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ABSTRACT

We study how the dynamics of solitary wave (SW) interactions in integrable systems is different from that in nonintegrable systems in the
context of crossing of two identical SWs in the (integrable) Toda and the (non-integrable) Hertz systems. We show that the collision process
in the Toda system is perfectly symmetric about the collision point, whereas in the Hertz system, the collision process involves more complex
dynamics. The symmetry in the Toda system forbids the formation of secondary SWs (SSWs), while the absence of symmetry in the Hertz
system allows the generation of SSWs. We next show why the experimentally observed by-products of SW–SW interactions, the SSWs, must
form in the Hertz system. We present quantitative estimations of the amount of energy that transfers from the SW after collision to the SSWs
using (i) dynamical simulations, (ii) a phenomenological approach using energy and momentum conservation, and (iii) using an analytical
solution introduced earlier to describe the SW in the Hertz system. We show that all three approaches lead to reliable estimations of the
energy in the SSWs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121427

Solitary wave–solitary wave interactions in non-integrable sys-
tems are highly non-trivial compared to those in integrable
systems. In non-integrable systems, the energies of two inter-
acting solitary waves are reduced after the interaction. There
has been a limited number of studies that address the interac-
tion between solitary waves in non-integrable systems. Among
non-integrable systems, the Hertz chain is of particular interest
because it models an experimentally realizable physical system.
Solitary wave–solitary wave interactions in Hertz systems have
been studied via dynamical simulations and laboratory exper-
iments. Results show that secondary solitary waves carrying a
small fraction of the energy of the original solitary wave form
post-interaction. The precise magnitude of energy carried by the
secondary waves is known to depend on the softness of the bound-
aries where the secondary waves form. Formation of secondary
solitary waves in turn lead to the reduction of the energy of the
scattered solitary waves. However, questions such as why the sec-
ondary solitary waves must form and whether one can obtain
a quantitative characterization of the energy of the secondary

solitary waves have remained largely unresolved. In this work, we
use a phenomenological approach, an analytical approach based
on the analytical solution to the solitary wave by Sen and Manciu,
and dynamical simulations to calculate the energy reduction of
the solitary waves and hence infer the total energy used in the gen-
eration of one or more secondary solitary waves that form after
the solitary wave–solitary wave interaction.

I. INTRODUCTION

Solitary waves (SWs), which are just about ubiquitous in non-
linear systems, have been studied extensively. Among the nonlinear
systems admitting SWs, a special class known as integrable sys-
tems has been an active research topic for decades because of their
rich mathematical structures and physical applications.1 However,
many nonlinear systems encountered in nature that admit SW solu-
tions are non-integrable. Therefore, it is important to study the
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similarities and differences between integrable and non-integrable
systems.

The key difference between integrable systems and non-
integrable systems is reflected in the interactions between SWs. In
the integrable and non-integrable systems, the interaction induces
phase or position shifts of the SWs, which are due to the waves
traveling through one another.2,3 It may be noted that interac-
tions between SWs leading to the production of lower energy SWs
post collision were first reported in a numerical study for another
non-integrable system, the Fermi–Pasta–Ulam–Tsingou system,4

by Flytzanis et al. and more recently for the same system by
Zhao et al.5,6 Naturally, the production of low energy SWs post
collision means the colliding SWs are left with lower energy post
collision. Hence, understanding the differences between integrable
and non-integrable systems hinges upon understanding the under-
lying reasons for the reduction in the SW energy after collision in
the non-integrable systems.

In this paper, we focus on SW interactions in discrete inte-
grable and non-integrable systems. Specifically, we consider a one-
dimensional lattice with nearest neighbor interactions. The lattice is
described by a system of differential-difference equations as follows:

m
d2yn

dt2
= φ′(yn+1 − yn) − φ′(yn − yn−1), (1)

where m denotes the particle mass, yn denotes the displacement
of the nth particle with respect to its equilibrium, φ denotes the
interaction potential, and φ′ denotes the space derivative of φ.

