(x, t, z)

+A[1,2](z)φ−,3(x, t, z), (2.43b)

χ−
2 (x, t, z) = B[1,2](z)φ−,2(x, t, z) + B(1,3

1,2

)(z)φ−,3(x, t, z)

+B(1,4
1,2

)(z)φ−,4(x, t, z), (2.43c)

χ−
3 (x, t, z) = B(1,2

2,3

)(z)φ+,1(x, t, z) − B(1,2
1,3

)(z)φ+,2(x, t, z)

+B[1,2](z)φ+,3(x, t, z), (2.43d)

χ+
2 (x, t, z) = −a12(z)φ−,1(x, t, z) + A[1](z)φ−,2(x, t, z), (2.43e)

χ+
3 (x, t, z) = B[4](z)φ+,3(x, t, z) − b43(z)φ+,4(x, t, z), (2.43f)

χ−
2 (x, t, z) = −b12(z)φ+,1(x, t, z) + B[1](z)φ+,2(x, t, z), (2.43g)

χ−
3 (x, t, z) = A[4](z)φ−,3(x, t, z) − a43(z)φ−,4(x, t, z). (2.43h)

Inverting the relations in Lemma 2.21 yields:

Corollary 2.22. The non-analytic eigenfunctions have the following decompositions in
terms of analytic eigenfunctions for z ∈ R:

φ+,2(x, t, z) = 1

B[1]
[b12φ+,1 + χ−

2 ]

= 1

A[1,2]

[
χ+
2 − 1

B[4]
A(1,3

1,2

)χ+
3 −

(
b43
B[4]

A(1,3
1,2

) + A(1,4
1,2

))φ+,4

]
,

(2.44a)
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φ+,3(x, t, z) = 1

B[4]
[χ+

3 + b43φ+,4]

= 1

B[1,2]

[(
b12
B[1]

B(1,2
1,3

) − B(1,2
2,3

))φ+,1 +
1

B[1]
B(1,2

1,3

)χ−
2 + χ−

3

]
,

(2.44b)

φ−,2(x, t, z) = 1

A[1]
[a12φ−,1 + χ+

2 ]

= 1

B[1,2]

[
χ−
2 − 1

A[4]
B(1,3

1,2

)χ−
3 −

(
a43
A[4]

B(1,3
1,2

) + B(1,4
1,2

))φ−,4

]
,

(2.44c)

φ−,3(x, t, z) = 1

A[4]
[χ−

3 + a43φ−,4]

= 1

A[1,2]

[(
a12
A[1]

A(1,2
1,3

) − A(1,2
2,3

))φ−,1 +
1

A[1]
A(1,2

1,3

)χ+
2 + χ+

3

]
,

(2.44d)

where the (x, t, z)-dependence was omitted from the right-hand side for brevity.

The decompositions in Lemma 2.21 and the inverted decompositions in Corollary 2.22
are the generalization of the analogous relations valid for the Manakov system [15,42].

Remark 2.23. The results presented in this section (i) provide a rigorous implementation
of the framework of [41] for the construction of the fundamental analytic eigenfunctions,
and (ii) generalize said framework to the case of scattering problems with NZBC and
eigenvalue degeneracy. Regarding the first point, we showed rigorously that triangular
decompositions of the scattering matrix yield a full set of analytic eigenfunctions for
each half plane and that the upper and lower principal minors of the scattering matrix are
all analytic in one of those half planes. For comparison purposes, recall that [41] only
considers the case of compact support and uses Fredholm integral equations instead of
Volterra integral equations. Thus, in that framework one can at best prove meromorphic-
ity of the eigenfunctions (because the singularities in the Fredholm integral equations
appear implicitly) which we instead proved to be analytic. Moreover, the scattering
coefficients themselves appear explicitly as forcing terms in those Fredholm integral
equations. Thus, to even prove meromorphicity, one would need to assume that the
scattering coefficients are analytic to begin with.

Remark 2.24. In addition, here we proved that certain non-principal minors of the scat-
tering matrix are analytic. No such extra analyticity properties were present in problems
with fewer components [namely, the scalar NLS equation and the Manakov system].
Similarly, no such extra analyticity properties exist for the scattering problem studied in
[41]. Indeed, such properties are a direct result of the degeneracy of the eigenvalues of
the scattering problem. No such degeneracy exists for the problem studied in [41], and
for theVNLS equation the degeneracy is only present when the number of components is
larger than two. These new pieces of analytic data play a key role in the characterization
of the discrete spectrum.

2.4. Asymptotic behavior as z → ∞ and z → 0. In order to completely specify the
inverse problem in Sect. 4 it is necessary to examine the asymptotic behavior of the
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eigenfunctions and scattering coefficients both as z → ∞ and as z → 0. Consider the
following formal expansion for μ+(x, t, z):

μ+(x, t, z) =
∞∑
n=0

μn(x, t, z), (2.45a)

where

μ0(x, t, z) = E+(z), (2.45b)

μn+1(x, t, z) = −
∞∫
x

E+(z)e
i(x−y)�(z)E−1

+ (z)(Q(y, t) − Q+)μn(y, t, z)

× e−i(x−y)�(z)dy. (2.45c)

As with the Manakov system with NZBC, it is straightforward to prove the following:

Lemma 2.25. For all m ≥ 0, (2.45a) provides an asymptotic expansion for the columns
of μ+(x, t, z) as z → ∞ in the appropriate region of the complex z-plane, with

[μ2m]bd = O(1/zm), [μ2m]bo = O(1/zm+1), (2.46a)

[μ2m+1]bd = O(1/zm+1), [μ2m+1]bo = O(1/zm+1). (2.46b)

Lemma 2.26. For all m ≥ 0, (2.45a) provides an asymptotic expansion for the columns
of μ+(x, t, z) as z → 0 in the appropriate region of the complex z-plane, with

[μ2m]bd = O(zm), [μ2m]bo = O(zm−1), (2.47a)

[μ2m+1]bd = O(zm), [μ2m+1]bo = O(zm). (2.47b)

The proofs of these lemmas are exactly the same as for the Manakov system with NZBC
[15], and are therefore omitted. Explicitly calculating the first few terms of the first and
fourth columns of (2.45a) yields the following for the appropriate domains of analyticity:

μ±,1(x, t, z) =
(

1
(i/z)q(x, t)

)
+ O(1/z2),

μ±,4(x, t, z) =
(−(i/z)q†(x, t)ê3

ê3

)
+ O(1/z2), z → ∞, (2.48a)

μ±,1(x, t, z) =
(

q†(x, t)ê3/q∗±
(i/z)q±ê3

)
+ O(z),

μ±,4(x, t, z) =
(−(i/z)q∗±

q(x, t)/q±

)
+ O(z), z → 0, (2.48b)

where {ê j }3j=1 denotes the standard basis for R3, while doing the same for the second
and third columns of (2.45a) yields the following for z ∈ R:

μ±,2(x, t, z) = e2 + O(1/z), μ±,3(x, t, z) = e3 + O(1/z), z → ∞, (2.49a)

μ±,2(x, t, z) = e2 + O(z), μ±,3(x, t, z) = e3 + O(z), z → 0, (2.49b)

where, as before, {e j }4j=1 denotes the standard basis for R4. The asymptotics (2.48)
immediately yield the reconstruction formula:
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Proposition 2.27. The solution q(x, t) = (q1(x, t), q2(x, t), q3(x, t))T of the VNLS
equation (1.1) with the NZBC (2.1) can be recovered from the asymptotics of the Jost
eigenfunctions as follows:

q j (x, t) = −i lim
z→∞

[
z μ+, j+1,1(x, t, z)

]
, j = 1, 2, 3. (2.50)

Next, we find the asymptotics of the scattering matrix entries, which follows from
the asymptotic behavior (2.48) and (2.49) and the scattering relation (2.16):

Lemma 2.28. In the appropriate regions of the z-plane,

A(z) = I + O(1/z), z → ∞, (2.51a)

A(z) = diag(e−i	θ , 1, 1, ei	θ ) + O(z), z → 0, (2.51b)

where, as before, 	θ = θ+ − θ− and θ± are as defined in (2.1).

Corollary 2.29. All the principal minors of A(z) tend to 1 as z → ∞ in their domain of
analyticity, whereas all non-principal minors of A(z) are O(1/z) as z → ∞ along the
real axis (for the non-analytic minors) or in their domain of analyticity (for the analytic
ones). Additionally, all the principal minors of A(z) are O(1) as z → 0 in their domain
of analyticity, whereas all non-principal minors of A(z) are O(z) as z → 0 along the
real axis (for the non-analytic minors) or in their domain of analyticity (for the analytic
ones).

In particular, note from (2.51) that

lim
z→0

A[1](z) = e−i	θ , (2.52)

which will allow us to directly recover the asymptotic phase difference 	θ from the
inverse problem via the trace formulae (see Sect. 4.2).

As a consequence of the decompositions (2.43) of the auxiliary eigenfunctions and
the asymptotics of the Jost eigenfunctions in (2.48) and (2.49), we find the following
asymptotics for the modified auxiliary eigenfunctions for all z ∈ R:

χ±
2 (x, t, z) e−iθ2(x,t,z) = e2 + O(1/z),

χ±
3 (x, t, z) e−iθ3(x,t,z) = e3 + O(1/z), z → ∞, (2.53a)

χ±
2 (x, t, z) e−iθ2(x,t,z) = e∓i	θ e2 + O(z),

χ±
3 (x, t, z) e−iθ3(x,t,z) = e∓i	θ e3 + O(z), z → 0. (2.53b)

One can show that these relations hold for all z in the appropriate half plane by studying
the asymptotic behavior of the fundamental tensors fn and gn using the techniques of
[6] and then reconstructing the behavior of the auxiliary eigenfunctions as a result. For
brevity, we omit the details.
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2.5. Behavior at the branch points. We now discuss the behavior of the Jost eigenfunc-
tions and the scattering matrix at the branch points k = ±qo. As with the Manakov sys-
tem, the complication there is due to the fact that λ(±qo) = 0, and therefore, at z = ±qo,
the two exponentials e±iλx reduce to the identity. Correspondingly, at z = ±qo thematri-
ces E±(z) are degenerate. Nonetheless, the term E±(z) ei(x−y)�(z)E−1± (z) appearing in
the integral equations for the Jost eigenfunctions remains finite as z → ±qo:

lim
z→±qo

E±(z)ei(x−y)�(z)E−1± (z) = diag(1, e±iqo(x−y), e±iqo(x−y), 1). (2.54)

Thus, if q → q± sufficiently fast as x → ±∞, the integrals in (A.2) are also con-
vergent at z = ±qo, and the Jost solutions admit a well-defined limit at the branch
points. Nonetheless, det φ±(x, t,±qo) = 0 for all (x, t) ∈ R2. Thus, the columns of
φ±(x, t, qo) [as well as those of φ±(x, t,−qo)] are linearly dependent. Comparing the
asymptotic behavior of the columns of φ±(x, t,±qo) as x → ±∞, we obtain

φ±,1(x, t, qo) = ieiθ±φ±,4(x, t, qo), φ±,1(x, t,−qo) = −ieiθ±φ±,4(x, t,−qo).

(2.55)

Next, we characterize the limiting behavior of the scattering matrix near the branch
points. It is easy to express all entries of the scattering matrix A(z) as Wronskians:

a j�(z) = z2

z2 − q2o
W j�(x, t, z)e

−2iθ2(x,t,z), (2.56a)

where

Wj�(x, t, z) = det(φ−,�(x, t, z), φ+, j+1(x, t, z), φ+, j+2(x, t, z), φ+, j+3(x, t, z)),

(2.56b)

and j + 1, j + 2, and j + 3 are calculated modulo 4. We then have the following Laurent
series expansions about z = ±qo:

ai j (z) = ai j,±
z ∓ qo

+ a(o)
i j,± + O(z ∓ qo), z ∈ R\{±qo}, (2.57)

where, for example,

a11,± = ±qo
2
W11(x, t,±qo) e

∓2iqo(x∓qot), (2.58a)

a(o)
11,± = ±qo

2

d

dz
W11(x, t, z)|z=±qoe

∓2iqo(x∓qot)

+W11(x, t,±qo) e
∓2iqo(x∓qot). (2.58b)

Summarizing, the asymptotic expansions of A(z) in neighborhoods of the branch points
are

A(z) = 1

z ∓ qo
A± + A(o)

± + O(z ∓ qo), (2.59)

where A(o)
± = (a(o)

i j,±),
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A± = a11,±

⎛
⎜⎜⎝

1 0 0 ∓ie−iθ−
0 0 0 0
0 0 0 0

±ieiθ+ 0 0 ei	θ

⎞
⎟⎟⎠ + a12,±

⎛
⎜⎝
0 1 0 0
0 0 0 0
0 0 0 0
0 ±ieiθ+ 0 0

⎞
⎟⎠

+a13,±

⎛
⎜⎝
0 0 1 0
0 0 0 0
0 0 0 0
0 0 ±ieiθ+ 0

⎞
⎟⎠ ,

and a1 j,± = ±(qo/2)W1 j (x, t,±qo)e∓2iqo(x∓qot) for j = 2, 3. Note that the second
and third rows of A± are identically zero by virtue of (2.55).

It is worth noticing that all scattering coefficients are finite at each of the branch
points ±qo iff a11,± = 0, i.e., iff det(φ−,1(x, t,±qo), φ+,2(x, t,±qo), φ+,3(x, t,±qo),
φ+,4(x, t,±qo)) = 0. In this case, the corresponding branch point is referred to as a
“virtual level” (cf. [26], where this definition is introduced for the scalar NLS equation).
The generic situation, however, corresponds to a11,± �= 0, and in this case all scattering
coefficients have a pole at the branch points.

3. Symmetries and Discrete Spectrum

As mentioned earlier, the richness of the 3-component problem compared to the 2-
component problem manifests itself most clearly in the symmetries and the discrete
spectrum. We discuss both of them next.

3.1. Symmetries. Recall that, in the IST with ZBC, the only symmetry of the scatter-
ing problem is the mapping k �→ k∗. With NZBC, the symmetries are more involved,
because of the presence of the two-sheeted Riemann surface. Correspondingly, the prob-
lem admits two symmetries. The symmetries are also complicated by the fact that,
after removing the asymptotic oscillations, the Jost solutions do not tend to the identity
matrix. Finally, for the Manakov system a further complication arises from the pres-
ence of several analytic eigenfunctions. As we will show next, this latter complication
is compounded in the 3-component VNLS equation.

First symmetry: up-down. The first symmetry corresponds to the transformation z �→
z∗ (i.e., switching UHP and LHP), corresponding to (k, λ) �→ (k∗, λ∗). Similarly to the
Manakov system with NZBC, the following results are a straightforward consequence
of the symmetries of the Lax pair and are proved in Appendix A.2:

Proposition 3.1. If v(x, t, z) is a fundamental matrix solution of the Lax pair, so is
w(x, t, z) = J[v†(x, t, z∗)]−1.

Lemma 3.2. The Jost solutions satisfy the symmetry

J[φ†
±(x, t, z)]−1C(z) = φ±(x, t, z), z ∈ R, (3.1)

where

C(z) = diag(γ (z),−1,−1,−γ (z)). (3.2)

We now define a “generalized cross product” for vectors in C4 as follows:
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Definition 3.3 (Generalized cross product). For all u, v, w ∈ C4, let

L[u, v, w] = det

⎛
⎜⎝
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4
e1 e2 e3 e4

⎞
⎟⎠ , (3.3)

where, as before, {e1, . . . , e4} is the standard basis for R4.

Like the usual cross product in three dimensions, L[·] is multilinear and totally
antisymmetric. Moreover, the product L[v1, v2, v3] is the Hodge dual of the wedge
product v1 ∧ v2 ∧ v3, in the sense that it is the image of v1 ∧ v2 ∧ v3 under the Hodge
star operator [27].

