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We present an explicit two-parameter family of finite-band 
Jacobi elliptic potentials given by q ≡ A dn(x; m), where 
m ∈ (0, 1) and A can be taken to be positive without loss 
of generality, for a non-self-adjoint Dirac operator L, which 
connects two well-known limiting cases of the plane wave 
(m = 0) and of the sech potential (m = 1). We show that, if 
A ∈ N, then the spectrum consists of R plus 2A Schwarz 
symmetric segments (bands) on iR. This characterization 
of the spectrum is obtained by relating the periodic and 
antiperiodic eigenvalue problems for the Dirac operator to 
corresponding eigenvalue problems for tridiagonal operators 
acting on Fourier coefficients in a weighted Hilbert space, 
and to appropriate connection problems for Heun’s equation. 
Conversely, if A /∈ N, then the spectrum of L consists of 
infinitely many bands in C. When A ∈ N, the corresponding 
potentials generate finite-genus solutions for all the positive 
and negative flows associated with the focusing nonlinear 
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Schrödinger hierarchy, including the modified Korteweg-
deVries equation and the sine-Gordon equation.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction and main results

1.1. Background

In this work we study a non-self-adjoint Dirac operator with a Jacobi elliptic potential, 
namely,

Lφ = zφ , z ∈ C , (1.1)

where φ(x; z) = (φ1, φ2)T, the superscript “T” denoting matrix transpose, L is given 
formally by

L := iσ3(∂x −Q(x)) , Q(x) =
(

0 q(x)
−q(x) 0

)
, x ∈ R , (1.2)

the potential Q(x) is l-periodic, σ3 := diag(1, −1) (cf. Appendix A.1) and overline de-
notes the complex conjugate. In particular, let

q(x;A,m) = A dn(x;m) , (1.3)

where dn(x; m) is one of the three basic Jacobi elliptic functions (cf. [42,76]), and m ∈
(0, 1) is the elliptic parameter. Finally, A is an arbitrary constant, which one can take 
to be real and positive without loss of generality. (It is easy to see that taking argA �=
0 leaves the spectrum unchanged.) We will do so throughout this work. Recall that 
dn(x; m) has minimal period l = 2K along the real x-axis, where K := K(m) is the 
complete elliptic integral of the first kind [42,76]. Also recall that dn(x; 0) ≡ 1 and 
dn(x; 1) ≡ sech x. Both of the limiting cases m = 0 and m = 1 are exactly solvable (i.e., 
the spectrum is known in closed form), and therefore provide convenient “bookends” for 
the results of this work.

There are several factors that motivate the present study. A first one is that Dirac 
operators arise naturally in quantum field theory [52,99], and therefore the identification 
of exactly solvable potentials is relevant in that context. A second one, perhaps more 
important, is the connection with integrable partial differential equations. There is the 
obvious similarity between the study of (1.1) and that of eigenvalue problems for the 
time-independent Schrödinger equation, namely

(−Δ + V (x))φ = λφ , (1.4)

where Δ denotes the n-dimensional Laplacian operator and φ : Rn → C, which has been 
an integral component of mathematical physics since its first appearance in the 1920’s 
(e.g., see [37,73,79]), and which received renewed interest in the late 1960’s and 1970’s 
(e.g., see [1,23,59,75,93]) thanks to the connection with infinite-dimensional integrable 
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systems. Namely, the fact that the one-dimensional time-independent Schrödinger equa-
tion [i.e., (1.4) with n = 1] is the first half of the Lax pair for the Korteweg-deVries (KdV) 
equation [35,63]. As a result, the study of direct and inverse spectral problems for the 
Schrödinger operator played a key role in the development of the so-called inverse scat-
tering transform (IST) to solve the initial value problem for the KdV equation [35,63]. 
The direct and inverse scattering theory was later made more rigorous, and generaliza-
tions of the theory were also studied [6,7,20,23,26,50,51,64,70,72,74,88]. In particular, 
the so-called finite-gap (or finite-band) solution became a primary object of study.

Similar problems have been considered for (1.1), since it comprises the first half of the 
Lax pair associated to the nonlinear Schrödinger (NLS) equation, namely, the partial 
differential equation (PDE)

iqt + qxx + 2s|q|2q = 0 . (1.5)

Here q : R ×R → C, subscripts x and t denote partial differentiation and, as usual, the 
sign s = ±1 denotes the focusing and defocusing cases, respectively. Similarly to the KdV 
equation, the NLS equation is an infinite-dimensional Hamiltonian system. Also, similarly 
to the KdV equation, the NLS equation is a ubiquitous physical model. In particular, 
(1.5) is a universal model describing the slow modulations of a weakly monochromatic 
dispersive wave envelope, and therefore appears in many physical contexts, such as deep 
water waves, nonlinear optics, plasmas, ferromagnetics and Bose-Einstein condensates 
(e.g., see [1,3,78]). Therefore, the study of the NLS equation is of both theoretical and 
applicative interest.

In 1972 [100], Zakharov and Shabat showed that (1.5) is the compatibility condition 
of the matrix Lax pair

φx = (−iz σ3 + Q(x, t))φ , (1.6a)

φt = (−2iz2σ3 + H(x, t, z))φ , (1.6b)

with σ3 as above, and

Q(x, t) =
(

0 q(x, t)
−sq(x, t) 0

)
, H(x, t, z) = 2zQ− iσ3(Q2 −Qx) . (1.7)

Following [100], (1.6a) [i.e., the first half of the Lax pair] is referred to as the Zakharov-
Shabat (ZS) scattering problem. It is easy to see that (1.6a) [with s = 1] is equivalent 
to (1.1). Thus, the solution to (1.5) [with s = 1] comprises the scattering potential q
in (1.1). Moreover, one can also show that time evolution of q according to the focusing 
NLS equation (1.5) [with s = 1] amounts to an isospectral deformation of the potential 
for the Dirac operator (1.2).

Scattering theory for the Zakharov-Shabat system have been studied extensively over 
the years. In [100] the IST for (1.5) in the focusing case with localized data, i.e., with 
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q(x, t = 0) ∈ L1(R), was formulated. Corresponding results for the defocusing case with 
constant boundary conditions (BCs), i.e., |q(x, t)| → qo �= 0 as x → ±∞, were obtained 
in [101]. The theory was then revisited and elucidated in [1,31,75]. When q ∈ L1(R), 
the isospectral data is composed of two pieces: an absolutely continuous spectrum, and 
a set of discrete eigenvalues. When q is periodic, however, the isospectral data is purely 
absolutely continuous and has a band and gap structure.

Of particular interest is the effort to find classes of potentials for which the scat-
tering problem can be solved exactly. Satsuma and Yajima [83] considered the case of 
q(x) = A sech x, with A an arbitrary positive constant, and obtained a complete rep-
resentation of eigenfunctions and scattering data. Their work was later generalized by 
Tovbis and Venakides [90] to potentials of the type q(x) = A sech x e−ia log(cosh x), with 
A as above and a an arbitrary real constant. These results were then used in [55,91]
to study the behavior of solutions of the focusing NLS equation in the semiclassical 
limit. More recently, Trillo et al. [34] obtained similar results for potentials of the type 
q(x) = A tanhx in the defocusing case. In all of these cases, the ZS scattering problem 
is reduced to connection problems for the hypergeometric equation. Finally, Klaus and 
Shaw [57,58] identified classes of “single-lobe” potentials for which the point spectrum 
is purely imaginary.

The above-mentioned works considered potentials that are either localized or tend 
to constant boundary conditions as |x| → ∞. Spectral problems for the Schrödinger 
operator with a periodic potential similar to the one considered here are also a classical 
subject, and their study goes back to Lamé [62], and Ince [45–47], where the spectrum for 
a two-parameter family of potentials was studied, and necessary and sufficient conditions 
in order for such potentials to give rise to a spectrum with a finite number of gaps were 
derived (see also [4,15,27,38,69]). More recently, these results were generalized in [87]
and [85], and a characterization of all elliptic algebro-geometric solutions of the KdV 
and AKNS hierarchies was given by Gesztesy and Weikard in [38–40].

Finite-band potentials for the focusing and defocusing ZS scattering problems have 
also been studied [8,39,49,60,84]. In particular, the special case of genus-one potentials 
was explicitly considered in [16,54], and the stability of those solutions was recently 
studied in [22]. On the other hand, the identification of exactly solvable cases for periodic 
potentials is generally challenging, and few families of finite-band potentials for (1.2) have 
been studied in detail (see [39,40]).

Here we present an explicit, two-parameter family of finite-band potentials of the fo-
cusing ZS system and we characterize the resulting spectrum. We also show that (1.1)
with the potential (1.3) can be reduced to certain connection problems for Heun’s equa-
tion. Unlike the case of the hypergeometric equation, the connection problem for Heun’s 
equation has not been solved in general [82]. Still, special cases can be solved exactly. For 
example, for certain classes of periodic potentials, Hill’s equation [i.e., (1.4) with n = 1
and a periodic potential] can be mapped to a Heun equation. Classical works [45,46,69]
where the spectrum of Hill’s equation for a multi-parameter family of potentials was stud-
ied, resulted in the derivation of necessary and sufficient conditions for such potentials to 
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give rise to a spectrum with a finite number of bands and gaps. Importantly, the absence 
of a gap in the spectrum of the Hill operator corresponds uniquely to the coexistence 
of solutions, namely, the existence of two linearly independent periodic, or antiperiodic, 
solutions to the given ordinary differential equation (ODE) [69]. More recently, those 
results were strengthened in [95,97] and [43]. The results of this work provide a direct 
analogue of all these results for the Dirac operator (1.2) as well as for the Hill operator 
with PT-symmetric potential.

1.2. Main results

We first introduce some definitions in order to state the main results of this work (see 
Appendix A.1 for further notations and standard definitions).

Definition 1.1 (Lax spectrum). The Lax spectrum of the matrix-valued differential ex-
pression L in (1.2) is the set

Σ(L) :=
{
z ∈ C : Lφ = zφ, 0 < ‖φ‖L∞(R;C2) < ∞

}
, (1.8)

i.e., the set of complex numbers z such that (1.1) has at least one bounded nonzero 
solution.

It can be proved that for q locally integrable the Lax spectrum defined above equals the 
spectrum of the maximal operator associated with L in L2(R; C2), the space of square-
integrable two-component vector-valued functions, namely the set {z ∈ C : z /∈ ρ(L)}, 
where ρ(L) is the resolvent set of L (see [81] p. 249). Moreover, it is well known that if q is 
locally integrable and l-periodic with minimal period l, then Σ(L) is purely continuous 
and comprised of an at most countable collection of regular analytic arcs, referred to 
as bands, in the spectral plane [39,81]. Throughout this work we will occasionally use 
spectrum as a synonym for the Lax spectrum. Further properties of the Lax spectrum 
are discussed in Section 2. If the potential q is such that there are at most finitely many 
bands we say that q is a finite-band potential (see Definition 2.5). The class of finite-
band potentials plays a key role in the IST for the NLS equation on the circle [8,36,68]. 
In particular, it was shown in [49] that the potential can be reconstructed from the 
knowledge of two key spectral data: (i) the periodic and antiperiodic eigenvalues of L (i.e., 
the set of values z associated with periodic or antiperiodic eigenfunctions, respectively), 
which correspond to endpoints of spectral bands, and (ii) the Dirichlet (or auxiliary) 
eigenvalues of L, defined as the set of zeros of the 1,2 entry of the monodromy matrix 
(see Section 2 for precise definitions of all these quantities). To specify the dependence 
of solutions associated with (1.3) on the parameters A, m, we will also occasionally use 
the notation Σ(L; A, m) to denote the Lax spectrum.

Theorem 1.2. Consider (1.1) with q ≡ A dn(x; m), m ∈ (0, 1), and A > 0. Then the 
potential q is finite-band if and only if A ∈ N. Moreover, if A ∈ N, then:
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Σ(L;A,m) ⊂ R ∪ (−iA, iA) , (1.9)

and q is a 2 A-band (i.e., a genus 2A − 1) potential of the Dirac operator (1.2).

(Of course it is well known that Σ(L) is Schwarz symmetric and R ⊂ Σ(L) [68,71].) 
Theorem 1.2 is a consequence of the following more detailed description of the spectrum:

Theorem 1.3. Assume the conditions of Theorem 1.2. If A ∈ N then:

1. For any m ∈ (0, 1), the non-real part of the Lax spectrum, Σ(L; A, m) \R, is a proper 
subset of (−iA, iA). (For m = 0, the Lax spectrum is Σ(L; A, 0) = R ∪ [−iA, iA].)

2. For any m ∈ (0, 1), there are exactly 2A symmetric bands of Σ(L; A, m) along 
(−iA, iA), separated by 2A − 1 open gaps. The central gap (i.e., the gap intersecting 
the origin) contains an eigenvalue at z = 0, which is periodic when A is even and 
antiperiodic when A is odd.

3. For any m ∈ [0, 1), R ⊂ Σ(L; A, m) contains infinitely many interlaced periodic and 
antiperiodic eigenvalues, symmetrically located with respect to z = 0.

4. Each periodic/antiperiodic eigenvalue z ∈ R has geometric multiplicity two and each 
periodic/antiperiodic eigenvalue z ∈ (−iA, iA)\{0} has geometric multiplicity one.

5. Each periodic/antiperiodic eigenvalue z ∈ R is simultaneously a Dirichlet eigenvalue. 
All these Dirichlet eigenvalues are immovable.

6. Each of the open 2A − 1 gaps on (−iA, iA) contains exactly one movable Dirichlet 
eigenvalue. Thus, all of the 2A − 1 movable Dirichlet eigenvalues of the finite-band 
solution with genus 2A − 1 are located in the gaps of the interval (−iA, iA).

Recall that a movable Dirichlet eigenvalue is a Dirichlet eigenvalue whose location 
changes when changing the normalization of the monodromy matrix, whereas the location 
of immovable Dirichlet eigenvalues is independent of the normalization of the monodromy 
matrix. For an N -band potential there are a total of N−1 movable Dirichlet eigenvalues 
(cf. Definition 2.12 and [33,36]).

Theorem 1.4. Assume the conditions of Theorem 1.2. If A /∈ N, then:

1. For any m ∈ (0, 1), each periodic or antiperiodic eigenvalue has geometric multiplicity 
one.

2. There are no periodic or antiperiodic eigenvalues on R.
3. There are infinitely many spines (spectral bands emanating transversally from the 

real axis) at the real critical points of the Floquet discriminant (i.e., of the trace of 
the monodromy matrix).