In general, (1) is nonlinear and cannot be treated analyti-
cally. However, for integrable lattices, one can use mathematical
tools such as the inverse scattering transform to obtain explicit
solutions.1 A typical example of integrable lattices is the celebrated
Toda lattice,7–10 which has an interaction potential given by

φ(rn) =
a

b
e−brn + arn, a, b ∈ constants, (2)

with rn = yn+1 − yn being the mutual displacement. The Toda
system has attracted a significant amount of research over the
decades.11–14

Among numerous nonintegrable systems, the Hertz chain15–20

is of particular interest. It serves as a model to describe the repelling
force that comes into play when the contact area between two adja-
cent elastic or granular spheres increases, the so-called Hertz force.21

The Hertz interaction potential is given by

φ(rn) =

{

c|rn|
5/2, rn ≤ 0,

0, rn > 0,
c ∈ constant, (3)

where c = (2/[5D(Y, σ)])(R/2)1/2, R is the radius of the particle,
D(Y, σ) = (3/2)[(1 − σ 2)/Y], and Y and σ denote Young’s mod-
ulus and Poisson’s ratio, respectively. Note that the Hertz potential
goes to zero when the compression goes to zero and cannot take on
negative values.

In the Toda lattice, SWs maintain their amplitude and velocity
after they interact with each other,7,10 while in the Hertz chain, SW
interactions induce formation of so-called secondary solitary waves
(SSWs), which carry a small amount of energy compared to the

original SWs and was first suggested on the basis of dynamical simu-
lations in Refs. 22–25. At this stage, it may be useful to mention two
important issues. First, we emphasize that the SSWs do not appear
in our studies somehow due to a numerical error. As discussed in
detail in Fig. 4 of Ref. 22, the numerical error due to simulations is 9
orders of magnitude smaller in energy than the energy carried by the
SSWs. Furthermore, the existence of the SSWs was experimentally
confirmed in Fig. 3 of Ref. 25. In Figs. 3(b) and 3(c) of Ref. 25, the
authors showed that for their specific system, the SSWs obtained via
simulations for SW collisions with soft end walls and seen in exper-
iments were in good agreement. The simulations, however, ignored
dissipation, and any lack of agreement between the simulations and
the experiments was attributed to the challenges associated with cor-
rectly accounting for dissipation. Second, when the colliding SWs
have the same energy and they collide either at a grain center25 or
in a grain edge,3 we call them symmetric collisions. In Ref. 25, the
authors examined the grain-center collision problem approximately
by replacing the system by a half chain with a hard end wall. How-
ever, no end wall is infinitely hard, and this led to the probing of
the effects of wall softness, which slows down the SW-wall collision
process and in turn leads to SSWs that carry more energy than in
the hard wall limit. This issue was later examined via simulations.26

It should be noted that SSWs produced from SW–SW collisions in
chains carry very small amounts of energy, and these SSWs remain
to be experimentally identified.

These SSWs describe the nature of interactions between the
SWs. Hence, a detailed understanding of SSWs is needed to under-
stand how these strongly nonlinear and non-integrable systems
behave when held between boundaries as time evolves and eventu-
ally approach the so-called quasi-equilibrium state26–30 and at even
later times, the equilibrium state.31 In the context of purely granular
systems, one may wonder as to why suggestions of the existence of
quasi-equilibrium and the possible transition of the same to equi-
librium are relevant because it would be very difficult to see quasi-
equilibrium in a granular chain due to inherent effects of dissipation.
Notwithstanding this argument, we contend that the concept itself
may have broader applicability. For example, in nonlinear chains,
such as those of quantum spins in optical lattices in 1D and in 3D
nonlinear systems such as in carbon nanotubes, evidence of quasi-
equilibrium (similar concepts have been suggested with names such
as quasithermal or prethermal) behavior may indeed have been seen
already.32,33

However, questions such as why the SSWs do not form in
the Toda lattice but must form in the Hertz chain and whether
one can obtain a quantitative characterization of the SSWs remain
open issues. This paper is devoted to address why SSWs form in
non-integrable systems during grain-center collisions. We discuss in
detail below the nature of the SW–SW collision and show how the
central grain remains at rest at all times in the Hertz and Toda sys-
tems, while the grains in the immediate neighborhood of the center
move differently in the two systems.

