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Abstract. Using the unified transform method we characterize the behavior of the

solutions of linear evolution partial differential equations on the half line in the presence

of discontinuous initial conditions or discontinuous boundary conditions, as well as the

behavior of the solutions in the presence of corner singularities. The characterization

focuses on an expansion in terms of computable special functions.

1. Introduction. Initial-boundary value problems (IBVPs) for linear and integrable

nonlinear partial differential equations (PDEs) have received renewed interest in recent

years thanks to the development of the so-called unified transform method (UTM), also

known as the Fokas method. The method provides a general framework to study these

kinds of problems, and has therefore allowed researchers to tackle a variety of interesting

research questions (e.g., see [6–8, 14, 16, 27, 28] and the references therein).

One of the topics that has been recently studied is that of corner singularities for

IBVPs on the half line [3, 11, 13, 15]. In brief, the issue is that, on the quarter plane

(x, t) ∈ R
+×R+, the limit of the PDE to the corner (x, t) = (0, 0) of the physical domain

imposes an infinite number of compatibility conditions between the initial conditions

(ICs) and the boundary conditions (BCs) [see Section 2 for details]. For example, if

a Dirichlet BC is given at the origin, the first compatibility condition is simply the

requirement that the value of the IC at x = 0 and that of the BC at t = 0 are equal, which

in turn simply expresses the requirement that the solution of the IBVP be continuous in

the limit as (x, t) tends to (0, 0). The higher-order compatibility conditions then arise

from the repeated application of the PDE in the same limit. Since the ICs and the BCs
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690 THOMAS TROGDON AND GINO BIONDINI

Fig. 1. The solution of the Airy 2 equation (17) with discontinous
initial and boundary data and a corner singularity. The solution is
expressed in terms of computable special functions whose asymp-
totics are derived in Appendix B. This solution is discussed in more

detail in Figure 10.

arise from different — and typically independent — domains of physics, however, it is

unlikely that they will satisfy all of these conditions. Therefore, one could take the point

of view that if one is dealing with a genuine IBVP, one of these conditions will always

be violated. An obvious question is then what happens when one of the compatibility

conditions is violated. Or, in other words, what is the effect on the solution of the IBVP

of the violation of one among the infinite compatibility conditions? See Figure 1 for an

example solution where the first compatibility condition is violated and where the data

is discontinuous.

Motivated by this question, in [1] we began by considering a simpler problem. Namely,

we studied initial value problems (IVPs) for linear evolution PDEs of the type

iqt + ω(−i∂x)q = 0, (1)

on the domain (x, t) ∈ R × (0, T ], where ω(k) is a polynomial and the IC q(x, 0) is

discontinuous. We showed that, generally speaking, in the presence of dispersion and/or

dissipation, the initial discontinuity is smoothed out as soon as t �= 0. On the other

hand, the discontinuity of the IC affects the behavior of the solution at small times.

We characterized the short-time asymptotics of the solution of the IVP in terms of

generalizations of the classical special functions, and we demonstrated a surprising result:

The actual solution of linear evolution PDEs with discontinuous ICs displays all the

hallmarks of the classical Gibbs phenomenon. Explicitly: (i) the convergence of the

solution q(x, t) to the IC as t ↓ 0 is nonuniform [as it should be, since q(x, t) is continuous

while the IC is not]; (ii) in the neighborhood of a discontinuity at (c, 0), the solution

displays high-frequency oscillations;1 (iii) the oscillations are characterized by a finite

“overshoot”, which does not vanish in the limit t ↓ 0, and whose value tends precisely to

1These oscillations are characterized by a similarity solution which is obtained from the special
functions.
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the Gibbs-Wilbraham contant in some appropriate limit. This study was closely related

to the work of DiFranco and McLaughlin [9].

In the present work we build on those results and the results in [11,15] to characterize

the solution of IBVPs with discontinuous data (see [23] for an application). Namely,

we consider the singularity propogation and smoothing properties of the linear evolution

PDE in the domain (x, t) ∈ R
+ × (0, T ] with appropriate boundary data. Specifically,

we determine a small-x and/or small-t expansion of the solution in a neighborhood of a

discontinuity in either the boundary data or initial data. We also look at the solution in

a neighborhood of the corner (x, t) = (0, 0) when the initial data and boundary data are

not compatible. Presumably, the methodology of Taylor [30] can be used to state that

the phenomenon we describe for linear problems can be extended to certain nonlinear

boundary-value problems because the linear evolution often approximates the nonlinear

evolution for short-times. Unfortunately, unlike the case of IVPs, no general theory

of well-posedness exists for IBVPs for linear PDEs of the form (1) with discontinuous

data, and our proof of validity of the solution formula in the case of discontinuous data

(Appendix A) requires this a priori. We focus our treatment on a few representative

examples. We emphasize, however, that: (i) these examples describe physically relevant

PDEs, and therefore are interesting in their own right; (ii) since we are using the UTM,

the same methodology can be applied to IBVPs for arbitrary linear, constant-coefficient

evolution PDEs, in a constructive manner, but uniqueness may fail if well-posedness is

not established.

Of course theoretical aspects of IBVPs have been studied by many authors over the

last sixty years, beginning with the work of Ladyženskaya in the 1950s (e.g., see [22]

and the references therein, and also [18]). In particular, in [26], Rauch and Massey

studied IBVPs for first-order hyperbolic systems, and showed that, as long as the initial

and boundary data are sufficiently smooth and satisfy certain “natural” compatibility

conditions, the solution of such IBVPs is of class Cp in the domain. In [29], Smale

used eigenfunction methods to study the heat and wave equations in bounded spatial

domains, and derived necessary and sufficient conditions for the existence of C∞ solu-

tions. In [31], Temam studied the regularity at time zero of the solutions of linear and

semi-linear evolution equations, and identified necessary and sufficient conditions on the

data in order for an arbitrary-order regularity of solutions. Most recently, in a series of

works [4,12,25] Temam, Qin, and collaborators presented a new method to improve the

numerical simulation of time-dependent problems when the initial and boundary data

are not compatible.

In this work, however, we address a different issue, namely that of obtaining a precise

and explicit characterization of the solutions of IBVPs when the compatibility conditions

are violated. Specifically, the results of our work differ from those in the literature in

the following ways: (1) We demonstrate that the UTM can be applied to IBVPs with

piecewise-smooth data and can be used systematically to extend [11] to general data

with error bounds. (2) Extending [15] we use the UTM to give explicit expansions of

the solutions of IBVPs with nonsmooth data near the singularities, in terms of certain

special functions with contour integral representations that are convenient for evaluation.

(3) We describe the decay rate of certain “spectral functions” when the initial data is
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692 THOMAS TROGDON AND GINO BIONDINI

smooth and compatible, to a given order. This has been addressed in specific nonlinear

settings (see, for example, [21]) but not, to our knowledge, in a general linear setting.

We also discuss the differentiability of solutions.

The outline of this work is the following: In Section 2 we review some relevant results

about IVPs and IBVPs that will be used in the rest of this work. Owing to the linearity

of the PDE (1), the solution of an IBVP with general ICs and BCs can be decomposed

into the sum of the solution of an IBVP with the given IC and zero BCs and the solution

of an IBVP with the given BCs and zero ICs. In Section 3 we therefore characterize the

solution of IBVPs with zero BCs. In Section 4 we characterize the solution of IBVPs

with zero ICs. In Section 5 we extend the results of the previous sections to more general

discontinuities. Then, in Section 6, we combine the results of the previous sections and

discuss the behavior of solutions of IBVPs with general corner singularities, i.e., the case

when both ICs and BCs are nonzero but one of the compatibility conditions is violated.

The paper is laid out with the main theoretical developments in the appendices. The

main sections of the paper give a tutorial on how to apply those results in various settings,

giving asymptotic expansions.

2. Preliminaries. We begin by recalling some essential results about IVPs with

discontinuous data from [1] in Section 2.1; we then review the solution of IBVPs on the

half line via the UTM [14] in Section 2.2. In Sections 2.3 and 2.4 we briefly discuss

weak solutions, we present some examples of IBVPs that will be used frequently later,

and we introduce the special functions which govern the behavior of the solutions near a

discontinuity.

2.1. IVPs with discontinuous data. The initial value problem for (1) with (x, t) ∈
R × (0, T ] and discontinuous ICs was considered in [1]. The main idea there was to

consider the Fourier integral solution representation

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂o(k)dk, (2)

q̂o(k) =

∫
R

e−ikxqo(x)dx, q(x, 0) = qo(x). (3)

Assume the jth derivative, q
(j)
o , has a jump discontinuity at x = c and qo has some degree

of exponential decay. Then q̂o(k) can be integrated by parts to obtain

q̂o(k) = e−ikc [q
(j)
o (c)]

(ik)j+1
+

F (k)

(ik)j+1
,

[q(j)o (c)] = q(j)o (c+)− q(j)o (c−), F (k) =

(∫ c

−∞
+

∫ ∞

c

)
q(j+1)
o (x)dx.

Correspondingly,

q(x, t) = [q(j)o (c)]Iω,j(x− c, t) +
1

2π

∫
C

eikx−iω(k)t F (k)

(ik)j+1
dk, (4)

Iω,j(x, t) =
1

2π

∫
C

eikx−iω(k)t dk

(ik)j+1
, (5)

where C is shown in Figure 2.
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k = 0

C

Fig. 2. The integration contour C.

The behavior of the solution formula (4) can then be analyzed both near (x, t) = (c, 0)

and near (x, t) = (s, 0), s �= c. The function Iω,j can be examined with both the method

of steepest descent and a suitable numerical method. The second term in the right-hand

side of (4) can be estimated with the Hölder inequality showing that a Taylor expansion

of eikx−iω(k)t near k = 0 and term-by-term integration of the first j + 1 terms produces

the correct expansion (see Appendix C).

In this work we are concerned with the generalization of the above results to IBVPs.

The unified transform method of Fokas [14] naturally lends itself to the above type of

analysis for IBVPs, because it produces an integral representation of the solution in

Ehrenpreis form, similar to (2).

2.2. The unified transform method for IBVPs. In this section we review the unified

transform method (UTM) as described in [14] (see also [8]). The power of the method,

like the Fourier transform method for pure IVPs, is that it gives an algorithmic way

to produce an explicit integral representation of the solution, in Ehrenpreis form, of a

linear, constant-coefficient IBVP on the half line R
+.

Broadly speaking, we consider the following IBVP:

iqt + ω(−i∂x)q = 0, x > 0, t ∈ (0, T ],

q(·, 0) = qo,

∂j
xq(0, ·) = gj , j = 0, . . . , N(n)− 1,

N(n) =

⎧⎪⎪⎨
⎪⎪⎩
n/2, n even,

(n+ 1)/2, n odd and ωn > 0,

(n− 1)/2, n odd and ωn < 0,

ω(k) = ωnk
n +O(kn−1).