Time evolution according to the NLS equation is an isospectral deformation of a 
potential of (1.2). Thus, by Theorem 1.2, if A ∈ N, the initial condition q(x, 0) =
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A dn(x; m) generates a genus 2A − 1 solution of the focusing NLS equation; conversely, 
if A /∈ N, the corresponding solution is not finite-genus.

After various preliminaries in Section 2, the proof of Theorems 1.2 and 1.3 involves 
several steps:

• In Section 3 we map (1.1) into Hill’s equation with a complex potential, and in 
Section 4 we map Hill’s equation into a second-order trigonometric ODE.

• In Section 4.2 we map the trigonometric ODE into a three-term recurrence relation 
for the Fourier coefficients.

• In Section 4.3 we demonstrate that, when A ∈ N, each periodic or antiperiodic 
eigenvalue of L is associated to a corresponding ascending or descending semi-infinite 
Fourier series.

• In Section 5 we map the trigonometric ODE into Heun’s equation and relate the 
periodic and antiperiodic eigenvalue problems for (1.2) with potential (1.3) to a 
connection problem for Heun’s equation.

• Moreover, in Section 5 we show that the periodic and antiperiodic eigenvalues of (1.2)
with potential (1.3) correspond to the eigenvalues of certain tridiagonal operators 
that encode the recurrence relations for the coefficients of the Frobenius series solu-
tion of Heun’s equation at the origin and at infinity.

• In Section 6 we establish that all eigenvalues of the above-mentioned tridiagonal 
operators are real.

The determination of the precise number of spectral bands for any m ∈ (0, 1) is proved 
in Section 8. Finally, Theorem 1.4 is proved in Section 7. Notation, standard definitions, 
several technical statements and additional results and observations are relegated to the 
appendices.

2. Preliminaries

We begin by briefly reviewing basic properties of the Lax spectrum. Unless stated 
otherwise, all statements in this section hold for operators L with arbitrary continuous 
l-periodic potentials.

2.1. Bloch-Floquet theory

While it is natural to pose (1.1) on the whole real x-axis, all of the requisite information 
for the spectral theory is contained in the period interval of the potential, namely, Ixo

:=
[xo, xo + l], where x = xo is an arbitrary base point. Consider the Floquet boundary 
conditions (BCs):

BCν(L) := {φ : φ(xo + l; z) = eiνlφ(xo; z) , ν ∈ R} . (2.1)
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Definition 2.1 (Floquet eigenvalues of the Dirac operator). Let the operator L :
H1(Ixo

; C2) → L2(Ixo
; C2) be defined by (1.2). Let dom(L) := {φ ∈ H1(Ixo

; C2) :
φ ∈ BCν(L)}. The set of Floquet eigenvalues of L is given by

Σν(L) := {z ∈ C : ∃φ �≡ 0 ∈ dom(L) s.t. Lφ = zφ} . (2.2)

In particular, ν = 2nπ/l, n ∈ Z, identifies periodic eigenfunctions, while ν = (2n −1)π/l, 
n ∈ Z, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues 
periodic and antiperiodic, respectively, and we will denote the set of periodic and an-
tiperiodic eigenvalues by Σ±(L), respectively.

(H1 denotes the space of square-integrable functions with square-integrable first 
derivative.) It is well-known that Σν(L) is discrete and countably infinite [15,24].

Next we review the theory of linear homogeneous ODEs with periodic coefficients and 
important connections to the Lax spectrum. We set the base point xo = 0 without loss of 
generality. Recall, the Floquet solutions (or Floquet eigenfunctions) of (1.1) are solutions 
such that

φ(x + l; z) = μφ(x; z) , (2.3)

where μ := μ(z) is the Floquet multiplier. Then by Floquet’s Theorem (see [15,32]) all 
bounded (in x) Floquet solutions of (1.1) have the form φ(x; z) = eiνxψ(x; z), where 
ψ(x + l; z) = ψ(x; z) and ν := ν(z) ∈ R. Thus, a solution of (1.1) is bounded for all 
x ∈ R if and only if |μ| = 1, in which case one has the relation

μ = eiνl , (2.4)

with ν ∈ R. The quantity iν is the Floquet exponent. (With a slight abuse of ter-
minology, we will often simply refer to ν as the Floquet exponent for brevity.) The 
Floquet multipliers are the eigenvalues of the monodromy matrix M := M(z), defined 
by Y (x + l; z) = Y (x; z)M(z), where Y (x; z) is any fundamental matrix solution of (1.1). 
It is well-known that the monodromy matrix is entire as a function of z [68,71]. Note that 
detM(z) ≡ 1 ∀z ∈ C by Abel’s formula, since (1.2) is traceless. Thus, the eigenvalues of 
M are given by the roots of the quadratic equation μ2 − 2Δ μ + 1 = 0, where Δ := Δ(z)
is the Floquet discriminant, i.e.,

Δ(z) = 1
2 trM(z) . (2.5)

Further, μ± = Δ ±
√

Δ2 − 1. Thus (1.1) admits bounded solutions if and only if −1 ≤
Δ ≤ 1.

Remark 2.2. For q ∈ C(R) one has Δ(z) = cos(zl) + o(1) as z → ∞ along the real z-axis 
(see [68,71]).
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The above considerations yield an equivalent representation of the Lax spectrum (see 
[15,27,81]):

Theorem 2.3. The Lax spectrum Σ(L) is given by

Σ(L) = {z ∈ C : Δ(z) ∈ [−1, 1]} . (2.6)

Additionally, for any fixed ν ∈ R the Floquet eigenvalues are given by

Σν(L) = {z ∈ C : Δ(z) = cos(νl)} . (2.7)

For each ν ∈ R the set Σν(L) is discrete and the only accumulation point occurs at 
infinity. Moreover,

Σ(L) =
⋃

ν∈[0,2π/l)

Σν(L) . (2.8)

Remark 2.4. By (2.3), (2.4) and (2.7), the values z ∈ C for which Δ(z) = ±1 are the 
periodic and antiperiodic eigenvalues z ∈ Σ±(L) (see Definition 2.1), respectively. The 
periodic and antiperiodic eigenvalues correspond to band edges of the Lax spectrum. 
Further, Σν(L) ∩ Σν′(L) = ∅ for all ν �= ν′ mod 2π/l.

2.2. General properties of the Lax spectrum

Owing to (2.6), the Lax spectrum (1.8) is located along the zero level curves of 
Im Δ(z), i.e., Γ := {z ∈ C : Im Δ(z) = 0}. Moreover, Γ is the union of an at most 
countable set of regular analytic curves Γn [39], each starting from infinity and ending 
at infinity:

Γ = ∪n∈NΓn . (2.9)

(The precise details of the map n �→ Γn are not important for the present purposes.) 
Different curves Γi �= Γj (and therefore different spectral bands) can intersect at saddle 
points of Δ(z). However, two distinct Γn can intersect at most once, as a result of the fact 
that each Γn is a level curve of the harmonic function Im Δ(z). Thus the Lax spectrum 
Σ(L) cannot contain any closed curves in the finite z-plane.

Definition 2.5 (Spectral band). A spectral band is a maximally connected regular analytic 
arc along Γn where Δ(z) ∈ [−1, 1] holds. Each finite portion of Γn where | ReΔ(z)| > 1, 
delimited by a band on either side, is called a spectral gap.

Lemma 2.6. ([12]) The real z-axis is the only band extending to infinity; Σ(L) contains 
no closed curves in the finite z-plane; and the resolvent set ρ := C \ Σ(L) is comprised 
of two connected components.
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Fig. 1. Schematic diagram of the Lax spectrum for a generic potential.

With the above definition, the Lax spectrum can be decomposed into bands and gaps 
along each Γn as in a self-adjoint problem, with the crucial difference that here bands 
and gaps are not restricted to lie along the real z-axis (as they would be in a self-adjoint 
problem), but lie instead along arcs of Γn. Fig. 1 provides a schematic illustration of 
these concepts.

We call a spectral band intersecting the real or imaginary z-axis transversally a spine
[71]. Generically, the Lax spectrum of the operator (1.2) includes infinitely many spines 
emanating from (infinitely many) critical points that extend to (±) infinity along the 
real z-axis [24,71], in which case we call q an infinite-band potential. Otherwise, we call 
q a finite-band potential. Specifically, if there are N bands (not including the real z-axis) 
we say that q is an N -band potential. The corresponding solutions of the focusing NLS 
equation are described in terms of Riemann Θ-functions determined by hyperelliptic 
Riemann surfaces of genus G = N − 1 (see [8,33,36,49,86]). For example, q ≡ A is a 
genus-0 (i.e., a 1-band) potential of the Dirac operator (1.2), and q ≡ dn(x; m) is a 
genus-1 (i.e., a 2-band) potential.

Remark 2.7. The following sets play a key role in the analysis:

• Periodic/antiperiodic points: z± ∈ C such that Δ(z±) = ±1 (note z± ∈ Σ±(L));
• Critical points: zc ∈ C such that ∂zΔ(zc) = 0.

We denote by Φ(x; z) the fundamental matrix solution of (1.1) normalized so that 
Φ(0; z) ≡ 1, where 1 is the 2 × 2 identity matrix. The trace and the eigenvalues of the 
monodromy matrix M(z) are independent of the particular fundamental matrix solution 
chosen, and therefore so is the Floquet discriminant Δ(z) and the Lax spectrum Σ(L). 
Nonetheless, it will be convenient to use Φ(x; z), so that M(z) is simply given by

M(z) = Φ(l; z) . (2.10)
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Remark 2.8. It is straightforward to see that, for all z ∈ C, the monodromy matrix 
satisfies the same symmetries as the scattering matrix for the IST on the line (e.g., 
see [1,2,68])

M−1(z) = σ2M
T(z)σ2 , (2.11a)

M(z) = σ2M(z)σ2 . (2.11b)

Moreover, it is also straightforward to verify the following additional symmetries (e.g., 
see [12]). If q is real, then

M(−z) = M(z) , z ∈ C . (2.12a)

Moreover, if q is even, then

M(−z) = σ1M−1(z)σ1 , z ∈ C , (2.12b)

while if q is odd, then

M(−z) = σ2M−1(z)σ2 , z ∈ C , (2.12c)

where σ1 and σ2 are the first and second Pauli spin matrices, respectively (see Ap-
pendix A.1).

The symmetry (2.11b) for the monodromy matrix implies that the Floquet discrimi-
nant satisfies the Schwarz symmetry

Δ(z) = Δ(z) , z ∈ C . (2.13)

Moreover, if q is real or even or odd, (2.12) implies additionally that Δ(z) is an even 
function:

Δ(−z) = Δ(z) , z ∈ C . (2.14)

As a result, one has:

Lemma 2.9. If q is real or even or odd, Σ(L) is symmetric about the real and imaginary 
z-axes. Thus, the Floquet eigenvalues come in symmetric quartets {z, z, −z, −z}.

For q real and even, it follows from (2.12a) and (2.12b) that

M(z) = Δ(z)1 + c(z)σ3 − is(z)σ2 , z ∈ C . (2.15)

Obviously, (2.15) together with the fact that detM(z) ≡ 1, imply the relation
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Δ2(z) = 1 + c2(z) − s2(z) , z ∈ C . (2.16)

Equation (2.12a) also implies that, if q is real, M(z) is real when z ∈ iR. Moreover, for 
q real and even, one has:

Δ(z) = Δ(z) = Δ(z), s(z) = s(z) = s(z), c(z) = −c(z) = c(z) , z ∈ iR . (2.17)

That is, Δ(z), s(z) and c(z) are all real for z ∈ iR. For z ∈ R, Δ(z) and s(z) are real, 
whereas c(z) is purely imaginary. Finally, since M(z) is entire, (2.17) also implies

s(−z) = s(z) , c(−z) = −c(z) , z ∈ C . (2.18)

Next we show that the Lax spectrum of (1.2) with a non-constant potential is confined 
to an open strip in the spectral plane. The following Lemma is proved in Appendix A.2, 
and is instrumental for this work:

Lemma 2.10. Suppose q ∈ C(R) is l-periodic. (i) If q is not constant and z ∈ Σ(L), then 
| Im z| < ‖q‖∞. (ii) If q is real or even or odd, and Σ±(L) ⊂ R ∪ iR, then Σ(L) ⊂ R ∪ iR
and q is finite-band.

To solve the inverse problem in the IST (namely, reconstructing the potential from the 
scattering data), an auxiliary set of spectral data is also needed–the Dirichlet eigenvalues 
[33,49]:

Definition 2.11 (Dirichlet eigenvalues). Let M(z) be defined by (2.10). The set of Dirich-
let eigenvalues (see [33]) with base point x0 = 0 is defined as

ΣDir(L;xo = 0) := {z ∈ C : s(z) = 0} . (2.19)

In contrast to the Lax spectrum, the Dirichlet eigenvalues are not invariant with re-
spect to changes in the base point x = xo, or to time evolution of q according to the 
focusing NLS equation. Indeed, in the context of the integrability of NLS on the circle, 
the Dirichlet eigenvalues correspond to angle variables and are used to coordinatize the 
isospectral level sets. As we discuss next, the set of Dirichlet eigenvalues is discrete, con-
sists of movable and immovable points, and the number of movable Dirichlet eigenvalues 
is tied to the genus of the corresponding Riemann surface (see [33,40]).

The monodromy matrix M(z) in (2.10) was defined in terms of the fundamental matrix 
solution Φ(x; z) normalized as Φ(0; z) ≡ 1. The monodromy matrix M(z; xo) associated 
with a “shifted” solution Φ̃(x; xo, z) normalized as Φ̃(xo; xo, z) ≡ 1, with x0 ∈ R, is given 
by

M(z;xo) = Φ(xo; z)M(z)Φ−1(xo; z). (2.20)

Let ΣDir(L; xo) be the corresponding set of Dirichlet eigenvalues.
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Definition 2.12 (Movable and immovable Dirichlet eigenvalues). Let z ∈ C be a Dirichlet 
eigenvalue associated to the monodromy matrix M(z; xo) with a given base point x = xo, 
i.e., z ∈ ΣDir(L; xo). Following [33], we say that z is an immovable Dirichlet eigenvalue if 
z ∈ ΣDir(L; x) for all x ∈ R. Otherwise, we say z ∈ C is a movable Dirichlet eigenvalue.