The structure of this paper is as follows: in Sec. II, we study
crossing of identical SWs in Toda and Hertz systems; in Sec. III, we
investigate the relation between energy and momentum of a SW; in
Sec. IV, we show why SSWs must form in the Hertz system as well
as an estimation of the amount of energy that ends up being used to
produce the SSWs; and in Sec. V, we investigate whether the solution
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proposed by Sen and Manciu in the Hertz chain obtained in Refs. 34
and 35 can capture the main features of SSWs. The work ends with
a summary in Sec. VI.

II. CROSSING OF IDENTICAL SOLITARY WAVES IN

TODA AND HERTZ SYSTEMS

We consider finite lattices with N = 201 particles. Open
boundary conditions are used at the two ends of the system in
order to avoid effects of collisions between the edge grains and
the walls. For the Hertz system, we use numbers that allow for
convenient energies of the SSWs. Specifically, we take D = 5.0 ×

10−8 m2/N, R = 0.05 m, and m = 1.0 kg, and we use the velocity
Verlet algorithm, which is time tested and a symplectic integrator,36

with time step dt = 1.0 × 10−9 s and a total step Nstep = 3 × 107;
the maximum difference of total energy across the length of our
runs is at the order of 10−11 J. In our discussion, the Toda system is
nondimensional, and the units used in the Hertz system are SI units.
The velocity Verlet algorithm is predictor–corrector and returns the
position and the velocity to the same order of accuracy. It is also
a fast and time tested algorithm, which has been widely used in
Molecular Dynamics simulations for decades.36

SWs with the same amplitude but opposite velocity are gener-
ated via simultaneous velocity impulses with the same magnitude
but opposite direction at both ends of the chain. The behavior of the
kinetic energy (KE) of two SWs as a function of time is shown in
Figs. 1(a) and 1(b) for both systems.

The oscillating region at the top of Figs. 1(a) and 1(b) repre-
sents the zone where two SWs are well separated from each other.

FIG. 1. The KE of two solitary waves as a function of time in Hertz (a) and Toda
(b) systems. The red (left side) and blue (right side) dots represent instants at
which the system has the same KE. The velocity of the 103rd (dashed gray line),
102nd (dashed blue line), 100th (solid blue line), and 99th particle (solid gray line)
as a function of time in the collision process in the Hertz (c) and Toda (d) systems.
The solid black line represents the 101st or the central particle in the system in
(c) and (d).

The central dip represents the region where SWs come across and
interact with each other; at that point, the system gets compressed
and the KE converts to the potential energy (PE).

A significant difference between the two systems is that, for
the Toda system, by decreasing the time step, the KEmin approaches
0; whereas in the Hertz system, KEmin never approaches 0. The
difference suggests that in the Toda system, all particles stop simul-
taneously, while this synchronization is absent in the Hertz system.
Another difference is that the KE is asymmetric about its minimum
in Fig. 1(a), whereas it is perfectly symmetric about the minimum
in Fig. 1(b). In addition, we find that the velocities of the 99th and
100th particles as a function of time in the collision process are given
in Figs. 1(c) and 1(d). The dynamics of the 102nd and 103rd par-
ticles are opposite in velocity vs time compared to the 100th and
99th particles. The 101st particle, which is at the center, does not
move at all during the entire process of collision in both cases and is
described by the solid black horizontal line in Figs. 1(c) and 1(d). As
one can see, in the Hertz system, different particles switch directions
at different instants.