(6)

Here ω(k) is a polynomial of degree n, called the dispersion relation of the PDE. Note

that we consider the so-called canonical IBVP, in which the first N(n) derivatives are

specified on the boundary. To ensure that solutions do not grow too rapidly in time,

we impose that the imaginary part of ω(k) is bounded above for k real. Our results do

indeed hold for ω(k) = −ik2, i.e., the heat equation. In this case the contour integral

structure is different, and generalizing the results is cumbersome. So, in all the examples

that will be discussed, ω(k) will be real valued for k real.

We define the following regions in the complex k plane:

D = {k : Im(ω(k)) ≥ 0}, D+ = D ∩ C
+.

Throughout, we will use L2(I) to denote the space of square-integrable function on the

domain I and Hk(I) to denote the space of functions f such that f (j) exists a.e. and is

in L2(I) for j = 0, 1, . . . , k. For fractional Sobolev spaces, see [34, 35].
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694 THOMAS TROGDON AND GINO BIONDINI

Following [14, 17], and more recently [34, 35], one can show that if

• qo ∈ H ñ(R), ñ = �n/2�,
• gj ∈ H1/2+(2ñ−2j−1)/(2n)(0, T ) for 0 ≤ j ≤ N(n)− 1, and

• ∂j
xqo(0) = gj(0) for 0 ≤ j ≤ N(n)− 1,

then the solution of this initial-boundary value problem is given by

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂0(k)dk (7)

− 1

2π

∫
∂D+

⎛
⎝eikx−iω(k)t

n−1∑
j=0

cj(k)g̃j(−ω(k), T )

⎞
⎠ dk, (8)

where

q̂o(k) =

∫ ∞

0

e−ikxqo(x)dx, g̃j(k, t) =

∫ t

0

e−iks∂j
xq(0, s)ds. (9)

Note that 1/2 + (2ñ − 2j − 1)/(2n) > 1/2 for all n and therefore gj(t) must be Hölder

continuous. Hereafter, the caret “ ˆ ” will refer to the half line Fourier transform unless

specified otherwise. In (7), the coefficients cj(k) are defined by the relation

i

(
ω(k)− ω(l)

k − l

)∣∣∣∣
l=−i∂x

= cj(k)∂
j
x. (10)

Note that for j > N(n) − 1, g̃j(k) is not specified in the statement of the problem.

Therefore, if the IBVP is well-posed, we expect it to be determined from the specified

initial and boundary data and the PDE itself. This is indeed the case. In fact, one of the

key results of the UTM is to show that g̃j(k) can be determined purely by linear algebra.

Critical components of the theory are the so-called symmetries of the dispersion relation,

i.e., the solutions ν(k) of ω(ν(k)) = ω(k). For example, if ω(k) = k2, then v(k) = ±k

and if ω(k) = ±k3, then ν(k) = k, αk, α2k for α = e2πi/3. We do not present the solution

formula in any more generality. Specifics are studied in examples.

For our purposes, it will be convenient to perform additional deformations to the

integration contour for the integral along ∂D+. Let D̃+
i , i = 1, . . . , N(n) be the connected

components of D+. We deform the region D̃+
i to a new region D+

i ⊂ D̃+
i such that for

a given R > 0, D+
i ∩ {|k| < R} = ∅. In all cases, R is chosen so that all zeros of ω′(k)

and ν(k) lie in the set {|k| < R}. Furthermore, D̃+
i can always be chosen to be a finite

deformation of D+
i : D+

i ∩ {|k| > R′} = D̃+
i ∩ {|k| > R′} for some R′ > 0. We display

D+
i in specific examples below as it is not uniquely defined.

Importantly, one can show [14] that, for x > 0, T in (7) can be replaced with 0 < t < T

(consistently with the expectation that the solution of a true IBVP should not depend

on the value of the boundary data at future times). The replacement is not without

consequences for the analysis, however.

While limx→0+ q(x, t) is, of course, the same in both cases, the two formulas evaluate

to give different values when computing q(0, t). This is a consequence of the presence of

an integral in the derivation that vanishes for x > 0 but does not vanish for x = 0. We

discuss this point more in detail within the context of equation (12) below. In this work,

we only study limx→0+ q(x, t), so this discrepancy is not an issue for our computations.
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A similar issue is present in the evaluation of (7) at the point (x, t) = (0, 0), which

is of course of particular interest in this work. In the case where g0(0) = qo(0), it is

apparent that neither (7) nor the expression obtained from (7) by replacing T with t = 0

evaluates to give the correct value at the corner. This issue is discussed in more detail

in the context of example (12) below. Nevertheless, it follows from the work of Fokas

and Sung [17] that lim(x,t)→(0,0) q(x, t) = g0(0) = qo(0). This fact also follows from our

calculations.

The above discussion should highlight the fact that evaluation of the solution formula

near the boundary x = 0 and in particular near the corner (x, t) = (0, 0) of the physical

domain is indeed a nontrivial matter.

2.3. Weak solutions. While the Sobolev assumptions above on the initial-boundary

data provide sufficient conditions for the representation of the solution, these assumptions

must be relaxed for the purposes of the present work, since our aim is to characterize

the solution of IBVPs when either the ICs or the BCs are not differentiable.

Definition 1. A function q(x, t) is a weak solution of (1) in an open region Ω if

Lω[q, φ] =

∫
Ω

q(x, t)(−i∂tφ(x, t)− ω(i∂x)φ(x, t))dxdt = 0 (11)

for all φ ∈ C∞
c (Ω).

We borrow the relaxed notion of solution of the IBVP from [19]:

Definition 2. A function q(x, t) is said to be an L2 solution of the boundary value

problem (6) if

• q is a weak solution for Ω = R+ × [0, T ],

• q ∈ C0([0, T ];L2(R+)) and q(·, 0) = qo a.e.,

• ∂j
xq ∈ C0(R+;H1/2−j/n−1/(2n)(0, T )) and ∂j

xq(0, ·) = gj a.e. for j = 0, . . . N(n)−
1.

The conditions in this definition are obtained by setting ñ = 0.

From the work of Holmer (see [19] and [20]) it can be inferred that when ω(k) =

±k3,±k2 the L2 solutions exist and are unique. We are not aware of a reference that

establishes a similar result for more general dispersion relations, but we will nonetheless

assume such a result to be valid.

Two important aspects of Definition 2 are that (i) no compatibility conditions are

required at (x, t) = (0, 0), and (ii) H1/2−j/n−1/(2n)(0, T ) is a space that contains discon-

tinuous functions for all j ≥ 0. Another gap in the literature is that a set of necessary

or sufficient conditions in order for (7) to be the solution formula are, to our knowledge,

not known. We will justify (7) for a specific class of data that has discontinuities in

Appendix A. Specifically, we have the following.

Assumption 1. The following conditions will be used in the analysis that follows:

• qo ∈ L2(R+) ∩ L1(R+, (1 + |x|)�) for some � ≥ 0,

• there exists a finite sequence 0 = x0 < x1 < · · · < xM < xM+1 = ∞ such that

qo ∈ HN(n)((xi, xi+1)) and qo(x
+
i ) �= qo(x

−
i ) for all i = 1, . . . ,M ,

• there exists a finite sequence 0 = t0 < t1 < · · · < tK < tK+1 = T such that

gj ∈ HN(n)−j((ti, ti+1)) for i = 1, . . . ,K.

Note that gj may or may not be discontinuous at each ti.
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696 THOMAS TROGDON AND GINO BIONDINI

Our results on sufficient conditions for (7) to produce the solution formula are not

complete. We consider the full development of this topic important but beyond the

scope of this paper.

2.4. Compatibility conditions. In this section we discuss the conditions required to

ensure that no singularity is present at the corner (x, t) = (0, 0). The firstN(n) conditions

are simply given by

q(j)o (0) = gj(0), j = 0, . . . , N(n)− 1.

Higher-order conditions are found by enforcing that the differential equation holds at the

corner:

ig
(�)
j (0) + ω(−i∂x)

�q(j)o (0) = 0, � = 1, 2, . . . .

We refer to the index j + n� as the order of the compatibility condition. Note that

because N(n)− 1 < n, there is not a compatibility condition at every order. Still, if m is

an integer we say that the compatibility conditions hold up to order m if they hold for

every choice of j and � such that j + n� ≤ m.

2.5. Examples. In the rest of this work we will illustrate our results by discussing

several examples of physically relevant IBVPs. Therefore, we recall, for convenience, the

solution formulae for these IBVPs, as obtained with the unified transform method. We

refer the reader to [14, 16] for all details.

2.5.1. Linear Schrödinger. Consider the IBVP

iqt + qxx = 0, x > 0, t ∈ (0, T ), (12a)

q(·, 0) = qo, q(0, ·) = g0. (12b)

The dispersion relation is ω(k) = k2, and the solution formula for the IBVP is given by

(replacing T with t) in (7))

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂o(k)dk

+
1

2π

∫
∂D+

eikx−iω(k)t[2kg̃0(−ω(k), t)− q̂o(−k)]dk.

See Figure 3 for D+ and D+
1 .

For this specific example, we discuss the evaluation of q(x, t) at x = 0 and at (x, t) =

(0, 0) in detail, in order to illustrate some of the issues that arise when taking the limit

of the solution representation (7). We assume continuity of qo and g0 and rapid decay

of qo at infinity. First, by contour deformations, for t > 0, the solution formula can be

written as

q(0, t) =
1

2π

∫
R

e−iω(k)t[q̂o(k)− q̂o(−k)]dk − 1

2π

∫
∂D+

e−iω(k)t2kg̃0(−ω(k), t)dk. (13)
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EVOLUTION PARTIAL DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS DATA 697

Fig. 3. The region D (shaded) in the complex k-plane for the lin-
ear Schrödinger equation (12), corresponding to ω(k) = k2. The

modified contour ∂D+
1 is also shown.

Fig. 4. Same as Fig. 3, but for the Airy 1 equation (15), correspond-
ing to ω(k) = −k3.

Then by the change of variables k �→ −k, the first integral can be shown to vanish

identically. For this last integral we let s = −ω(k) and find

q(0, t) =
1

2π

∫ ∞

−∞
eistg̃0(s, t)ds =

1

2π

∫ ∞

−∞
eist

(∫ t

0

e−iτsg0(τ )dτ

)
ds

=
1

2π

∫ ∞

−∞
eist

(∫ ∞

−∞
e−iτsg0(τ )χ[0,t](τ )dτ

)
ds =

1

2
g0(t).

Here we use g0(τ )χ[0,t](τ ) = 0 for τ �∈ [0, t] and 1
2g0(t) is the average value of the left and

right limits of this function at τ = t. If T is used in (7) and t < T , we have

q(0, t) =
1

2π

∫ ∞

−∞
eist

(∫ ∞

−∞
e−iτsg0(τ )χ[0,T ]dτ

)
ds = g0(t), (14)
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698 THOMAS TROGDON AND GINO BIONDINI

Fig. 5. Same as Fig. 3, but for the Airy 2 equation (17), correspond-
ing to ω(k) = k3.

because g0(τ )χ[0,T ](τ ) is continuous at τ = t. Now, by similar arguments, if t = 0 we get

zero for (14) and the first integral in (13). Nevertheless, the limit to the boundary of the

domain from the interior produces the correct values, i.e., the given boundary data.