The key to using L[·] to express the symmetries is the following identity, which can
be verified by direct calculation:

Proposition 3.4. Let a1, . . . , a4 ∈ C4 and A = (a1, . . . , a4). If det A �= 0,

A−1 = (det A)−1 (−L[a2, a3, a4], L[a1, a3, a4],−L[a1, a2, a4], L[a1, a2, a3])T .(3.4)

Equation (3.4) generalizes the formula A−1 = (det A)−1(a2 × a3, a3 × a1, a1 × a2) for
the inverse of a 3×3matrixA = (a1, a2, a3). Using (3.4), one can insert (2.43) into (3.1)
and extend the resulting relations via the Schwarz reflection principle to obtain:

Theorem 3.5. The analytic columns of φ±(x, t, z) obey the following symmetry rela-
tions:

φ∗
+,1(x, t, z

∗) = − e−2iθ2(x,t,z)

A[1,2](z)A[1,2,3](z)
J L[χ+

2 (x, t, z), χ+
3 (x, t, z), φ+,4(x, t, z)],

Im z ≥ 0, (3.5a)

φ∗−,1(x, t, z
∗) = − e−2iθ2(x,t,z)

A[4](z)A[3,4](z)
J L[χ−

2 (x, t, z), χ−
3 (x, t, z), φ−,4(x, t, z)],

Im z ≤ 0, (3.5b)

φ∗
+,4(x, t, z

∗) = − e−2iθ2(x,t,z)

A[3,4](z)A[2,3,4](z)
J L[φ+,1(x, t, z), χ

−
2 (x, t, z), χ−

3 (x, t, z)],
Im z ≤ 0, (3.5c)

φ∗−,4(x, t, z
∗) = − e−2iθ2(x,t,z)

A[1](z)A[1,2](z)
J L[φ−,1(x, t, z), χ

+
2 (x, t, z), χ+

3 (x, t, z)],
Im z ≥ 0. (3.5d)

Using the symmetry (3.1) as in the proof of Theorem 3.5, we also obtain the following:

Corollary 3.6. For cyclic indices j , �, m, and n,

φ±, j (x, t, z)

= −e2iθ2(x,t,z)JL[φ∗±,�(x, t, z), φ
∗±,m(x, t, z), φ∗±,n(x, t, z)]/η j (z), z ∈ R,

(3.6)

where η1(z) = η4(z) = 1, η2(z) = γ (z), and η3(z) = −γ (z).
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In fact, we can write a more general result:

Lemma 3.7. For any vector solutions v1, v2, and v3 of the Lax pair, the following is also
a solution of the Lax pair:

v(x, t, z) = e2iθ2(x,t,z)JL[v∗
1(x, t, z), v∗

2(x, t, z), v∗
3(x, t, z)], z ∈ R. (3.7)

Lemma 3.7 is easily verified using the following identities, which hold for any vectors
u, v, w ∈ C4:

L[Ju, Jv, Jw] = −JL[u, v, w], (3.8a)

2JL[u, v, w] + L[u, v, w] = L[Ju, Jv, w] + L[u, Jv, Jw] + L[Ju, v, Jw],
(3.8b)

L[Ju, v, w] + L[u, Jv, w] + L[u, v, Jw] = −JL[u, v, w] − 2L[u, v, w],
(3.8c)

−QL[u, v, w] = L[QT u, v, w] + L[u, QT v, w] + L[u, v, QT w]. (3.8d)

Remark 3.8. Lemma 3.7 is the generalization of an analogous result for the Manakov
system [15,42]. In [42], the analogous result was used to construct the auxiliary eigen-
functions, each defined in terms of 2 analytic Jost eigenfunctions of a suitably defined
“adjoint” problem. That approach, however, does not work in the 3-component case
(because 3 analytic adjoint Jost eigenfunctions would be necessary, whereas only 2 of
them are analytic), which made it necessary to use the approach of [6,43].

We now show how Lemma 3.1 affects the scattering matrix. Recalling (2.16), we
conclude

[A(z)]† = C(z)B(z)C−1(z), z ∈ R, (3.9)

with C(z) given by (3.2). Componentwise, for z ∈ R,

b11(z) = a∗
11(z), b12(z) = − 1

γ (z)
a∗
21(z), b13(z) = − 1

γ (z)
a∗
31(z), b14(z) = −a∗

41(z),

b21(z) = −γ (z)a∗
12(z), b22(z) = a∗

22(z), b23(z) = a∗
32(z), b24(z) = γ (z)a∗

42(z),

b31(z) = −γ (z)a∗
13(z), b32(z) = a∗

23(z), b33(z) = a∗
33(z), b34(z) = γ (z)a∗

43(z),

b41(z) = −a∗
14(z), b42(z) = 1

γ (z)
a∗
24(z), b43(z) = 1

γ (z)
a∗
34(z), b44(z) = a∗

44(z).

Recalling (2.34), the Schwarz reflection principle then allows us to conclude

A[1](z) = [A[2,3,4](z∗)]∗, A[1,2](z) = [A[3,4](z∗)]∗,
A[1,2,3](z) = [A[4](z∗)]∗, Im z ≥ 0. (3.10)

In addition, we also have

A(1,2
1,3

)(z) = −[A(3,4
2,4

)(z∗)]∗, A(1,3
1,2

)(z) = −[A(2,4
3,4

)(z∗)]∗, Im z ≥ 0. (3.11)

Finally, using the symmetry (3.9), we can combine Lemma 3.7 with the decomposi-
tions (2.44) to obtain:
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Lemma 3.9. The auxiliary eigenfunctions obey the following symmetry relations:

[χ+
2 (x, t, z∗)]∗ = − e−2iθ2(x,t,z)

A[4](z)γ (z)
JL[φ+,1(x, t, z), χ

−
3 (x, t, z), φ−,4(x, t, z)], Im z ≤ 0,

(3.12a)

[χ+
3 (x, t, z∗)]∗ = e−2iθ2(x,t,z)

A[2,3,4](z)γ (z)
JL[φ+,1(x, t, z), χ

−
2 (x, t, z), φ−,4(x, t, z)], Im z ≤ 0,

(3.12b)

[χ−
2 (x, t, z∗)]∗ = − e−2iθ2(x,t,z)

A[1,2,3](z)γ (z)
JL[φ−,1(x, t, z), χ

+
3 (x, t, z), φ+,4(x, t, z)], Im z ≥ 0,

(3.12c)

[χ−
3 (x, t, z∗)]∗ = e−2iθ2(x,t,z)

A[1](z)γ (z)
JL[φ−,1(x, t, z), χ

+
2 (x, t, z), φ+,4(x, t, z)], Im z ≥ 0.

(3.12d)

As before, the symmetries in Lemma 3.9 are first written for z ∈ R [since that is where
the decompositions (2.44) are valid] and then extended to the appropriate region of the
complex z-plane using the Schwarz reflection principle.

Second symmetry: in-out.The second symmetry of the scattering problem corresponds
to the transformation z �→ ẑ∗ := q2o/z (exterior/interior of the circle Co of radius qo
centered at 0), corresponding to (k, λ) �→ (k,−λ). We use this symmetry to relate the
values of the eigenfunctions on the two sheets (particularly, across the cuts), where k is
arbitrary but fixed (on either sheet). It is easy to show the following:

Proposition 3.10. If v(x, t, z) is a solution of the Lax pair, so is

w(x, t, z) = v(x, t, ẑ∗). (3.13)

Using this result, in the appendix we prove

Lemma 3.11. The Jost eigenfunctions satisfy the following symmetry:

φ±(x, t, z) = φ±(x, t, ẑ)�±(z), z ∈ R, (3.14)

where

�±(z) =
⎛
⎝ 0 0 −iq±/z

0 I2 0
iq∗±/z 0 0

⎞
⎠ . (3.15)

Then, from (3.14) and the Schwarz reflection principle, we obtain the following sym-
metry relations among the analytic Jost eigenfunctions:

φ±,1(x, t, z) = iq∗±
z

φ±,4(x, t, ẑ
∗), Im z ≶ 0, (3.16a)

φ±,4(x, t, z) = − iq±
z

φ±,1(x, t, ẑ
∗), Im z ≷ 0, (3.16b)

φ±,2(x, t, z) = φ±,2(x, t, ẑ
∗), z ∈ R, (3.16c)

φ±,3(x, t, z) = φ±,3(x, t, ẑ
∗), z ∈ R. (3.16d)
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We now discuss how this second symmetry affects the scattering matrix. Combining
the scattering relation (2.16) with the symmetries (3.16), we conclude

A(z) = �−1
+ (z)A(ẑ∗)�−1− (z), z ∈ R. (3.17)

Componentwise, we have the following for z ∈ R:

a11(z) = q∗−
q∗
+
a44(ẑ

∗), a12(z) = − i z

q∗
+
a42(ẑ

∗),

a13(z) = − i z

q∗
+
a43(ẑ

∗), a14(z) = −q−
q∗
+
a41(ẑ

∗),

a21(z) = iq∗−
z

a24(ẑ
∗), a22(z) = a22(ẑ

∗),

a23(z) = a23(ẑ
∗), a24(z) = − iq−

z
a21(ẑ

∗),

a31(z) = iq∗−
z

a34(ẑ
∗), a32(z) = a32(ẑ

∗),

a33(z) = a33(ẑ
∗), a34(z) = − iq−

z
a31(ẑ

∗),

a41(z) = q∗−
q+

a14(ẑ
∗), a42(z) = i z

q+
a12(ẑ

∗),

a43(z) = i z

q+
a13(ẑ

∗), a44(z) = q−
q+

a11(ẑ
∗).

Similar expressions hold for the entries of B(z) if we switch the plus and minus signs
in (3.17). The analyticity properties of the scattering matrix entries in Theorem 2.16
then allow us to conclude

A[1](z) = ei	θ A[4](ẑ∗), A[1,2,3](z) = ei	θ A[2,3,4](ẑ∗), Im z > 0, (3.18)

where 	θ = θ+ − θ− and θ± are as defined in (2.1). In addition, we also obtain the
following from the symmetry (3.17):

A(1,2
1,3

)(z) = ei	θ A(2,4
3,4

)(ẑ∗), A(1,3
1,2

)(z) = ei	θ A(3,4
2,4

)(ẑ∗), Im z ≥ 0. (3.19)

In addition,we can combine the symmetries (3.11) and (3.19) to obtain another symmetry
among the analytic non-principal minors:

A(1,2
1,3

)(z) = −ei	θ [A(1,3
1,2

)(ẑ)]∗, Im z ≥ 0. (3.20)

We therefore see that there is only one independent analytic non-principal minor. Finally,
we combine (3.19) with the identities found using Lemma 2.13 to obtain

A[1,2](z) = ei	θ A(2,4
2,4

)(ẑ) = ei	θ B(1,3
1,3

)(ẑ), z ∈ R, (3.21a)

A[3,4](z) = e−i	θ A(1,3
1,3

)(ẑ) = e−i	θ B(2,4
2,4

)(ẑ), z ∈ R. (3.21b)

Now that we have determined the second symmetry of the scattering matrix, we
can obtain the symmetry of the auxiliary eigenfunctions. Specifically, we combine the
second symmetry (3.16) with the decompositions (2.44) to obtain:
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Lemma 3.12. The auxiliary eigenfunctions obey the following symmetry relations:

χ+
2 (x, t, ẑ∗) = ei	θ

A[3,4](z)

[
A[4](z)χ−

2 (x, t, z) + A(3,4
2,4

)(z)χ−
3 (x, t, z)

]
, Im z ≤ 0,

(3.22a)

χ+
3 (x, t, ẑ∗) = ei	θ

A[3,4](z)

[
A[2,3,4](z)χ−

3 (x, t, z) − A(2,4
3,4

)(z)χ−
2 (x, t, z)

]
, Im z ≤ 0,

(3.22b)

χ−
2 (x, t, ẑ∗) = e−i	θ

A[1,2](z)

[
A[1,2,3](z)χ+

2 (x, t, z) − A(1,3
1,2

)(z)χ+
3 (x, t, z)

]
, Im z ≥ 0,

(3.22c)

χ−
3 (x, t, ẑ∗) = e−i	θ

A[1,2](z)

[
A[1](z)χ+

3 (x, t, z) + A(1,2
1,3

)(z)χ+
2 (x, t, z)

]
, Im z ≥ 0.

(3.22d)

Equations (3.22) are the generalization of the (much simpler) symmetries for the Man-
akov system. Similarly to that case, these symmetries will be instrumental to characterize
the discrete spectrum.

The above relations do not include a symmetry for A[1,2](z) or A[3,4](z). As we show
in the appendix, these minors satisfy a different kind of in-out symmetry:

Theorem 3.13. The following relation holds:

ei	θ A[1,2](z)A∗[1,2](q2o/z∗) = A[1](z)A[1,2,3](z) + A(1,2
1,3

)(z)A(1,3
1,2

)(z), Im z > 0,

(3.23a)

e−i	θ A[3,4](z)A∗[3,4](q2o/z∗) = A[4](z)A[2,3,4](z) + A(2,4
3,4

)(z)A(3,4
2,4

)(z), Im z < 0.

(3.23b)

Importantly, unlike the symmetries for the other minors, equations (3.23) are bilinear,
and they couple the values of the principal minors and those of the analytic non-principal
minors. This is another new feature of the 3-component case compared to the Manakov
system, and will have important consequences in the analysis of the discrete spectrum.

Reflection coefficients, their symmetries and real spectral singularities. A cofactor
expansion along the first column of A(z), combined with the symmetries (3.9) and
written in terms of reflection coefficients, yields:

|a11(z)|2 = 1 + |a41(z)|2 + 1

γ (z)
(|a21(z)|2 + |a31(z)|2), z ∈ R. (3.24)

Equation (3.24) implies a11(z) �= 0 for all z ∈ R such that γ (z) > 0, i.e.,
z ∈ (−∞,−qo)∪ (qo,∞). On the other hand, one cannot exclude spectral singularities
in the scattering problem [i.e., real zeros of a11(z) or of the other analytic principal
minors of the scattering matrix] for z ∈ (−qo, qo). This is the same situation as that in
the Manakov system [42].

Remark 3.14. For the remainder of this work we will assume that no real spectral sin-
gularies are present.
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For future reference, we next introduce the reflection coefficients that will appear in the
inverse problem:

ρ1(z) = a21(z)

a11(z)
, ρ2(z) = a31(z)

a11(z)
, ρ3(z) = a41(z)

a11(z)
, z ∈ R, (3.25a)

ρ̄1(z) = b12(z)

b11(z)
, ρ̄2(z) = b13(z)

b11(z)
, ρ̄3(z) = b14(z)

b11(z)
, z ∈ R. (3.25b)

Note that (3.24) implies |a11(z)| = 1 for all z ∈ R for which all three reflection
coefficients vanish [i.e., for all z ∈ R such that ρ1(z) = ρ2(z) = ρ3(z) = 0]. Thus, in
particular, |a11(z)| = 1 ∀z ∈ R in the reflectionless case.

Not all of these coefficients are independent, of course. In fact, the first symmetry for
the scattering coefficients yields

ρ∗
1 (z) = −γ (z)ρ̄1(z), ρ∗

2 (z) = −γ (z)ρ̄2(z), ρ∗
3 (z) = −ρ̄3(z), z ∈ R.

(3.26)

Moreover, the second symmetry for the scattering coefficients yields the following alter-
native representation for the reflection coefficients:

ρ1(ẑ) = i z

q+

a24(z)

a44(z)
, ρ2(ẑ) = i z

q+

a34(z)

a44(z)
, ρ3(ẑ) = −q∗

+

q+

a14(z)

a44(z)
, z ∈ R.

Expressing the scattering coefficients in the above relations as minors of B(z), one
obtains the following linear system which relates the value of the reflection coefficients
at ẑ to their values at z:

q+S(z)

⎛
⎝ρ1(ẑ)

ρ2(ẑ)
ρ3(ẑ)

⎞
⎠ = |a11(z)|2ρ̄3(z)

⎛
⎝ i z ρ1(z)

−i z ρ2(z)
q∗
+

⎞
⎠ , (3.27)

where

S(z) =
⎛
⎝2(1 − |a11|2) + |a11|2ρ1ρ̄1 |a11|2ρ1ρ̄2 −i z |a11|2ρ1/q∗

+
|a11|2ρ2ρ̄1 2(1 − |a11|2) + |a11|2ρ2ρ̄2 −i z |a11|2ρ2/q∗

+
iq∗

+ |a11|2ρ̄1/z iq∗
+ |a11|2ρ̄2/z 2 − |a11|2

⎞
⎠,

(3.28)

and where the above expression for S(z) was simplified using (3.24), rewritten in terms
of the reflection coefficients as:

|ρ3(z)|2 + 1

γ (z)
(|ρ1(z)|2 + |ρ2(z)|2) = 1 − |a11(z)|−2, z ∈ R. (3.29)

Similarly, one obtains:

det S(z) = 4(|a11(z)|2 − 1)2
[
1 − |a11(z)|2|ρ3(z)|2

]
. (3.30)

Note that one cannot conclude from (3.30) that det S(z) �= 0 for all z ∈ R. On the other
hand, ρ3(z) ≡ 0 for all z ∈ R implies ρ1(z) = ρ2(z) = 0 for all z ∈ R for which
det S(z) �= 0.