Recall that the two-soliton solution in the Toda system is given
by

yn = log(1 + A1 e2(κ1n−β1t) + A2 e2(κ2n−β2t)

+ e2[(κ1+κ2)n−(β1+β2)t+δ]), (4)

where

β2
1 = sinh2

κ1, β2
2 = sinh2

κ2,

δ =
1

2
log

(

sinh2
(κ1 − κ2) − (β1 − β2)

2

A1A2[(β1 + β2)
2
− sinh2

(κ1 + κ2)]

)

,
(5)

and for simplicity, we set the parameters a, b, and m equal to 1. For
the two-soliton solution, we have four independent parameters: κ1,
κ2, A1, and A2.

For two SWs with the same amplitude but opposite velocity,
κ1 = κ2 and β1 = −β2. We can show that at
t0 = [1/(4β1)] log(A1/A2), the velocity profile

v(n, t0) = 0 ∀n. (6)

Moreover, the motion of two SWs is symmetric about t = t0, i.e., for
t1 and t2 such that (t1 + t2)/2 = t0, we have

y(n, t1) = y(n, t2), v(n, t1) = −v(n, t2). (7)

From the analysis above, we can see that crossing of identical
SWs in the Toda system is perfectly symmetric about the instant
when every particle stops simultaneously; the motion after that
instant is simply the reverse of the motion before that instant.

For comparison purposes, Fig. 2 shows velocity profiles at
instants denoted in Fig. 1 from numerics in the Toda and Hertz
systems. For the Toda system, the velocity profiles are opposite,
while for the Hertz system, the velocity profiles are not opposite;
i.e., the velocity profile after collision cannot be obtained by simply
reversing the velocity profile before collision.

If we imagine that our SW in the Toda lattice is bouncing off
a wall instead of two of them crossing, it is easy to see that the SW
behaves as a rather rigid object for it to bounce off intact. In the
Hertz system, the grains turn around at distinct times as is evident
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FIG. 2. Figures (a) and (b) represent velocity profiles in the Hertz and Toda sys-
tems at instants denoted in Fig. 1, respectively. Note that circles represent the
instant before KEmin, while crosses represent the instant after KEmin.

from Fig. 1(c). This behavior is in sharp contrast to how the particles
turn around simultaneously as shown in Fig. 1(d). We suggest that
the key difference between non-integrable and integrable systems
may lie in how the SW turnaround process occurs, with turn around
at a unique time being the case for integrable systems and at different
times being the case for non-integrable systems. Our future studies
will test this suggested way of recognizing an integrable vs a non-
integrable SW bearing system.

III. THE ENERGY AND MOMENTUM OF A SW

For both Toda and Hertz systems, as a SW propagates along
the lattice, both the KE and PE oscillate but add up to a constant.
Other than the total energy, the momentum of a SW is a constant.
It is, therefore, relevant to investigate the relation between these
conserved quantities.

For the Toda system, thanks to the explicit one-soliton solu-
tion, we can obtain how the total energy and momentum of a SW
depend on the soliton parameter κ ,7–10

pSW = sinh κ , (8a)

ESW = 2(sinh κ cosh κ − κ). (8b)

Therefore, the energy–momentum curve can be obtained as a
parameterized curve in the left panel of Fig. 3.

For the Hertz system, we do not have exact an one-soliton solu-
tion; therefore, we measured total energy and momentum of the
SW numerically, and we plotted the numerical data on a log–log

FIG. 3. The energy–momentum curve of a SW in Toda (a) and Hertz (b) systems.
In Fig. (b), the discrete dots are from numerics and the line is the fitting function.
The black crosses represent energy and momentum of the reflected bundles right
after collision, and the corresponding incident SWs are given by the adjacent dots.

plot. The data suggest that the relation between total energy and
momentum is given by

ESW = cp2
SW, (9)

where c = 0.383 433, and it depends on the system parameters
chosen for the simulation.

The notion of the SW as a quasiparticle with its total energy
depending quadratically on its momentum was first reported by
Tichler et al. [see Eq. (2) in Ref. 37] and helps us develop a phe-
nomenological model to quantitatively characterize SWs and study
the formation of SSWs during SW–SW collision in the Hertz system.