2.5.2. Airy 1. Consider the IBVP

qt + qxxx = 0, x > 0, t ∈ (0, T ), (15a)

q(·, 0) = qo, q(0, ·) = g0. (15b)

The dispersion relation is ω(k) = −k3, and the solution of the IBVP is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−iω(k)tq̂0(k)dk − 1

2π

∫
∂D+

3k2eikx−iω(k)tg̃0(−ω(k), t)dk

+
1

2π

∫
∂D+

eikx−iω(k)t
[
αq̂0(αk) + α2q̂0(α

2k)
]
dk. (16)

See Figure 4 for D+ and D+
1 .

2.5.3. Airy 2. Consider the IBVP

qt − qxxx = 0, x > 0, t ∈ (0, T ), (17a)

q(·, 0) = qo, q(0, ·) = g0, qx(0, ·) = g1. (17b)

Note that two BCs need to be assigned at x = 0, unlike the previous example. The

dispersion relation is ω(k) = k3, and the integral representation for the solution of the

IBVP is

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂0(k)dk

− 1

2π

∫
∂D+

1

eikx−iω(k)tg̃(k, t)dk − 1

2π

∫
∂D+

2

eikx−iω(k)tg̃(k, t)dk,
(18)
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where

g̃(k, t) = q̂0(αk) + (α2 − 1)k2g̃0(−ω(k), t)− i(α− 1)kg̃1(−ω(k), t),

k ∈ ∂D+
2 ,

(19a)

g̃(k, t) = q̂0(α
2k) + (α− 1)k2g̃0(−ω(k), t)− i(α2 − 1)kg̃1(−ω(k), t),

k ∈ ∂D+
1 .

(19b)

See Figure 5 for D+, D+
1 , and D+

2 .

2.6. Special functions. In the following we will make extensive use of the functions

Iω,m,j(x, t) =
1

2π

∫
∂D+

j

eikx−iω(k)t dk

(ik)m+1
. (20)

Also, when taking the sum over all contours we use the modified notation

Iω,m(x, t) =
1

2π

∫
C

eikx−iω(k)t dk

(ik)m+1
=

N(n)∑
j=1

Iω,m,j(x, t). (21)

The properties of these functions are discussed in Appendix B. When ω is a monomial,

one can follow [10] to write these functions in terms of hypergeometric functions. We

will always use the contour integral representation because this is what both generalizes

to nonmonomial dispersion relations and gives a numerical method by quadrature along

the path of steepest descent.

3. IBVP with zero boundary data. By Lemma 3, we know that the solution

formula (7) holds for piecewise smooth data without any compatibility conditions im-

posed at x = 0, t = 0. We begin with assuming zero boundary data and then we relax

our assumptions systematically. We perform this analysis on a case-by-case basis and

then generalize our results. There are four relevant cases for the analysis of this solution

formula:

IC1 the behavior of q near x = 0 for t > 0,

IC2 the behavior of q near (x, t) = (0, 0),

IC3 the behavior of q near (x, t) = (c, 0) when c is a discontinuity of qo, and

IC4 the behavior of q near (x, t) = (s, 0) when qo is continuous at s.

To perform the initial analysis we need to restrict to the case of compactly supported

initial data with at most one discontinuity. We explain in Section 3.1.2 how to treat the

case of noncompactly supported data with multiple discontinuities.

3.1. Linear Schrödinger. With zero Dirichlet BCs, the solution of (12) is given by

(recall ω(k) = k2)

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂o(k)dk − 1

2π

∫
∂D+

eikx−iω(k)tq̂o(−k)dk.

In this simple case, the solution can be found by a straightforward application of the

method of images. Also, the integral on ∂D+ can be deformed back to the real axis.

However, below we will encounter situations where this deformation is not possible, so

we will treat this case by keeping the second integral on ∂D+.
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700 THOMAS TROGDON AND GINO BIONDINI

3.1.1. Short-time behavior. We consider Assumption 1 with g0 ≡ 0 (i.e., zero BC).

We begin by studying the case M = 0, i.e., the IC has no discontinuities in R+. If

q(0) �= 0, the compatibility condition at (x, t) = (0, 0) is not satisfied. As discussed in

the introduction, we integrate the first integral in (9) by parts, to obtain

q̂o(k) =
qo(0)

ik
+

F0(k)

ik
, F0(k) =

∫ ∞

0

e−ikxq′o(x)dx. (22)

After a contour deformation, using that the Fourier transform of a compactly supported

function is entire, we are then left with

q(x, t) = 2qo(0)Iω,0,1(x, t) +
1

2π

∫
C

eikx−iω(k)tF0(k)

ik
dk (23)

+
1

2π

∫
∂D+

1

eikx−iω(k)tF0(−k)

ik
dk. (24)

We now appeal to Lemmas 4 and 5 to derive an expansion about (s, 0), settling (IC2):

q(x, t) = 2qo(0)Iω,0,1(x, t) +
1

2π

∫
C

eiks
F0(k)

ik
dk (25)

+
1

2π

∫
∂D+

1

eiks
F0(−k)

ik
dk +O(|x− s|1/2 + t1/4). (26)

Remark 1. The expansion (26) can be interpreted by noting that, in a neighborhood

of (s, 0), the difference

q(x, t)− 2qo(0)Iω,0,1(x, t)

has an expansion in terms of functions depending only on s, up to the error terms, and

hence the leading-order x-dependence of q(x, t) is captured by 2qo(0)Iω,0,1(x, t).

It follows from (22) that F0(k) is analytic and decays in the lower-half plane, so that

F0(−k) has the same properties in the upper-half plane. This implies that for all s > 0,

the third term in the right-hand side of (26) vanishes identically:

1

2π

∫
∂D+

1

eiks
F0(−k)

ik
dk = 0, s > 0.

Furthermore, if s �= 0, handling (IC4), one can use Theorem 2, substituting in the

expansion of Iω,0,1 and noting that its error term is O(t1/2), to obtain:

q(x, t) =
1

2π

∫
C

eiks
F0(k)

ik
dk +O(|x− s|1/2 + t1/4), s > 0 .

As expected, this is the same behavior as for the IVP (see [1, Section 5]): We recover

the initial condition.

Next, we consider the case qo(0) = 0 and M = 1, implying that the first compatibility

condition at (x, t) = (0, 0) is satisfied, but the IC is discontinuous at x = x1. Again,

integration by parts produces

q(x, t) = [qo(x1)]Iω,0,1(x− x1, t) + [qo(x1)]Iω,0,1(x+ x1, t)

+
1

2π

∫
C

eikx−iω(k)tF0(k)

ik
dk +

1

2π

∫
∂D+

1

eikx−iω(k)tF0(−k)

ik
dk,
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and Lemmas 4 and 5 produce an expansion for (IC3)

q(x, t) = [qo(x1)]Iω,0,1(x− x1, t) +
1

2π

∫
C

eiks
F0(k)

ik
dk

+
1

2π

∫
∂D+

1

eiks
F0(−k)

ik
dk +O(|x− s|1/2 + t1/4)

for all s ≥ 0. Here Theorem 2 was used to discard Iω,0,1(x + x1, t) (its error term is

smaller, O(t1/4)). Continuing, for s �= x1, s �= 0 we also have

q(x, t) = −[qo(x1)]χ(−∞,0)(x− x1) +
1

2π

∫
C

eiks
F0(k)

ik
dk

+O(|x− s|1/2 + t1/4),

from which additional considerations (cf. [1]) deal with (IC4)

q(x, t) = qo(s) +O(|x− s|1/2 + t1/4),

as is expected.

3.1.2. General initial data. The general case can be explained in the following way.

First, we point out that we cannot just employ integration by parts on each interval of

differentiability of qo and deform to C. For example, in the IVP the difficulty in using

this approach is that one needs to implicitly assume analyticity of q̂o(k) near k = 0 (in

order to deform the integration contour to C) and the requirements needed to ensure

this analyticity are too restrictive. In the IBVP, on the other hand, we automatically

have analyticity for q̂o(k) in the lower-half plane, so this requirement is not an issue.

But in order to keep our treatment consistent with that for the IVP (as in [1]) we use

cut-off functions. Let φε(x) be supported on [−ε, ε], equal to unity for x ∈ [−ε/2, ε/2]

and interpolate monotonically and infinitely smoothly between 0 and 1 on [−ε,−ε/2)

and (ε/2, ε]. Examples of such functions are well known [2] (see also [1]). We decompose

the initial condition as follows:

qo(x) =
M∑

m=0

qo(x)φε(x− xm)︸ ︷︷ ︸
qo,m(x)

+ qo(x)

(
1−

M∑
m=1

φε(x− xm)

)
︸ ︷︷ ︸

qo,reg(x)

,

with ε < minm=1,...,M−1 |xm − xm+1|/2.
Each of the Fourier transforms q̂o,m is analytic near k = 0, so a deformation of the

integration contour to C for each of them is now justified. The results of this section

produce asymptotics of the solutions qj(x, t) obtained with each of these initial conditions.

It remains to understand the behavior of qreg(x, t). If one extends qo,reg to be zero for

x < 0, one has qo,reg ∈ H1(R), and

qreg(x, t)− qo,reg(s) = O(|x− s|1/2 + t1/4).
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This follows from the work of Fokas and Sung [17, Theorem 1.2] or from Lemma 4 below.

Combining everything we then have

q(x, t) = qo,reg(s) +
1

2π

∫
C

eiks
F0(k)

ik
dk +

1

2π

∫
∂D+

1

eiks
F0(−k)

ik
dk

+

M∑
m=1

[qo(xm)]Iω,0,1(x− xm, t) + 2qo(0)Iω,0,1(x, t) +O(|x− s|1/2 + t1/4),

F0(k) =

∫ ∞

0

eiks
d

ds
[qo(s)− qo,reg(s)]ds,

where the differentiation in this last line occurs on each interval of differentiability. Note

that the integral on ∂D+
1 vanishes when s > 0.

3.1.3. Boundary behavior. To deal with (IC1) it is straightforward to check that

q(0, t) = 0 for t > 0; see Section 3.1.3. If � is sufficiently large in the sense of Theorem 1

the solution is smooth and then Taylor’s theorem implies q(x, t) = O(x) for t ≥ δ > 0.

If only L2 assumptions are made, then Lemmas 4 and 5 with the above expansion pro-

duce |q(x, t)| ≤ C|x|1/2 where C depends on ‖q′o‖L2(R+) and [qo(xi)]Iω,0,1(x−xi, t). This

derivative is taken to be defined piecewise on its intervals of differentiability.

3.2. Airy 1. With zero boundary data, we consider the solution of (15) (Assumption 1

with g0 ≡ 0)

q(x, t) =
1

2π

∫
R

eikx−iω(k)tq̂0(k)dk

+
1

2π

∫
∂D+

eikx−iω(k)t
(
αq̂0(αk) + α2q̂0(α

2k)
)
dk.