Remark 2.13. If q is an N -band potential of the non-self-adjoint Dirac operator (1.2), 
then the number of movable Dirichlet eigenvalues is N − 1 (see [33,40]).

An immediate consequence of (2.16) and the symmetries of M(z), Δ(z), c(z) and s(z)
is the following lemma, which will be useful later (see also [33,71]):

Lemma 2.14. If z ∈ R and |Δ(z)| = 1, then c(z) = s(z) = 0, so that z is an immovable 
Dirichlet eigenvalue. Conversely, if s(z) = 0 with z ∈ iR, then |Δ(z)| ≥ 1.

Lemma 2.15. Let z± ∈ Σ±(L). If ∂zΔ(z±) �= 0, then the corresponding eigenspace has 
dimension one.

Proof. Suppose that there exist two linearly independent periodic (or antiperiodic) eigen-
functions. Consider the normalized fundamental matrix solution Φ(x; z) of (1.1), namely, 
LΦ(x; z) = zΦ(x; z) with Φ(0; z) ≡ 1. Differentiating with respect to z and using varia-
tion of parameters one gets

Δz = 1
2 tr

(
− iΦ(l; z)

l∫
0

Φ−1(x; z)σ3Φ(x; z) dx
)
. (2.21)

By Floquet’s theorem Φ(l; z±) = ±1, respectively. Then (2.21) yields ∂zΔ(z±) = 0. �
The following lemma is a direct consequence of Lemmas 2.14, and 2.15:

Lemma 2.16. If z± ∈ Σ±(L) ∩R, then the geometric multiplicity is two and ∂zΔ(z±) = 0, 
respectively.

2.3. Limits m → 0 and m → 1; z = 0

The two distinguished limits m → 0+ and m → 1− of the two-parameter family of 
elliptic potentials (1.3) provide convenient limits of the results of this work. Interestingly, 
both of these limits yield exactly solvable models. Here it will be convenient to keep track 
of the dependence on m explicitly.

Since dn(x; 0) ≡ 1, when m = 0 the potential (1.3) reduces to a constant background, 
i.e., q ≡ A with period l = 2K(0) = π. Thus, (1.1) becomes a linear system of ODEs 
with constant coefficients, for which one easily obtains a fundamental matrix solution

Φ(x; z,m = 0) = e−i(zσ3−Aσ2)x . (2.22)
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Hence the monodromy matrix is

M(z;m = 0) = cos
(√

z2 + A2π
)
1 −

i sin
(√

z2 + A2π
)

√
z2 + A2

(
zσ3 −Aσ2

)
, (2.23)

implying Σ(L; A, 0) = R ∪ [−iA, iA]. Further, z = ±iA are the only simple periodic 
eigenvalues; all other periodic (resp. antiperiodic) eigenvalues are double points. Hence, 
for any A �= 0, q ≡ A is a 1-band (i.e., genus-0) potential of (1.1). Moreover, the associated 
solution of the focusing NLS equation [i.e., (1.5) with s = 1] is simply q(x, t) = A e2iA2t.

On the other hand, the limit m → 1− is singular, since K(m), and therefore the 
period l = 2K(m) of the potential (1.3), diverges in this limit. Indeed, dn(x; 1) ≡ sech x, 
so letting m = 1 results in the eigenvalue problem (1.1) with potential q ≡ A sech x. This 
case is also exactly solvable, and was first studied by Satsuma and Yajima [83]. The point 
spectrum is comprised of a set of discrete eigenvalues located along the imaginary z-axis. 
Moreover, for A ∈ N the potential is reflectionless, and the point spectrum is given by 
zn = i(n − 1/2) for n = 1, . . . , A. That is, when A ∈ N, q ≡ A sech x corresponds to 
a pure bound-state A-soliton solution of the focusing NLS equation [83]. When A = 1, 
the solution of the NLS equation (1.5) is simply q(x, t) = eit sech x. When A > 1, the 
solutions are much more complicated [66,83]. Indeed, the potential A sechx was used to 
study the semiclassical limit of the focusing NLS equation in the pure soliton regime [55].

Lastly, we discuss the origin z = 0 of the spectral plane. When z = 0, the ZS sys-
tem (1.6a) admits closed-form solutions (see Appendix A.3). These solutions then allow 
one to obtain the following lemma, which is proved in Appendix A.3:

Lemma 2.17. Consider (1.2) with potential (1.3) and m ∈ [0, 1). If A ∈ N is even or 
odd, then z = 0 is a periodic or antiperiodic eigenvalue, respectively, with geometric 
multiplicity two in each case.

3. Transformation to Hill’s equation

In this section we introduce a transformation of (1.1) that will be instrumental in 
proving Theorem 1.2, and we consider the effect of this transformation on the Lax spec-
trum.

First we transform (1.1) to Hill’s equation with a complex-valued potential via the 
unitary linear transformation

φ �→ v = Λφ , Λ := 1√
2

(
1 i
1 −i

)
, (3.1)

where v := v(x; z2) = (v+, v−)T. Differentiation of (1.1) and use of (3.1) show that, if q
in (1.2) is a real-valued differentiable potential, then (3.1) maps (1.1) into the diagonal 
system
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Hv := (−∂2
x + Q2 − iQxσ1)v = z2v . (3.2)

Or, in component form,

v±xx + (±iqx + z2 + q2)v± = 0 . (3.3)

Equation (3.3) is Hill’s equation with the complex (Riccati) potential V ± := ∓iqx − q2. 
Thus, (3.3) amounts to the pair of eigenvalue problems

H±v± = λv± , λ := z2 , (3.4)

where

H± := −∂2
x + V ±(x) . (3.5)

Remark 3.1. If the potential q in (1.2) is real and even, then V ±(−x) = V ±(x), i.e., V ±

is PT-symmetric.

Next, similarly to (2.1), we introduce the corresponding Floquet BCs for H±:

BCν(H±) := {v± : v±(l;λ) = eiνl v±(0;λ) , v±x (l;λ) = eiνlv±x (0;λ) , ν ∈ R} . (3.6)

Definition 3.2 (Floquet eigenvalues of Hill’s operator). Let the operators H± : H2([0, l]) →
L2([0, l]) be defined by (3.5). Let dom(H±) := {v± ∈ H2([0, l]) : v± ∈ BCν(H±)}. The 
set of Floquet eigenvalues of H± is given by

Σν(H±) := {λ ∈ C : ∃v± �≡ 0 ∈ dom(H±) s.t. H±v± = λv±} . (3.7)

In particular, ν = 2nπ/l, n ∈ Z, identifies periodic eigenfunctions, while ν = (2n −1)π/l, 
n ∈ Z, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues 
periodic and antiperiodic, respectively, and we will denote the set of periodic and an-
tiperiodic eigenvalues by Σ±(H±), respectively.

(H2 denotes the space of square-integrable functions with square-integrable first and 
second derivatives.) It is well-known that Σν(H±) is discrete and countably infinite [15,
24,27,69].

Lemma 3.3. If the potential q in (1.2) is real and even, then Σν(H+) = Σ−ν(H−), the 
dimension of the corresponding eigenspaces are equal, and each of Σν(H±) is symmetric 
about the real λ-axis.

Proof. Let λ ∈ Σν(H+) with eigenfunction v+(x; λ). Since q is even, it is easy to check 
ṽ := v+(−x; λ) satisfies H−ṽ = λṽ. Moreover,
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ṽ(l;λ) = v+(−l;λ) = e−iνlṽ(0;λ) , (3.8a)

ṽx(l;λ) = −v+
x (−l;λ) = e−iνlṽx(0;λ) . (3.8b)

Hence, λ ∈ Σ−ν(H−). Conversely, if λ ∈ Σ−ν(H−) with eigenfunction v−(x; λ), a 
completely symmetric argument shows that λ ∈ Σν(H+). Finally, since the map 
v(x; λ) �→ v(−x; λ) is a isomorphism, the dimension of the corresponding eigenspaces 
are the same.

Next, we prove the symmetry. Assume that λ ∈ Σν(H±) with corresponding eigen-
function v±(x; λ), respectively. Then it is easy to check that ṽ± := v(−x;λ)± satisfies 
H±ṽ± = λṽ±. Moreover,

ṽ±(l;λ) = v±(−l;λ) = eiνlṽ±(0;λ) , (3.9a)

ṽ±x (l;λ) = −v±x (−l;λ) = eiνlṽ±x (0;λ) . (3.9b)

Thus, λ ∈ Σν(H±) with eigenfunction ṽ±(x; λ), respectively. �
Remark 3.4. It is easy to see that Lemma 3.3 implies Σ±(H+) = Σ±(H−), respectively.

Next, since the Lax spectrum Σ(H±) = ∪ν∈[0,2π/l)Σν(H±), we have the following key 
equivalence:

Lemma 3.5. If the potential q in (1.2) is real and even, then the unitary map (3.1) implies:

Σ(H+) = Σ(H−) = {λ = z2 : z ∈ Σ(L)} . (3.10)

That is, the Lax spectrum of these three operators is related through the relation λ = z2. 
In particular,

z ∈ Σ+(L) ⇔ λ = z2 ∈ Σ+(H±) , z ∈ Σ−(L) ⇔ λ = z2 ∈ Σ−(H±) . (3.11)

Finally, for z �= 0, the geometric multiplicity of an eigenvalue z ∈ Σ+(L) equals that of 
λ = z2 ∈ Σ+(H±), and similarly for z ∈ Σ−(L) and λ = z2 ∈ Σ−(H±).

Proof. If z ∈ Σ(L), the transformation (3.1) implies that v±(x; λ) are both bounded 
solutions of Hill’s ODE (3.4), respectively, implying λ ∈ Σ(H±). Conversely, if v+(x; λ)
is a bounded solution of (3.4) with the plus sign, it follows that ṽ := v+(−x, λ) is a 
bounded solution of (3.4) with the minus sign. Further, φ1 = (v+ + v−)/

√
2, and φ2 =

i(v−−v+)/
√

2 are both bounded, and the map (3.1) then implies that φ(x; z) = (φ1, φ2)T
solves (1.1), implying z ∈ Σ(L). A similar argument follows if one starts with v−(x; λ)
bounded. Thus, (3.10) follows. Equation (3.11) follows directly from Lemma 3.3.

It remains to show that, for z �= 0, the dimension of the corresponding eigenspaces are 
equal. The argument follows [25] where the self-adjoint case was studied. To this end, let 
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E±(L, z) denote the eigenspace associated with an eigenvalue z ∈ Σ±(L), and similarly 
for L2 := L ◦ L and H±. First, note that φ �→ iσ2φ is a (unitary) isomorphism between 
the eigenspaces E±(L, z) and E±(L, −z). Thus, applying the operator twice, for z �= 0
one easily gets

dimE±(L2, λ = z2) = 2dimE±(L, z) . (3.12)

Next, note that L2 is (unitary) equivalent to the diagonal system (3.2), i.e., H =
1
2ΛL2Λ−1 Moreover,

H =
(
H+ 0
0 0

)
+

(
0 0
0 H−

)
, (3.13)

and so

E±(H,λ) = (E±(H+, λ) ⊕ 0) ⊕ (0 ⊕E±(H−, λ)) . (3.14)

Hence, by (3.12)–(3.14) and Lemma 3.3 it follows dimE±(L, z) = dimE±(H±, λ), re-
spectively. �
Remark 3.6. By Lemma 3.5, the spectrum of the Dirac operator L in (1.2) with real and 
even potential is associated to that of the spectrum of the Hill operators H± in (3.5). 
Importantly, note that the final statement of Lemma 3.5 does not hold at z = 0; that is, 
the geometric multiplicity of the periodic (or antiperiodic) eigenvalue z = 0 of the Dirac 
and Hill operators need not be equal (see Appendix A.3).

All of the above results hold for generic real and even potentials. Moving forward, 
we restrict our attention to the Jacobi elliptic potential (1.3). By Lemma 3.5 we fix 
y := v−(x; λ) without loss of generality (dependence on A and m is omitted for brevity). 
Then Hill’s equation H−v− = λv− is given by

yxx + (iAm sn(x;m) cn(x;m) + λ + A2 dn2(x;m))y = 0 . (3.15)

Remark 3.7. Since dn2(x; m) ≡ 1 −m sn2(x; m), (3.15) can be viewed as an imaginary 
deformation of the celebrated Lamé equation [4,30,46,69], yxx +(λ +V (x)) y = 0 up to a 
shift of the eigenvalue λ. The Lamé equation has the remarkable property that solutions 
can coexist if and only if A2 = n(n + 1) where n is an integer [4,30,46,69]. Recall 
that solutions coexist if two linearly independent periodic (or respectively antiperiodic) 
solutions exist for a given λ. In the case of Hill’s equation with a real potential this 
amounts to a “closed gap” in the spectrum (corresponding to finite gap potentials).
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4. Transformation to a trigonometric ODE

In this section we introduce a second transformation of (1.1). By part (ii) of 
Lemma 2.10 moving forward we only need to consider the periodic and antiperiodic 
eigenfunctions.

4.1. Second-order ODE with trigonometric coefficients

Consider the following change of independent variable:

x �→ t := 2am(x;m) , (4.1)

where am(x; m) is the Jacobi amplitude [14,42]. Equation (4.1) establishes a map between 
the strip | Im x | < K(1 − m) and the complex t-plane cut along the rays (2j + 1)π ±
2iτr, τ ≥ 1, j ∈ Z, where r = ln[(2 − m)/m]/2 [42,76]. We then arrive at our second 
reformulation of the Dirac eigenvalue problem:

4(1 −m sin2 t
2 )ytt − (m sin t)yt + (λ + A2(1 −m sin2 t

2 ) + i
2Am sin t)y = 0 . (4.2)

(The independent variable t introduced above should not be confused with the time 
variable of the NLS equation (1.5).)

Remark 4.1. Equation (4.2) can be written as the eigenvalue problem

By = λy , (4.3)

where the operator B : H2([0, 2π]) → L2([0, 2π]) is defined by

B := −4(1 −m sin2 t
2 )∂2

t + (m sin t)∂t − (A2(1 −m sin2 t
2 ) + i

2Am sin t)) . (4.4)

The coefficients are now 2π-periodic and as before Σ±(B) will denote the periodic and 
antiperiodic eigenvalues of the operator B, respectively (see Definition 3.2).