Remark 3.15. Wewill show later that the entire scattering matrix can be reconstructed in
terms of appropriate scattering data (namely, discrete spectrum, reflection coefficients
and the value of the non-principal analytic minors along the real z-axis, if the latter
are not identically zero). The key ingredients are the trace formulae for the analytic
scattering coefficients, which will be derived in Sect. 4.2.
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Table 1. The seven possible combinations of zeros of the principal minors for the discrete spectrum

A[1](zo) A[1,2](zo) A[1,2,3](zo) Summary

I 0 ∗ ∗ Admissible (symmetric to II)
II ∗ ∗ 0 Admissible (symmetric to I)
III ∗ 0 ∗ Inadmissible
IV 0 0 ∗ Admissible (symmetric to V)
V ∗ 0 0 Admissible (symmetric to IV)
VI 0 ∗ 0 Inadmissible
VII 0 0 0 Inadmissible
An asterisk denotes an arbitrary nonzero value for the corresponding minor. The rightmost column shows the
corresponding results of the analysis (cf. Theorems 3.21, 3.22 and 3.23)

3.2. Discrete spectrum. The discrete spectrum corresponds to those values z ∈ Cwhere
the columns of the fundamental analytic eigenfunctions are linearly dependent. Using
the decompositions (2.43), it is easy to see that

det χ+(x, t, z) = A[1](z)A[1,2](z)A[1,2,3](z)γ (z)e2iθ2(x,t,z), Im z ≥ 0, (3.31a)

det χ−(x, t, z) = A[4](z)A[3,4](z)A[2,3,4](z)γ (z)e2iθ2(x,t,z), Im z ≤ 0. (3.31b)

We therefore have:

Proposition 3.16. A point zo ∈ C+ is a discrete eigenvalue of the scattering problem if

A[1](zo)A[1,2](zo)A[1,2,3](zo) = 0. (3.32)

We thus have seven possibilities for a discrete eigenvalue, zo, summarized in Table 1.

Remark 3.17. At each point zo ∈ C+ such that (3.32) holds, the fundamental analytic
eigenfunctions fail to be a basis forCN+1. The task of characterizing the discrete spectrum
(which is necessary in order to obtain the soliton solutions) is precisely to overcome
this problem and identify all the relations expressing the linear dependency among all
the columns of χ±(x, t, z) at such points (which in turn is necessary to characterize
the residue relations among the meromorphic matrices of the inverse problem). For
the 2 × 2 scattering problem (corresponding to the scalar NLS equation), only one
possibility exists: the two columns are proportional to each other. Already in the 3 × 3
scattering problem (corresponding to the Manakov system), however, the situation is
more complicated [15,42]. We will see that for the 4 × 4 problem, the situation is
significantly more complex than even for the Manakov system.

As in the defocusing Manakov case, we restrict ourselves to the case in which all
discrete eigenvalues are simple zeros of the analytic scattering coefficients. Also, as in
the defocusing Manakov case, one must distinguish between discrete eigenvalues on the
circle Co and “improper” discrete eigenvalues off Co:

Lemma 3.18. Let v(x, t, z) be a nontrivial solution of the scattering problem in (1.3).
If v(x, t, z) ∈ L2(R), then z ∈ Co.

In other words, as with the scalar defocusing NLS with NZBC and the defocusing Man-
akov system with NZBC, bound states are exclusively associated with eigenvalues on
Co. Thus, similarly to the defocusingManakov systemwith NZBC, discrete eigenvalues
of the scattering problem not in Co do not lead to bound states [15,42].
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Remark 3.19. Let us briefly elaborate on the consequences of Lemma 3.18. Suppose
A[1](zo) = 0 for some zo ∈ C+ with |zo| �= qo. We know that φ−,1(x, t, zo) vanishes as
x → −∞. We also know from (2.42) that μ−,1(x, t, zo) = φ−,1(x, t, zo) e−iθ1(x,t,zo)

vanishes as x → ∞. On the other hand, this is not a contradiction, because it does
not imply that φ−,1(x, t, zo) → 0 as x → ∞. Indeed, it is enough for φ−,1(x, t, zo)
to diverge more slowly than eiλ(zo)x as x → ∞. Such a possibility does not exist in
the scalar case, but is allowed in the vector case, because in this case φ−,1(x, t, zo) can
simply be a linear combination of the two remaining analytic eigenfunctions,χ+

2 (x, t, zo)
and χ+

3 (x, t, zo). Similar results hold for μ+,4(x, t, zo) when zo is a zero of A[1,2,3](z)
and for the eigenfunctions analytic in the lower-half z-plane.

Remark 3.20. For the remainder of this section, we consider the case where the analytic
non-principal minors in Theorem 2.16 are identically zero in their domain of analyticity.
The rationale is one of expediency. In the general case (i.e., when the analytic non-
principal minors are not identically zero), the value of two analytic non-principal minors
needs to be given (in addition to that of the principal minors) at a point of an eigenvalue
quartet in order to completely specify each case. It thus follows that for each of the seven
cases in Table 1 one must study four sub-cases, for a total of 28 possible configurations.
Hence, the analysis of the discrete spectrum and the inverse problem in all possible
configurations of the general case would be considerably longer. Of course by taking
the analytic non-principal minors to be identically zero, we are restricting ourselves to a
subclass of solutions of the VNLS system. On the other hand, wewill see that even in this
case the discrete spectrum and the corresponding soliton solutions are still considerably
richer than for the 2-component case.

The symmetries (3.22) and (3.23) are greatly simplified when the analytic non-
principal minors are identically zero. Namely, in this case we have:

ei	θ A[1,2](z)A∗[1,2](ẑ) = A[1](z)A[1,2,3](z), Im z > 0, (3.33a)

e−i	θ A[3,4](z)A∗[3,4](ẑ) = A[4](z)A[2,3,4](z), Im z < 0. (3.33b)

as well as

χ+
2 (x, t, ẑ∗) = A[4](z)

A[3,4](z)
ei	θχ−

2 (x, t, z), Im z < 0, (3.34a)

χ+
3 (x, t, ẑ∗) = A[2,3,4](z)

A[3,4](z)
ei	θχ−

3 (x, t, z), Im z < 0, (3.34b)

χ−
2 (x, t, ẑ∗) = A[1,2,3](z)

A[1,2](z)
e−i	θχ+

2 (x, t, z), Im z > 0, (3.34c)

χ−
3 (x, t, ẑ∗) = A[1](z)

A[1,2](z)
e−i	θχ+

3 (x, t, z), Im z > 0. (3.34d)

Since eigenvalues on Co lead to pure dark soliton solutions, for the remainder of this
work we only consider discrete eigenvalues off Co. Explicitly, we only consider discrete
eigenvalues zo such that Im zo > 0 and |zo| �= qo. In Appendix A.3 we use these
symmetries to identify all of the possibilities for the discrete eigenvalues:

Theorem 3.21. For a discrete eigenvalue zo ∈ C+\Co, one of the following possibilities
holds:
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I. A[1](zo) = 0, A[1,2](zo) �= 0, A[1,2,3](zo) �= 0.
II. A[1](zo) �= 0, A[1,2](zo) �= 0, A[1,2,3](zo) = 0.
IV. A[1](zo) = A[1,2](zo) = 0, A[1,2,3](zo) �= 0.
V. A[1](zo) �= 0, A[1,2](zo) = A[1,2,3](zo) = 0.

As indicated by the numbering above, we label these eigenvalues in accordance with
Table 1. In other words, Theorem 3.21 says that discrete eigenvalues of type III, VI and
VII are not allowed. Analyzing discrete eigenvalues of type I and type IV, in Appen-
dix A.3 we obtain the following:

Theorem 3.22 (Type I). Suppose A[1](zo) = 0, A[1,2](zo) �= 0, and A[1,2,3](zo) �= 0.
Then |zo| < qo, and there exist constants d1, d̄1, d̂1, and ď1 such that

φ−,1(x, t, zo) = d1χ
+
2 (x, t, zo)/A[1,2](zo), φ−,4(x, t, ẑ

∗
o) = ď1χ

−
2 (x, t, ẑ∗o),

(3.35a)

χ−
2 (x, t, z∗o) = d̄1φ+,1(x, t, z

∗
o), χ+

2 (x, t, ẑo) = d̂1φ+,4(x, t, ẑo). (3.35b)

These constants satisfy the following symmetry relations:

ď1 = − i zo
q∗
+

d1
A[1,2,3](zo)

, d̄1 = d∗
1

γ (z∗o)
, d̂1 = iq∗−

z∗oγ (z∗o)
A[4](z∗o)

[A[1,2](zo)]∗ d
∗
1 . (3.36)

Theorem 3.23 (Type IV). Suppose A[1](zo) = A[1,2](zo) = 0 and A[1,2,3](zo) �= 0.
Then |zo| < qo, and there exist constants c1, c̄1, ĉ1, and č1 such that

φ−,1(x, t, zo) = c1χ
+
3 (x, t, zo)/A[1,2,3](zo), φ−,4(x, t, ẑ

∗
o) = č1χ

−
3 (x, t, ẑ∗o),

(3.37a)

χ−
3 (x, t, z∗o) = c̄1φ+,1(x, t, z

∗
o), χ+

3 (x, t, ẑo) = ĉ1φ+,4(x, t, ẑo). (3.37b)

These constants satisfy the following symmetry relations:

č1 = − i zo
q∗
+

A′[1,2](zo)
A′[1](zo)

c1
A[1,2,3](zo)

, ĉ1 = iq∗−
z∗oγ (z∗o)

c∗
1, c̄1 = 1

γ (z∗o)
A′[3,4](z∗o)
A′[2,3,4](z∗o)

c∗
1 .

(3.38)

Examining discrete eigenvalues of type II and V in the same manner yields relations
similar to those in Theorems 3.22 and 3.23 but with the requirement that |zo| > qo. We
omit the details for brevity.

4. Inverse Problem

As usual, the inverse scattering problem is formulated in terms of an appropriate RHP
which relates eigenfunctions that are meromorphic in the upper-half z-plane to eigen-
functions that are meromorphic in the lower-half z-plane.
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4.1. Derivation of the Riemann–Hilbert problem and reconstruction formula for the
potential. The starting point for the formulation of the inverse problem is the scattering
relation (2.16). Just like the derivation of the jump condition for the Manakov system is
considerably more involved than for the scalar case, however, so too is the derivation of
the jump condition for the 3-component case more complicated than for the Manakov
system. In both cases, this is due to the presence of non-analytic eigenfunctions, which
must be used via the decompositions (2.43) in terms of the fundamental analytic eigen-
functions χ±(x, t, z). As we will see, however, in this case there are additional twists.
One starts by introducing the meromorphic matrix

M(x, t, z) =
{

M+(x, t, z), Im z > 0,
M−(x, t, z), Im z < 0.

(4.1)

By analogy with the 2-component case, one could think of defining

M+(x, t, z) =
(

φ−,1(z)

A[1](z)
,

χ+
2 (z)

A[1,2](z)
,

χ+
3 (z)

A[1,2,3](z)
, φ+,4(z)

)
e−i�(x,t,z), Im z > 0,

M−(x, t, z) =
(

φ+,1(z),
χ−
2 (z)

A[2,3,4](z)
,

χ−
3 (z)

A[3,4](z)
,
φ−,4(z)

A[4](z)

)
e−i�(x,t,z), Im z < 0,

where the parametric space and time dependence of the eigenfunctions in the right-
hand side was omitted for brevity. Like in the Manakov system, one can appropriately
manipulate the scattering relation (2.16) to obtain a jump condition between M±(x, t, z)
on z ∈ R. There is a fundamental difference between the 3-component case and the 2-
component case, however:

Remark 4.1. Due to the presence of the analytic non-principalminors in the 3-component
case, if one defines the meromorphic matrices M±(x, t, z) as above, the resulting jump
condition involves a jump matrix which does not reduce to the identity in the reflection-
less case. This condition is necessary to be able to write down soliton solutions in closed
form. In order to obtain a jump condition that satisfies the above condition, one must
modify the definition of the meromorphic matrices in the RHP.

Explicitly, we define the meromorphic matrices M±(x, t, z) in (4.1) as follows:

M+(x, t, z)

=
⎛
⎝φ−,1(z)

A[1](z)
,

1

A[1,2](z)

(
χ+
2 (z) −

A(1,3
1,2

)(z)
A[1,2,3](z)

χ+
3 (z)

)
,

χ+
3 (z)

A[1,2,3](z)
, φ+,4(z)

⎞
⎠ e−i�(z),

Im z > 0, (4.2a)

M−(x, t, z)

=
⎛
⎝φ+,1(z),

χ−
2 (z)

A[2,3,4](z)
,

1

A[3,4](z)

(
χ−
3 (z) −

A(2,4
3,4

)(z)
A[2,3,4](z)

χ−
2 (z)

)
,
φ−,4(z)

A[4](z)

⎞
⎠ e−i�(z),

Im z < 0. (4.2b)

Obviously these modified definitions of M±(x, t, z) reduce to the previous ones when
the analytic non-principal minors are identically zero. It will be convenient to denote the
columnsofM± asM±(x, t, z) = (M±

1 (x, t, z), M±
2 (x, t, z), M±

3 (x, t, z), M±
4 (x, t, z)).



The Three-Component Defocusing Nonlinear Schrödinger Equation 505

The symmetries (3.16) and (3.22) for the Jost eigenfunctions and auxiliary eigenfunc-
tions, together with the symmetries for the principal and analytic non-principal minors,
then imply the following symmetry relations for the columns of M± in (4.2):

M−
1 (x, t, z) = iq∗

+

z
M+

4 (x, t, ẑ∗), M+
1 (x, t, z) = iq∗

+

z
M−

4 (x, t, ẑ∗), (4.3a)

M+
j (x, t, z) = M−

j (x, t, ẑ∗), j = 2, 3, (4.3b)

which hold for all z ∈ C at which the above quantities are analytic. Using the defini-
tions (4.2), in Appendix A.4 we then prove the following:

Lemma 4.2. The meromorphic matrix M(x, t, z) in (4.1) satisfies the jump condition

M+(x, t, z) = M−(x, t, z)[I − e−iK�(x,t,z)L(z)eiK�(x,t,z)], z ∈ R, (4.4)

where K = diag(−1, 1, 1,−1) as before and L(z) = (
Li, j (z)

)
, with

L1,1(z) = |ρ1(z)|2
γ (z)

+b(z)

[
ρ2(z) +

iq+
z

ρ2(ẑ
∗)
]

− q+
q∗
+
ρ3(z)ρ3(ẑ

∗) + iq+
zγ (z)

ρ∗
1 (z)ρ1(ẑ

∗),

L2,1(z) = −ρ1(z) − iq+
z

ρ1(ẑ
∗)ρ3(z), L3,1(z) = −ρ2(z) − iq+

z
ρ2(ẑ

∗)ρ3(z),

L4,1(z) = −ρ3(z),

L1,2(z) = ρ∗
1 (z)

γ (z)
− a(z)

[
q+
q∗
+
ρ3(ẑ

∗) − iq+
zγ (z)

ρ∗
1 (z)ρ1(ẑ

∗) − b(z)
iq+
z

ρ2(ẑ
∗)
]

,

L2,2(z) = − iq+
z
a(z)ρ1(ẑ

∗), L3,2(z) = − iq+
z
a(z)ρ2(ẑ

∗), L4,2(z) = −a(z),

L1,3(z) = b(z) +
iq+
zγ (z)

[
q+
q∗
+
ρ∗
2 (ẑ

∗)ρ3(ẑ∗) − iq+
zγ (z)

ρ∗
1 (z)ρ1(ẑ

∗) − iq+
z

b(z)ρ2(ẑ
∗)
]

,

L2,3(z) = − q2+
z2γ (z)

ρ1(ẑ
∗)ρ∗

2 (ẑ
∗), L3,3(z) = − q2+

z2γ (z)
|ρ2(ẑ∗)|2,

L4,3(z) = iq+
zγ (z)

ρ∗
2 (ẑ

∗),

L1,4(z) = −q+
q∗
+
ρ3(ẑ

∗) + iq+
zγ (z)

ρ∗
1 (z)ρ1(ẑ

∗) + iq+
z

b(z)ρ2(ẑ
∗),

L2,4(z) = − iq+
z

ρ1(ẑ
∗), L3,4(z) = − iq+

z
ρ2(ẑ

∗), L4,4(z) = 0,

and where for brevity we defined

a(z) =
A(1,4

1,2

)(z)
A[1,2](z)

− z

iq+
ρ̄2(ẑ)

A(1,3
1,2

)(z)
A[1,2](z)

, b(z) =
B(1,2

2,3

)(z)
B[1,2](z)

− ρ̄1(z)
B(1,2

1,3

)(z)
B[1,2](z)

.