3.2.1. Short-time behavior. We proceed as before. First, assume the initial data is

continuous and compactly supported (again, along with Assumption 1). After integration

by parts, we must consider the integral (ω(k) = −k3)

q(x, t) = 3qo(0)Iω,0,1(x, t) +
1

2π

∫
C

eikx−iω(k)tF0(k)
dk

ik

+
1

2π

∫
∂D+

1

eikx−iω(k)t(F0(αk) + F0(α
2k))

dk

ik
.

The analysis of this expression is not much different from (23). This allows one to settle

(IC2), (IC3), and (IC4) for continuous data. Next, we assume qo(0) = 0, M = 1. We

obtain

q(x, t) = [qo(x1)]
(
Iω,0,1(x− x1, t) + Iω,0,1(x− αx1, t) + Iω,0,1(x− α2x1, t)

)
+

1

2π

∫
C

eiksF0(k)
dk

ik
+

1

2π

∫
∂D+

1

eiks(F0(αk) + F0(α
2k))

dk

ik

+O(|x− s|1/2 + t1/6)
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by appealing to Lemmas 4 and 5. More care is required to understand Iω,0,1(x − αx1).

Specifically, we look at eik(x−αx1) for k ∈ ∂D+
1 . For sufficiently large k ∈ ∂D+

1 , k =

±|k| cos θ + i|k| sin θ for θ = 2π/3. It follows that

Re ik(x− αx1) = −|k|x1 sin θ + |k|x1 sin(θ + φ) ≤ 0 for x ≥ 0,
θ

2
≤ φ ≤ θ. (27)

Jordan’s Lemma can be applied to show that Iω,0,1(x− αx1, 0) = 0 for x ≥ 0. We write

Iω,0,1(x− αx1, t) =
1

2π

∫
∂D+

1

(e−iω(k)t − 1)eik(x−αx1)
dk

ik
= O(t1/6),

by appealing to Lemma 4. Similar calculations hold for Iω,0,1(x− α2x1, t). Therefore,

q(x, t) = [qo(x1)]Iω,0,1(x− x1, t) +
1

2π

∫
C

eiksF0(k)
dk

ik

+
1

2π

∫
∂D+

1

eiks(F0(αk) + F0(α
2k))

dk

ik
+O(|x− s|1/2 + t1/6).

If s �= x1, Iω,0,1(x− x1, t) can be replaced with −χ(−∞,0)(x− x1). Finally, if s > 0, then

the integral on ∂D+
1 vanishes identically. Combining all cases, we have

q(x, t) =
1

2π

∫
C

eiksF0(k)
dk

ik
+

1

2π

∫
∂D+

1

eiks(F0(αk) + F0(α
2k))

dk

ik

+
∑
i

[qo(xi)]Iω,0,1(x− xi, t)

+ 3qo(0)Iω,0,1(x, t) +O(|x− s|1/2 + t1/6).

(28)

Here the integral on ∂D+
1 should be dropped when s > 0. This settles (IC2), (IC3), and

(IC4) for M = 1.

Remark 2. Again, the expansion (28) is interpreted by noting that

q(x, t)−
∑
i

[qo(xi)]Iω,0,1(x− xi, t)− 3qo(0)Iω,0,1(x, t)

has an expansion in a neighborhood of (s, 0) in terms of smoother functions depending

only on s, where s is fixed, up to the error terms. For, noncompactly supported ICs, we

refer the reader to Section 3.1.2 and note that similar considerations imply

qreg(x, t)− qo,reg(s) = O(|x− s|1/2 + t1/6).

3.2.2. Boundary behavior. Finally, for x = 0, t ≥ δ > 0, we know the solution is

smooth from Theorem 1 and q(0, t) = 0 so that we find q(x, t) = O(x) from Taylor’s

theorem. Again, q(x, t) = O(x1/2) follows if and only if L2 assumptions are made on the

initial data and its derivative.

3.3. Airy 2. Recall that the solution to (17) is given by (18) with (ω(k) = k3)

g̃(k, t) = q̂0(αk), k ∈ D+
2 , (29)

g̃(k, t) = q̂0(α
2k), k ∈ D+

1 . (30)

when the boundary data is set to zero.
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3.3.1. Short-time behavior. Following the same procedure, we assume the initial data

is continuous and find

q(x, t) = qo(0)
(
Iω,0(x, t)− α−1Iω,0,2(x, t)− α−2Iω,0,1(x, t)

)
+

1

2π

∫
C

eikx−iω(k)tF0(k)

ik
dk

− α−1

2π

∫
∂D+

2

eikx−iω(k)tF0(αk)

ik
dk − α−2

2π

∫
∂D+

1

eikx−iω(k)tF0(α
2k)

ik
dk.

Then the expansion

q(x, t) = qo(0)
(
Iω,0(x, t)− α−1Iω,0,2(x, t)− α−2Iω,0,1(x, t)

)
+

1

2π

∫
C

eiks
F0(k)

ik
dk − α−1

2π

∫
∂D+

2

eiks
F0(αk)

ik
dk

− α−2

2π

∫
∂D+

1

eiks
F0(α

2k)

ik
dk

+O(|x− s|1/2 + t1/6)

follows. If s > 0 the first three terms may be removed. Furthermore, the terms involving

F0(αk) and F0(α
2k) vanish identically if s > 0. This allows one to settle (IC2), (IC3),

and (IC4) for continuous data. Now, assume qo(0) = 0 and M = 1. We find

q(x, t)

= [qo(x1)]
(
Iω,0(x− x1, t)− α−1Iω,0,2(x− αx1, t)− α−2Iω,0,1(x− α2x1, t)

)
+

1

2π

∫
C

eikx−iω(k)tF0(k)

ik
dk − α−1

2π

∫
∂D+

2

eikx−iω(k)tF0(αk)

ik
dk

− α−2

2π

∫
∂D+

1

eikx−iω(k)tF0(α
2k)

ik
dk

= [qo(x1)]Iω,0(x− x1, t) +
1

2π

∫
C

eiks
F0(k)

ik
dk

− α−1

2π

∫
∂D+

2

eiks
F0(αk)

ik
dk − α−2

2π

∫
∂D+

1

eiks
F0(α

2k)

ik
dk +O(|x− s|1/2 + t1/6),

because it can be shown that Iω,0,2(x−αx1, t) = Iω,0,1(x−α2x1, t) = O(t1/6) for x > 0 in

the same way as in the previous section using (27). Again, Iω,0 and the terms involving

F0(αk) and F0(α
2k) are dropped when s > 0. A general expansion follows

q(x, t) =
1

2π

∫
C

eiksF0(k)
dk

ik
− α−1

2π

∫
∂D+

2

eiksF0(αk)
dk

ik
− α−2

2π

∫
∂D+

1

eiksF0(α
2k)

dk

ik

+
∑
i

[qo(xi)]Iω,0(x− xi, t) + qo(0)
(
Iω,0(x, t) + α−1Iω,0,2(x, t) + α−2Iω,0,1(x, t)

)
+O(|x− s|1/2 + t1/6).

Here the integrals on ∂D+
1 and ∂D+

2 should be dropped when s > 0. This allows one to

settle (IC2), (IC3), and (IC4) for M = 1.
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We require another iteration of integration by parts for s = 0. This will be required

because more terms are needed in the expansions in Section 4.2 below. In the case that

the first derivative of qo has no discontinuities we have

q̂o(k) =
qo(0)

ik
+

q′o(0)

(ik)2
+

F1(k)

(ik)2
, F1(k) =

∫ ∞

0

e−iksq′′o (s)ds.

Then

q(x, t) = qo(0)
(
Iω,0(x, t)− α−1Iω,0,2(x, t)− α−2Iω,0,1(x, t)

)
+ q′o(0)

(
Iω,1(x, t)− α−2Iω,1,2(x, t)− α−4Iω,1,1(x, t)

)
+

1

2π

∫
C

eikx−iω(k)tF1(k)

(ik)2
dk − α−2

2π

∫
∂D+

2

eikx−iω(k)tF1(αk)

(ik)2
dk

− α−4

2π

∫
∂D+

1

eikx−iω(k)tF1(α
2k)

(ik)2
dk,

and

q(x, t) = qo(0)
(
Iω,0(x, t)− α−1Iω,0,2(x, t)− α−2Iω,0,1(x, t)

)
+ q′o(0)

(
Iω,1(x, t)− α−2Iω,1,2(x, t)− α−4Iω,1,1(x, t)

)
+

1

2π

∫
C

(1 + ikx)
F1(k)

(ik)2
dk − α−2

2π

∫
∂D+

2

(1 + ikx)
F1(αk)

(ik)2
dk

− α−4

2π

∫
∂D+

1

(1 + ikx)
F1(α

2k)

(ik)2
dk +O

(
x3/2 + t1/2

)
.

For the case of multiple discontinuities in qo and q′o and noncompactly supported ICs,

we refer the reader to Section 3.1.2 with

qreg(x, t)− qo,reg(s) = O(|x− s|1/2 + t1/6).

4. IBVP with zero initial data. In this section we treat the case where the initial

data for the IBVP vanishes identically. Linearity allows us to combine the results from

this section with that of the previous section to produce a full characterization of the

solution near the boundary under Assumption 1. Furthermore, following ideas from

Appendix A it suffices to treat the case where the boundary data is in H1([0, T ]): Any

other discontinuities can be added through linearity. For zero initial data there are three

relevant cases for the analysis of this solution formula:

BC1 the behavior of q near x = 0 for t > 0,

BC2 the behavior of q near (x, t) = (0, 0),

BC3 the behavior of q near (x, t) = (s, 0) for 0 < s < ∞.

4.1. Linear Schrödinger. With zero initial data the solution of (12) is simply given

by (ω(k) = k2)

q(x, t) =
1

2π

∫
∂D+

1

eikx−iω(k)t2kg̃0(−ω(k), t)dk. (31)
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We integrate g̃0(k, t) by parts. This gives

g̃0(−ω(k), t) =
g0(t)e

iω(k)t − g0(0)

iω(k)
− G0,0(k)

iω(k)
,

G0,0(k) =

∫ t

0

eiω(k)sg′0(s)ds.

Then

q(x, t) = −2g0(0)Iω,0,1(x, t)−
1

π

∫
∂D+

1

eikx−iω(k)tG0,0(k)
dk

ik
,

because the term involving g0(t) vanishes by Jordan’s Lemma. Furthermore, all of these

functions are continuous up to x = 0.

Remark 3. When considering (23) we see that the contribution from Iω,0,1 will cancel

if these two solutions are added and the first compatibility condition holds: qo(0) = g0(0).

We then appeal to Lemmas 4 and 5 to derive the expansion near (s, τ ),

q(x, t) = −2g0(0)Iω,0,1(x, t)−
1

π

∫
∂D+

1

eiks−iω(k)τG0,0(k)
dk

ik

+O(|x− s|1/2 + |t− τ |1/4).
(32)

This is the correct form for the solution when s = 0, τ = 0 in (BC2). This formula is now

further examined in the remaining cases discussed above. For s > 0 and τ = 0 (BC3),

q(x, t) = O(|t|1/4). For s = 0, τ > 0 (BC1) we claim

q(x, t)

= −2g0(0)Iω,0,1(x, t)−
1

π

∫
∂D+

1

e−iω(k)τG0,0(k)
dk

ik
+O(|x|1/2 + |t− τ |1/4)

= g0(τ ) +O(|x|1/2 + |t− τ |1/4).