This leads to the following result which connects the periodic/antiperiodic eigenvalues 
of Hill’s equation (3.15) to the periodic/antiperiodic eigenvalues of the trigonometric 
equation (4.2).

Lemma 4.2. Let B be the trigonometric operator (4.4). Then λ ∈ Σ±(B) if and only if 
λ ∈ Σ±(H−).

Proof. By (4.2) one gets By = λy if and only if H−ỹ = λỹ, with ỹ(x; λ) = y(t; λ)
and t = 2am(x; m) as per (4.1). Next, note that am(x; m) is monotonic increasing for 
x ∈ (0, 2K), am(x + 2K; m) = am(x; m) + π, and am(0; m) = 0. Hence, the map (4.1)
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is a bijection between x ∈ [0, 2K] and t ∈ [0, 2π]. Moreover, ỹ(0; λ) = ±ỹ(2K; λ) if 
and only if y(0; λ) = ±y(2π; λ). Similarly, ỹx(0; λ) = ±ỹx(2K; λ) if and only if yt(0; λ) =
±yt(2π; λ). Thus, 2K-periodic (resp. antiperiodic) solutions of (3.15) map to 2π-periodic 
(resp. antiperiodic) solutions of (4.2), and vice versa. �
Remark 4.3. The trigonometric ODE (4.2) can be viewed as a complex deformation of 
Ince’s equation (see Chapter 7 of [69] for more details). Namely, one can write (4.2) as

(1 + a cos t)ytt + (b sin t)yt + (h + d cos t + ie sin t)y = 0 , (4.5)

where a = m/(2 − m), b = −a/2, h = λ/(4 − 2m) + A2/4, d = A2a/4, e = Aa/4. To 
the best of our knowledge this is the first example of a non-self-adjoint version of Ince’s 
equation arising from applications.

4.2. Fourier series expansion and three-term recurrence relation

Recall that any Floquet solution y(t; λ) of (4.2) bounded for all t ∈ R has the form 
y(t; λ) = eiνtf(t; λ) where f(t + 2π; λ) = f(t; λ) and ν ∈ R (cf. Section 2.1). Moreover, 
since f(t; λ) is 2π-periodic, we can express it in terms of a Fourier series on L2(S1), where 
S1 := R/Z is the unit circle. By direct calculation, let y(t; λ) be a Floquet solution of (4.2)
given by

y(t;λ) = eiνt
∑
n∈Z

cneint . (4.6)

Then the coefficients {cn}n∈Z are given by the following three-term recurrence relation:

αncn−1 + (βn − λ)cn + γncn+1 = 0 , n ∈ Z , (4.7)

where

αn = −1
4m [A− (2n + 2ν − 2)][A + (2n + 2ν − 1)] , (4.8a)

βn = (1 − 1
2m)[(2n + 2ν)2 −A2] , (4.8b)

γn = −1
4m [A− (2n + 2ν + 2)][A + (2n + 2ν + 1)] . (4.8c)

Remark 4.4. In turn, the recurrence relation (4.7) can be written as the eigenvalue prob-
lem

Bνc = λc , (4.9)

where c = {cn}n∈Z
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Bν :=

⎛⎜⎜⎝
. . . . . . . . .

αn βn γn
. . . . . . . . .

⎞⎟⎟⎠ . (4.10)

Note: ν ∈ Z corresponds to periodic, and ν ∈ Z + 1
2 to antiperiodic eigenfunctions 

of (4.3).

Next, define the spaces �2,p(Z) := {c ∈ �2(Z) :
∑

n∈Z |n|p|cn|2 < ∞}. The requirement 
that c ∈ �2,4(Z) ensures By ∈ L2([0, 2π]). The reason why this is the case is that B is a 
second-order differential operator, which implies that the Fourier coefficients of By will 
grow n2 faster as |n| → ∞ than those of y.

Definition 4.5 (Eigenvalues of the tridiagonal operator). Let the operator Bν : �2(Z) →
�2(Z) be defined by (4.10). The set of eigenvalues is given by

Σ(Bν) := {λ ∈ C : ∃c �≡ 0 ∈ �2,4(Z) s.t. Bνc = λc} . (4.11)

We have the following important result:

Lemma 4.6. If ν ∈ Z or Z + 1
2 , then Σ±(B) = Σ(Bν), and the dimension of the corre-

sponding eigenspaces are equal, respectively.

Proof. By standard results in Fourier analysis [79] one defines the bijective linear map

U : �2(Z) → L2(S1) , (Uc)(t) =
∑
n∈Z

cneint , (4.12)

and the multiplication operator

Mν : L2([0, 2π]) → L2([0, 2π]) , (Mνw)(t) = eiνtw(t) . (4.13)

By construction Bν = (MνU)−1BMνU in the standard basis and U , Mν are unitary. 
Also, y(t) = (MνUc)(t) (see (4.6)). Hence, it follows Σ±(B) = Σ(Bν) and the dimensions 
of the corresponding eigenspaces are equal. �
Remark 4.7. The Floquet exponent ν can be shifted by any integer amount without 
loss of generality, since doing so simply corresponds to a shift in the numbering of 
the Fourier coefficients in (4.6). So, for example, ν �→ ν + s simply corresponds to 
(αn, βn, γn) �→ (αn+s, βn+s, γn+s) for all n ∈ Z.
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4.3. Reducible tridiagonal operators and ascending and descending Fourier series

We show that the tridiagonal operator Bν is reducible. Recall that a tridiagonal 
operator is reducible if there exists a zero element along the subdiagonal, or superdiagonal 
[44].

Lemma 4.8. If A ∈ N and ν ∈ Z or Z + 1
2 , then Bν is reducible.

Proof. There are two cases to consider: (i) ν ∈ Z, corresponding to periodic eigenvalues, 
and (ii) ν ∈ Z + 1

2 , corresponding to antiperiodic eigenvalues. In either case, however, 
when A ∈ N one has

αn = 0 ⇐⇒ n = A
2 + 1 − ν ∨ n = −A

2 + 1
2 − ν , (4.14a)

γn = 0 ⇐⇒ n = A
2 − 1 − ν ∨ n = −A

2 − 1
2 − ν . (4.14b)

In both cases, one can find two values of n that make αn and γn zero, respectively, but 
only one of them is an integer, depending on whether A is even or odd. Note also that 
βn = 0 for n = −ν ± A/2, but the corresponding value of n is integer only if A is even 
and ν ∈ Z or A is odd and ν ∈ Z + 1

2 . (The equalities in (4.14) hold for all ν ∈ R, but 
only when ν ∈ Z or ν ∈ Z + 1

2 do they yield integer values of n.) �
We emphasize that, when A /∈ N, a similar statement (namely, that Bν is reducible) 

can be made for different values of ν. The precise values of ν can be immediately obtained 
from the definition of the coefficients αn, βn and γn in (4.8). On the other hand, the 
particular significance of integer and half-integer values of ν is that they are associated 
with periodic and antiperiodic eigenvalues, which are the endpoints of the spectral bands. 
In Section 5.3 we will also see how the periodic and antiperiodic eigenvalues are related 
to the solution of a connection problem for a particular Heun ODE.

Consider the tridiagonal operator Bν : �2(Z) → �2(Z) in (4.10). Let �2+ = �2(No)
(No := N ∪ {0}) and �2− = �2(Z \ No), so that �2(Z) = �2− ⊕ �2+, and denote by P±
orthogonal projectors from �2(Z) onto �2± respectively. Finally, introduce the block de-
composition

Bν =
(
B− A−
A+ B+

)
, (4.15)

where the semi-infinite tridiagonal operators B± are defined as

B− :=

⎛⎜⎝. . . . . . . . .
α−2 β−2 γ−2

α β

⎞⎟⎠ , B+ :=

⎛⎜⎝β0 γ0
α1 β1 γ1

. . . . . . . . .

⎞⎟⎠ , (4.16)
−1 −1
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and A± only have one nontrivial entry each, equal to α0 and γ−1 respectively, in their 
upper right corner and lower left corner, respectively. If A ∈ N and ν = (1 −A)/2 (corre-
sponding to the case of periodic eigenvalues when A is odd and antiperiodic eigenvalues 
when A is even), it is easy to see that α0 = γ−1 = 0 and therefore A± ≡ 0, which implies 
that Bν = B− ⊕ B+ and �2± are invariant subspaces of Bν . The above considerations 
imply the following:

Lemma 4.9. If A ∈ N and ν = (1 −A)/2, then Σ(Bν) = Σ(B−) ∪Σ(B+), where B± are 
given by (4.16).

The case A ∈ N and ν = A/2 is similar, but more complicated. In this case, it is 
necessary to also introduce a second block decomposition of Bν in addition to (4.15), 
namely:

Bν =
(
B̃− Ã−
Ã+ B̃+

)
, (4.17)

where

B̃− :=

⎛⎜⎝. . . . . . . . .
α−1 β−1 γ−1

α0 β0

⎞⎟⎠ , B̃+ :=

⎛⎜⎝β1 γ1
α2 β2 γ2

. . . . . . . . .

⎞⎟⎠ , (4.18)

and Ã± only have one nontrivial entry each, equal to α1 and γ0 respectively, in their upper 
right corner and lower left corner, respectively. If A ∈ N and ν = A/2 (corresponding to 
the case of periodic eigenvalues when A is even and antiperiodic eigenvalues when A is 
odd), it is easy to see that γ−1 = β0 = α1 = 0 and therefore A− = Ã+ ≡ 0. On the other 
hand, A+ and Ã− are not identically zero. Thus, Bν cannot be split into a direct sum of 
two semi-infinite tridiagonal operators. Nevertheless, an analog of Lemma 4.9 still holds.

Lemma 4.10. If A ∈ N and ν = A/2, then Σ(Bν) = Σ(B−) ∪Σ(B+) = Σ(B̃−) ∪Σ(B̃+), 
where B± and B̃± are given by (4.16) and (4.18), respectively.

Proof. We first show that Σ(Bν) ⊂ Σ(B−) ∪ Σ(B+). Recall that A− = 0 but A+ �= 0. 
Let λ and c be an eigenpair of Bν , and let c± = P±c, so that c = (c−, c+)T. If c− �= 0, 
we have B−c− = λc−, and therefore λ ∈ Σ(B−). Otherwise, c− = 0 implies c+ �= 0 and 
c = (0, c+)T, and B+c+ = λc+, i.e., λ ∈ Σ(B+).

We show that Σ(B−) ∪Σ(B+) ⊂ Σ(Bν). Suppose that λ and c+ �= 0 are an eigenpair 
of B+, and let c = (0, c+)T. Then Bνc = λc, implying λ ∈ Σ(Bν). Finally, suppose that 
λ ∈ Σ(B−) \ Σ(B+), with associated eigenvector c− �= 0. In this case, let c = (c−, p)T. 
We choose p such that p = −(B+ − λ)−1A+c−. One can show (similarly to Lemma 6.7) 
that it is always possible to do so since B+ is closed with compact resolvent. Therefore, 
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the operator (B+ − λ)−1 exists and is bounded, and λ /∈ Σ(B+) implies that λ is in the 
resolvent set of B+. But then we have Bνc = λc, which implies λ ∈ Σ(Bν).

The proof that Σ(Bν) = Σ(B̃−) ∪ Σ(B̃+) is entirely analogous, but we report it 
because it is useful later. If λ and c are an eigenpair of Bν , let c̃± = P̃±c, with P̃±
defined similarly as P±. If c̃+ �= 0, we have B̃+c̃+ = λc̃+ and therefore λ ∈ Σ(B̃+), 
since Ã+ = 0. Otherwise, similar arguments as before show that B̃−c̃− = λc̃− and 
therefore λ ∈ Σ(B̃−). We therefore have Σ(Bν) ⊂ Σ(B̃−) ∪ Σ(B̃+). Finally, to show 
that Σ(B̃−) ∪ Σ(B̃+) ⊂ Σ(Bν), we first observe that if λ and c̃− are an eigenpair of 
B̃−, and c = (c̃−, 0)T, one has Bνc = λc and therefore λ ∈ Σ(Bν). Conversely, if 
λ ∈ Σ(B̃+) \ Σ(B̃−), with eigenvector c̃+, it is always possible to choose p such that 
p = −(B̃− − λ)−1Ã−c̃+ (again, cf. Lemma 6.7), and therefore c = (p, ̃c+)T satisfies 
Bνc = λc, implying λ ∈ Σ(Bν). �
Remark 4.11. If A ∈ N and ν = A/2, then B+ and B̃− can be decomposed as

B+ =
(

0 γ0
0 B̃+

)
, B̃− =

(
B− 0
α0 0

)
. (4.19)

Corollary 4.12. If A ∈ N and ν = A/2, then Σ(Bν) = Σ(B−) ∪ Σ(B̃+) ∪ {0}.

Importantly, the proofs of Lemmas 4.9 and 4.10 also imply the following:

Theorem 4.13. If A ∈ N and λ ∈ C \ {0} is a periodic or antiperiodic eigenvalue of the 
trigonometric operator (4.4), then there exists an associated eigenfunction generated by 
either an ascending or descending Fourier series.

Proof. The proof is trivial when ν = (1 − A)/2, since in this case Bν = B− ⊕ B+. On 
the other hand, the case ν = A/2 requires more care. The proof of Lemma 4.10 shows 
that, if λ and c+ are an eigenpair of B+, then c = (0, c+)T is a corresponding eigenvector 
of Bν . Next, if λ and c̃− are an eigenpair of B̃−, then c = (c̃−, 0)T is a corresponding 
eigenvector of Bν . Finally, note Σ(B̃−) = Σ(B−) ∪ {0}. �
Corollary 4.14. If A ∈ N and λ ∈ C is a periodic or antiperiodic eigenvalue with geomet-
ric multiplicity two, then a first eigenfunction can be written in terms of an ascending 
Fourier series, while a second linearly independent eigenfunction is given by a descending 
Fourier series.

5. Transformation to a Heun ODE

We now introduce a final change of independent variable that maps the trigonometric 
ODE (4.2) into Heun’s equation. All the results of Sections 5.1 and 5.2 below will hold for 
integer as well as non-integer values of A except where expressly indicated. This further 
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reformulation allows us to interpret the Dirac problem (1.1) as a connection problem for 
Heun’s ODE.