We further note that the energy–momentum curve in these
systems are monotonic functions.

IV. SECONDARY SW FORMATION IN THE HERTZ

SYSTEM: A REVISIT

In this section, we examine why SSWs must form in the Hertz
system. A quantitative characterization of the SSWs in the Hertz sys-
tem is developed by making use of the energy–momentum relation
discussed in Sec. III.

In considering the collision of two SWs, we observe that while
the total momentum of the system is conserved, due to the presence
of effective forces in the wall that mimics the collision point, the total
momentum of the half system is not conserved. Recall in the colli-
sion process, the 101st particle suffers no motion (see Fig. 1), and
the motion on both sides of the 101st particle is symmetric to each
other.

The change in the total momentum of the 1st to 100th parti-
cle is directly related to the interaction force in the contact surface
between the 100th and 101st particles, and a plot of this force as a
function of time is given in Fig. 4. During the time interval (0, t1)

(marked by the first dot in Fig. 4), the force between the 100th and
101st particles is zero; as a result, the total momentum of the half sys-
tem is conserved for this part of the motion. During the time interval
(t1, t2) (marked by the second dot in Fig. 4), the 100th particle com-
presses the 101st particle and then decompresses from the same, and

FIG. 4. The interaction force in the contact surface between the 100th and 101st
particles as a function of time. The three dots denote instants t1, t2, and t3, respec-
tively. The inset shows the same data as the main figure but with much higher
resolution so that the recoil of the 100th particle can be seen.
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FIG. 5. The kinetic energy of the grains is shown at the times denoted by dots in
Fig. 4. Here, (a) describes the SWs as they are about to collide, (b) just when the
post-collision SWs emerge, and (c) after the first few SSWs have formed, which
are not visible in the scale used in the main figure but can be clearly seen under
higher energy resolution in the inset.

consequently, the momentum of the half system switches direction
during this time period. During the time interval (t2, t3) (marked by
the third dot in Fig. 4), the force is at a plateau, until the 100th parti-
cle recoils at t = t3. At this plateau, the force is of the order of 10−6 N;
consequently, the momentum of the half system is conserved up to
10−11 N s.

We plot the KE vs position at t = t1, t2, and t3, respectively.
Figure 5(a) shows two energy bundles at t = t1 before collision,
Fig. 5(b) shows that two reflected energy bundles are formed at
t = t2 right after the collision, and Fig. 5(c) shows that at t = t3,
the reflected energy bundles split into the leading pulses and trailing
pulses.

We measured the magnitude of the momentum of the newly
formed reflected energy bundle immediately after the interaction in
Fig. 5(b). This magnitude turns out to be different from the mag-
nitude of the momentum of the incident SW in Fig. 5(a). Note
that by energy conservation, the bundles in Fig. 5(b) hold the same
amount of energy as the incident SWs in Fig. 5(a). If we put reflected
bundles in Fig. 5(b) in the energy–momentum plot, they corre-
spond to the black dots in Fig. 3(b), which does not fall on the
energy–momentum line. Therefore, it is impossible to describe the
energy bundle in Fig. 5(b) as one SW. Observe that the Hertz sys-
tem without precompression can only make SWs as stable energy
carriers. Hence, the reflected bundle results in the formation of
what seems like a train of SWs. Earlier work23 has shown that
these reflected SWs do not quite make a train because SSW ener-
gies can vary significantly regardless of when they are born as a
function of time. The black dots in Fig. 3(b) lie very close to the
energy–momentum line of a SW; one, therefore, expect the leading

FIG. 6. The change in momentum of the reflected energy bundle shown in
Fig. 5(b) with respect to the momentum of incident SW shown in Fig. 5(a) as
a function of the incident momentum.

SW after collision carries the majority of the energy, while the SWs
following behind carry only a small amount of the energy.22–24 Due
to the smallness in energy, the subsequent SWs are termed “SSWs.”