Indeed,

−2g0(0)Iω,0,1(x, t)−
1

π

∫
∂D+

1

e−iω(k)τG0,0(k)
dk

ik

= (2g0(0)Iω,0,1(0, τ )− 2g0(0)Iω,0,1(x, t))− 2g0(0)Iω,0,1(0, τ )

− 1

π

∫
∂D+

1

e−iω(k)τG0,0(k)
dk

ik

= 2g0(0)(Iω,0,1(0, τ )− Iω,0,1(x, t)) + g0(τ ).

This follows from the following lemma.

Lemma 1. For 0 < τ < T and g0 ∈ H1([0, T ]),

g0(τ ) = −2g0(0)Iω,0,1(0, τ )−
1

π

∫
∂D+

1

e−iω(k)τG0,0(k)
dk

ik
.

Proof. First, it follows that Iω,0,1(0, τ ) = −1/2 for τ > 0. Then it suffices to show∫ τ

0

g′0(s)ds = − 1

π

∫
∂D+

1

e−iω(k)sG0,0(k)
dk

ik
.
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Using l = k2 = ω(k), for a.e. s ∈ [0, τ ]

g′(s) =
1

2π

∫
R

e−isl

∫ τ

0

eis
′lg′(s′)ds′dl

=
1

2π

∫
∂D+

1

2ke−iω(k)s

∫ τ

0

eiω(k)s′g′(s′)ds′dk

=
1

2π

∫
∂D+

1

e−iω(k)s2kG0,0(k)dk.

We need to justify integrating this expression with respect to s and interchanging the

order of integration. Let ΓR = B(0, R) ∩ ∂D+
1 and we have∫ τ

0

g′(s)ds =

∫ τ

0

lim
R→∞

1

2π

∫
ΓR

e−iω(k)s2kG0,0(k)dkds

= lim
R→∞

∫ τ

0

1

2π

∫
ΓR

e−iω(k)s2kG0,0(k)dkds

by the dominated convergence theorem. Now, because we have finite domains for the

integration of bounded functions we can interchange:∫ τ

0

g′(s)ds = lim
R→∞

∫
ΓR

∫ τ

0

1

2π
e−iω(k)s2kG0,0(k)dkds

= lim
R→∞

1

2π

∫
ΓR

[e−iω(k)τ − 1]
2k

−iω(k)
G0,0(k)dk

= − lim
R→∞

1

π

∫
ΓR

e−iω(k)τ 1

ik
G0,0(k)dk

+ lim
R→∞

1

π

∫
ΓR

1

ik
G0,0(k)dk

= − 1

π

∫
∂D+

1

e−iω(k)τ 1

ik
G0,0(k)dk,

because the integral in the second-to-last line vanishes from Jordan’s Lemma. �
Then (32) follows because Iω,0,1(x, t) is a smooth function of (x, t) for t > 0. So, (32) is

the expansion about (s, τ ) for any choice of (s, τ ) in R+ × (0, T ), including (s, τ ) = (0, 0).

As the calculations get more involved in the following sections, we skip calculations along

the lines of Lemma 1.

4.2. Airy 1. In the case of (15) with zero initial data we have (ω(k) = −k3)

q(x, t) = − 1

2π

∫
∂D+

3k2eikx−iω(k)tg̃0(−ω(k), t)dk.

Integration by parts gives the expansion

q(x, t) = −3g0(0)Iω,0,1(x, t)−
1

2π

∫
∂D+

1

eiks−iω(k)τG0,0(k)
dk

ik

+O(|x− s|1/2 + |t− τ |1/6).
(33)
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This right-hand side is easily seen to be O(|x− s|1/2 + |t− τ |1/6) when s > 0 and τ = 0.

Additionally, for s = 0 and τ > 0 it follows in a similar manner to Lemma 1 that

q(x, t) = g0(τ ) +O(|x|1/2 + |t− τ |1/6).
As in the previous case (33) is the appropriate expansion about (s, τ ) for any choice of

(s, τ ) in R+ × (0, T ), including (s, τ ) = (0, 0). This establishes expansions for all cases.

4.3. Airy 2. We consider the more interesting case of (17). Here ω(k) = k3 and the

solution is given by

q(x, t)

= − 1

2π

∫
∂D+

2

eikx−iω(k)t
(
(α2 − 1)k2g̃0(−ω(k), t)− i(α− 1)kg̃1(−ω(k), t)

)
dk

− 1

2π

∫
∂D+

1

eikx−iω(k)t
(
(α− 1)k2g̃0(−ω(k), t)− i(α2 − 1)kg̃1(−ω(k), t)

)
dk.

We integrate both g̃0 and g̃1 by parts

g̃0(−ω(k), t) =
g0(t)e

iω(k)t − g0(0)

iω(k)
− g′0(t)e

iω(k)t − g′0(0)

(iω(k))2
+

G0,1(k)

(iω(k))2
,

g̃1(−ω(k), t) =
g1(t)e

iω(k)t − g1(0)

iω(k)
− G1,0(k)

iω(k)
,

G1,0(k) =

∫ t

0

eiω(k)sg′1(s)ds, G0,1(k) =

∫ t

0

eiω(k)sg′′0 (s)ds.

We then see that

I1(x, t) :=
1

2π

∫
∂D+

2

eikx−iω(k)tk2g̃0(−ω(k), t)dk

=
1

2π

∫
∂D+

2

eikx−iω(k)t

(
g0(t)e

iω(k)t − g0(0)

ik

− g′0(t)e
iω(k)t − g′0(0)

(ik)2k2
+

G0,1(k)

(ik)2k2

)
dk.

(34)

Terms with the factor eiω(k)t vanish by Jordan’s Lemma so that

I1(x, t) = − 1

2π

∫
∂D+

2

eikx−iω(k)t

(
g0(0)

ik
− g′0(0)

(ik)2k2
− G0,1(k)

(ik)2k2

)
dk

= −g0(0)Iω,0,2(x, t)

− 1

2π

∫
∂D+

2

(1 + ik(x− s) + k2(x− s)2

− ik3(x− s)3 − iω(k)(t− τ ))eiks−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk

+O(|x− s|7/2 + |t− τ |7/6)

= −g0(0)Iω,0,2(x, t) +
1

2π

∫
∂D+

2

(1 + ik(x− s))
g′0(0)−G0,1(k)

(ik)2k2
dk

+O(|x− s|2 + |t− τ |).
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We only need to keep the terms involving (x− s). Next, we consider

I2(x, t) :=
1

2π

∫
∂D+

2

eikx−iω(k)tkg̃1(−ω(k), t)dk

=
i

2π

∫
∂D+

2

eikx−iω(k)t

(
g1(t)e

iω(k)t − g1(0)

(ik)2
− G1,0(k)

(ik)2

)
dk

= ig1(0)Iω,1,2(x, t)−
i

2π

∫
∂D+

2

(1 + ik(x− s))eiks−iω(k)τ G1,0(k)

(ik)2
dk

+O(|x− s|3/2 + |t− τ |1/2).

(35)

Combining all of this with the integrals on ∂D+
1 we find

q(x, t) = g0(0)
(
(α2 − 1)Iω,0,2(x, t) + (α− 1)Iω,0,1(x, t)

)
− g1(0)

(
(1− α)Iω,1,2(x, t) + (1− α2)Iω,1,1(x, t)

)
− 1− α2

2π

∫
∂D+

2

(1 + ik(x− s))eiks−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk

+
α− 1

2π

∫
∂D+

2

(1 + ik(x− s))eiks−iω(k)τ G1,0(k)

(ik)2
dk

− 1− α

2π

∫
∂D+

1

(1 + ik(x− s))eiks−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk

+
α2 − 1

2π

∫
∂D+

2

(1 + ik(x− s))eiks−iω(k)τ G1,0(k)

(ik)2
dk

+O(|x− s|3/2 + |t− τ |1/2).

(36)

If s > 0 and τ = 0, then all integrals along ∂D+
i for i = 1, 2 vanish identically and

q(x, t) = O(|x− s|3/2 + |t|1/2) (BC3). To analyze the expression when s = 0 and τ > 0

(BC1), we consider

L0(τ ) := g0(0)
(
(α2 − 1)Iω,0,2(0, τ ) + (α− 1)Iω,0,1(0, τ )

)
+ g1(0)

(
(1− α)Iω,1,2(0, τ ) + (1− α2)Iω,1,1(0, τ )

)
− 1− α2

2π

∫
∂D+

2

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk +

α− 1

2π

∫
∂D+

2

e−iω(k)τ G1,0(k)

(ik)2
dk

− 1− α

2π

∫
∂D+

1

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk +

α2 − 1

2π

∫
∂D+

1

e−iω(k)τ G1,0(k)

(ik)2
dk.
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710 THOMAS TROGDON AND GINO BIONDINI

Because multiplication by α−1 takes ∂D+
2 to ∂D+

1 , and Gi,j(αk) = Gi,j(k) we find

1− α

2π

∫
∂D+

1

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk

=
1− α

2π

∫
∂D+

2

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)2k2
dk,

α2 − 1

2π

∫
∂D+

1

e−iω(k)τ G1,0(k)

(ik)2
dk =

1− α

2π

∫
∂D+

2

e−iω(k)τ G1,0(k)

(ik)2
dk.

Thus, the terms involving G1,0(k) and Iω,1,j vanish identically and it can be shown that

L0(τ ) = g0(τ ). Then we consider a term that resembles differentiation in x

L1(τ )

:= g0(0)
(
(α2 − 1)Iω,−1,2(0, τ ) + (α− 1)Iω,−1,1(0, τ )

)
+ g1(0)

(
(1− α)Iω,1,2(0, τ ) + (1− α2)Iω,1,1(0, τ )

)
− 1− α2

2π

∫
∂D+

2

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)k2
dk +

α− 1

2π

∫
∂D+

2

e−iω(k)τ G1,0(k)

ik
dk

− 1− α

2π

∫
∂D+

1

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)k2
dk +

α2 − 1

2π

∫
∂D+

1

e−iω(k)τ G1,0(k)

ik
dk.

We use

1− α

2π

∫
∂D+

1

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)k2
dk

=
α2 − 1

2π

∫
∂D+

2

e−iω(k)τ g
′
0(0)−G0,1(k)

(ik)k2
dk,

α2 − 1

2π

∫
∂D+

1

e−iω(k)τ G1,0(k)

ik
dk =

α2 − 1

2π

∫
∂D+

2

e−iω(k)τ G1,0(k)

ik
dk, (37)

to see that all terms involving g0 cancel identically. It then can be shown that

L1(τ ) = g1(τ ),

and finally

q(x, t) = g1(τ ) + xg1(τ ) +O(|x|3/2 + |t− τ |1/2),

as expected. Again, (36) is the appropriate expansion about (s, τ ) for any choice of (s, τ )

in R+ × (0, T ), including (s, τ ) = (0, 0) for (BC2).