Note that a(z) and b(z) have explicit (albeit complicated) dependence on the reflection
coefficients in (3.25). The expressions for a(z) and b(z) simplify considerably when the
analytic non-principal minors are identically zero. Also, these expressions imply that
a(z) and b(z) vanish identically in the reflectionless case.



506 G. Biondini, D. K. Kraus, B. Prinari

Using the asymptotics of the eigenfunctions and scattering matrix in Sect. 2.4, we
obtain the asymptotics of the meromorphic matrices M±(x, t, z) for z in the appropriate
half plane in a straightforward way:

Lemma 4.3. The meromorphic matrices M±(x, t, z) in (4.2) have the following asymp-
totic behavior for z in the appropriate half plane:

M±(x, t, z) = I + O(1/z), z → ∞, (4.5a)

M±(x, t, z) = −(i/z)JQ+ + O(1), z → 0. (4.5b)

In passing, note that the sum of the leading-order asymptotic behaviors of M±(x, t, z)
as z → ∞ and z → 0 is E+(z).

Remark 4.4. As usual, the meromorphic matrices M±(x, t, z) have poles in correspon-
dence with the discrete eigenvalues. As in Sect. 3.2, we now restrict ourselves to the case
in which the analytic non-principal minors are identically zero. Hereafter, we denote by
{z1, . . . , zN1} and by {w1, . . . , wN2} the discrete eigenvalues of type I and IV, respec-
tively.

The relations in (3.35) and (3.37) easily yield the residue conditions for the RHP:

Lemma 4.5. The meromorphic matrices defined in Lemma 4.2 satisfy the following
residue conditions:

Resz=zn M+ = (
Dn(x, t)M

+
2 (x, t, zn), 0, 0, 0

)
,

Resz=ẑn M+ =
(

0, D̂n(x, t)M
+
4 (x, t, ẑn), 0, 0

)
,

Resz=z∗n M− = (
0, D̄n(x, t)M

−
1 (x, t, z∗n), 0, 0

)
,

Resz=ẑ∗n M− =
(

0, 0, 0, Ďn(x, t)M
−
2 (x, t, ẑ∗n)

)
,

Resz=wn M+ = (
Cn(x, t)M

+
3 (x, t, wn), 0, 0, 0

)
,

Resz=ŵn M+ =
(

0, 0, Ĉn(x, t)M
+
4 (x, t, ŵn), 0

)
,

Resz=w∗
n

M− = (
0, 0, C̄n(x, t)M

−
1 (x, t, w∗

n), 0
)
,

Resz=ŵ∗
n

M− =
(

0, 0, 0, Čn(x, t)M
−
3 (x, t, ŵ∗

n)
)

,

with

Dn(x, t) = dn
A′[1](zn)

e−i(θ1−θ2)(x,t,zn), Ďn(x, t) = ďn A[2,3,4](ẑ∗n)
A′[4](ẑ∗n)

e−i(θ1−θ2)(x,t,zn),

D̄n(x, t) = d̄n
A′[2,3,4](z∗n)

ei(θ1−θ2)(x,t,z∗n), D̂n(x, t) = d̂n
A′[1,2](ẑn)

ei(θ1−θ2)(x,t,z∗n),

Cn(x, t) = cn
A′[1](wn)

e−i(θ1−θ2)(x,t,wn), Čn(x, t) = čn A[3,4](ŵ∗
n)

A′[4](ŵ∗
n)

e−i(θ1−θ2)(x,t,wn),

C̄n(x, t) = c̄n
A′[3,4](w∗

n)
ei(θ1−θ2)(x,t,w∗

n ), Ĉn(x, t) = ĉn
A′[1,2,3](ŵn)

ei(θ1−θ2)(x,t,w∗
n ),

with n = 1, . . . , N1 in the equations involving zn and n = 1, . . . , N2 in those involving
wn.
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In addition, a straightforward consequence of the symmetries of the scattering matrix
and the symmetries of the norming constants in Theorems 3.22 and 3.23 is the following:

Lemma 4.6. The residue conditions in Lemma 4.5 satisfy the following symmetry rela-
tions:

Ďn(x, t) = iq+
zn

Dn(x, t), D̄n(x, t) = D∗
n(x, t)

γ (z∗n)
, D̂n(x, t) = iq∗

+

z∗nγ (ẑn)
D∗
n(x, t),

Čn(x, t) = iq+
wn

Cn(x, t), C̄n(x, t) = C∗
n (x, t)

γ (w∗
n)

, Ĉn(x, t) = i
q∗
+

w∗
nγ (ŵn)

C∗
n (x, t),

where, as before, n = 1, . . . , N1 for equations involving zn and n = 1, . . . , N2 for
equations involving wn.

Note that in order to simplify the above symmetries, it was necessary to consider the
derivative with respect to z of the symmetry relations (3.23) and evaluate it at the discrete
eigenvalues.

Remark 4.7. Based on the above results, the inverse problem can be formulated in terms
of the following Riemann–Hilbert problem: Find a matrix-valued function M(x, t, z)
which is analytic in C\R away from the discrete spectrum, satisfies the jump condition
in Lemma 4.2, the asymptotics in Lemma 4.3 and the residue conditions in Lemma 4.5
(with the symmetries in Lemma 4.6).

The above RHP is regularized and formally solved in the usual way; namely, by subtract-
ing the leading order asymptotic behavior and any pole contributions and then applying
the Cauchy projectors

(P± f )(z) = 1

2π i
lim

ε→0+

∫
R

f (ζ )

ζ − (z ± iε)
dζ.

The Plemelj–Sokhotsky formulae then yield the following integral representation for the
solution of the RHP:

M(x, t, z) = E+(z) +
N1∑
n=1

(
Resz=zn M+

z − zn
+
Resz=z∗n M−

z − z∗n

)

+
N1∑
n=1

(
Resz=ẑn M+

z − ẑn
+
Resz=ẑ∗n M−

z − ẑ∗n

)

+
N2∑
n=1

(
Resz=wn M+

z − wn
+
Resz=w∗

n
M−

z − w∗
n

)

+
N2∑
n=1

(
Resz=ŵn M+

z − ŵn
+
Resz=ŵ∗

n
M−

z − ŵ∗
n

)

− 1

2π i

∫
R

M−(x, t, ζ )

ζ − z
L̃(x, t, ζ )dζ, z /∈ R, (4.6)

where L̃(x, t, z) = e−iK�LeiK� and M(x, t, z) = M± for Im z ≷ 0, as before.
To close the system, it remains to find appropriate equations for the columns of

M(x, t, z) appearing in the residue conditions in Lemma 4.5. As usual, this is done
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by evaluating the expression (4.6) for the regular columns of the solution of the RHP
at the appropriate discrete eigenvalues, which yields the following system of algebraic
equations:

M−
1 (x, t, z) = E+,1(z) +

N1∑
j=1

DjM+
2 (z j )

z − z j
+

N2∑
j=1

C jM+
3 (w j )

z − w j

− 1

2π i

∫
R

(M−L̃)1(ζ )
dζ

ζ − z
, z = z∗n, w∗

n, (4.7a)

M+
4 (x, t, z) = E+,4(z) +

N1∑
j=1

Ď j M
−
2 (ẑ∗j )

z − ẑ∗j
+

N2∑
j=1

Č j M
−
3 (ŵ∗

j )

z − ŵ∗
j

− 1

2π i

∫
R

(M−L̃)4(ζ )
dζ

ζ − z
, z = ẑn, ŵn, (4.7b)

M+
2 (x, t, zn) = e2 +

N1∑
j=1

(
D̂ j M+

4 (ẑ j )

zn − ẑ j
+
D̃ j M

−
1 (z∗j )

zn − z∗j

)
− 1

2π i

∫
R

(M−L̃)2(ζ )
dζ

ζ − zn
,

(4.7c)

M+
3 (x, t, wn) = e3 +

N2∑
j=1

(
Ĉ j M+

4 (ŵ j )

wn − ŵ j
+
C̃ j M

−
1 (w∗

j )

wn − w∗
j

)
− 1

2π i

∫
R

(M−L̃)3(ζ )
dζ

ζ − wn
,

(4.7d)

M−
2 (x, t, ẑ∗n) = e2 +

N1∑
j=1

(
D̂ j M+

4 (ẑ j )

ẑ∗n − ẑ j
+
D̄ j M

−
1 (z∗j )

ẑ∗n − z∗j

)
− 1

2π i

∫
R

(M−L̃)2(ζ )
dζ

ζ − ẑ∗n
,

(4.7e)

M−
3 (x, t, ŵ∗

n) = e3 +
N2∑
j=1

(
Ĉ j M+

4 (ŵ j )

ŵ∗
n − ŵ j

+
C̄ j M

−
1 (w∗

j )

ŵ∗
n − w∗

j

)
− 1

2π i

∫
R

(M−L̃)3(ζ )
dζ

ζ − ŵ∗
n
,

(4.7f)

where again we denoted by {e j }4j=1 the standard basis for R4 and omitted the (x, t)-
dependence on the right-hand sides of all equations for brevity.

Remark 4.8. The integral representation (4.6) can be converted into a set of linear integral
equations in the standard way. The resulting equations formally provide, together with
the algebraic equations (4.7), the solution of the inverse problem.

Finally, evaluating the asymptotic behavior of (4.6) as z → ∞, and combining
with (2.50) one obtains the reconstruction formula for the solution of the initial value
problem for the :

Corollary 4.9. The solution of the defocusing 3-component VNLS equation (1.1) with
the NZBC (1.2) and (2.1) is obtained from the solution of the RHP in Remark 4.7 as
follows:

q j (x, t) = q+, j − i
N1∑
n=1

Dn(x, t)M
+
j+1,2(x, t, zn) − i

N2∑
n=1

Cn(x, t)M
+
j+1,3(x, t, wn)

− 1

2π

∫
R

(M−L̃) j+1,1(x, t, ζ )dζ, j = 1, 2, 3. (4.8)
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Remark 4.10. The question of the existence and uniqueness of the solution of the RHP
can be answered in a manner very similar to the case of the defocusing Manakov system
with NZBC [15]. Namely, in the case in which no discrete spectrum is present one can
show fairly easily that if the RHP admits a solution, the solution is unique. The question
of existence is more subtle, however, and can be reduced to the study of the Fredholm
equation obtained from (4.4) using standard decompositions [5,6,20]. In particular,
existence can be proved if the index of the relevant Fredholm equation is zero. We omit
further details for brevity.

4.2. Trace formulae, asymptotic phase difference and reconstruction of the scattering
matrix. It remains to find trace formulae for the analytic minors of the scattering matrix.
As we show in the appendix, these can be obtained by setting up appropriate scalar RHPs
for these minors.

Lemma 4.11 (Trace formulae). If the analytic non-principal minors of the scattering
matrix are identically zero, the principal minors of the scattering matrix can be recon-
structed in terms of the scattering data as follows:

A[1](z) =
N1∏
n=1

z − zn
z − z∗n

N2∏
n=1

z − wn

z − w∗
n
exp

(
− 1

2π i

∫
R

log[1 − R(ζ )]
ζ − z

dζ

)
, Im z > 0,

(4.9a)

A[1,2](z) =
N1∏
n=1

z − ẑn
z − ẑ∗n

N2∏
n=1

z − wn

z − w∗
n
exp

(
1

2π i

∫
|ζ |=qo

g(ζ )

ζ − z
dζ

)
, Im z > 0,

(4.9b)

where

R(ζ ) = |ρ3(ζ )|2 + 1

γ (ζ )
(|ρ2(ζ )|2 + |ρ1(ζ )|2), ζ ∈ R.

and where g(z) = |A[1](z)|2 for Im z ≥ 0 and g(z) = |A[1](z∗)|2 for Im z < 0.

The expressions of the remaining analytic minors of the scattering matrix follow
immediately from the above via the symmetries of the scattering matrix.

Remark 4.12. When the analytic non-principal minors are not identically zero, one can
exploit Corollary 2.29. A straightforward application of Cauchy’s theorem then yields
the value of these extra minors at any point in their respective regions of analyticity in
terms of their values along the real z-axis. Explicitly,

A(1,2
1,3

)(z) = 1

2π i

∫
R

A(1,2
1,3

)(ζ )
dζ

ζ − z
, Im z > 0,

plus corresponding expressions for the remaining minors obtained via the symmetries.
Moreover, the reconstruction formula (4.9a) remains valid when these extra minors are
not identically zero, while the function g(z) in the reconstruction formula (4.9b) for
A[1,2](z) changes into:

g(z) =

⎧⎪⎨
⎪⎩

|A[1](z)|2 − ∣∣A(1,2
1,3

)(z)∣∣2 Im z > 0,

|A[1](z∗)|2 − ∣∣A(1,2
1,3

)(z∗)∣∣2 Im z < 0.
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Importantly, the analysis of the discrete spectrum when the extra analytic minors are
not identically zero presented in [44] shows that the pre-factors in (4.9b) also remain
the same in this case, provided that z1, . . . , zN1 and w1, . . . , wN2 continue to denote the
zeros of A[1](z) not in common and in common with A[1,2](z), respectively.

We can now compare the limit as z → 0 of (4.9a) with (2.52) to easily obtain the
asymptotic phase difference for the potential:

Corollary 4.13. The asymptotic phase difference 	θ = θ+ − θ− is given by

	θ = −2
N1∑
n=1

arg zn − 2
N2∑
n=1

argwn +
1

2π

∫
R

log[1 − R(ζ )]dζ
ζ

, (4.10)

with R(ζ ) as in Lemma 4.11.

Finally, we now show how to reconstruct the entire scattering matrix A(z) for z ∈ R
in terms of the reflection coefficients, the discrete spectrum and extra analytic minors
along the real axis. Note first that a11(z) = A[1](z) and a44(z) = A[4](z) = ei	θ A[1](ẑ)
are obtained directly from the trace formulae above.Moreover, the scattering coefficients
a21(z), a31(z), and a41(z) can be obtained from the reflection coefficients and a11(z) =
A[1](z) via the definitions (3.25), and the scattering coefficients a14(z), a24(z), and
a34(z) can be accounted for via the symmetries (3.1) of the reflection coefficients. It
thus remains to recover the entries in the second and third columns of the scattering
matrix A(z) from the knowledge of its first and fourth columns plus that of the minors
obtained from the trace formulae. This is done via the following result, which is proved
by elementary algebra:

Lemma 4.14. The entries in the second and third column of the scattering matrix A(z)
satisfy the following linear algebraic system:

C(z) y(z) = b(z),

where

y(z) = (a32, a22, a23, a33, a12, a13, a42, a43)
T ,

C(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 0 −a31 0 0 0
0 a11 0 0 −a21 0 0 0
0 0 a11 0 0 −a21 0 0
0 0 0 a11 0 −a31 0 0
a44 0 0 0 0 0 −a34 0
0 a44 0 0 0 0 −a24 0
0 0 a44 0 0 0 0 −a24
0 0 0 a44 0 0 0 −a34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b(z) = (
A(1,3

1,2

)(z), A[1,2](z), A(1,2
1,3

)(z), ei	θ A[3,4](ẑ),

A(3,4
2,4

)(z), e−i	θ A[1,2](ẑ), A(2,4
3,4

)(z), A[3,4](z)
)T

,

and where a trivial dependence on z in the RHS of C(z) and y(z)was omitted for brevity.
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Note that the vector y(z) contains the scattering coefficients to be reconstructed, while
C(z) and b(z) contain known data (see the discussion above). Note that in two of the
components of b(z)we have used the symmetries (3.21) to express certain non-principal
minors in terms of A[1,2](z) and A[3,4](z). Also note

det C(z) = q2+
z2

|A[1](z)|8
[
ρ1(z)ρ2(ẑ) − ρ1(ẑ)ρ2(z)

]2
.