The formation of SSWs is a highly nontrivial process that is not
well understood at the theoretical level.23,24 The time scale of such
a process is far beyond the time interval (t2, t3). However, we note
that during the time interval (t2, t3), the leading SWs post collision
are formed. If we can obtain the energy of the leading reflected SWs
after collision, we can attempt to learn about the total energy used to
generate the SSWs by taking the difference between the leading SWs
before and after collision. Simulations23,24 clearly show that many
more SSWs form as time progresses, which carry very small amounts
of energy compared to the first SSW. It is important to note that
the magnitude of SSWs is such that they may not be regarded as a
solitary wave train.23 As one can see right after time t = t3, the 100th
particle recoils, which brings further momentum change to the half
chain and, therefore, induces the generation of more SSWs. Since
our model is focused on the time interval (t1, t3) and our main goal
is to obtain the energy carried by the leading reflected pulse, it is
reasonable for us to bind all the SSWs as one SSW. We denote these
post-collision SWs with the superscript (r) below.

First, it is easy to see that energy is conserved in this collision.
By equating the energy of the incident SW, E(i)

SW, at t = t1 to the

FIG. 7. A comparison between SSWs generated by opposite delta velocity
impulses (solid gray line) and those by the analytical SW solution of Sen and
Manciu in Eq. (12) (black dotted line).34
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TABLE I. Comparison of the energy devoted to generate SSWs between our phenomenological model and numerical simulations with the initial condition given by opposite delta

velocity impulses is shown. To test the effectiveness of the analytical SW solution for the Hertz chain in Sec. V (12), we also compare energy of SSWs generated by (12) and

that generated by opposite delta velocity impulses. The units in the table are SI units. We find that the analytical solution yields a result that is closest to that obtained with the

dynamical simulations, while the result based on applying energy and momentum conservation is less accurate (see discussion above).

Pincident ESSW, dyn ESSW, phenom Percent error ESSW, theo Percent error

3.5434 0.002 150 0 0.002 200 8 2.3644 0.002 193 1 2.0069
3.9841 0.002 718 0 0.002 782 2 2.3632 0.002 837 9 2.0032
4.5532 0.003 550 0 0.003 633 9 2.3644 0.003 706 7 2.0028
5.1224 0.004 493 0 0.004 599 2 2.3637 0.004 691 4 2.0045
5.6915 0.005 546 9 0.005 678 0 2.3639 0.005 791 8 2.0048

energy at t3, which is a summation of E(r)
SW and E(r)

SSW, we obtain the
equation for energy conservation.

Let us then investigate the momentum of the system. We find
that during the time interval (t2,t3), the total momentum of the half
chain is conserved to 10−11 N s. Thus, let us say that the momen-
tum carried by the reflected bundle in Fig. 5(b) at t2 must equal the
sum of |p(r)

SW| and |p(r)
SSW| measured at t3. From the numerical simu-

lations, we measured that the magnitude of the momentum at t2 is
not equal to that at t1; we, therefore, denoted the magnitude of the
momentum carried by the bundle at t2 in Fig. 5(b) by |p(i)

SW| + 1p. By
equating the momentum of the incident SW and an unknown quan-
tity, we can attempt to write |p(i)

SW| + 1p to |p(r)
SW| + |p(r)

SSW| to obtain
the equation for momentum conservation. We observe here that the
difference in the magnitude of the momentum between t1 and t2 is
not a surprise based on our demonstration in Sec. II that the velocity
vs time behaviors after collision is not simply the reverse of the same
before collision in the Hertz system.

We then have

E(r)
SW/E(i)

SW + E(r)
SSW/E(i)

SW = 1, (10a)

|p(r)
SW|/|p(i)

SW| + |p(r)
SSW|/|p(i)

SW| − |1p|/|p(i)
SW| = 1. (10b)

Note that the energy of the SW is related to the momentum of the
SW by Eq. (9); i.e., once we are able to calculate 1p from the numer-
ical simulations, we are able to accurately infer how much energy
is devoted to generate the SSWs. We numerically measured 1p for
various incident SWs [denoted with superscript (i)] with different
values of p, a log–log plot of 1p as a function of p is given in Fig. 6,
and the relation between 1p and p(i)

SW is given as

|1p/p(i)
SW| = 0.002 107 85. (11)

The results we obtain using Eqs. (9) and (10) along with knowl-
edge of 1p from the dynamical simulations [Eq. (11)] allows the
determination of ESSW,phenom. These values are given in Table I. Our
calculations stack up well when compared with directly calculated
ESSW,dyn. If we assume the simulation based numbers to be the most
accurate ones, the calculated value is within 2.36% of the simulated
value.