5.1. Transformation from the trigonometric ODE to Heun’s equation

Recall that Heun’s equation is a second-order linear ODE with four regular singular 
points [30,48,82]. We first rewrite (4.2) using Euler’s formula. Then we perform the 
following change of independent variable:

t �→ ζ := eit . (5.1)

We then obtain a third reformulation of our spectral problem, since the transforma-
tion (5.1) maps the trigonometric ODE (4.2) (and therefore (1.1) with elliptic poten-
tial (1.3)) into the following Heun ODE:

ζ2F (ζ;m)yζζ + ζG(ζ;m)yζ + H(ζ;λ,A,m)y = 0 , (5.2)

where

F (ζ;m) := −mζ2 + (2m− 4)ζ −m, (5.3a)

G(ζ;m) := −3
2mζ2 + (2m− 4)ζ − 1

2m, (5.3b)

H(ζ;λ,A,m) := 1
4A(A + 1)mζ2 +

(
λ + A2(1 − m

2 )
)
ζ + 1

4A(A− 1)m. (5.3c)

Note that the trigonometric ODE (4.2) does not explicitly contain the Floquet expo-
nent ν. The role of ν for Heun’s ODE will be played by the Frobenius exponents discussed 
below.

Equation (5.2) has three regular singular points in the finite complex plane plus a 
regular singular point at infinity. Specifically, in the finite complex plane one has a regular 
singular point at ζ = 0 and two additional regular singular points where F (ζ; m) = 0, 
i.e., when

ζ2 − 2(1 − 2
m ) ζ + 1 = 0 , (5.4)

which is satisfied for

ζ1,2 = m− 2 ± 2
√

1 −m

m
. (5.5)

Note that ζ1,2 < 0 for all m ∈ (0, 1), and ζ2 = 1/ζ1. Without loss of generality, we take 
|ζ1| < 1 < |ζ2|. Summarizing, the four real regular singular points are at 0, ζ1, ζ2, ∞, 
with ζ2 ∈ (−∞, −1) and ζ1 ∈ (−1, 0).
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Table 1
Frobenius exponents corresponding to the Heun ODE (5.2).

ζ = 0 ζ = ζ1 ζ = ζ2 ζ = ∞

ρ1 ρo
1 = A/2 ρ1

1 = 0 ρ2
1 = 0 ρ∞

1 = A/2
ρ2 ρo

2 = −(A − 1)/2 ρ1
2 = 1/2 ρ2

2 = −1/2 ρ∞
2 = −(A + 1)/2

Remark 5.1. One can equivalently map the first-order ZS system (1.6a) into a first-order 
Heun system with the same four singular points using the same change of independent 
variable (5.1) [cf. Appendix A.4]:

ζwζ = −
[
A

2 σ3 +
(

0 1
2

2λζ
4ζ+m(ζ−1)2

(ζ2−1)m
2(4ζ+m(ζ−1)2)

)]
w , (5.6)

where w(ζ; λ) = (w1, w2)T.

5.2. Frobenius analysis of Heun’s ODE

Next we apply the method of Frobenius to (5.2) at the regular singular points ζ = 0
and ζ = ∞. Then we construct half-infinite tridiagonal operators whose eigenvalues 
coincide with those of the tridiagonal operators discussed in Section 4.3. By direct cal-
culation, one can easily check that the Frobenius exponents of (5.2) are as in Table 1. 
The Frobenius exponents ρ1,2 at ζ = 0 and ζ = ∞ are obtained by looking for solutions 
of (5.2) in the form

yo(ζ;λ) = ζρ
∞∑

n=0
cn ζ

n , (5.7a)

and

y∞(ζ;λ) = ζρ
∞∑

n=0
cn ζ

−n , (5.7b)

respectively, with c0 �= 0 in each case. Note, when A is even, ρo1 and ρ∞1 are integer while 
ρo2 and ρ∞2 are half-integer, and vice versa when A is odd. Note also that ρo2−ρo1 = 1/2 −A

and ρ∞1 − ρ∞2 = 1/2 + A, so when A ∈ N, these differences are never integer, and no 
exceptional cases (i.e., resonances) arise.

Next we study the three-term recurrence relations at ζ = 0 and ζ = ∞, since they are 
key to proving the reality of the λ eigenvalues. We begin by plugging (5.7a) and (5.7b)
into (5.2). The coefficients of the Frobenius series (5.7a) at ζ = 0 solve the following 
three-term recurrence relations. For ρ = ρo1 = A/2:

−λc0 + m (2A + 1) c1 = 0 , n = 0 , (5.8a)
2
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Pncn−1 + (Rn − λ)cn + Sncn+1 = 0 , n ≥ 1 , (5.8b)

where

Pn = m
2 (n− 1)(2A + 2n− 1) , Rn = (1 − m

2 )((A + 2n)2 −A2) ,

Sn = m
2 (n + 1)(2A + 2n + 1) . (5.8c)

For ρ = ρo2 = −(A − 1)/2:

[
(m2 − 1)(2A− 1) − λ

]
c0 − m

2 (2A− 3) c1 = 0 , n = 0 , (5.9a)

P̃ncn−1 + (R̃n − λ)cn + S̃ncn+1 = 0 , n ≥ 1 , (5.9b)

where

P̃n = −m
2 n(2A− 2n + 1) , R̃n = (1 − m

2 )((2n + 1 −A)2 −A2) ,

S̃n = −m
2 (n + 1)(2A− 2n− 3) . (5.9c)

Similarly, the coefficients of the Frobenius series (5.7b) at ζ = ∞ are given by the 
following three-term recurrence relations. For ρ = ρ∞1 = A/2:

−λc0 − m
2 (2A− 1)c1 = 0 , n = 0 , (5.10a)

Xncn−1 + (Yn − λ)cn + Zncn+1 = 0 , n ≥ 1 , (5.10b)

where

Xn = −m
2 (n− 1)(2A− 2n + 1) , Yn = (1 − m

2 )((2n−A)2 −A2) ,

Zn = −m
2 (n + 1)(2A− 2n− 1) . (5.10c)

For ρ = ρ∞2 = −(A + 1)/2:

[
(1 − m

2 )(2A + 1) − λ
]
c0 + m

2 (2A + 3) c1 = 0 , n = 0 , (5.11a)

X̃ncn−1 + (Ỹn − λ)cn + Z̃ncn+1 = 0 , n ≥ 1 , (5.11b)

where

X̃n = m
2 n(2A + 2n− 1) , Ỹn = (1 − m

2 )((2n + 1 + A)2 −A2) ,

Z̃n = m
2 (n + 1)(2A + 2n + 3) . (5.11c)

Remark 5.2. The three-term recurrence relations at ζ = 0 can be written as the eigen-
value problems
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T±
o c = λc , (5.12)

where T±
o : �2,4(No) ⊂ �2(No) → �2(No), and

T−
o :=

⎛⎜⎝R0 S0
P1 R1 S1

. . . . . . . . .

⎞⎟⎠ , T+
o :=

⎛⎜⎝R̃0 S̃0

P̃1 R̃1 S̃1
. . . . . . . . .

⎞⎟⎠ . (5.13)

Similarly, the three-term recurrence relations at ζ = ∞ can be written as the eigenvalue 
problems

T±
∞c = λc , (5.14)

where T±
∞ : �2,4(No) ⊂ �2(No) → �2(No), and

T−
∞ :=

⎛⎜⎝Y0 Z0
X1 Y1 Z1

. . . . . . . . .

⎞⎟⎠ , T+
∞ :=

⎛⎜⎝ Ỹ0 Z̃0

X̃1 Ỹ1 Z̃1
. . . . . . . . .

⎞⎟⎠ . (5.15)

5.3. Relation between Fourier series and the connection problem for Heun’s ODE

Recall that: (i) If λ ∈ C is a periodic or antiperiodic eigenvalue of (4.3), one has ν ∈ Z

or ν ∈ Z + 1
2 , respectively. (ii) The Floquet exponents can be shifted by an arbitrary 

integer amount by shifting the indices of the Fourier coefficients (cf. Remark 4.7). (iii) By 
Theorem 4.13, each periodic or antiperiodic eigenvalue has an associated ascending or de-
scending Fourier series when A ∈ N. (iv) The transformation ζ = eit maps the Frobenius 
series (5.7) to ascending or descending Fourier series (4.6), and vice versa. (v) Finally, 
when A ∈ N, the values of the Frobenius exponents for the expansions at ζ = 0 and at 
ζ = ∞ are either integer or half-integer.

Moreover, the Floquet exponents ν = (1 − A)/2 and ν = A/2 in Lemmas 4.9 and 
4.10 coincide exactly with the Frobenius exponents ρo2 and ρo1 at ζ = 0, respectively. 
The Frobenius exponents ρ∞2 and ρ∞1 at ζ = ∞ are also equivalent to the above Floquet 
exponents upon a shift of indices. As a result, the recurrence relations (5.8), (5.9), (5.10)
and (5.11) associated to the Frobenius series (5.7) of Heun’s ODE (5.2) are equivalent 
to those associated to the Fourier series solutions of the trigonometric ODE (4.2). More 
precisely:

Lemma 5.3. If A ∈ N and λ ∈ Σ(Bν) is either a periodic or antiperiodic eigenvalue, (i.e., 
ν integer or half-integer, respectively) then the following identities map the recurrence 
relations generated by the Frobenius series solution of (5.2) at ζ = 0 and ζ = ∞ to the 
ascending and descending recurrence relations generated by the Fourier series solution 
of (4.2), respectively. Namely:



G. Biondini et al. / Advances in Mathematics 429 (2023) 109188 29
(i) For ν = ρo1,2 one has, respectively:

(αn, βn, γn) = (Pn, Rn, Sn) , n ≥ 0 , (5.16a)

(αn, βn, γn) = (P̃n, R̃n, S̃n) , n ≥ 0 . (5.16b)

(ii) For ν = ρ∞1,2 one has, respectively:

(α−n, β−n, γ−n) = (Zn, Yn, Xn) , n ≥ 0 , (5.17a)

(α−n−1, β−n−1, γ−n−1) = (Z̃n, Ỹn, X̃n), n ≥ 0 , (5.17b)

Proof. When ν = ρo1,2, the result follows immediately by direct comparison. Likewise 
when ν = ρ∞1 . Finally, when ν = ρ∞2 we can simply shift ν �→ ν + 1, which sends 
n �→ −n − 1. �
Corollary 5.4. If A is odd, then the eigenvalues of T+

o and T+
∞ correspond to the periodic 

eigenvalues of the Dirac operator (1.2) and T−
o and T−

∞ to the antiperiodic ones, via the 
map λ = z2. Conversely, if A is even, then the eigenvalues of T−

o and T−
∞ correspond to 

the periodic eigenvalues of the Dirac operator and those of T+
o and T+

∞ to the antiperiodic 
ones.

Remark 5.5. We emphasize that, when A ∈ N, Lemma 5.3 only holds for periodic or 
antiperiodic solutions of (4.2) (i.e., ν integer or half-integer). On the other hand, even 
when A /∈ N, a similar conclusion holds for certain Floquet solutions of (4.2). Namely, 
even for generic values of A, one can establish a one-to-one correspondence between 
certain Floquet exponents and ascending or descending Floquet eigenfunctions of (4.2), 
and in turn with Frobenius series solutions of (5.2).

So far we have analyzed the properties of solutions corresponding to periodic and 
antiperiodic eigenvalues of the problem. We now turn to the question of identifying 
these eigenvalues. Doing so yields the desired characterization of the Lax spectrum of 
(1.2).

Remark 5.6. A periodic/antiperiodic eigenfunction of (1.1) with potential (1.3) corre-
sponds to a Fourier series solution (4.6) of the trigonometric ODE (4.2) that is convergent 
for t ∈ R. The transformation (5.1) given by ζ = eit, which maps the real t-axis onto the 
unit circle |ζ| = 1 (cf. Fig. 2), maps these solutions into a Laurent series representation 
for the solutions of Heun’s ODE (5.2). The question of identifying which solutions of 
Heun’s ODE define periodic/antiperiodic eigenfunctions of (1.1) is discussed next.

Lemma 5.7. Let To be either one of the operators T±
o defined in Remark 5.2 and let 

yo(ζ) = ζρwo(ζ) be a corresponding Frobenius series solution of Heun’s equation at ζ = 0. 
Then:
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Fig. 2. The singular points ζ = 0, ζ1, ζ2, and ∞ and the annulus |ζ1| < |ζ| < |ζ2| in the complex ζ plane.

(i) λ is an eigenvalue of To if and only if wo(ζ) is analytic in the disk |ζ| < |ζ2|; i.e., if 
yo(ζ) is analytic up to a branch cut when the Frobenius exponent ρo is not integer.

Similarly, let T∞ be either one of the operators T±
∞ defined in Remark 5.2 and let y∞(ζ) =

ζρw∞(ζ) be a corresponding Frobenius series solution of Heun’s equation at ζ = ∞. Then:

(ii) λ is an eigenvalue of T∞ if and only if w∞(ζ) is analytic in the exterior disk |ζ| >
|ζ1|; i.e., if y∞(ζ) is analytic up to a branch cut when the Frobenius exponent ρ∞ is 
not integer.