Thus, the entire scattering matrix can be reconstructed away from the zeros of the above
determinant.

5. Reflectionless Potentials and Soliton Solutions

Next we examine the case in which the reflection coefficients defined in (3.25) are
identically zero. As before, we will assume that the analytic non-principal minors are
identically zero.

5.1. Reflectionless potentials. As usual, the jump matrix L(z) in Lemma 4.2 is iden-
tically zero precisely when the scattering matrix is diagonal. Indeed, upon examining
the jump condition in Lemma 4.2 columnwise and using the properties of the scattering
matrix, we obtain the following result:

Lemma 5.1. If the analytic non-principal minors are identically zero, the scattering
matrices A(z) and B(z) are diagonal if and only if L(z) ≡ 0.

Note that, without the assumption that the analytic non-principal minors are identically
zero, we would only be able to show that the scattering matrix in the reflectionless case
is block-diagonal, since we would not be able to conclude that the scattering coefficients
a23(z), a32(z), b23(z), and b32(z) are identically zero. The analysis of such a situation
is left for future work.

In the reflectionless case, the system of algebraic-integral equations (4.7) simplifies
to a closed system of linear equations:

M−
1 (x, t, z) = E+,1(z) +

N1∑
j=1

DjM+
2 (z j )

z − z j
+

N2∑
j=1

C jM+
3 (w j )

z − w j
, z = z∗n, w∗

n, (5.1a)

M+
4 (x, t, z) = E+,4(z) +

N1∑
j=1

Ď j M
−
2 (ẑ∗j )

z − ẑ∗j
+

N2∑
j=1

Č j M
−
3 (ŵ∗

j )

z − ŵ∗
j

, z = ẑn, ŵn, (5.1b)

M+
2 (x, t, zn) = e2 +

N1∑
j=1

(
D̂ j M+

4 (ẑ j )

zn − ẑ j
+
D̄ j M

−
1 (z∗j )

zn − z∗j

)
, (5.1c)

M+
3 (x, t, wn) = e3 +

N2∑
j=1

(
Ĉ j M+

4 (ŵ j )

wn − ŵ j
+
C̄ j M

−
1 (w∗

j )

wn − w∗
j

)
, (5.1d)

M−
2 (x, t, ẑ∗n) = e2 +

N1∑
j=1

(
D̂ j M+

4 (ẑ j )

ẑ∗n − ẑ j
+
D̄ j M

−
1 (z∗j )

ẑ∗n − z∗j

)
, (5.1e)

M−
3 (x, t, ŵ∗

n) = e3 +
N2∑
j=1

(
Ĉ j M+

4 (ŵ j )

ŵ∗
n − ŵ j

+
C̄ j M

−
1 (w∗

j )

ŵ∗
n − w∗

j

)
. (5.1f)
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In the reflectionless case, the trace formulae in Lemma 4.11 reduce to the following:

A[1](z) =
N1∏
n=1

z − zn
z − z∗n

N2∏
n=1

z − wn

z − w∗
n
, A[1,2](z) =

N1∏
n=1

z − ẑn
z − ẑ∗n

N2∏
n=1

z − wn

z − w∗
n
. (5.2)

In addition, the reconstruction formula (2.50) is also simpler:

q j (x, t) = q+, j − i
N1∑
n=1

Dn(x, t)M
+
j+1,2(x, t, zn)

−i
N2∑
n=1

Cn(x, t)M
+
j+1,3(x, t, wn), j = 1, 2, 3. (5.3)

We now have all the information needed to construct explicit soliton solutions.

5.2. Pure soliton solutions. In this section, we explore the different possibilities for
reflectionless solutions. We construct explicit soliton solutions for each type of eigen-
value and exhibit a 2-soliton interaction.

5.2.1. Type I. Let z1 be a type I eigenvalue, and assume that there are no other discrete
eigenvalues (i.e., we assume that N1 = 1 and N2 = 0). Then we have A[1](z1) = 0,
A[1,2](z1) �= 0, and A[1,2,3](z1) �= 0.

When z1 is the only discrete eigenvalue, the reconstruction formula (5.3) simplifies
to

q j (x, t) = q+, j − i D1(x, t)M
+
j+1,2(x, t, z1), j = 1, 2, 3. (5.4)

In addition, the closed system of linear equations that comes from (5.1) is

M−
1 (x, t, z∗1) = E+,1(z

∗
1) +

D1(x, t)

z∗1 − z1
M+

2 (x, t, z1), (5.5a)

M+
2 (x, t, z1) = e2 +

[
D̄1(x, t)

z1 − z∗1
− i z∗1

q∗
+

D̂1(x, t)

z1 − ẑ1

]
M−

1 (x, t, z∗1). (5.5b)

Substituting the solution of the system (5.5) into (5.4) yields a soliton solution. Specifi-
cally, defining the following quantities:

z1 = ξ1 + iν1 ≡ |z1|eiα, |z1| < qo, ν1 > 0, d̃1 = d1/A
′[1](z1) ≡ δ1e

iφ1 ,

yields the following regular soliton solution:

qI (x, t) = −iUo e
i(ξ1x−(ξ21−ν21 )t+φ1) sechU (x, t) ê1

+qoe
i(θ++α)[cosα − i sin α tanhU (x, t)] ê3, (5.6)

where {ê j }3j=1 is the standard basis for R3,

Uo = sin α

√
q2o − |z1|2,

U (x, t) = ν1(x − 2ξ1t − x1), ν1x1 = ln
|z1|δ1

2ν1
√
q2o − |z1|2

.

A typical solution of this type can be seen in Fig. 1. We note how a solution of this
type is simply an analogue of a dark-bright soliton solution of the defocusing Manakov
system with NZBC, with bright part aligned with the first component.



The Three-Component Defocusing Nonlinear Schrödinger Equation 513

Fig. 1. A type I solution of the 3-component defocusing VNLS equation with NZBC obtained by taking
N1 = 1, N2 = 0, z1 = 0.5eiπ/4, q+ = eiπ/2, d̃1 = 1 + 2.75i , resulting in a dark-bright soliton whose bright
part is aligned along the first component of q(x, t)

5.2.2. Type IV. Letw1 be a type IVeigenvalue, and assume that there are noother discrete
eigenvalues (i.e., we assume that N1 = 0 and N2 = 1). Then A[1](w1) = A[1,2](w1) = 0
and A[1,2,3](w1) �= 0.

When w1 is the only discrete eigenvalue, the solution that results from combining
the reconstruction formula (5.3) with the solution of the regularized RHP is

q j (x, t) = q+, j − iC1(x, t)M
+
j+1,3(x, t, w1), j = 1, 2, 3. (5.7)

The closed system of linear equations that comes from (5.1) is

M−
1 (x, t, w∗

1) = E+,1(w
∗
1) +

C1(x, t)

w∗
1 − w1

M+
3 (x, t, w1), (5.8a)

M+
3 (x, t, w1) = e3 +

[
C̄1(x, t)

w1 − w∗
1

− iw∗
1

q∗
+

Ĉ1(x, t)

w1 − ŵ1

]
M−

1 (x, t, w∗
1). (5.8b)

Substituting the solution of the system (5.8) into (5.7) yields a soliton solution. Specifi-
cally, defining the following quantities:

w1 = ξ1 + iν1 ≡ |w1|eiα, |w1| < qo, ν1 > 0, c̃1 = c1/A
′[1](w1) ≡ γ1e

iψ1

yields the following regular soliton solution:

qI I (x, t) = −iUo e
i(ξ1x−(ξ21−ν21 )t+ψ1) sechU (x, t) ê2

+qoe
i(θ++α)[cosα − i sin α tanhU (x, t)] ê3, (5.9)

where Uo and U (x, t) are as defined in (5.6), with c̃1 replacing d̃1, namely:

Uo = sin α

√
q2o − |w1|2,

U (x, t) = ν1(x − 2ξ1t − x1), ν1x1 = ln
|w1|γ1

2ν1
√
q2o − |w1|2

.

A typical solution of this type can be seen in Fig. 2. We note how a solution of
this type is simply another analogue of a dark-bright soliton solution of the defocusing
Manakov system with NZBC, with bright part aligned with the second component.

Of course, as in the previously studied cases, any combination of the two types of
eigenvalues is also possible. In particular, an example of a 2-soliton solution can be
seen in Fig 3. Note how the interaction results in a position shift for the bright parts of
the two dark-bright solitons, even though the bright parts are confined along orthogonal
components.
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Fig. 2. A type IV solution of the 3-component defocusing VNLS equation with NZBC obtained by taking
N1 = 0, N2 = 1, w1 = 0.5eiπ/2, q+ = eiπ/2, c̃1 = 1 + 2.75i , resulting in a dark-bright soliton whose bright
part is aligned along the second component of q(x, t)

Fig. 3. A 2-soliton solution of the 3-component defocusing VNLS equation with NZBC obtained by taking
N1 = N2 = 1, z1 = 0.5eiπ/2, w1 = 0.75eiπ/3, q+ = eiπ/2, c̃1 = d̃1 = 1 + 2.75i . Note how the soliton
interaction results in a position shift for the bright parts of the two dark-bright solitons, even though the bright
parts are aligned along components orthogonal to each other

6. Linear Limit and Comparison with the Manakov System

6.1. Small-deviation limit of the IST and comparison with direct linearization. For the
defocusing NLS equation with ZBC, it is well known that the small-amplitude limit of
the IST coincides with the direct linearization of the PDE. Both are obtained by taking
the solution of the PDE to be O(ε). In turn, in the IST, this implies that the reflection
coefficient is also O(ε). In the case of NZBC, the corresponding situation is that in
which the potential is only a small deviation from the background (asymptotic) value.
We next show that, as one would expect, in the small deviation limit, the solution of the
VNLS equation obtained with IST coincides with the direct linearization of the PDE
around the constant background.

We first write down the linearization of the VNLS equation around a constant back-
ground and obtain its Fourier transform solution. To this end, we need to take θ+ = θ−.
We can therefore use the gauge invariance of the VNLS equation to set θ+ = 0 without
loss of generality. We write q+ = qo = (0, 0, qo), and we define

q(x, t) = qo + u(x, t), (6.1)

where u(x, t) ≡ (u1(x, t), u2(x, t), u3(x, t))T = O(ε). Then u(x, t) represents a small
perturbation of the background field q+. We insert (6.1) into (1.1) and neglect higher
powers of u to obtain a linearization of VNLS around the background solution:

iut + uxx − 2qT
o (u + u∗)qo = 0. (6.2)

We now find solutions of (6.2) using the standard Fourier transforms (except for an
inessential factor of 2 in the exponent, which was chosen to simplify the comparison
with the IST):
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u(x, t) = 1

2π

∫
R

û(s, t)e2isxds, û(s, t) = 2
∫
R

u(x, t)e−2isxdx . (6.3)

Combining (6.3) with (6.2) yields v̂t (s, t) = V(s)v̂(s, t), where v̂(s, t) = (û(s, t),
û∗
3(−s, t))T and

V(s) =

⎛
⎜⎜⎝

−4is2 0 0 0
0 −4is2 0 0
0 0 −i(4s2 + 2q2o ) −2iq2o
0 0 2iq2o i(4s2 + 2q2o )

⎞
⎟⎟⎠ .

The solution of this system is

v̂(s, t)

=

⎛
⎜⎜⎜⎝

û1,0(s)e−4is2t

û2,0(s)e−4is2t

[s − (s2 + q2o )
1/2]A1(s)e4is(s

2+q2o )1/2 t + [s + (s2 + q2o )
1/2]A2(s)e−4is(s2+q2o )1/2 t

[s + (s2 + q2o )
1/2]A1(s)e4is(s

2+q2o )1/2 t + [s − (s2 + q2o )
1/2]A2(s)e−4is(s2+q2o )1/2 t

⎞
⎟⎟⎟⎠ ,

(6.4)

where û j,0(s) = û j (s, 0) and the scalar functions A1(s) and A2(s) are given by

A1(s) = 1

4s(s2 + q2o )
1/2

{
[−s + (s2 + q2o )

1/2]û3,0(s) + [s + (s2 + q2o )
1/2]û∗

3,0(−s)
}

,

(6.5a)

A2(s) = 1

4s(s2 + q2o )
1/2

{
[s + (s2 + q2o )

1/2]û3,0(s) + [−s + (s2 + q2o )
1/2]û∗

3,0(−s)
}

.

(6.5b)

The following symmetries are then evident by inspection:

A∗
1(−s) = −A1(s), A∗

2(−s) = −A2(s). (6.6)

We have found the solution of (6.2) in terms of given data, and this solution provides an
approximation of the solution q(x, t) of (1.1) in the small-deviation limit.

We now compute the small-deviation limit of the IST. Note Q+ = Q− = Qo, so let
	Q(x, t) = 	Q±(x, t) = Q(x, t) − Qo. The integral equations (A.2) become

μ−(x, t, z) = E(z) +
x∫

−∞
E(z)ei(x−y)�(z)E−1(z)	Q(y, t)μ−(y, t, z)e−i(x−y)�(z)dy,

(6.7a)

μ+(x, t, z) = E(z) −
∞∫
x

E(z)ei(x−y)�(z)E−1(z)	Q(y, t)μ+(y, t, z)e
−i(x−y)�(z)dy,

(6.7b)

where E+(z) = E−(z) =: E(z) since Q+ = Q−. We therefore have μ±(x, t, z) =
E(z) + O(ε) as ε → 0, and, recalling the scattering relation (2.16),

A(z) = I +
∫
R

e−iy�(z)E−1(z)	Q(y, 0)μ−(y, 0, z)eiy�(z) dy. (6.8)
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Thus, A(z) = I+O(ε) as ε → 0. In particular, by looking explicitly at the O(ε) portion
of A(z), one obtains

ρ j (z) = ∫
R

q j (y, 0)e
−i zy dy + O(ε2), j = 1, 2, (6.9a)

ρ3(z) = 1

γ (z)

∫
R

[
q3(y, 0) − qo − q2o

z2
(q∗

3 (y, 0) − qo)

]
dy + O(ε2). (6.9b)

Consider the case in which no solitons are present. In this case, in the solution (4.6) of the
RHP we need to only keep linear terms in the reflection coefficients ρ j (z) ( j = 1, 2, 3)
as defined in (3.25), so the reconstruction formula (2.50) yields the following behavior
for q(x, t) as ε → 0:

q(x, t) = qo +
1

2π

∫
R

{[
ρ1(ζ )ê1 + ρ2(ζ )ê2

]
e−i(θ1−θ2)(x,t,ζ )

+ρ3(ζ )e−2iθ1(x,t,ζ )ê3
}
dζ + O(ε2), (6.10)

where, as before, {ê j }3j=1 denotes the standard basis for R3. Next, to compare with the
linearization, we need to perform a change of variable in the above integrals. For the
first two terms in (6.10), we make the substitution ζ = 2s to obtain the following:

∫
R

ρ j (ζ )e−i(θ1−θ2)(x,t,ζ )dζ = 2
∫
R

ρ j (2s)e
−4is2te2isxds, j = 1, 2. (6.11)

Then, comparing (6.11) with the Fourier transforms of the first two rows of (6.4) yields

û j,0(s) = 4πρ j (2s), j = 1, 2. (6.12)

Reverting from ζ to the original coordinates (k, λ(k)), the remaining integral in (6.10)
simplifies as follows:

∫
R

ρ3(ζ )e−2iθ1(x,t,ζ )dζ = ∫
R\[−qo,qo]

{
(k + λ(k))ρ3(k, λ(k))e2iλ(k)(x−2kt)

−(k − λ(k))ρ3(−k, λ(k))e2iλ(k)(x+2kt)
} dk

λ(k)
, (6.13)

where the plus/minus sign results from the branching of λ(k). To compare with the
Fourier transform of (6.4), we now make the substitutions k = (λ2 + q2o )

1/2 for k ≥ qo
and k = −(λ2 + q2o )

1/2 for k ≤ qo to obtain

∫
R

ρ3(ζ )e−2iθ1(x,t,ζ )dζ = ∫
R

{ (λ2 + q2o )
1/2 + λ

(λ2 + q2o )
1/2 ρ3((λ

2 + q2o )
1/2, λ)e−4iλ(λ2+q2o )1/2 t

− (λ2 + q2o )
1/2 − λ

(λ2 + q2o )
1/2 ρ3(−(λ2 + q2o )

1/2, λ)

× e4iλ(λ2+q2o )1/2 t
}
e2iλxdλ. (6.14)

It is evident from (6.5) and (6.14) that

A1(s) = ρ3(−(s2 + q2o )
1/2, s)

(s2 + q2o )
1/2 , A2(s) = ρ3((s2 + q2o )

1/2, s)

(s2 + q2o )
1/2 . (6.15)
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Thus, apart from the possible contribution of the discrete spectrum, the leading-order
solution from the IST in the small-deviation limit coincides exactly with the solution of
the VNLS equation linearized around the background.