5. Higher-order theory and decay of the spectral data. If the initial and

boundary data are compatible in the sense that qo(0) = go(x) it is straightforward to

check in the examples considered that the terms involving Iω,0,j(x, t) drop out of the

solution formula after integration by parts. The expressions from Section 4 are added

to those from Section 3 to see this. Furthermore, in the case of (17) if q′o(0) = g1(0),
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then the terms Iω,1,j drop out. This is related to the fact that smoothness of the data

plus higher-order compatibility at the corner (x, t) = (0, 0) forces the integrands in (7)

to decay more rapidly. Specifically, it is clear that the expressions for I1 and I2 (see (34)

and (35)) once Iω,m,j are removed have integrands that decay faster. Understanding this

behavior is important for many reasons, one of which is numerical evaluation.

We trust that our example here is enough to demonstrate the relevant behavior when

the initial and boundary data are compatible. We focus on (17) and apply repeated

integration by parts. We only write the terms that involve the functions Iω,m,j . It is

clear by using Iω,m(x, t) = Iω,m,1(x, t) + Iω,m,2(x, t) that

q|gj≡0(x, t) =
�∑

i=0

q(i)(0)
(
(1− α−1−i)Iω,i,1(x, t) + (1− α−2−2i)Iω,i,2(x, t)

)
+ Egj≡0(x, t).

(38)

Here Egj≡0 represents components of the solution not expressed in terms of Iω,m,j . Next

using that α2 = α−1 and α = α−2

q|qo≡0(x, t) =
�∑

j=0

g
(j)
0 (0)((α−1 − 1)Iω,3j,1(x, t) + (α−2 − 1)Iω,3j,2(x, t)) (39)

+

�∑
j=0

g
(j)
1 (0)((α−2 − 1)Iω,3j+1,1(x, t) + (α−1 − 1)Iω,3j+1,2(x, t))

+ E|qo≡0(x, t). (40)

We consider cancellations in the sum q|qo≡0 + q|gj≡0. Now, if i = 3j, then

(1− α−1−i)Iω,i,1(x, t) + (1− α−2−2i)Iω,i,2(x, t)

= (1− α−1)Iω,3j,1(x, t) + (1− α−2)Iω,3j,2(x, t).

If q3jo (0) = g
(j)
0 (0) one term in the sums in (38) and (39) cancel. Now, if i = 3j + 1 a

similar cancellation occurs if q3j+1
o (0) = g

(j)
1 (0). Thus, it remains to consider i = 3j + 2.

In this case, a simple calculation reveals α−1−(3j+2) = α−2−2(3j+2) = 1 and cancellation

of this term requires no additional conditions on the initial/boundary data. What we

have displayed is the following.

Proposition 1. Assume qo ∈ Hm(R+) and gj ∈ H�(m−j)/n�(R) for j = 0, . . . , N(n)−1.

Further, assume the compatibility conditions hold up to order m. Then the spectral

data, i.e., the integrand F of (7) at x = t = 0, can be written so that it satisfies

F(·)(1 + | · |)m ∈ L2(∂D).

We do not present the details here but to obtain an asymptotic expansion for q(x, t)

when discontinuities exist in higher-order derivatives, one applies Lemma 4 (after the
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cancellation of appropriate terms involving Iω,i,j) to expand terms of the form

∫
∂D+

i

Fj(k)

(ik)j+1
dk,

∫
∂D+

i

Gj,�(k)

(iω(k))jkm
dk,

which result from integration by parts.

6. Example solutions of IBVPs with general corner singularities. We now

combine the results of the previous sections and we discuss the behavior of the solutions

of the IBVP when the ICs and BCs are both nonzero, but one of the compatibility

conditions is violated. We note that because of the expansions above, the dominant

behavior of the solution near any discontinuity in the data is given in terms of the

special functions Iω,m,j(x, t) and we focus on plotting this dominant behavior.

A few words should be said about computing Iω,m,j(x, t). When using the steepest

method for integrals as in Theorem 2 (again see [1] for details) the path of steepest descent

can be approximated and a numerical quadrature routine applied on this approximate

contour. With some care to scale contours appropriately near the stationary phase point,

the method is provably accurate for all values of the parameters. We refer the reader to a

discussion of this in [32] and in [1]. In what follows, we use Clenshaw–Curtis quadrature

[5] on piecewise affine contours which is implemented in RHPackage [24] and we are able

to approximate any one of the functions Iω,m,j(x, t) well, even as x → ∞ or t ↓ 0.

6.1. Linear Schrödinger. If we were to examine the solution of (12) near a corner

singularity with ω(k) = k2 we would be led to the expansion

q(x, t) = 2(qo(0)− g0(0))Iω,0,1(x, t) + C +O(|x|1/2 + |t|1/4).

The constant C is given in terms of integrals of F0 and G0,0 but it can be found by other

reasoning. For example, if we set x = 0 and let t ↓ 0, then limt↓0 q(x, t) = g0(0). It

follows from Theorem 2 that limt↓0 Iω,0,1(x, t) = 0 for x > 0 so that C = qo(0) and the

solution is

q(x, t) = qloc(x, t) +O(|x|1/2 + |t|1/4),

qloc(x, t) = −2g0(0)Iω,0,1(x, t) + 2qo(0)

(
Iω,0,1(x, t) +

1

2

)
.

A concrete case is qo(0) = 1 and g0(0) = −1 and we explore qloc(x, t) in Figure 6.

6.2. Airy 1. We construct a similar local solution for (15) where ω(k) = −k3. Near a

corner singularity we have

q(x, t) = 3qo(0)Iω,0,1(x, t)− 3g0(0)Iω,0,1(x, t) + C +O(|x|1/2 + |t|1/6).
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(a) (b)

(c) (d)

Fig. 6. Plots of qloc(x, t) for the linear Schrödinger equation in the
concrete case qo(0) = 1 and g0(0) = −1. This is similar to Figure
4.1 in [10]. (a) The time evolution of Re qloc(x, t) up to t = 2. (b)
The time evolution of Im qloc(x, t) up to t = 2. (c) An examination
of Re qloc(x, t) as t ↓ 0 for t = 1/20(1/6)j, j = 0, 1, 2, 3. It is clear
that the solution is limiting to qloc(x, t) = 1 for x > 0 and satisfies
qloc(0, t) = −1 for all t. (d) An examination of Im qloc(x, t) as t ↓ 0
for t = 1/20(1/6)j, j = 0, 1, 2, 3.

To find C, we again use that limt↓0 Iω,0,1(x, t) = 0 for x > 0. Thus C = qo(0) as above.

We find

q(x, t) = qloc(x, t) +O(|x|1/2 + |t|1/6),

qloc(x, t) = −3g0(0)Iω,0,1(x, t) + 3qo(0)

(
Iω,0,1(x, t) +

1

3

)
.

We use the same concrete case with the simple data qo(0) = 1 and g0(0) = −1 and we

explore qloc(x, t) in Figure 7. Notice that waves travel with a negative velocity because

ω′(k) < 0 for k ∈ R. For this reason the corner singularity is regularized for t �= 0 without

oscillations.
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714 THOMAS TROGDON AND GINO BIONDINI

(a) (b)

Fig. 7. Plots of qloc(x, t) for the Airy 1 equation in the concrete
case qo(0) = 1 and g0(0) = −1. (a) The time evolution of qloc(x, t)

up to t = 2 for 0 ≤ x ≤ 15. (b) An examination of qloc(x, t) as t ↓ 0
for t = 1/20(1/6)j, j = 0, 1, 2, 5. A discontinuity is formed as t ↓ 0.

6.3. Airy 2. Now, we consider the local solution for (17) where ω(k) = k3. Near a

corner singularity we have

q(x, t) = qo(0)
(
(1− α2)Iω,0,2(x, t) + (1− α)Iω,0,1(x, t)

)
+ q′0(0)

(
(1− α)Iω,1,2(x, t) + (1− α2)Iω,1,1(x, t)

)
− g0(0)

(
(1− α2)Iω,0,2(x, t) + (1− α)Iω,0,1(x, t)

)
− g1(0)

(
(1− α)Iω,1,2(x, t) + (1− α2)Iω,1,1(x, t)

)
+ C1 + xC2 +O(|x|3/2 + |t|1/2).

To find C1 we again use the fact that limt↓0 Iω,i,j(x, t) = 0 for x > 0 and i ≥ 0. Thus

C1 = qo(0). To find C2 we consider, using (37),

g1(0) = lim
t↓0

qx(0, t) = −3(g0(0)− q′o(0))Iω,0,1(0, t) + C2 +O(|t|1/6).

But it follows that Iω,0,1(0, t) = −1/3 for t > 0 so that C2 = q′o(0) and

q(x, t) = qloc(x, t) +O(|x|3/2 + |t|1/2),
qloc(x, t) = qo(0)

(
1 + (1− α2)Iω,0,2(x, t) + (1− α)Iω,0,1(x, t)

)
+ q′0(0)

(
x+ (1− α)Iω,1,2(x, t) + (1− α2)Iω,1,1(x, t)

)
− g0(0)

(
(1− α2)Iω,0,2(x, t) + (1− α)Iω,0,1(x, t)

)
− g1(0)

(
(1− α)Iω,1,2(x, t) + (1− α2)Iω,1,1(x, t)

)
.
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(a) (b)

Fig. 8. Plots of qloc(x, t) for the Airy 2 equation in the concrete
case qo(0) = 1, q′

o(0) = −1, g0(0) = −1, and g1(0) = 0. (a) The

time evolution of qloc(x, t) up to t = 0.00005 for 0 ≤ x ≤ 1/2. We
zoom in on (x, t) = (0, 0) in this case so that the effects of the linear
term C2x are insignificant. (b) An examination of qloc(x, t) as t ↓ 0
for t = 1/300(1/8)j, j = 0, 1, 2, 3, 4, 5. A discontinuity is formed as
t ↓ 0.

First-order corner singularity. We plot qloc(x, t) in Figure 8 in the concrete case qo(0) = 1,

q′o(0) = −1, g0(0) = −1 and g1(0) = −1. Note that q′o(0) = g′0(0) so that there is no

mismatch in the derivative at the origin.

Second-order corner singularity. We plot qloc(x, t) in Figure 9 in the concrete case qo(0) =

1, q′o(0) = 0, g0(0) = 1, and g1(0) = −1. Note that qo(0) = g0(0) so that there is no

mismatch at first-order.