Proof. We consider To first. The radius of convergence of the Frobenius series represent-
ing y(ζ) in a neighborhood of ζ = 0 is at least |ζ1|. Moreover, λ ∈ C is an eigenvalue of 
To if and only if the corresponding eigenvector c ∈ �2,4(No) (see Remark 5.2). Since the 
entries of c coincide with the coefficients of the Frobenius power series representing y(ζ), 
we conclude that λ ∈ C is an eigenvalue of To if and only if the radius of convergence 
of this series is at least one. In this case y(ζ) is analytic in the disk |ζ| < |ζ2| (up to 
a possible branch cut), since there are no singular points of the Heun’s equation in the 
annulus |ζ1| < |ζ| < |ζ2|. The proof for T∞ follows along the same lines. �
Remark 5.8. The above results relate the existence of eigenvalues to the connection prob-
lem for Heun’s equation (5.2). For simplicity, consider the case of periodic eigenvalues. 
Assume A ∈ N. The Frobenius analysis of Section 5.2 yields two linearly independent 
solutions of Heun’s ODE near each of the four singular points. Let yo1,2(ζ; λ) be the 
Frobenius series with base point ζ = 0 and y1

1,2(ζ; λ) those with base point ζ = ζ1. Both 
yo1,2(ζ; λ) and y1

1,2(ζ; λ) form a basis for the solutions of Heun’s ODE (5.2) in their re-
spective domains of convergence. Since these domains overlap, in the intersection region 
one can express one set of solutions in terms of the other, i.e., (y1

1 , y
1
2) = (yo1 , yo2) C, with 

a constant non-singular connection matrix C. The Frobenius exponents at ζ = ζ1 are 0 
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and 1
2 , and, when A ∈ N, one of the Frobenius exponents at ζ = 0 is integer and the 

other is half-integer. Therefore, the values of λ for which the analytic solution at ζ = 0
converges up to |ζ| = |ζ2| are precisely those values for which the Frobenius series with 
integer exponent at ζ = 0 is exactly proportional to that with integer exponent at ζ = ζ1. 
Similar arguments hold for the solutions near ζ = ζ2 and ζ = ∞. In other words, when λ
is a periodic eigenvalue, the analytic solutions at ζ = 0 and ζ = ζ1 or those at ζ = ζ2 and 
ζ = ∞ must be proportional. This is the manifestation of an eigenvalue in terms of the 
connection problem for the Heun’s equation (5.2). If both pairs of analytic solutions are 
proportional to each other, λ is a double eigenvalue, otherwise λ is a simple eigenvalue. 
(In Section 6 we will also see that all positive eigenvalues have multiplicity two and 
all negative eigenvalues have multiplicity one.) Similar results hold for the antiperiodic 
eigenvalues once the square root branch cut resulting from the half-integer Frobenius 
exponent is taken into account.

We also mention that there is an alternative but in a sense equivalent way to look at 
the problem, which is to study the convergence of the Frobenius series solutions (5.7)
using Perron’s rule [77]. This connection is briefly discussed in Appendix A.5.

6. Real eigenvalues of the operators T±
o and T±

∞

Thus far we have shown that the periodic and antiperiodic eigenvalues of (1.2) with 
Jacobi elliptic potential (1.3) and amplitude A ∈ N can be obtained from the eigenvalues 
of certain unbounded tridiagonal operators, namely, T±

o and T±
∞ defined in Section 5.2. 

We now prove that all eigenvalues of these operators are real. We do so in two steps: 
First, in Section 6.1, we show that finite truncations of these operators have purely real 
eigenvalues. Then, in Section 6.2, we use semicontinuity to show these operators have 
purely real eigenvalues.

6.1. Real eigenvalues of the truncated operators T±
o,N and T±

∞,N

Here we show that finite truncations of the operators T±
o , T±

∞ have purely real eigen-
values. We form the truncations by considering only the first N − 1 terms of the 
corresponding three-term recurrence relations. To this end let T±

o,N and T±
∞,N be the 

N ×N truncations of T±
o and T±

∞, respectively.

Lemma 6.1. If A ∈ N and m ∈ (0, 1), then for any N > 0 the matrices T−
o,N and T±

∞,N

have purely real eigenvalues.

The result is a consequence of the fact that Pn+1Sn ≥ 0, Xn+1Zn ≥ 0, and 
X̃n+1Z̃n > 0, n ≥ 0, which makes it possible to symmetrize T−

o,N and T±
∞,N via a 

similarity transformation (see [41,44]). The result does not apply to T+
o,N , since there ex-

ists an n > 0 such that P̃n+1S̃n < 0, and, as a result, some of the entries of the resulting 
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symmetrized matrix would be complex. Thus, another approach is needed to show the 
eigenvalues of T+

o,N are all real. To this end we introduce the following definition [44]:

Definition 6.2 (Irreducibly diagonally dominant). An N × N tridiagonal matrix is irre-
ducibly diagonally dominant if (i) it is irreducible; (ii) it is diagonally dominant, i.e., 
|aii| ≥

∑
j �=i |aij |, for all i ∈ {0, . . . , N − 1}; and (iii) there exists an i ∈ {0, . . . , N − 1}

such that |aii| >
∑

j �=i |aij |. Here aij denotes the entry in the i-th row and j-th column 
of the matrix.

Theorem 6.3. (Veselic, [94] p. 171) Let T+
o,N be an N × N tridiagonal matrix which is 

irreducibly diagonally dominant and such that sign(P̃nS̃n−1) = sign(R̃nR̃n−1) for n =
1, . . . , N − 1. Then T+

o,N has N real simple eigenvalues.

Next we show that T+
o,N satisfies the hypotheses of Theorem 6.3 and thus has only 

real eigenvalues.

Lemma 6.4. If A ∈ N and m ∈ (0, 1), then for any N > 0 all eigenvalues of T+
o,N are 

real and distinct.

Proof. First, A ∈ N implies P̃nS̃n−1 �= 0 for n ≥ 1. Thus, T+
o,N is irreducible. Next, 

R̃n < 0 when n ≤ �A − 1
2�. Similarly, R̃n−1 < 0 when n ≤ �A + 1

2�. (Here, �x� denotes 
the greatest integer less than or equal to x.) Thus, sign(R̃nR̃n−1) < 0 if and only if 
A = n. Likewise, P̃n < 0 when n ≤ �A + 1

2�, and S̃n−1 < 0 when n ≤ �A − 1
2�. Thus, 

sign(P̃nS̃n−1) < 0 if and only if A = n. Hence,

sign(P̃nS̃n−1) = sign(R̃nR̃n−1) , n ≥ 1 . (6.1)

Finally, consider the transpose (T+
o,N )T. Note (6.1) remains valid. For n = 0 one easily 

gets |R̃0| > |P̃1|. Moreover, for n ≥ 1, one has |R̃n| = (1 − m
2 )(2n + 1)|2n + 1 − 2A| and 

|P̃n+1| + |S̃n−1| = m
2 (2n + 1)|2n + 1 − 2A|. Thus, |R̃n| > |P̃n+1| + |S̃n−1| for n ≥ 1. 

Hence (T+
o,N )T is an N × N irreducibly diagonally dominant tridiagonal matrix and 

satisfies (6.1). The result follows from Theorem 6.3. �
Theorem 6.5. If A ∈ N and m ∈ (0, 1), then for any N > 0 all eigenvalues of the tridi-
agonal matrices T±

o,N and T±
∞,N are real and have geometric multiplicity one. Moreover, 

all eigenvalues of T+
o,N and T+

∞,N , and all nonzero eigenvalues of T−
o,N and T−

∞,N are 
simple.

Proof. For T−
o,N and T±

∞,N , the reality of all eigenvalues was proved in Lemma 6.1, and for 
T+
o,N it was proved in Lemma 6.4. Moreover, Lemma 6.4 also proved that the eigenvalues 

of T+
o,N are simple.

Let λ be an eigenvalue of T−
o,N and c = (c0, . . . , cN−1)T the corresponding eigenvector. 

Assume c0 = 0. Then it follows from the three-term recurrence relation (5.8) that cn = 0
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for n ≥ 1. (Note that S0 is nonzero.) Since c is an eigenvector this is a contradiction. 
Hence the first component of the eigenvector is necessarily nonzero. Next, let c and c̃
be two eigenvectors corresponding to the same eigenvalue of T−

o,N . Consider the linear 
combination b = αc + α̃c̃. Then there exists (α, α̃) �= 0 such that b0 = 0. By the first 
part of the argument b ≡ 0. Hence the eigenvectors c and c̃ are linearly dependent. The 
proofs for T+

o,N and T±
∞,N are identical. �

6.2. Generalized convergence and reality of periodic and antiperiodic eigenvalues

In Section 6.1 we showed that, for A ∈ N, the N ×N truncations of the tridiagonal 
operators have only real eigenvalues. It remains to show that the tridiagonal operators 
T±
o and T±

∞ also have only real eigenvalues. This result will follow from the fact that 
the eigenvalues of the tridiagonal operators possess certain continuity properties as the 
truncation parameter N tends to infinity. Some of the proofs in this section follow from 
Volkmer [96]. For brevity we only present the details of the analysis for T+

o .

Lemma 6.6. Consider the operator T+
o . There exists θ ∈ (0, 1) and n∗ ∈ N such that

2 max(P̃ 2
n + S̃ 2

n , P̃ 2
n+1 + S̃ 2

n−1) ≤ θ2R̃ 2
n , n ≥ n∗ . (6.2)

The same estimate holds for the operators T−
o and T±

∞.

Proof. It follows from the definition of P̃n, R̃n, and S̃n in (5.9c) that

P̃ 2
n + S̃2

n = 2m2n4(1 + o(1)) , (6.3a)

P̃ 2
n+1 + S̃2

n−1 = 2m2n4(1 + o(1)) , (6.3b)

R̃2
n = (4 − 2m)2n4(1 + o(1)) , (6.3c)

as n → ∞. Hence, let θ = m. For n sufficiently large one gets 4m2n4 ≤ θ2R̃2
n =

m2(4 − 2m)2n4. The result holds for m ∈ (0, 1). It is easy to check that the same 
estimate holds also for the operators T−

o , T±
∞. �

Next we decompose T±
o , T±

∞ into their diagonal and off-diagonal parts. Namely, if T
is any one of the operators T±

o , T±
∞, we write

T := TD + TO , (6.4)

where TD is the diagonal, and TO the off-diagonal. This decomposition is instrumental 
in proving the following:

Lemma 6.7. The operators T±
o and T±

∞ are closed with compact resolvent.
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Proof. The proof follows closely that of the analogous result in [96]. We provide details 
of the proof for the operator T+

o . First, by replacing R̃n by R̃n +ω with sufficiently large 
ω, we may assume, without loss of generality, that R̃n > 0 and that (6.2) holds for all 
n ≥ 0. Then

‖TOc‖ ≤ ‖TDc‖ ∀c ∈ �2,4(No) . (6.5)

Since 0 < R̃n → ∞ it follows T−1
D exists and is a compact operator. Moreover, by (6.5) it 

follows that ‖TOT
−1
D ‖ ≤ θ < 1. Hence T−1 = T−1

D (I + TOT
−1
D )−1 is a compact operator 

(see [56] p. 196). Therefore, T+
o is a closed operator with compact resolvent. The proofs 

for T−
o , T±

∞ are identical. �
The proof of the next lemma is identical to that of Theorem 6.5.

Lemma 6.8. All eigenvalues of the operators T±
o and T±

∞ have geometric multiplicity one.

Next we begin to address reality of the eigenvalues. By Lemma 6.7 it follows Σ(T±
o ) and 

Σ(T±
∞) are comprised of a set of discrete eigenvalues with finite multiplicities. Recall that, 

for z ∈ Σ(L), we have | Im z| < ‖q‖∞. Moreover, we also have | Im z| | Re z| ≤ 1
2‖qx‖∞

for any z ∈ Σ(L) (see [12]). Hence, by the correspondence between the Dirac and Hill 
equations (see Section 3) we have

Reλ ≥ −‖q‖2
∞ , | Imλ| ≤ ‖qx‖∞ . (6.6)

Thus there exists a closed, rectifiable curve C such that the region in the complex λ-plane 
bounded by C contains finitely many periodic (resp. antiperiodic) eigenvalues of Hill’s 
equation with complex elliptic potential (3.15) counting multiplicity. This suggests to 
apply the concept of generalized convergence of closed linear operators (see Appendix A.6
for a discussion of generalized convergence). In particular, we will use the following result:

Theorem 6.9. (Kato, [56] p. 206) Let T , Tn ∈ C(X , Y ), n = 1, 2, . . . the space of closed 
operators between Banach spaces. If T−1 exists and belongs to B(X , Y ), the space of 
bounded operators, then Tn → T in the generalized sense if and only if T−1

n exists and 
is bounded for sufficiently large n and ‖T−1

n − T−1‖ → 0.

Theorem 6.9 implies the semicontinuity of a finite system of eigenvalues counted ac-
cording to multiplicity ([56] p. 213). To this end, we introduce a sequence of tridiagonal 
operators:

Tn := TD + PnTO , (6.7)

where Pn is the orthogonal projection of �2(No) onto span{e0, e1, . . . , en−1}, with 
{ei}n∈No

being the canonical basis. Thus, for example, Tn is determined by, say, T+
o
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with the off-diagonal entries P̃j , S̃j replaced by zeros for j ≥ n. Clearly, Σ(TN ) =
Σ(T+

o,N ) ∪ {R̃n}n≥N for any N ∈ N. The following result is obtained from Theorem 
2 in [96], the difference being the additional zero column for T−

o and T−
∞. Once the 

first column and row are deleted, the proof is identical. We therefore omit the proof for 
brevity.

Lemma 6.10. Let T be any one of the operators T±
o , T±

∞. If Tn is defined by (6.7), with 
TD and TO defined by (6.4), then Tn → T in the generalized sense (see Theorem 6.9
above).

Using convergence in the generalized sense, we are now ready to show that T±
o and 

T±
∞ have real eigenvalues only:

Lemma 6.11. If λn ∈ Σ(T±
o ) or λn ∈ Σ(T±

∞), then λn ∈ R.

Proof. Let T be any one of the operators T±
o or T±

∞. Count eigenvalues according to their 
multiplicity. Fix n ∈ N, and let λn ∈ Σ(T ). Let ε > 0 and Cε := {λ ∈ C : |λ − λn| = ε}. 
Since ‖T−1

n −T−1‖ → 0 as n → ∞, we know for each δ > 0 there exists N ∈ N such that 
‖T−1

N − T−1‖ < δ. By semicontinuity of a finite system of eigenvalues (see [56] p. 212), 
we can choose δ > 0 such that Cε contains an eigenvalue of TN . Call this eigenvalue λN . 
Since ε is arbitrary, and λN is real for any N it follows λn ∈ R. �

Summarizing, we have shown that the periodic (resp. antiperiodic) eigenvalue prob-
lems for (1.2) with Jacobi elliptic potential (1.3) can be mapped to eigenvalue problems 
for four tridiagonal operators obtained from a Frobenius analysis of the Heun equa-
tion (5.2). Moreover, all eigenvalues of the tridiagonal operators are real with geometric 
multiplicity one. Putting everything together, we are now ready to prove the first part 
of Theorem 1.2:

Theorem 6.12. Consider (1.2) with potential (1.3) and m ∈ (0, 1). If A ∈ N, then 
Σ(L; A, m) ⊂ R ∪ (−iA, iA), and q is a finite-band potential.