6.2. Comparisonwith theManakov system. Wenow explore how the results of this work
can be applied to the Manakov system with NZBC [i.e., (1.1), where q(x, t) is now a
2-component vector]. Though a methodology to solve this problem was introduced in
[42] and made rigorous in [15], we show here that the results of this work can be used
as an alternative approach to solving the Manakov system with NZBC in the defocusing
case.

We first note that all 4×4 matrices become 3×3 matrices in the case of theManakov
system. As a result, the scattering matrix has no analytic non-principal minors. Trian-
gular decompositions of the now 3× 3 scattering matrix A(z) yield expressions similar
to (2.30), with

α+(z)D+(z) =
⎛
⎝1 −a12(z) b13(z)
0 a11(z) b23(z)
0 0 b33(z)

⎞
⎠ ,

β+(z)D+(z) =
⎛
⎝a11(z) 0 0
a21(z) b33(z) 0
a31(z) −b32(z) 1

⎞
⎠ , (6.16a)

α̃(z)D−(z) =
⎛
⎝1 −b12(z) a13(z)
0 b11(z) a23(z)
0 0 a33(z)

⎞
⎠ ,

β̃(z)D−(z) =
⎛
⎝b11(z) 0 0
b21(z) a33(z) 0
b31(z) −a32(z) 1

⎞
⎠ , (6.16b)

where, in this case,

D+(z) = diag(1, a11(z), b33(z)), D−(z) = diag(b11(z), a44(z), 1). (6.17)

We again compare with the results of [43] as in Theorem 2.16 to make the following
analytic extensions off the real axis:

a11(z), b33(z) : Im z > 0, b11(z), a33(z) : Im z < 0. (6.18a)

These analyticity properties were found for the Manakov system in [15] using an alter-
native integral representation of the scattering matrix. The present method of finding the
analyticity properties of the scattering matrix is more easily generalizable than the one
used for the Manakov system, due to the presence of extra analytic data in higher-order
cases.

We proceed as we did in Sect. 2.3; a complete set of analytic eigenfunctions is given
in each half plane by

χ±(x, t, z) = M±(x, t, z)D±(z)ei�(x,t,z), Im z ≷ 0, (6.19)

with D±(z) now given in (6.17) and the meromorphic matrices M±(x, t, z) given by the
same expressions as (2.29), where the 4 × 4matrices are replaced with their correspond-
ing 3× 3 counterparts. Similarly to the 3-component case, the first and third columns of
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these analytic matrices are simply φ∓,1(x, t, z) and φ±,3(x, t, z), respectively, implying
that these Jost eigenfunctions are indeed analytic in the corresponding half planes. The
second column of each of the analyticmatricesχ±(x, t, z) is an analogue of the auxiliary
eigenfunctions defined in the 2-component case [15,42]. We write the second column
of χ+(x, t, z) as χ(x, t, z) and the second column of χ−(x, t, z) as χ̄ (x, t, z). These
auxiliary eigenfunctions have the following decompositions for z ∈ R:

χ(x, t, z) = −a12(z)φ−,1(z) + a11(z)φ−,2(z)

= b33(z)φ+,2(z) − b32(z)φ+,3(z), (6.20a)

−χ̄ (x, t, z) = a33(z)φ−,2(z) − a32(z)φ−,3(z)

= −b12(z)φ+,1(z) + b11(z)φ+,2(z), (6.20b)

where the (x, t)-dependence was omitted from the right-hand side of each equation
for simplicity. When inverted, these decompositions match exactly those found in the 2-
component system [15,42]. From here, the results are the same as in [15,42]. One simply
uses these decompositions to find the symmetries of the eigenfunctions and the scattering
matrix. The introduction of the so-called “adjoint problem” is not even necessary.

7. Concluding Remarks

The IST presented in this work was formulated under the assumption of existence. As
usual, however, one can now use the reconstruction formula for the solution obtained
from the inverse problem as a definition of q(x, t) and prove rigorously that this function
is the unique solution of the IVP. On the other hand, it should be obvious from the
discussions in the previous sections that the formalism is significantly more complex
than that for AKNS-type systems or that for problems with zero boundary conditions.
We conclude this work with a few additional remarks.

1. While no conceptual difficulties arise in analyzing the discrete spectrum and in solv-
ing the inverse problem in the reflectionless case when the analytic non-principal
minors of the scattering matrix are not identically zero, a comprehensive treatment
of these issues and the resulting soliton solutions in this case is not entirely trivial.
When the analytic non-principal minors are non-zero, one obtains solutions whose
bright component is not aligned with a single basis vector. but has a non-zero con-
tribution along both. Then the interaction of these solutions results in a polarization
shift of the bright components. Some such soliton solutions were presented in [16],
and a detailed treatment of a few admissible cases was reported in [44].

2. At the same time, an issue that has not been resolved yet is the identification of the
minimal set of scattering data from which the inverse problem should be defined
in the case when the analytic non-principal minors are not identically zero. On
one hand, the discussion in Sects. 4.1 and 4.2 might suggest that one must assign
the value of the analytic non-principal minors along the real z-axis in order to
uniquely specify the jump of the matrix RHP and to reconstruct all the entries of
the scattering matrix. (Things simplify somewhat in the reflectionless case, since in
this case the dependence of the jump matrix on the extra minors disappears. Even
in this case, however, one would need the value of the extra minors along the real
axis to reconstruct the whole scattering matrix.) On the other hand, the analysis of
the discrete spectrum when the extra minors are not identically zero (presented in
[44]) shows that, at least in the reflectionless case, it is sufficient to specify only the
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value of one extra minor at one point of each quartet of discrete eigenvalues. This
implies that one cannot independently assign the value of these minors along the
real axis. This suggests the existence of an additional trace formula, which allows
one to reconstruct the extra minors over their whole domain of analyticity in terms
only of the reflection coefficients and the value of these minors at one point of each
quartet of discrete eigenvalues. Such a formula has yet to be identified, however.

3. The results of thiswork establish a loose connection between the theory of integrable
systems and that of algebraic combinatorics via the Plücker-type relations satisfied
by the boundary data for the analytic forms (e.g., see Eq. (44) in [43]), the quadratic
symmetry relations between the minors of the scattering matrix, and the resulting
non-trivial taxonomy of soliton solutions when the extra minors are non-zero [44].
A connection between the two fields was also recently observed in two-dimensional
systems in the study of the soliton solutions of theKadomtsev–Petviashvili equation
[8–10,13,19,35–37]. To the best of our knowledge, however, it is the first time that
a similar connection has been reported for one-dimensional systems and within the
context of the IST.

4. The results of this work also open up a number of interesting theoretical issues in
addition to the one already mentioned above. To mention just a few:
(i) The possible existence of real spectral singularities. It is well known that, for the

scalar NLS equation, such singularities are not allowed in the defocusing case
with NZBC [26], but are possible in the focusing case with ZBC [54]. On the
other hand, the problem is open even for the defocusing Manakov system with
NZBC.

(ii) The computation of the long-time asymptotic behavior using the Deift–Zhou
method [22,23] (see [32,46,47] for the defocusing scalar case with NZBC).
This problem is also still open even in the two-component (Manakov) case.

(iii) The development of the IST for the multi-component focusing case with NZBC.
Although all the main ideas from the defocusing case carry over to the focus-
ing case, already for the Manakov system, the focusing case with NZBC was
more involved than in the defocusing case, due to the presence of four distinct
fundamental domains of analyticity instead of two, and due to the fact that the
scattering problem is not self-adjoint [38].

(iv) A detailed treatment of the N -component case with N ≥ 4. Although all the
formalism presented in this work (namely, tensors, triangular decomposition and
symmetries) can be extended to the general case in a straightforward manner, it
should nevertheless be clear that the treatment of the symmetries and the discrete
spectrum will be significantly more involved when N > 3.

(v) The development of the IST for the Manakov system and multi-component
VNLS equationwith boundary conditionsq± which are non-parallel (though still
equimodular), and more general asymmetric NZBC for which ‖q+‖ �= ‖q−‖.
The case of asymmetricNZBC for the scalarNLSequationwas studied in [12,18]
in the defocusing case and in [25] for the focusing case. A treatment of either
the focusing or defocusing Manakov system with asymmetric NZBC, however,
is still completely open.

It is hoped that the results of this work and the above discussion will motivate further
investigations on these and related problems.
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A. Appendix: Proofs

This section contain the proofs of the results in the main text.

A.1. Direct problem.

Derivation of Volterra integral equations for the Jost eigenfunctions.We subtract off the
asymptotic behavior of the potential and rewrite the first of (1.3) as

(φ±)x = X±φ± + 	Q±φ±, (A.1)

where	Q± = Q−Q±. Introducing themodified eigenfunctionsμ±(x, t, z) as in (2.13)
and the integrating factor ψ±(x, t, z) = e−i�(x,t,z)E−1± (z)μ±(x, t, z)ei�(x,t,z), we can
then formally integrate the ODE for μ±(x, t, z) to obtain the linear integral equations

μ−(x, t, z) = E−(z) +
x∫

−∞
E−(z)ei(x−y)�(z)E−1− (z)

×	Q−(y, t)μ−(y, t, z)e−i(x−y)�(z)dy, (A.2a)

μ+(x, t, z) = E+(z) −
∞∫
x

E+(z)e
i(x−y)�(z)E−1

+ (z)

×	Q+(y, t)μ+(y, t, z)e
−i(x−y)�(z)dy. (A.2b)

One can now rigorously define the Jost eigenfunctions as the unique solutions of (A.2)
for all z ∈ R\ {0} as long as (1+ |x |)(q(x, t)−q±) ∈ L1(R±). These results are proved
much in a similar way as for the two-component case, and we refer the reader to [15]
for details. ��
Proof of Lemma 2.11. Combining the scattering relation (2.16) with the definitions
(2.29) of the fundamental meromorphic eigenfunctions yields φ+(x, t, z)A(z)α±(z) =
φ+(x, t, z)β±(z). Solving for A(z) yields the desired triangular decompositions. ��
Proof of Lemma 2.14. Due to the constraints on α±(z) and β±(z) given in Theorem 2.8,
the decompositions inLemma2.11 are unique. Simply finding triangular decompositions
of the scattering matrix with the given constraints yields the matrices in (2.35) due to
this uniqueness property. ��
Proof of Theorem 2.16. The analyticity of the explicitly given principal minors of the
scattering matrices follows directly from Corollary 2.15, while the analyticity of the
remaining principal minors follows from applying the identity in Lemma 2.13. The
analyticity of the given non-principal minors follows from an examination of the off-
diagonal entries of the matrices defined in Theorem 2.8. ��
Proof of Lemma 2.18. The lemma is proved using the asymptotics in Theorem 2.7. Sim-
ply put, if any of the eigenfunctions were to have a pole of higher order, then said
asymptotics could not hold. ��
Proof of Theorem 2.19. The results of Lemma 2.18 show that multiplication of
M±(x, t, z) by the matrix D±(z)ei�(x,t,z), respectively, removes any pole contributions
from the 	±

j (z) ( j = 1, 2, 3). The resulting columns are analytic solutions of both parts
of the Lax pair, and we will see later that they become linearly dependent only at zeros
of certain principal minors of the scattering matrices. ��
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Proof of Lemma 2.20. The asymptotics (2.41) follow by multiplying the relations
in (2.24) by the matrices D±(z) for the appropriate regions of analyticity and noting
that the resulting expressions still hold when z ∈ Z±. The asymptotics (2.42) then
follow from expanding the columns of (2.41). ��

A.2. Symmetries.

Proof of Proposition 3.1. We obtain the results directly by noting that k∗(z∗) = k(z)
and JQ = −QJ and by using the facts that −JX†(x, t, z∗)J = X(x, t, z) and
−JT†(x, t, z∗)J = T(x, t, z). ��
Proof of Lemma 3.2. We use Proposition 3.1 with

w±(x, t, z) = J[φ†
±(x, t, z)]−1, z ∈ R, (A.3)

and note that for all z ∈ C, [ei�(x,t,z∗)]† = e−i�(x,t,z). It is easy to see that

w±(x, t, z) = J[E†
±(z)]−1ei�(x,t,z) + o(1), x → ±∞. (A.4)

Since both w± and φ± are fundamental matrix solutions of the Lax pair (1.3), there must
exist an invertible 4 × 4 matrix C(z) such that (3.1) holds. Comparing the asymptotics
from (A.4) with those from (2.11), we then obtain (3.2). ��
Proof of Theorem 3.5. First, we use the symmetry (3.1) (which contains the inverse of
a transpose of a matrix) to obtain representations of the columns of φ∗± in terms of
generalized cross products of other columns of φ± (for z ∈ R). Then, we combine
these representations with the decompositions (2.44), simplify, and apply the Schwarz
reflection principle (as in the Manakov system). ��
Proof of Lemma 3.9. We verify (3.12a). The rest of (3.12) are proved similarly. First,
replace v1, v2, and v3 in (3.7) with φ−,1, χ+

2 , and φ+,4, respectively. Since z ∈ R, we
may apply the decompositions (2.43) to obtain

L[φ∗−,1, (χ
+
2 )∗, φ∗

+,4] = a∗
11b

∗
34L[φ∗−,1, φ

∗−,2, φ
∗−,3] + a∗

11b
∗
44L[φ∗−,4, φ

∗−,1, φ
∗−,2],

where the (x, t, z)-dependence was omitted for brevity. Combining the results of Corol-
lary 3.6 with the symmetry (3.9) and (2.43) yields the following:

e2iθ2JL[φ∗−,1, (χ
+
2 )∗, φ∗

+,4] = b11γ [−a43φ−,4 + a44φ−,3] = b11γχ−
3 ,

where, again, the (x, t, z)-dependence was omitted for brevity. An application of the
Schwarz reflection principle completes the proof. ��
Proof of Lemma 3.11. We use Proposition 3.10 and we note that

�(x, t, ẑ∗) = K�(x, t, z), (A.5)

where K = diag(−1, 1, 1,−1). For z ∈ R, define w±(x, t, z) = φ±(x, t, ẑ∗). Since w±
and φ± both solve the Lax pair (1.3), there must exist invertible 4 × 4 matrices �±(z)
such that (3.14) holds. Comparing the asymptotics of (3.14) with the asymptotics from
(2.11) yields

E±(ẑ∗)eiK�(x,t,z)�±(z) = E±(z)ei�(x,t,z), (A.6)

which yields (3.15). ��
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Proof of Lemma 3.12. We verify (3.22a). The rest of (3.22) are proved similarly. First,
we evaluate φ−,2(x, t, z) via (2.44) at q2o/z and then apply the symmetry (3.17) to obtain

q−
q+

1

a44

[
q+
q−

a42φ−,4 + χ+
2 (q2o/z)

]

= 1

B[1,2]

[
χ−
2 − 1

a44
B(1,3

1,2

)χ−
3 −

(
a43
a44

B(1,3
1,2

) + B(1,4
1,2

))φ−,4

]
,

where the (x, t)-dependence was omitted for brevity and any function other than χ+
2 with

z-dependence is evaluated at z. We solve for χ+
2 (q2o/z) and use analytic continuation to

obtain the desired result. ��
Proof of Theorem 3.13. Evaluating (3.22b) at z = ẑ∗o and combining the result
with (3.19) and (3.17) yields

χ+
3 (x, t, zo) = 1

A[3,4](ẑ∗o)

[
A[1,2,3](zo)χ−

3 (ẑ∗o) − A(1,2
1,3

)(zo)χ−
2 (ẑ∗o)

]
.