(a) (b)

Fig. 9. Plots of qloc(x, t) for the Airy 2 equation in the concrete
case qo(0) = 1, q′

o(0) = 0, g0(0) = 1, and g1(0) = −1. (a) The time
evolution of qloc(x, t) up to t = 2 for 0 ≤ x ≤ 15. (b) An examination
of qloc(x, t) as t ↓ 0 for t = 1/10(1/8)j, j = 0, 1, 2, 3, 4. The function
tends uniformly to qo(0) = 1 while ∂xq(0, t) = −1.
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716 THOMAS TROGDON AND GINO BIONDINI

An IBVP with discontinuous data. We now consider the solution of the IBVP for (17)

with

qo(x) =

{
1 if x1 < x < x2,

0 otherwise ,

g0(t) =

{
C1 if t < t1,

0 if t ≥ t1,

g1(t) = C2.

(41)

The solution of this problem has three important features. The first is the corner singu-

larity at (x, t) = (0, 0). The second is the discontinuities that are present in the initial

data. The last is the singularity in the boundary condition.

Given our developments, this problem can be solved explicitly and computed effec-

tively. Because Iω,0,j(x, t) = 0 for t < 0, the solution formula is

q(x, t) = Iω,0,1(x− x1, t) + Iω,0,2(x− x1, t)− α2Iω,0,2(x− x1α, t)

− αIω,0,1(x− x1α
2, t)− Iω,0,1(x− x2, t)− Iω,0,2(x− x2, t)

+ α2Iω,0,2(x− x2α, t) + αIω,0,1(x− x2α
2, t)

+ C1

(
(α2 − 1)Iω,0,2(x, t) + (α− 1)Iω,0,1(x, t)

)
− C1

(
(α2 − 1)Iω,0,2(x, t− t1) + (α− 1)Iω,0,1(x, t− t1)

)
+ C2

(
(α2 − 1)Iω,1,1(x, t) + (α− 1)Iω,1,2(x, t)

)
.

The solution is plotted in Figure 10.

Remark 4. For x > 0, Iω,0,2(x, t−t1) = O(|t−t1|1/4) as t ↓ t1 and Iω,0,2(x, t−t1) = 0

for t < t1. This implies that q(x, t) is continuous in t but not differentiable at t = t1.

This is a general feature: Discontinuities on the boundary cause the solution to lose

time differentiability at that time while the solution maintains continuity. The above

expansions can easily be used to rigorously justify this fact.
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(a) (b)

Fig. 10. Plots of q(x, t) for the Airy 2 equation with the data given
in (41) for C1 = 1 and C2 = −1. (a) The time evolution of q(x, t) up

to t = 1 for 0 ≤ x ≤ 15. Region A signifies the discontinuity in the
boundary data, Region B denotes the corner singularity and Region
C gives the discontinuity in the initial data. (b) An examination of
q(x, t) as t ↓ 0 for t = 1/10(1/19)j, j = 1, 2, 3, 5. A discontinuity is
formed as t ↓ 0 at x = 0, 1, 2.

Appendix A. Validity of solution formula and regularity results. From the

work of [17] we know that the expression (7) evaluates to give the solution of (6) pointwise

provided the initial and boundary data are sufficiently regular.

Lemma 2. If gj ∈ H1(0, T ) and q0 ∈ L1 ∩ L2(R) each integral in (7) can be written in

the form

gj(t)Tj(x, t, t)− gj(0)Tj(x, t, 0)−
∫ t

0

Tj(x, t, s)g
′
j(s)ds,

or

∫ ∞

0

S(x, t, s)q0(s)ds,

where S(x, t, s) and Tj(x, t, s) are bounded in s for fixed x > 0 and t > 0. Furthermore,

for κ = 0, 1, 2, . . .

• ∂κ
xS(x, t, s) ∼ |s|

2κ−n+2
2(n−1) as s → ∞,

• ∂κ
t S(x, t, s) ∼ |s|

2nκ−n+2
2(n−1) as s → ∞,

• ∂κ
xT (x, t, s) ∼ |s− t|

n+2j−2κ
2(n−1) as s → t−, and

• ∂κ
t T (x, t, s) ∼ |s− t|

n+2j−2nκ
2(n−1) as s → t−.

Proof. The estimate for the integral

1

2π

∫
R

eik(x−s)−iω(k)tdk

which is the kernel in the integral

1

2π

∫
R

eikx−iω(k)tq̂o(k)dk
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718 THOMAS TROGDON AND GINO BIONDINI

follows directly from Theorem 2. Next consider the integral∫
∂D+

i

eikx−iω(k)tq̂(ν(k))dk = lim
R→∞

∫
∂D+

i ∩B(0,R)

eikx−iω(k)tq̂(ν(k))dk

= lim
R→∞

∫ ∞

0

SR(x, t, s)q0(s)ds,

SR(x, t, s) =

∫
∂D+

i ∩B(0,R)

eikx−iν(k)s−iω(k)tdk.

We perform a change of variables on SR

SR(x, t, s) =

∫
ν−1(∂D+

i ∩B(0,R))

e−izs+iν−1(z)x−iω(z)tdν−1(z).

Here ν−1(D+
i ) is a component of D in C

−. We discuss the case where ν(k) = αk for

|α| = 1, i.e., ω(k) = ωnk
n. The general case follows from similar but more technical

arguments. For fixed x and t we apply Theorem 2 with w(k) = ω(z) − α−1zx/t after

possible deformations. In all cases, e−izs+iν−1(z)x−iω(z)t is bounded large s when z is

replaced with the appropriate stationary phase point. We obtain

lim
R→∞

∂j
xSR(x, t, s) ∼ |s|

2j+2−n
2(n−1) .

Next, we consider the terms involving gj . Generally speaking, for the canonical prob-

lem with ω(k) = ωnk
n these terms are of the form∫
∂D+

i

eikx−iω(k)tkN(n)−j g̃j(−ω(k), t)dk

= lim
R→∞

∫
∂D+

i ∩B(0,R)

eikx−iω(k)tkN(n)−j g̃j(−ω(k), t)dk.

We write

eikx−iω(k)tkN(n)−j g̃j(−ω(k), t)

= eikx−iω(k)t k
N(n)−j

iω(k)

(
gj(t)e

iω(k)t − gj(0)−
∫ t

0

eiω(k)sg′j(s)ds

)
so that ∫

∂D+
i ∩B(0,R)

eikx−iω(k)tkN(n)−j g̃j(−ω(k), t)dk

=
gj(t)

iωn

∫
∂D+

i ∩B(0,R)

eikx
dk

kn−N(n)+j

− gj(0)

iωn

∫
∂D+

i ∩B(0,R)

eikx−iω(k)t dk

kn−N(n)+j

−
∫ t

0

(
1

iωn

∫
∂D+

i ∩B(0,R)

eikx−iω(k)(t−s) dk

kn−N(n)+j

)
g′j(s)ds.

Now, because n−N(n)+ j ≥ 1 all integrals converge for x > 0 as R → ∞. Additionally,

the integral with gj(t) as a coefficient vanishes identically. For x > 0 by Theorem 2 with
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m = n−N(n) + j − 1

lim
R→∞

∫
∂D+

i ∩B(0,R)

eikx−iω(k)(t−s) dk

kn−N(n)+j
= O

(
|s− t|

n+2(j−1)
2(n−1)

)
,

as s → t−, implying this is a bounded function for all s ∈ [0, t]. To estimate t derivatives

we note that the estimates for ∂jn
x follow for ∂j

t . This proves the lemma. �

Lemma 3. The solution formula (7) holds for q0 ∈ L1 ∩ L2(R+) and gj ∈ H1([0, T ]) for

all t > 0, x > 0, j = 0, . . . , N(n)− 1.

Proof. To prove this result we must approximate q0 and gj with smooth functions that

are compatible at (x, t) = (0, 0). First, we find a sequence of functions q̃0,n ∈ C∞
c ((0, R))

such that q0,n → q0 in L1 ∩ L2(R+). To see that such a sequence exists, consider

the approximation of q0(x)χ[0,R](x) in L2(R+) with C∞
c ((0, R)) functions. Because of

the bounded interval of support, this approximation converges in L1(R+) as well. Next,

because q0(x)χ[0,R](x) → q0(x) in L1∩L2(R+) as R → ∞, a diagonal argument produces

an acceptable sequence. Now, find sequences dj,n → g′j in L2(0, T ) with dj,n ∈ C∞
c (0, T ).

Then define

gj,n(t) = gj(0) +

∫ t

0

dj,n(s)ds,

so that gj,n is constant near t = 0. Define p(x) =
∑N(n)−1

j=0 gj(0)
xj

j! and φn(x) have

support [0, 2/n] and be equal to 1 on [0, 1/n] and interpolate smoothly and monotonically

between 0 and 1 on [1/n, 2/n]. Then q0,n(x) + p(x)φn(x) converges to q0 in L2(R+) and

q0,n and gj,n are compatible at (x, t) = (0, 0) and the solution formula (7) holds with

this combination of initial/boundary data.

Now, because convergence of the initial data also occurs in L1(R+) and convergence

of the boundary data also occurs in2 W 1,1(0, T ), we apply Lemma 2 to demonstrate that

the solution formula with data (q0,n, gj,n) converges pointwise to the solution value and

furthermore limits may be passed inside the relevant integrals. This implies the solution

formula holds with these relaxed assumptions. �

To handle multiple boundary discontinuities, we note that we can solve the problem

with zero initial data. Assume the boundary condition has a discontinuity at 0 < t1 < T

with boundary conditions

gj(t) =

{
gj,1(t), t ∈ [0, t1],

gj,2(t), t ∈ (t1, T ],

2W 1,1(0, T ) is the space of integrable functions on the interval (0, T ) with one integrable derivative.
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720 THOMAS TROGDON AND GINO BIONDINI

that are piecewise H1 functions. We use linearity to modify the boundary condition.

Consider the two functions

Gj,1(t) =

{
gj,1(t), t ∈ [0, t1],

gj,1(t1), t ∈ (t1, T ],

Gj,2(t) =

{
0, t ∈ [0, t1],

gj,2(t)− gj,1(t1), t ∈ (t1, T ],

since the above theorem indicates the solution is given by the formula for all t ∈ [0, T ],

with boundary conditions Gj,1. Furthermore, the initial-boundary value problem with

zero initial data and boundary data Gj,2 is also given by the solution formula, with the

solution being identically zero before t = t1. We use linearity to add these two solutions.

We have shown that (7) gives us this weak solution in the interior.

Further considerations can be used to show the solution is smooth in x for all t > 0

and smooth in t for t > 0, t �= t1. The contributions from integrals involving gj can

cause complicated singularities in the solution. With this in mind we state our regularity

theorem.

Theorem 1. Assume q0 ∈ L2(R+) ∩ L1(R+, (1 + |x|)�) and gj ∈ Hp+1(ti, ti+1) (p ≥ 0)

for 0 = t0 < · · · < tm = T . Then (7) evaluates pointwise to give the L2 solution of (6).

• If

� ≥ 2m− n+ 2

2(n− 1)
, np− [2N(n) + 2− n] > m,

then q(x, t) is differentiable m times with respect to x for x > 0, t > 0.

• If

� ≥ 2jn− n+ 2

2(n− 1)
, p− 1

n
[2N(n) + 2− n] > j,

then q(x, t)) is differentiable j times with respect to t for x > 0, t �= ti and

continuous in t for t > 0.