Proof. Let z ∈ Σ±(L). Recall that we have established a direct correspondence between 
the periodic (resp. antiperiodic) eigenvalues of the tridiagonal operators T±

o , T±
∞ and 

the periodic (resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic 
potential (1.3). Also, Σ(T±

o ) ∪ Σ(T±
∞) ⊂ R. Hence, by Lemma 3.5, and since λ = z2, 

it follows that Σ(L; A, m) ⊂ R ∪ (−iA, iA) (see also Lemma 2.10). Thus, the periodic 
(resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic potential (1.3)
are real or purely imaginary. Then, by symmetry (see Lemmas 2.9 and 2.10), the entire 
Lax spectrum is only real and purely imaginary. Finally, that q is finite-band for all 
A ∈ N and m ∈ (0, 1) follows from Lemma 2.10. �
Lemma 6.13. If λ ∈ Σ(T−

o ) ∪ Σ(T+
∞), then λ ≥ 0.
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Proof. All entries of the tridiagonal operator T+
∞ are positive. Consider the truncation 

T+
∞,N . Without loss of generality take the transpose. A simple calculation shows that 

(T+
∞,N )T is strictly diagonally dominant. Hence, by the Gershgorin circle theorem all 

eigenvalues of (T+
∞,N )T are strictly positive. By semicontinuity, in the limit N → ∞ it 

follows that Σ(T+
∞) ⊂ [0, ∞).

Next, note that the first column of T−
o is comprised of all zeros. Thus, Σ(T−

o ) =
Σ(T̃−

o ) ∪{0}, where T̃−
o is defined by T−

o with the first row and the first column removed. 
Moreover, T̃−

o has strictly positive entries, and the transpose is diagonally dominant. 
Arguing as in the previous case gives the result. �
7. Lax spectrum for non-integer values of A

All of the results in this work up to the Fourier series expansion and the three-term 
recurrence relation in Section 4.2 hold independently of whether or not A is integer. The 
same holds for the Frobenius analysis in Section 5.2. On the other hand, the reducibility 
of the tridiagonal operator Bν with integer and half-integer Floquet exponents ν in 
Section 4.3 only holds when A ∈ N (because it is only in that case that zeros appear in 
the upper and lower diagonal entries). Similarly, the Frobenius exponents at ζ = 0 and 
ζ = ∞ in Section 5.2 are integer or half-integer only when A ∈ N. We next show that 
these are not just technical difficulties, but instead reflect a fundamental difference in 
the properties of the Lax spectrum of (1.2) when A /∈ N.

Lemma 7.1. If A /∈ N, and m ∈ (0, 1), then all periodic and antiperiodic eigenvalues 
of (1.2) with Jacobi elliptic potential (1.3) have geometric multiplicity one.

Proof. The proof proceeds by contradiction. For simplicity, we focus on the periodic 
eigenvalues. Suppose that for A /∈ N and ν ∈ Z there exist two linearly independent 
eigenfunctions. Then the transformation ζ = eit yields two linearly independent solutions 
of Heun’s ODE (5.2) on |ζ| = 1. Let us denote these solutions as ŷ1(ζ; λ) and ŷ2(ζ; λ). 
Note all points on |ζ| = 1 are ordinary points for Heun’s ODE and, therefore, both 
ŷ1(ζ; λ) and ŷ2(ζ; λ) are analytic and single-valued in the annulus |ζ1| < |ζ| < |ζ2|
(cf. Fig. 2). Moreover, recall that the Frobenius exponents at ζ = ζ1 are ρ1

1 = 0 and 
ρ1
2 = 1/2. Let y1

1(ζ; λ) and y1
2(ζ; λ) denote the corresponding solutions. Since ŷ1(ζ; λ)

and ŷ2(ζ; λ) are linearly independent solutions, we have y1
1(ζ; λ) = c1ŷ1(ζ; λ) +c2ŷ2(ζ; λ)

for some constants c1 and c2. Then y1
1(ζ; λ) is analytic and single valued in the region 

0 < |ζ| < |ζ2|
On the other hand, y1

1(ζ; λ) is a linear combination of the Frobenius solutions ỹ1(ζ; λ)
and ỹ2(ζ; λ) defined at the singular point ζ = 0, with Frobenius exponents ρo1 = A/2 and 
ρo2 = (1 −A)/2 respectively, neither of which is an integer. Thus, no single-valued solution 
can exist around ζ = 0. Therefore, there cannot be two linearly independent periodic 
eigenfunctions. Similar considerations apply for the antiperiodic eigenvalues. �
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Note Lemma 7.1 does not hold for m = 0, as in the limit m → 0 Heun’s equation (5.2)
degenerates into a Cauchy-Euler equation (with two regular singular points at ζ = 0 and 
ζ = ∞). Still, together with Lemma 2.16, Lemma 7.1 implies:

Corollary 7.2. If A /∈ N, and m ∈ (0, 1), then Σ±(L) ∩R = ∅.

In turn, since both Σ±(L) are infinite (see [24]), and since the periodic and antiperiodic 
eigenvalues are the endpoints of the spectral bands, Corollary 7.2 directly implies:

Corollary 7.3. If A /∈ N, and m ∈ (0, 1), then Σ(L) with Jacobi elliptic potential (1.3)
has an infinite number of spines along the real z-axis.

We conclude that when A /∈ N, the potential q in (1.3) is not finite-band according 
to Definition 2.5, which proves the only if part of Theorem 1.2, namely that A ∈ N is 
not only sufficient, but also necessary in order for q in (1.3) to be finite-band, as well as 
Theorem 1.4.

8. Further characterization of the spectrum and determination of the genus

It remains to prove the last part of Theorem 1.2, namely the determination of the 
genus. To this end, we need a more precise characterization of the Lax spectrum for 
A ∈ N, which will also yield the proof of the remaining parts of Theorem 1.3. We turn 
to this task in this section.

8.1. Multiplicity of imaginary eigenvalues

Theorem 8.1. If z ∈ (−iA, iA) \ {0} is a periodic or an antiperiodic eigenvalue of (1.2)
with potential (1.3) with A ∈ N, and m ∈ (0, 1), then it has geometric multiplicity one.

Proof. By Lemma 3.5 it follows z ∈ Σ±(L) if and only if λ = z2 ∈ Σ±(H−), respectively. 
Moreover, for z �= 0 the geometric multiplicity of the periodic (resp. antiperiodic) eigen-
values is the same. Next, by the results of Section 5, each periodic (resp. antiperiodic) 
eigenfunction of H− is associated with an eigenvector of T±

o or T±
∞, and

Σ(T±
o ) ∪ Σ(T±

∞) = {λ = z2 : z ∈ Σ±(L)} , (8.1)

with T+
o , T+

∞ yielding periodic eigenvalues and T−
o , T−

∞ antiperiodic eigenvalues when A
is odd, and vice versa when A is even (cf. Corollary 5.4). By Lemma 6.8, each eigenvalue 
of T±

o , T±
∞ has geometric multiplicity one. Therefore, a periodic (resp. antiperiodic) 

eigenvalue z ∈ C of L can have geometric multiplicity two if and only if λ = z2 is 
simultaneously an eigenvalue of both T+

o and T+
∞ or simultaneously an eigenvalue of 

both T−
o and T−

∞. On the other hand, Lemma 6.13 showed that the eigenvalues of T−
o

and T+
∞ are non-negative. Hence, by the relation λ = z2 all periodic (resp. antiperiodic) 
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eigenvalues z ∈ (−iA, iA) \ {0} of (1.2) with potential (1.3) have geometric multiplicity 
one. �
Corollary 8.2. For all m ∈ (0, 1), if z ∈ (−iA, iA) \ {0} is a periodic or an antiperiodic 
eigenvalue of (1.2) with potential (1.3), then s(z) �= 0.

Proof. Recall that s(z) is defined by (2.15). If s(z) = 0, the monodromy matrix M(z)
would be diagonal, but this would imply the existence of two periodic (resp. antiperiodic) 
eigenfunctions, which would contradict Theorem 8.1. �

Note that the above results do not hold for m = 0 (a constant background potential), 
since in that case all periodic and antiperiodic eigenvalues except z = ±iA have geometric 
multiplicity two.

8.2. Dirichlet eigenvalues and behavior of the Floquet discriminant near the origin

In this subsection we prove some technical but important results that will be used 
later in the proof of Theorem 1.3.

As in Section 2.3, here it will be convenient to explicitly keep track of the dependence 
on m by writing the potential, fundamental matrix solution, and monodromy matrix re-
spectively as q(x; m), Φ(x; z, m) and M(z; m). We begin by recalling some relevant infor-
mation. We will use the structure of the monodromy matrix M(z; m) = Φ(2K(m); z, m)
introduced in (2.15). Also recall that, when m = 0 (in which case q(x, 0) ≡ A), M(z, 0) is 
given by (2.23). (Recall that l = 2K(m) is the (real) period of dn(x; m), and 2K(0) = π.) 
Thus, (2.15) implies

Δ(z; 0) = cos
(√

z2 + A2π
)
, s(z; 0) = − A√

z2 + A2
sin

(√
z2 + A2π

)
. (8.2)

Recall from Section 2.2 that Δ(z; m) and s(z; m) are even functions of z while c(z; m) is 
an odd function of z. Let Δj(m), −icj(m) and sj(m) denote, respectively, the coefficients 
of z2j , z2j+1 and z2j in the Taylor series of Δ(z; m), c(z; m) and s(z; m) around z = 0. 
Combining (2.23) and (A.12b), we obtain the following expansions near z = 0:

Δ(z;m) = (−1)A + Δ1(m)z2 + O(z4) , (8.3a)

c(z;m) = −ic0(m)z − ic1(m)z3 + O(z5) , (8.3b)

s(z;m) = s1(m)z2 + O(z4) . (8.3c)

We want to study in detail the behavior of Δ(z; m) near z = 0. We begin by looking 
at the dynamics of (closed) gaps as a function of A at m = 0, to show how the number of 
bands grows as A increases. According to (8.2), the periodic and antiperiodic eigenvalues 
are, respectively,
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zn = ±
√

4n2 −A2 , zn = ±
√

(2n + 1)2 −A2 , n ∈ Z . (8.4)

It follows that z = 0 is a periodic or antiperiodic eigenvalue when A ∈ Z. Direct calcu-
lations show that

Δzz(z; 0) = − π2z2

z2 + A2 cos(
√

z2 + A2π) − πA2

(z2 + A2) 3
2

sin(
√

z2 + A2π), (8.5)

so that

Δzz(0; 0) = −π sin(Aπ)
A

. (8.6)

Observe that, as a function of A, Δzz(0; 0) changes sign as A passes through an integer 
value. For example, if A passes through an even value n ∈ N, the sign of Δzz(0; 0) changes 
from “+” to “−”, corresponding to the transition of a pair of critical points of Δ(z; 0)
from R to [−iA, iA]. Correspondingly, a pair of zero level curves of ImΔ(z) intersecting 
R transversally will pass through z = 0 and intersect [−iA, iA] forming an extra closed 
gap on [−iA, iA]. This is the mechanism of increase of the number of gaps on [−iA, iA]. 
Note that (8.5) implies that Δz(z; 0) has a third order zero at z = 0 when A ∈ Z. 
Next we show that this mechanism works for any m ∈ (0, 1). This will be accomplished 
through several intermediate steps.

Lemma 8.3. For fixed A ∈ N we have Δzz(0; 0) = 0, and (−1)AΔzz(0; m) is a strictly 
monotonically decreasing function of m for m ∈ [0, 1).

Proof. The first statement follows from (8.5). The rest of the proof is devoted to show 
that

(−1)AΔzz(0;m) < 0 , (8.7)

when m ∈ (0, 1). Substitution of (8.3) into (2.16) yields

1
2Δzz(0;m) = Δ1(m) = 1

2(−1)A+1c20(m) . (8.8)

Note that (−1)AΔzz(0; m) ≤ 0 since M(z; m) is real on z ∈ [−iA, iA]. Thus, it remains 
to show that c0(m) �= 0 for m ∈ (0, 1). In fact, we will show below that c0(m) is 
monotonically increasing on m ∈ [0, 1). That, combined with c0(0) = 0 (see (8.8)), will 
complete the proof.

Recall that Φ = Φ(x; z, m) is the solution of the ZS system (1.6a) normalized as 
Φ(0; z, m) ≡ 1. Differentiating (1.6a) with respect to z we get the system

Φxz = (−izσ3 + iqσ2)Φz − iσ3Φ . (8.9)
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Considering system (8.9) as a non-homogeneous ZS system [i.e., treating the term −iσ3Φ
as a “forcing”] and integrating, we obtain the solution

Φz(x; z,m) = −iΦ(x; z,m)
x∫

0

Φ−1(ξ; z,m)σ3Φ(ξ; z,m) dξ , z ∈ C . (8.10)

Also recall that the (real) period of q in (1.3) is l = 2K(m) and that M(z; m) = Φ(l; z, m). 
By Lemma 2.17, A ∈ N implies Φ(l; 0, m) ≡ (−1)A1. At z = 0, we therefore have

Mz(0;m) = −i(−1)A
l∫

0

Φ−1(ξ)σ3Φ(ξ) dξ

= −i(−1)A
l∫

0

(
u1v2 + u2v1 2v1v2
−2u1u2 −u1v2 − u2v1

)
dξ , (8.11)

where we introduced the notation

Φ(x; z,m) =
(
u1 v1
u2 v2

)
, (8.12)

which we will use extensively below. On the other hand, in light of (2.15) we have

Mz = Δz1 + czσ3 − iszσ2 , z ∈ C , (8.13)

which implies

cz(0;m) = −i(−1)A
l∫

0

(u1v2 + u2v1) dx ,

sz(0;m) = 2i(−1)A
l∫

0

u1u2 dx = 2i(−1)A
l∫

0

v1v2 dx . (8.14)

Comparing this with the expansion (8.3) we then have

c0(m) = icz(0;m) = (−1)A
l∫

0

(u1v2 + u2v1) dx . (8.15)

At z = 0, according to Section A.3, we also have

Φ(x; 0,m) = cos(A amx)1 + sin(A amx) iσ2 , (8.16)
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where amx = am(x; m), so that

Φ−1(x; 0,m)σ3Φ(x; 0,m) = cos(2Aamx)σ3 + sin(2Aamx)σ1 . (8.17)

We obtain

c0(m) = (−1)A
2K(m)∫

0

cos(2Aamx) dx = (−1)A
π∫

0

cos 2Ay dy√
1 −m sin2 y

, (8.18)

where we used y = amx, dy =
√

1 −m sin2 y dx. Now, from [14], 806.01, for m ∈ (0, 1)
we have

(−1)A
π∫

0

cos 2Ay dy√
1 −m sin2 y

= π
∞∑

j=A

[(2j − 1)!]2mj

42j−1(j −A)!(j + A)![(j − 1)!]2 > 0 (8.19)

since all the coefficients of the convergent Taylor series are positive. �
Corollary 8.4. One has |Δ(z; m)| > 1 in a deleted neighborhood of z = 0 on (−iA, iA)
for any A ∈ N and m ∈ (0, 1). Moreover, z = 0 is a simple critical point of Δ(z; m) and 
Δ(0; m) = (−1)A.