Next, combine (A.7) with (3.22c) and (3.22d) and simplify to obtain

χ+
3 (x, t, zo) = e−i	θ

A[1,2](zo)A[3,4](ẑ∗o)

×
[
A[1](zo)A[1,2,3](zo) + A(1,2

1,3

)(zo)A(1,3
1,2

)(zo)
]

χ+
3 (x, t, zo).

The result then follows easily from the symmetries of the scattering matrix. Note that
the same result can also be derived at all points zo at which χ+

2 (x, t, zo) �= 0.
Next, since all the minors involved in (3.23) are analytic in the UHP, and the zeros

of analytic functions [in this case χ+
2 (x, t, zo)] are isolated, one can also obtain (3.23) at

those points whereχ+
2 (x, t, z) is zero by simply taking the limit of all quantities involved.

��

A.3. Discrete spectrum.

Proof of Lemma 3.18. It is easy to show that if v(x, t, k) = (v1, v2, v3, v4)
T is any

nontrivial solution of the scattering problem,

− i(k − k∗)
4∑

n=1
|vn(x, t, z)|2 = ∂

∂x

[
|v1(x, t, k)|2 −

4∑
n=2

|vn(x, t, k)|2
]

. (A.7)

Now, integrate (A.7) from −∞ to ∞. If v(x, t, k) ∈ L2(R), the right-hand side is zero,
but since

∫
R

‖v(x, t, k)‖2dx �= 0,

this implies k∗ = k, i.e., z ∈ R or z ∈ Co. However, for z ∈ R, the eigenfunctions do
not decay as x → ±∞, and therefore, v(x, t, k) cannot belong to L2(R). Thus, the only
possibility left is z ∈ Co. ��
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In the proofs that follow, it will be useful to note the following:

lim
x→∞

∣∣∣eiθ2(x,t,zo)
∣∣∣ =

{
0, |zo| > qo,
∞, |zo| < qo,

(A.8a)

lim
x→−∞

∣∣∣eiθ2(x,t,zo)∣∣∣ =
{

∞, |zo| > qo,
0, |zo| < qo.

(A.8b)

Proof of Theorem 3.21. The numbering of the cases in this proof corresponds to the
numbering in Table 1. To prove the theorem, it is enough to exclude cases III, VI and
VII.

Case III. This case is not compatible with the symmetries (3.23). In fact, when the
analytic non-principal minors are identically zero, the left-hand side of (3.23) is zero,
while the right-hand side is not. Therefore, we can exclude this case.

Case VI. If A[1](zo) = A[1,2,3](zo) = 0 and A[1,2](zo) �= 0, the symme-
try (3.17) then implies A[1](ẑo) = A[1,2,3](ẑo) = 0. We apply the symmetries (3.34)
to find that χ+

2 (x, t, ẑo), χ+
3 (x, t, ẑo), χ−

2 (x, t, ẑ∗o), and χ−
3 (x, t, ẑ∗o) are all zero. Sup-

pose A[1,2](ẑo) �= 0. Then the symmetries (3.34) imply χ+
2 (x, t, zo), χ+

3 (x, t, zo),
χ−
2 (x, t, z∗o), and χ−

3 (x, t, z∗o) are all zero. Using the same arguments as above, the
left-hand side of (3.5d) must then be zero at z = zo, which is a contradiction.
Thus, A[1,2](ẑo) = 0. However, since χ+

3 (x, t, ẑo) is zero, symmetry (3.34d) implies
χ−
3 (x, t, z∗o) is zero. Similarly, we find that χ−

2 (x, t, z∗o) is zero. We arrive at the same
problem as before [namely, that the left-hand side of (3.5d) must have a zero at z = zo].
Therefore, we can exclude this case also.

CaseVII. Suppose A[1](zo) = A[1,2](zo) = A[1,2,3](zo) = 0.Wenote that at least one
auxiliary eigenfunctionmust be nonzero at each point in the eigenvalue quartet consisting
of zo, z∗o, ẑo, and ẑ∗o. Indeed, suppose χ+

2 (x, t, zo) = χ+
3 (x, t, zo) = 0. We can then

introduce χ̂+
2 (x, t, z) = χ+

2 (x, t, z)/A[1,2](z) and χ̂+
3 (x, t, z) = χ+

3 (x, t, z)/A[1,2](z),
which are then finite at z = zo.

Since the left-hand side of (3.31a) has a triple zero at z = zo,

det(φ−,1(x, t, zo), χ̂
+
2 (x, t, zo), χ̂

+
3 (x, t, zo), φ+,4(x, t, zo)) = 0.

Suppose now χ̂+
2 (x, t, zo) = 0. Then the cross product in the right-hand side of (3.5d)

will have a triple zero at z = zo. Since the zeros of the minors are simple, we con-
clude φ−,4(x, t, z∗o) = 0, which is a contradiction. Thus, χ̂+

2 (x, t, zo) �= 0. Similarly,
χ̂+
3 (x, t, zo) �= 0.
Then there exist constants (not all zero) such that

boφ−,1(x, t, zo) − b1χ̂
+
2 (x, t, zo) − b2χ̂

+
3 (x, t, zo) − b3φ+,4(x, t, zo) = 0.

If bo = 0, then the left-hand side of (3.5a) will have a zero at z = zo, which is a
contradiction. Thus, bo �= 0. Using (3.5), we find that

[φ−,4(z
∗
o)]∗ = − b3e−2iθ2(zo)

2boA′[1](zo)A′[1,2](zo)
JL[φ+,4(zo), χ̂

+
2 (zo), χ̂

+
3 (zo)]

= b3A′[1,2,3](zo)
boA′[1](zo)

[φ+,1(z
∗
o)]∗,
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where the (x, t)-dependence was omitted for brevity. However, this is a bound state,
which contradicts Lemma 3.18 since |zo| �= qo. Thus, at least one of χ+

2 (x, t, zo) and
χ+
3 (x, t, zo) must be nonzero, and similar results follow for the remaining auxiliary

eigenfunctions.
Now, we assume that the auxiliary eigenfunctions are not zero at any of the points

in the eigenvalue quartet. The case in which any one of the auxiliary eigenfunctions is
zero at a point in the eigenvalue quartet will be considered next.

Again, recall that the left-hand sides of the symmetries (3.12) must be analytic for
all z in their corresponding domains of analyticity. Specifically, since χ−

2 (x, t, z) and
χ−
3 (x, t, z) are analytic for all z in the lower-half plane, we have

L[φ−,1, χ
+
3 , φ+,4](x, t, zo) = L[φ−,1, χ

+
2 , φ+,4](x, t, zo) = 0.

Then a nontrivial linear combination of the eigenfunctions in each of these cross products
must be zero. This statement is strengthened by Lemma 3.18, which states that for
eigenvalues off the circle Co, bound states cannot exist. A bound state would result if
φ−,1(x, t, zo) were proportional to φ+,4(x, t, zo), so we may conclude that there exist
constants such that

χ+
2 (x, t, zo) = coφ−,1(x, t, zo) + c1φ+,4(x, t, zo),

χ+
3 (x, t, zo) = doφ−,1(x, t, zo) + d1φ+,4(x, t, zo). (A.9)

Here is where the asymptotics (2.42) of the eigenfunctions as x → ±∞ and the expo-
nential behavior (A.8) of the auxiliary eigenfunctions are important. Suppose |zo| > qo.
Then the left-hand sides of (A.9) vanish as x → ∞, while the right-hand sides do not
unless co = do = 0. Explicitly, we have

χ+
2 (x, t, zo) = c1φ+,4(x, t, zo), χ+

3 (x, t, zo) = d1φ+,4(x, t, zo). (A.10)

No additional information is obtained by taking the limit as x → −∞. Similarly, we
obtain

χ−
2 (x, t, z∗o) = c̄1φ+,1(x, t, z

∗
o), χ−

3 (x, t, z∗o) = d̄1φ+,1(x, t, z
∗
o), (A.11)

where c̄1 and d̄1 are constants.
Note that since we are assuming the auxiliary eigenfunctions are nonzero at zo, then

c1d1 �= 0 and c̄1d̄1 �= 0. Moreover, (A.10) imply that χ+
2 (x, t, zo) and χ+

3 (x, t, zo) are
proportional to each other:

χ+
2 (x, t, zo) = c1

d1
χ+
3 (x, t, zo). (A.12)

We now need to again examine the symmetries (3.5). As before, the left-hand side of
each symmetry is an analytic function in its corresponding half plane, but note that the
right-hand sides of (3.5a) and (3.5d) have denominators with double zeros at z = zo.
In order for the left-hand sides to actually be analytic at z = zo, the numerators of the
right-hand sides must also have double zeros at z = zo. Namely, we have

L ′[φ−,1, χ
+
2 , χ+

3 ](x, t, zo) = L ′[χ+
2 , χ+

3 , φ+,4](x, t, zo) = 0,

where the prime denotes differentiation with respect to z. Combining this information
with (A.10) then yields

L[φ−,1, d1χ
+
2,z − c1χ

+
3,z, φ+,4](x, t, zo) = 0.
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Suppose d1χ+
2,z(x, t, zo) = c1χ+

3,z(x, t, zo). It is easy to see using simple algebra that
combining this assumption with the expression for φ+,1(x, t, z) obtained using the sym-
metry (3.5a) yields φ+,1(x, t, z∗o) = 0, which is a contradiction since φ+,1(x, t, z) is one
of the Jost eigenfunctions. Then as a result of this, there exist constants (not all zero)
such that

boφ−,1(x, t, zo) + b1[d1χ+
2,z(x, t, zo) − c1χ

+
3,z(x, t, zo)] + b2φ+,4(x, t, zo) = 0.

It is easy to conclude that b1 �= 0 by using Lemma 3.18. Suppose bo = 0. Then as above,
we combine this assumption with the expression for φ+,1(x, t, z) obtained from (3.5a)
to obtain φ+,1(x, t, z∗o) = 0. Again, this is a contradiction, so we may rescale these new
constants and write

φ−,1(x, t, zo) = b1[d1χ+
2,z(x, t, zo) − c1χ

+
3,z(x, t, zo)] + b2φ+,4(x, t, zo). (A.13)

The expressions in (A.10) and (A.13) are of great importance. Specifically, combin-
ing them with the symmetries (3.5) and (3.12) yields expressions for χ−

2 (x, t, z∗o) and
χ−
3 (x, t, z∗o) in terms of φ+,1(x, t, z∗o). We note, however, that combining these results

with (A.11) yields φ+,1(x, t, z∗o) in terms of φ−,4(x, t, z∗o), which is a bound state.
Finally, let us consider the case when only one of the two auxiliary eigenfunctions

is zero at zo. Let us assume χ+
2 (x, t, zo) = 0 while χ+

3 (x, t, zo) �= 0 (the other case
can obviously be dealt with analogously), and suppose |zo| > qo. We then introduce
χ̂+
2 (z) = χ+

2 (z)/A[1,2](z) which is finite at z = zo. Following the same logic as above,
one can show that

χ+
3 (x, t, zo) = d1φ+,4(x, t, zo), d1 �= 0. (A.14)

From (3.5a) and (3.5c) we then find that

L[χ̂+
2 , χ+

3 , φ+,4](x, t, zo) = 0, (A.15)

L[φ−,1, χ̂
+
2 , χ+

3 ](x, t, zo) = 0, (A.16)

and both zeros need to be simple (otherwise the left-hand side of (3.5a) and (3.5c) would
be zero). Now, (A.15) is satisfied in virtue of (A.14), while (A.16) implies that there
exist constants (not all zero) such that

boφ−,1(x, t, zo) − b1χ̂
+
2 (x, t, zo) − b2χ

+
3 (x, t, zo) = 0.

bo cannot be zero, otherwise b1χ̂+
2 (x, t, zo) + b2χ+

3 (x, t, zo) = 0, together with (A.14),
would imply that the zero in (A.15) has multiplicity two. Consequently, we can write

φ−,1(x, t, zo) = b1
bo

χ̂+
2 (x, t, zo) +

b2
bo

χ+
3 (x, t, zo).

Since |zo| > qo, the right-hand side of the above vanish as x → ∞ (cf the exponential
behavior (A.8) of the auxiliary eigenfunctions), while the right-hand side does not, hence
we arrive at a contradiction.

All the arguments above can be repeated for |zo| < qo, and one arrives at a contra-
diction as well. Therefore, we can exclude this case. The remaining cases do not lead to
contradictions. ��
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Proof of Theorem 3.22. Since A[1](zo) = A[2,3,4](z∗o) = 0 and the denominators on the
right-hand sides of (3.34b) and (3.34d) are not zero at z = z∗o and z = zo, respectively,
we conclude

χ+
3 (x, t, ẑo) = χ−

3 (x, t, ẑ∗o) = 0.

The symmetry (3.33) implies immediately that A[1,2](ẑo) = 0. The left-hand side of
symmetry (3.12b) is zero at z = ẑ∗o, so {φ+,1, χ

−
2 , φ−,4} is a linearly dependent set at

z = ẑ∗o. If χ−
2 (x, t, ẑ∗o) = 0, then the symmetry (3.34c) implies χ+

2 (x, t, zo) = 0. We
already know that this cannot occur, so χ−

2 (x, t, ẑ∗o) is nonzero. Similarly, Eqs. (3.12d),
(3.34a), and (3.5b) imply that χ+

2 (x, t, ẑo) is nonzero as well.
Equations (3.31) then imply that there exist appropriate constants (not all zero) such

that

βoφ−,1(x, t, zo) + β1χ
+
2 (x, t, zo) + β2χ

+
3 (x, t, zo) + β3φ+,4(x, t, zo) = 0,

β̄oφ+,1(x, t, z
∗
o) + β̄1χ

−
2 (x, t, z∗o) + β̄2χ

−
3 (x, t, z∗o) + β̄3φ−,4(x, t, z

∗
o) = 0.

If βo = 0, then the set {χ+
2 , χ+

3 , φ+,4} will be linearly dependent at z = zo. Then the
left-hand side of the symmetry (3.5a) will be zero at z = zo, which is a contradiction.
Similarly, if β1 = 0, the set {φ+,1, χ

−
3 , φ−,4} will be linearly dependent at z = z∗o, and

the left-hand side of (3.12a) will be zero at z = z∗o, which is another contradiction.
In addition, since χ+

3 (x, t, ẑo) = χ−
3 (x, t, ẑ∗o) = 0, Eqs. (3.12b) and (3.12d) imply

the existence of appropriate constants (not all zero) such that

β̃oφ+,1(x, t, ẑ
∗
o) + β̃1χ

−
2 (x, t, ẑ∗o) + β̃2φ−,4(x, t, ẑ

∗
o) = 0,

β̂oφ−,1(x, t, ẑo) + β̂1χ
+
2 (x, t, ẑo) + β̂2φ+,4(x, t, ẑo) = 0.

We obtain a bound state if either β̃1 = 0 or β̂1 = 0, and we can use an argument similar
to the one above to show that β̃2 �= 0.

Knowing that certain norming constants cannot be zero allows us to rescale them and
write

φ−,1(x, t, zo) = d1χ
+
2 (x, t, zo) + d2χ

+
3 (x, t, zo) + d3φ+,4(x, t, zo), (A.17a)

χ−
2 (x, t, z∗o) = d̄1φ+,1(x, t, z

∗
o) + d̄2χ

−
3 (x, t, z∗o) + d̄3φ−,4(x, t, z

∗
o), (A.17b)

φ−,4(x, t, ẑ
∗
o) = ď1χ

−
2 (x, t, ẑ∗o) + ď2φ+,1(x, t, ẑ

∗
o), (A.17c)

χ+
2 (x, t, ẑo) = d̂1φ+,4(x, t, ẑo) + d̂2φ−,1(x, t, ẑo), (A.17d)

where each d j , d̄ j , etc. is a constant. Applying the second symmetry to (A.17c) and
(A.17d) and then comparing with the rest of (A.17) yields

ď1 = − i zo
q∗−

A[1,2](zo)
A[1,2,3](zo)

ei	θd1, ď2 = −e−i(θ++θ−)d2, ď3 = 0, (A.18a)

d̂1 = iq∗
+

z∗o
A[4](z∗o)
A[3,4](z∗o)

ei	θ d̄1, d̂2 = − iq−
z∗o

A[4](z∗o)
A[3,4](zo)

ei	θ d̄2, d̂3 = 0.