V. FINDING SSW ENERGY USING THE ANALYTIC

SOLUTION OF SEN AND MANCIU AS AN INITIAL

CONDITION

As proposed previously,34 the SW in the Hertz chain can be well
described by an approximate solution proposed by Sen and Manciu.
This solution has the form

u(α) =
A

2

{

1 − tanh

[

fn(α)

2

]}

, fn(z) =

∞
∑

q=0

C2q+1z
2q+1, (12)

with C1 = 2.395 36, C3 = 0.268 529, and C5 = 0.006 134 7.
We first perturbed the chain with equal velocity impulses

v = 3.1129 in opposing directions at the two ends, and then, we ini-
tiated the dynamics in the chain by starting two SWs, each satisfying
Eq. (12) from the two ends. The equations of motion were integrated
forward in time with these two initial conditions in both the cases.
The results are shown in Fig. 7. The second and third columns in
Table I show the comparisons between the predictions of our phe-
nomenological model and dynamical simulations. It is clear that the
analytical solution contains the needed features to reproduce the
SSWs seen in the actual simulations.

The results from our numerical calculations, the phenomeno-
logical approach above and those using the analytic solution are
captured in Table I.

VI. CONCLUSIONS

In this paper, we have presented the dynamics associated with
the head-on collision of two identical and opposite propagating SWs
in one dimension. We considered two systems with distinctive inter-
action laws between particles to carry out a comparative study. These
are the integrable Toda lattice, which is a mass-spring system, and
the non-integrable Hertz chain, which is a system of elastic spheres
that gently touch one another. The key results reported here are
summarized below.

In the Toda chain, the kinetic energy of the system goes to zero
and all the energy becomes potential energy at a unique point in
time, and this is when the two equal and opposite propagating SWs
collide. We found that in any half of the system, the dynamics before
the collision and that after collision are identical, except for being
reversed in the direction of propagation.
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In the Hertz system, on the other hand, the kinetic energy of the
system does not go to zero at the point of collision but becomes very
small. The central grain of the system, however, carries no kinetic
energy at any time. However, the adjacent grains carry kinetic energy
and do not come to a complete stop when the SWs collide. Per-
haps, not surprisingly, given how different these two systems are
physically, we find that the dynamics before and after the collision
of the SWs is different between them. Initially, we have SWs com-
ing toward each other. After the collision, we have SWs that carry
slightly less energy followed by the SSWs that form in time after
the collision. The key reason why the SSWs form is because the
solitary waves cannot turn around as a unit unlike for the Toda
chain.7

We show that using energy and momentum conservation along
with the relationship connecting the energy and the momentum in
a SW in a Hertz chain, shown in Eq. (9), which was deduced from
the dynamical calculations, it is possible to approximately calculate
the total energy in the SSWs. Since most of the energy is typically
carried by the leading SSW, the energy of the SSWs obtained via
this phenomenological approach is within 2.36% of the energy of
the SSWs as obtained from the dynamical simulations.

Last, the solution proposed in Eq. (12) to describe the SW in
a Hertz chain turns out to be useful to accurately obtain the energy
carried by SSWs. We used the solitary wave solution to the equation
of motion in the Hertz system34 to time iterate the two equal and
opposite propagating SWs and having them collide in the center
grain of the chain. Our calculations show that the solution predicts
the energy of the SSW. The error when compared to the dynami-
cal simulations is 2.00%. The error presumably arises because the
solution is not exact.
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