Proof. Lemma 3 demonstrates that (7) produces the solution pointwise for t ≤ t1.

We look at the differentiability of the solution in (0,∞) × (0, t1). The differentiability

of the integrals in (7) that involve q0(x) follows from the growth of the kernel. To

see differentiability of the terms involving gj we note that integration by parts can be

performed p times. It remains to consider the differentiability. Formally,

dκ

dxκ

∫ t

0

(∫
∂D+

i

eikx−iω(k)(t−s) dk

kpn−N(n)+j

)
g
(p+1)
j (s)ds

= iκ
∫ t

0

(∫
∂D+

i

eikx−iω(k)(t−s) dk

kpn−N(n)+j−κ

)
g
(p+1)
j (s)ds.

It is straightforward to check from Theorem 2 that the kernel in this integral is an L2

function, and differentiability follows, provided 2pn− 2N(n) + 2j − 2κ− 1 > 1− n and
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for simplicity a condition is κ < pn − [2N(n) + 2 − n]. This implies we may take pn

x-derivatives inside the integral and p t-derivatives.

Next define Gj,1(t) to be an Hp+1((0, T )) extension of gj(t)χ[0,t1](t). Iteratively, define

Gj,i(t) = gj(t)−
i−1∑
M=1

Gj,M (t), t ∈ [ti−1, ti), i = 2, . . . ,m,

and assume each of these are extended as an Hp+1((ti−1, T )) function. Let qi(x, t) be

the solution of (6) with initial/boundary data (q0, Gj,1) if i = 1 and (q0,i ≡ 0, Gj,i) for

i > 1 on (0,∞) × (ti, T ]. The solution formula (7) is valid with this initial data. The

solution with data (q0, gj) is given by

q(x, t) =

i∑
M=1

qi(x, t), t ∈ [ti−1, ti),

and the regularity follows. �

Remark 5. This theorem can be improved by allowing p = p(j) to be a fraction. But

our aim is only to give sufficient conditions for differentiability that are simple to state.

Appendix B. Special functions arising in the IBVP. Recall

Iw,m,j(x, t) =
1

2π

∫
∂D+

j

eikx−iw(k)t

(ik)m+1
dk,

and suppose w(k) = wnk
n +O(kn−1). Further, define

Kt(x) =

N(n)∑
j=1

Iw,−1(x, t).

For |x| > 0, t > 0, we rescale, by setting σ = sign(x), k = σ(|x|/t)1/(n−1)z

Iω,m,j(x, t) = σm

(
|x|
t

)−m/(n−1) ∫
Γj

eX(iz−iωnσ
nzn−iR|x|/t(z))

dz

(iz)m+1
,

R|x|/t(z) =
n−1∑
j=2

ωj

(
|x|
t

) j−n
n−1

(σz)j , X = |x|
(
|x|
t

)1/(n−1)

.

(42)

Define

Φ|x|/t(z) = ik − iωnσ
nzn − iR|x|/t(z),

where {zj}n−1
j=1 are the roots of Φ′

|x|/t(z) = 0 ordered counterclockwise from the real axis.

Here Γj is a deformation of ∂D+
i which passes along the path of steepest descent through

zj . The following theorem is proved using the method of steepest descent for integrals.

The proof is a minor modification of that which is presented in [1].
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Theorem 2. Suppose ω(k) = ωnk
n +O(kn−1) then as |x/t| → ∞

Iω,m,j(x, t) = −iResk=0

(
eikx−iω(k)t

(ik)m+1

)
χ(−∞,0)(x)

+
σm|x|−1/2

√
2π

(
|x|
t

)−m+1/2
n−1 eXΦ|x|/t(zj)+iθj

(izj)m+1

1

|Φ′′
|x|/t(zj)|1/2

×
(
1 +O

(
|x|−1

(
|x|
t

)−1/(n−1)
))

.

Here θj is the direction at which Γj leaves zj . Hence

• For fixed t > 0 as |x| → ∞

K
(m)
t (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O
(
|x|

2m−n+2
2(n−1)

)
, n is even,

O
(
|x|

2m−n+2
2(n−1)

)
, n is odd, ωnx > 0,

O
(
|x|−M

)
for all M > 0, n is odd, ωnx < 0.

(43)

• For |x| ≥ δ > 0 and m ≥ 0 as t → 0+

Iω,m(x, t) = −iResk=0

(
eikx−iω(k)t

(ik)m+1

)
χ(−∞,0)(x) +O

(
t
m+1/2
n−1

)
. (44)

Appendix C. Residual estimation. In many cases we must understand the be-

havior of integrals of the form ∫
S

eikx−iω(k)tF (k)
dk

km+1

for small |x| and t. Here S is a piecewise smooth, asymptotically affine contour in the

upper-half plane that avoids the origin along which e−iω(k)t is bounded. One might

expect that a Taylor expansion of the integrand near zero would provide the leading

contribution. Namely,∫
S

eikx−iω(k)tF (k)
dk

km+1
=

m∑
j=0

∫
S

aj(x, t)k
j−m−1F (k)dk + Em(x, t),

where Em is of higher-order as (x, t) → (0, 0). We make this fact rigorous in this section.

Define aj(x, t) to be the jth-order Taylor coefficient of eikx−iω(k)t at k = 0. We make

some observations about these coefficients. We write

ikx− iω(k)t = ikx− i

n∑
j=2

ωj(t
1/jk)j .

From this it is clear that |aj(x, t)| ≤ C
∑j

p=0 |x|pt
j−p
n . With each power of k comes a

power of x or a least t1/n. Define ρ(x, t) = |x|+ |t|1/n and there exists Cj > 0 such that

1

Cj
ρ(x, t)j ≤

j∑
p=0

|x|pt
j−p
n ≤ Cjρ(x, t)

j. (45)
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We also want to understand the behavior of the derivatives of eikx−iω(k)t in the complex

plane. Namely, we want to understand which powers of x and t go with powers of k.

The first few derivatives are, of course,

(ix− iω′(k)t)eikx−iω(k)t,

(ix− iω′(k)t)2eikx−iω(k)t + (−iω′′(k)t)eikx−iω(k)t,

(ix− iω′(k)t)3eikx−iω(k)t + 2(−iω′′(k)t)eikx−iω(k)t + (−2iω′′(k)t)eikx−iω(k)t.

The observation to be made here is that for |k| ≥ 1, |x|, t ≤ 1 there are positive constants

Dj and Bj such that∣∣∣∣ djdkj
eikx−iω(k)t

∣∣∣∣ ≤ Dj

(
|x|+ nt

n∑
p=2

|ωn||k|p−1

)j ∣∣∣eikx−iω(k)t
∣∣∣

≤ Bjρ(x, t)
j(1 + ρ(x, t)|k|)j(n−1)

∣∣∣eikx−iω(k)t
∣∣∣ . (46)

These are the necessary components to prove the following.

Lemma 4. Suppose S is a piecewise smooth, asymptotically affine contour in the upper-

half plane, avoiding the origin, such that e−iω(k)t is bounded on S for 0 ≤ t ≤ 1. If

F ∈ L2(S) there exists a constant C > 0 such that∣∣∣∣∣∣
∫
S

eikx−iω(k)tF (k)
dk

km+1
−

m∑
j=0

∫
S

aj(x, t)k
j−m−1F (k)dk

∣∣∣∣∣∣
≤ Cρm+1/2(x, t)‖F‖L2(S).

Proof. Define

fx,t,m(k) =
1

km+1

⎛
⎝eikx−iω(k)t −

m∑
j=0

aj(x, t)k
j

⎞
⎠ .

We estimate the L2(S) norm of this function. First for ρ ≡ ρ(x, t), k ∈ S ∩ B(0, ρ−1)

we have by Taylor’s theorem applied along S (using its smoothness) there exists Cm > 0

such that (see (46))∣∣∣∣∣∣eikx−iω(k)t −
m∑
j=0

aj(x, t)k
j

∣∣∣∣∣∣ ≤ Cm
|k|m+1

(m+ 1)!
ρm+1 sup

k∈S

∣∣∣eikx−iω(k)t
∣∣∣ .

From this we find that for a (new) constant Cm > 0(∫
S∩B(0,ρ−1)

|fx,t,m(k)|2|dk|
)1/2

≤ Cm

(m+ 1)!
ρm+1/2, (47)

because
∫
S∩B(0,R)

|dk| = O(R) as R → ∞.

Next, we estimate on S \B(0, ρ−1). In general, we find(∫
S\B(0,ρ−1)

|k|2(j−m−1)|dk|
)1/2

≤ Djρ
m−j+1/2,
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and using (45) (∫
S\B(0,R)

|fx,t,m(k)|2|dk|
)1/2

≤ C
∞∑
j=0

Djρ
m+1/2. (48)

Combining (47) and (48) with the Cauchy–Schwarz inequality proves the result. �

The final piece we need is sufficient conditions for F ∈ L2(S).

Lemma 5. Let S be a Lipschitz contour.

• If f ∈ L2(R+), Im ν(k) ≤ 0 on S and ν−1 has a uniformly bounded derivative

on ν(S), then F ∈ L2(S).

• If g ∈ L2(0, t) and S ⊂ D is bounded away from the zeros of ω′, then G(−ω(k)) ∈
L2(S, |d(ω(k))|) ⊂ L2(S).

Proof. Recall that S is always in the domain of analyticity of

F (ν(k)) =

∫ ∞

0

e−iν(k)xf(x)dx.

More precisely, ν−1(S) is in the closed lower-half plane. So∫
S

|F (ν(k))|2|dk| =
∫
ν−1(S)

|F (k)|2|dν−1(k)|.

Also, S can be chosen such that ν−1 has a uniformly bounded derivative on ν−1(S) (see

[8]). It follows that F is in the Hardy space of the lower-half place (see [33, Section 2.5])

and can be represented as the Cauchy integral of its boundary values

CRF (k) =
1

2πi

∫
R

F (z)

z − k
dz = −F (k).

The Cauchy integral operator is bounded on L2(R ∪ S) so that

‖F‖L2(S) = ‖CRF‖L2(S) ≤ ‖CRF‖L2(R∪S) ≤ C‖F‖L2(R).

Next, S is always in the domain of analyticity and boundedness of

G(−ω(k)) =

∫ t

0

eiω(k)sg(s)ds.

This is true because S asymptotically is a subset of ∂D+
i . Set z = −ω(k), noting that

z ∈ C−, we have ∫
S

|G(−ω(k)|2|d(ω(k))| =
∫
−ω(S)

|G(z)|2dz < ∞,

if g ∈ L2(0, t). Furthermore, if S avoids zeros of ω′∫
S

|G(−ω(k)|2|dk| ≤ C ′
∫
S

|G(−ω(k)|2|d(ω(k))|, C ′ > 0.

Similar Hardy space considerations indicate that if g ∈ L2(0, t), then G(−ω(·)) ∈ L2(S).

We obtain the following.3 �

3Such a theorem holds on contours with much less regularity.
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