(A.18b)

Next, we evaluate (3.5b) at z = z∗o, take the complex conjugate, and apply (A.17b) and
the symmetries of the scattering matrix to obtain
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φ−,1(x, t, zo)

= − d̄∗
1 e

2iθ2(x,t,zo)

A[1,2](zo)A[1,2,3](zo)
JL[φ+,1(x, t, z

∗
o), χ

−
3 (x, t, z∗o), φ−,4(x, t, z

∗
o)]∗.

(A.19)

Comparing (A.19) with (3.12a) yields

φ−,1(x, t, zo) = γ (zo)

A[1,2](zo)
d̄∗
1χ+

2 (x, t, zo). (A.20)

Then, comparing (A.20) with (A.17a) yields

d̄1 = [A[1,2](zo)]∗
γ (z∗o)

d∗
1 , d2 = 0. (A.21)

We conclude d̄2 = 0. Similarly, d̂2 = ď2 = 0. We can then rescale the arbitrary constant
d1 to obtain the desired symmetries.

Finally, we show that |zo| < qo. We do so by combining the asymptotics (2.42) with
(A.8). We rewrite the first of (3.35) as

φ−,1(x, t, zo) = c1m
+
3(x, t, zo)e

iθ2(x,t,zo).

Suppose |zo| > qo. Then the left-hand side of this equation vanishes as x → −∞, while
the right-hand side vanishes as x → ∞. This is a bound state, which cannot occur. We
arrive at no such contradiction when |zo| < qo. ��
Proof of Theorem 3.23. Note that the left-hand sides of (3.34a) and (3.34c) will have
poles at z = z∗o and z = zo, respectively, unless the following is true:

χ−
2 (x, t, z∗o) = χ+

2 (x, t, zo) = 0.

This time, the symmetry (3.33) implies that A[1,2](ẑo) �= 0.
Note that (3.12a) implies that the set {φ+,1, χ

−
3 , φ−,4} is linearly dependent at z = z∗o,

while (3.12c) implies that the set {φ−,1, χ
+
3 , φ+,4} is linearly dependent at z = zo. As

above, χ−
3 (x, t, z∗o) and χ+

3 (x, t, zo) are both nonzero. Then there exist appropriate
constants (not all zero) such that

αoφ+,1(x, t, z
∗
o) + α1χ

−
3 (x, t, z∗o) + α2φ−,4(x, t, z

∗
o) = 0,

ᾱoφ−,1(x, t, zo) + ᾱ1χ
+
3 (x, t, zo) + ᾱ2φ+,4(x, t, zo) = 0.

It is obvious that α1 �= 0, as a bound state would result otherwise. Suppose ᾱo = 0. Then
as above, the left-hand side of (3.5a) will have a zero at z = zo, which is a contradiction.

It is easy to see from (3.5) that neither χ+
2 (x, t, ẑo) nor χ+

3 (x, t, ẑo) can be zero (the
left-hand side of (3.5d) would be zero at z = ẑo otherwise) and that neither χ−

2 (x, t, z)
nor χ−

3 (x, t, z) can be zero at z = ẑ∗o (the left-hand side of (3.5c) would be zero at
z = ẑ∗o otherwise). Then (3.31) implies that there exist appropriate constants (not all
zero) such that

α̃oφ+,1(x, t, ẑ
∗
o) + α̃1χ

−
2 (x, t, ẑ∗o) + α̃2χ

−
3 (x, t, ẑ∗o) + α̃3φ−,4(x, t, ẑ

∗
o) = 0,

α̂oφ−,1(x, t, ẑo) + α̂1χ
+
2 (x, t, ẑo) + α̂2χ

+
3 (x, t, ẑo) + α̂3φ+,4(x, t, ẑo) = 0.
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Suppose α̃3 = 0. Then the left-hand side of (3.5d) has a zero at z = ẑo, which is a
contradiction. Similarly, α̂2 �= 0.

Knowing that certain norming constants cannot be zero allows us to rescale them and
conclude that

φ−,1(x, t, zo) = c1χ
+
3 (x, t, zo) + c2φ+,4(x, t, zo), (A.22a)

χ−
3 (x, t, z∗o) = c̄1φ+,1(x, t, z

∗
o) + c̄2φ−,4(x, t, z

∗
o), (A.22b)

φ−,4(x, t, ẑo) = č1χ
−
3 (x, t, ẑo) + č2φ+,1(x, t, ẑo) + č3χ

−
2 (x, t, ẑo), (A.22c)

χ+
3 (x, t, ẑ∗o) = ĉ1φ+,4(x, t, ẑ

∗
o) + ĉ2φ−,1(x, t, ẑ

∗
o) + ĉ3χ

+
2 (x, t, ẑ∗o), (A.22d)

where each c j , c̄ j , etc. is a constant. Applying (3.16) and (3.34) to (A.22a) yields

iq∗−
zo

φ−,4(x, t, ẑ
∗
o) = A′[1,2](zo)

A′[1](zo)
c1e

i	θχ−
3 (x, t, ẑ∗o) − iq+

zo
c2φ+,1(x, t, ẑ

∗
o). (A.23)

Comparing (A.23) with (A.22c) yields the first of (3.38) as well as

č2 = −ei(θ++θ−)c2, č3 = 0. (A.24)

Similarly, applying (3.16) and (3.34) (A.22b) yields

ĉ1 = iq∗−
z∗o

A′[2,3,4](z∗o)
A′[3,4](z∗o)

c̄1, ĉ2 = − iq+
z∗o

A′[2,3,4](z∗o)
A′[3,4](z∗o)

c̄2, ĉ3 = 0. (A.25)

Next, we evaluate (3.5d) at z = ẑ∗o, take the complex conjugate, and apply (A.22d) and
the symmetries of the scattering matrix to obtain

φ−,4(x, t, ẑ
∗
o)

= − ĉ∗
1e

2iθ2(x,t,zo)

A[3,4](ẑ∗o)A[2,3,4](ẑ∗o)
JL[φ−,1(x, t, ẑo), χ

+
2 (x, t, ẑo), φ+,4(x, t, ẑo)]∗.

(A.26)

Comparing (A.26) with (3.12d) yields

φ−,4(x, t, ẑ
∗
o) = z2o

q2o

γ (zo)

A[3,4](ẑ∗o)
ĉ∗
1χ

−
3 (x, t, ẑ∗o). (A.27)

Then, comparing (A.27) with (A.22c) yields

č1 = z2o
q2o

γ (zo)

A[3,4](ẑ∗o)
ĉ∗
1, č2 = 0. (A.28)

Note that č2 = 0 implies c2 = 0. Following a similar method with (3.5c), we obtain

ĉ1 = q2o
(z∗o)2

A[1,2](ẑo)
γ (z∗o)

č∗
1, ĉ2 = 0. (A.29)

In addition, note that ĉ2 = 0 implies c̄2 = 0. Finally, the rest of (3.38) is obtained by
combining (A.29) with the first of (3.38), the first of (A.25), and the symmetries of the
scattering matrix. We can then rescale the arbitrary constant c1 to obtain the desired
symmetries.

The proof that |zo| < qo is similar to that in Theorem 3.22. ��
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A.4. Riemann–Hilbert problem, reflectionless potentials and soliton solutions.

Proof of Lemma 4.2. We suppress all (x, t, z)-dependence when doing so introduces no
confusion. In addition, Lemma 2.13 will be used throughout to write some minors of
B(z) in terms of the corresponding minors of A(z). Using the scattering relation (2.16),
we obtain

φ+,4 = −a14
a44

φ+,1 − a24
a44

φ+,2 − a34
a44

φ+,3 +
φ−,4

a44
.

Combining this with (2.44a) and (2.44b) yields

φ+,4 = −
⎡
⎣a14
a44

+
a24
a44

b12
b11

+
a34
a44

⎛
⎝b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

⎞
⎠
⎤
⎦φ+,1 − a24

a44

χ−
2

A[2,3,4]

−a34
a44

1

A[3,4]

⎡
⎣χ−

3 −
A(2,4

3,4

)
A[2,3,4]

χ−
2

⎤
⎦ +

φ−,4

A[4]
. (A.30a)

We combine this with (2.16), (2.44a), and (2.44b) to obtain

φ−,1

A[1]
=
⎡
⎣1 + a21

a11

b12
b11

+
a31
a11

⎛
⎝b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

⎞
⎠

−a41
a11

⎛
⎝a14
a44

+
a24
a44

b12
b11

+
a34
a44

⎛
⎝b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

⎞
⎠
⎞
⎠
⎤
⎦φ+,1

+

[
a21
a11

− a41
a11

a24
a44

]
χ−
2

A[2,3,4]
+

[
a31
a11

− a41
a11

a34
a44

]

1

A[3,4]

⎡
⎣χ−

3 −
A(2,4

3,4

)
A[2,3,4]

χ−
2

⎤
⎦ +

a41
a11

φ−,4

A[4]
. (A.30b)

We then combine (2.43a) and (2.43b) with (A.30a) to obtain

1

A[1,2]

⎡
⎣χ+

2 −
A(1,3

1,2

)
A[1,2,3]

χ+
3

⎤
⎦ =

⎡
⎣b12
b11

−
⎛
⎝b43
b44

A(1,3
1,2

)
A[1,2]

+
A(1,4

1,2

)
A[1,2]

⎞
⎠

×
⎛
⎝a14
a44

+
a24
a44

b12
b11

+
a34
a44

⎛
⎝b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

⎞
⎠
⎞
⎠
⎤
⎦φ+,1

+

⎡
⎣1 − a24

a44

⎛
⎝b43
b44

A(1,3
1,2

)
A[1,2]

+
A(1,4

1,2

)
A[1,2]

⎞
⎠
⎤
⎦ χ−

2

A[2,3,4]

−a34
a44

⎡
⎣b43
b44

A(1,3
1,2

)
A[1,2]

+
A(1,4

1,2

)
A[1,2]

⎤
⎦
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× 1

A[3,4]

⎡
⎣χ−

3 −
A(2,4

3,4

)
A[2,3,4]

χ−
2

⎤
⎦

+

⎡
⎣b43
b44

A(1,3
1,2

)
A[1,2]

+
A(1,4

1,2

)
A[1,2]

⎤
⎦ φ−,4

A[4]
. (A.30c)

Finally, combining (2.43c) and (2.43d) with (A.30a) yields

χ+
3

A[1,2,3]
=
⎡
⎣b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

+
b43
b44

⎛
⎝a14
a44

+
a24
a44

b12
b11

+
a34
a44

⎛
⎝b12
b11

B(1,2
1,3

)
B[1,2]

−
B(1,2

2,3

)
B[1,2]

⎞
⎠
⎞
⎠
⎤
⎦φ+,1

+
a24
a44

b43
b44

χ−
2

A[2,3,4]
+

[
1 +

a34
a44

b43
b44

]
1

A[3,4]

⎡
⎣χ−

3 −
A(2,4

3,4

)
A[2,3,4]

χ−
2

⎤
⎦

−b43
b44

φ−,4

A[4]
. (A.30d)

Collecting (A.30) and writing the expressions in terms of the reflection coefficients in
(3.25), the jump condition (4.4) follows. ��
Proof of Lemma 4.11. Wefirst derive the trace formula for A[1](z). A cofactor expansion
along the first column of A(z), combined with the symmetries (3.9), yields

1

a11(z)b11(z)
= 1 − 1

|a11(z)|2
[
|a41(z)|2 − z2

z2 − q2o

(
|a31(z)|2 + |a21|2

)]
.

(A.31)

We now combine this expression with the definitions of the reflection coefficients in
(3.25) and take the logarithm of the result to obtain

log a11(z) − log[1/b11(z)]
= − log

{
1 − |ρ3(z)|2 − z2

z2 − q2o
[|ρ2(z)|2 + |ρ1(z)|2]

}
. (A.32)

We define the following quantities:

β1(z) = a11(z)
N1∏
n=1

z − z∗n
z − zn

N2∏
n=1

z − w∗
n

z − wn
,

β2(z) = (1/b11(z))
N1∏
n=1

z − z∗n
z − zn

N2∏
n=1

z − w∗
n

z − wn
. (A.33)

Each quantity in (A.33) has no zeros or poles and approaches 1 as z → ∞ in its
appropriate domain of analyticity. Combining Eq. (A.32) with the definitions (A.33)
yields
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logβ1(z) − logβ2(z) = − log

{
1 − |ρ3(z)|2 − z2

z2 − q2o
[|ρ2(z)|2 + |ρ1(z)|2]

}
.

(A.34)

Equation (A.34) is the jump condition of a scalar RHP. Since the unknown quantities
logβ1(z) and logβ2(z) have no poles and are O(1/z) as z → ∞, we can apply the
Cauchy projector P+ from (4.1) and solve for a11(z) to obtain (4.9a).

The trace formula for A[1,2](z) is also obtained by formulating and solving a suitable
scalar RHP. To this end, we introduce the sectionally meromorphic function

f (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A[1,2](z) z ∈ D1,

1/A∗[1,2](z) z ∈ D2,

1/A[3,4](z) z ∈ D3,

A∗[3,4](z) z ∈ D4,

where D1 and D2 denote respectively the exterior and the interior of the semicircleC+
o of

radius qo in the UHP, while D3 and D4 denote respectively the interior and the exterior
of the semicircle C−

o of radius qo in the LHP. Note f (z) has zeros/poles at the zeros
of A[1,2](z) in the UHP and of A[3,4](z) in the LHP, and limz→∞ f (z) = 1. Using the
symmetry (3.10) one can easily show that f (z) has no jump across the real axis, while
the jump across the circle is provided by the symmetry relations (3.23). Specifically,
combining (3.23) with (3.10) and (3.18), one can express the jump of f (z) across the
circle Co = C+

o ∪ C−
o as:

f +(z)/ f −(z) = |A[1](z)|2 − |A(1,2
1,3

)(z)|2 z ∈ C+
o , (A.35a)

f +(z)/ f −(z) = |A[1](z∗)|2 − |A(1,2
1,3

)(z∗)|2 z ∈ C−
o , (A.35b)

where C±
o are both oriented clockwise. Note that the jump reduces to the function g(z)

appearing in (4.9b) when the analytic non-principal minors are identically zero. We then
proceed in the same way as for the derivation of (4.9a). Namely, we first factor out the
zeros/poles, by introducing the Blaschke factors

β̄1(z) = A[1,2](z)
N1∏
n=1

z − ẑ∗n
z − ẑn

N2∏
n=1

z − w∗
n

z − wn
,

β̄2(z) = (1/A[3,4](z))
N1∏
n=1

z − ẑ∗n
z − ẑn

N2∏
n=1

z − w∗
n

z − wn
. (A.36)

Each quantity in (A.36) has no zeros or poles and approaches 1 as z → ∞ in its
appropriate region of analyticity. Combining the log of (A.35) with (A.36), applying the
Cauchy projector P+, and simplifying yields (4.9b). ��
Proof of Lemma 5.1. In the reflectionless case, the jump matrix L(z) defined in (4.4)
is identically zero. In this case, Eq. (A.30a) implies a34(z) = a24(z) = a14(z) ≡ 0.
Combining this information with the symmetries of the scattering matrices shows that
the following entries must also be identically zero: a21(z), a31(z), a41(z), b12(z), b13(z),
b14(z), b41(z), b42(z), b43(z). Lemma 2.13 implies

a12(z) = −B(1,3,4
2,3,4

)(z), a13(z) = B(1,2,4
2,3,4

)(z).
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Then a12(z) and a13(z) must also be identically zero. Similar results follow for a42(z),
a43(z), b21(z), b31(z), b24(z), and b34(z) by using the samemethod.Next, the assumption
the analytic non-principal minors are identically zero implies that a23(z)a44(z) ≡ 0.
Since the scattering matrix is continuous, we conclude a23(z) ≡ 0. The symmetries
of the scattering matrix imply the same result for a32(z), b23(z), and b32(z). Thus, the
scattering matrix and its inverse are diagonal.

The converse is trivial. ��
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