Remark 8.5. Corollary 8.4 shows that no critical points of Δ(z; m) can move from R to 
iR when we vary m ∈ (0, 1) with a fixed A ∈ N. Similarly to the case m = 0, the change 
of genus in the case m > 0, happens when we vary A (see also Fig. 4).

Next, recall that the monodromy matrix M(z; xo) normalized at a base point xo is 
given by (2.20). Using (2.20), we prove the following lemma regarding Dirichlet eigen-
values.

Lemma 8.6. Let A ∈ N and m ∈ (0, 1). If an open gap γ on (−iA, iA) contains a zero of 
s(z), then the associated Dirichlet eigenvalue is movable.

Proof. Equations (2.15) and (2.20) and direct calculation show that

M(z;x0)=
(

Δ+c(u1v2+u2v1)+s(u1u2+v1v2) −s(u2
1+v2

1) − 2cu1v1
s(u2

2+v2
2)+2cu2v2 Δ − c(u1v2+u2v1) − s(u1u2+v1v2)

)
,

(8.20)
where c = c(z) and s = s(z) were defined in (2.15) and the functions u1, u2, v1 and v2, 
defined as in (8.12), are evaluated at x = x0.

Consider first an open gap γ ⊂ iR that does not contain z = 0. From (2.16) it follows 
that c(z) �= 0 on γ. Note u1(x0)v1(x0) �= 0 for small x0 > 0 [because u1(0) = 1 and 
v1(0) = 0 and u1 and v1 are analytic in x as solutions of (1.6a) with the potential (1.3)]. 
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Therefore, it follows from (8.20) that M12(z; x0) = 0 implies s(z) �= 0. But M12(z; 0) =
s(z). Thus, each Dirichlet eigenvalue in such a gap is movable.

Consider now a gap γ0 ⊂ iR containing z = 0, i.e., the central gap. By Corollary 8.4, 
such gap exists for any m ∈ (0, 1), and by (8.2), it does not exist when m = 0. We 
consider m ∈ (0, 1). Then by Lemma 8.3 (see (8.8)), c(z) has a simple zero at z = 0 and, 
by (8.3), s(z) has at least a double zero at z = 0. Thus, the condition M12(z; x0) = 0
near z = 0 becomes

−s1z
2(u2

1(x0; z) + v2
1(x0; z)) + 2ic0zu1(x0; z)v1(x0; z) = R(x0; z) , (8.21)

where R(x0; z) ∈ R when z ∈ iR and R(x0; z) = O(z3) uniformly in small real x0. By 
Lemma 8.3 (see (8.8)) we have c0 �= 0. If s1 �= 0, (8.21) shows that M12(z; x0) has one 
fixed zero at z = 0 whereas the location of the second zero depends on x0 and is given 
by

z =
2ic0u1(x0; z)v1(x0; z) − R(x0;z)

z

s1(u2
1(x0; z) + v2

1(x0; z))
= 2ic0u1(x0; 0)v1(x0; 0) + O(z)

s1(u2
1(x0; 0) + v2

1(x0; 0) + O(z)) ∈ iR , (8.22)

which is a point inside the central gap on (−iA, iA). Indeed, the requirement detM(z; x0)
≡ 1 and (8.20) imply that a Dirichlet eigenvalue can not be in the interior of any band 
located on (−iA, iA) \ {0}.

Equations (8.21) and (8.22) show that a zero of M12(z; x0) in the gap γ0 ⊂ (−iA, iA) \
{0} is always fixed at z = 0, and therefore corresponds to an immovable Dirichlet eigen-
value, whereas a second zero is located at a point changing with x0, and is therefore 
a movable Dirichlet eigenvalue. Indeed, the point z = z(x0) defined by (8.22) attains 
z(0) = 0 and z(x0) �= 0 at least for small x0 > 0 since v1(0) = 0 and v1(x0) �= 0 in a 
deleted neighborhood of zero.

Finally, if s1 = · · · = sk−1 = 0 and sk �= 0, with k > 1, the leading-order portion of 
each term in the 1,2 entry of (8.21) yields instead

−skz
2k(u2

1 + v2
1) + 2ic0zu1v1 = R , (8.23)

where again R = O(z3) is real-valued for z ∈ iR and where for brevity we dropped the 
arguments. Repeating the same arguments as for (8.21), we see that at least one of the 
roots in (8.23) is purely imaginary. �
Remark 8.7. It follows from (8.21) and (8.23) that s1(m) �= 0 if and only if there is 
exactly one movable Dirichlet eigenvalue in a vicinity of z = 0 for small x0 ∈ R.

8.3. Proof of the remaining statements of Theorem 1.3

Lemma 2.14 proves items 4 and 5 of Theorem 1.3. Theorem 1.2 together with 
Lemma 2.2 and the symmetries (2.17) implies item 3. Thus, it remains to prove items 2 
and 6 only, namely:
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Theorem 8.8. Consider (1.2) with Jacobi elliptic potential (1.3). For all m ∈ (0, 1), if 
A ∈ N then:

1. There are exactly 2A symmetric bands of Σ(L; A, m) on (−iA, iA) separated by 2A −1
symmetric open gaps. The central gap (i.e., the gap intersecting the origin) contains 
an eigenvalue at z = 0. This eigenvalue is periodic when A is even and antiperiodic 
when A is odd.

2. Each of the open 2A − 1 gaps on (−iA, iA) contains exactly one movable Dirichlet 
eigenvalue. Thus, all of the 2A − 1 movable Dirichlet eigenvalues of the finite-band 
solution with genus 2A − 1 are located in the gaps of the interval (−iA, iA).

Proof. The idea of the proof is based on continuous deformation of the elliptic parameter 
m, starting from m = 0 and going into m ∈ (0, 1). The proof consists of the following 
three main steps, each of which will be discussed more fully below:

1. Analysis of the spectrum for m = 0. When m = 0, dn(x, 0) ≡ 1, and the ZS 
system (1.1) has a simple solution Φ(x; z, m). The monodromy matrix M(z; m) based 
on Φ(x; z, m) was given explicitly in (2.23) for m = 0, and the Lax spectrum is Σ(L) =
R ∪ [−iA, iA] in this case. In particular, the vertical segment [−iA, iA] is a single band 
that contains 2A −1 double periodic/antiperiodic eigenvalues, which we consider as being 
closed gaps. Each of these closed gaps contains a Dirichlet eigenvalue (a zero of s(z; m), 
see (8.2)), which for m = 0 is immovable according to Lemma 2.14 (see also (8.20)).

2. Analysis of the spectrum for small nonzero values of m. Corollary 8.4 states that 
for all m ∈ (0, 1) the double eigenvalue at z = 0 is embedded in the central gap 
γ0 ⊂ (−iA, iA). Moreover, Corollary 8.4 and Lemma 8.6 show that there is at least 
one movable Dirichlet eigenvalue on γ0. Next, we show that under a small deformation 
m > 0 all the remaining closed gaps on (−iA, iA) must open, creating 2A bands and 
2A − 1 gaps on (−iA, iA), with each gap containing exactly one movable Dirichlet eigen-
value. Our proof of this statement is based on the fact that any periodic/antiperiodic 
eigenvalue on (−iA, iA) \ {0} has geometric multiplicity one (see Theorem 8.1), whereas 
a double eigenvalue at a closed gap would have geometric multiplicity two. By a continu-
ity argument, each gap on (−iA, iA) \ {0} has exactly one movable Dirichlet eigenvalue. 
Thus, Theorem 8.8 is proved for small m > 0.

3. Control of the spectrum for arbitrary values of m ∈ (0, 1). We finally prove that the 
number 2A of separate bands on (−iA, iA), as well as the fact that each gap on (−iA, iA)
contains exactly one movable Dirichlet eigenvalue, cannot change when m varies on (0, 1).

In what follows, we prove all the statements in items 1–3 above.
1. From (8.2) it follows that, for m = 0, we have Σ(L) = R ∪ [−iA, iA] with

z2
n = n2 −A2, n = 0,±1, . . . ,±A (8.24)

being (interlaced) periodic or antiperiodic eigenvalues on [−iA, iA]. Note that Δz(z; 0)
has a simple zero at each zn for n �= 0, ±A. Therefore, each zn �= 0, ±iA identifies a 
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closed gap. On the other hand, since Δz(±iA; 0) �= 0, the endpoints ±iA of the spectrum 
are simple periodic eigenvalues. [By Lemma 2.10, when m > 0 it follows ±iA /∈ Σ(L).] 
Finally, note that Δz(z; 0) has a double zero at z = 0, which will be relevant in the 
discussion of item 3 below.

Recall that the Dirichlet eigenvalues are the zeros of s(z; 0). By (8.2), each closed gap 
on [−iA, iA] \ {0} contains exactly one Dirichlet eigenvalue μn, n = ±1, . . . , ±(A − 1), 
which is a simple zero of s(z; 0). Note also that there are exactly 2A − 1 closed gaps on 
(−iA, iA), and at each such gap with the exception of z = 0 there is exactly one zero 
level curve Γn of Im Δ orthogonally crossing iR. Moreover, by Lemma 8.3, there are eight 
zero level curves of Im Δ passing through z = 0, including the real and imaginary axes 
(e.g., see Fig. 4, upper right panel). Note that, by Lemma 8.6, a Dirichlet eigenvalue μn

becomes movable if the closed gap opens up as m is deformed away from m = 0.
2. Recall that the monodromy matrix M(z; m) is entire in z and A and analytic in 

m ∈ [0, 1) (cf. Lemma 2.10). Also recall that s(z; m) is real-valued on iR. Finally, recall 
that by Lemma 2.14 zeros of s(z; m) cannot lie in the interior of a band. Let μn be the 
zeros of s(z; 0) for z ∈ iR, i.e., the Dirichlet eigenvalues along the imaginary axis when 
m = 0. Since the zeros of s(z; m) are isolated, for sufficiently small m > 0, each Dirichlet 
eigenvalue μn must remain on (−iA, iA) by continuity. Thus, for sufficiently small values 
of m, all the gaps on (−iA, iA) \ {0} (independently of whether they are open or closed) 
must survive the small m deformation, with exactly one Dirichlet eigenvalue in each gap.

Importantly, the above arguments imply that, for small m ∈ (0, 1), all the gaps on 
(−iA, iA) \{0} must be open. Indeed, the assumption that for small m ∈ (0, 1) there exists 
a closed gap at z∗ ∈ (−iA, iA) \ {0} leads to a contradiction, because by Corollary 8.2, 
s(z; m) �= 0 at the endpoints of each band. There are 2A −2 such open gaps. By continuity, 
each of them contains a zero of s(z; m) and therefore a movable Dirichlet eigenvalue by 
Lemma 8.6. Moreover, by continuity, s(z; m) must have opposite signs at the endpoints 
of any gap in (−iA, iA) \ {0}.

Next, recall that by Theorem 6.12, Σ(L) ⊂ R ∪ (−iA, iA) for all m ∈ (0, 1). It follows 
from Corollary 8.4 that, for all m ∈ (0, 1), the (double) Floquet eigenvalue z = 0 is 
immersed in a gap γo ⊂ (−iA, iA). Then, by Lemma 8.6, for small m > 0 there are 
exactly 2A − 1 open gaps on (−iA, iA), with each gap containing a movable Dirichlet 
eigenvalue. Therefore there are 2A (disjoint) bands on (−iA, iA).

Finally, differentiation of s(z; m) in (8.2) yields

sz(z; 0) = zA

z2 + A2

[
sin

(√
z2 + A2π

)
√
z2 + A2

− cos
(√

z2 + A2π
)]

, (8.25)

which shows that sz(z; 0) has a simple zero at the origin. Therefore, s1(0) = szz(0; 0) �= 0
and so, by Remark 8.7, there is a unique movable Dirichlet eigenvalue in a vicinity of 
z = 0 and it is situated on γo. Hence there is exactly one movable Dirichlet eigenvalue 
in each gap implying that the genus of the corresponding Riemann surface in 2A − 1. 
Thus, Theorem 8.8 is proved for small m > 0.
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3. It remains to prove that the number of bands on (−iA, iA) and the number of 
movable Dirichlet eigenvalues (which were established for small m ∈ (0, 1) in item 2 
above) do not change as m varies in (0, 1). Let us consider the deformation of the 
collection of bands (with genus 2A − 1) established for small m ∈ (0, 1). A possible 
change of the genus can be caused only by one of the following four possibilities: (a) a 
collapse of a band into a point; (b) a splitting of a band into two or more separate bands; 
(c) a splitting of a gap into two or more separate gaps; (d) a collapse of an open gap 
into a closed one.

We next prove that none of these possibilities can occur. Indeed, regarding (a), the 
collapse of a band into a point would contradict the analyticity of Δ(z; m), since it would 
imply that the same value of z is simultaneously a periodic and antiperiodic eigenvalue. 
(Note that each band along (−iA, iA) must necessarily start at a periodic eigenvalue 
and end at an antiperiodic one or vice versa, since otherwise there would necessarily 
be a critical point zo inside the band. But a critical point zo inside the band would 
imply the existence of a second band emanating transversally from the imaginary axis, 
contradicting Theorem 6.12.) Similarly, regarding (b), the splitting of a band would 
require a critical point of Δ(z; m) at some zo inside the band. But, again, a critical point 
at zo would mean that there is a zero-level curve of ImΔ crossing iR at z0, which in turn 
would contradict Theorem 6.12.

For the same reasons we have Δz(z∗; m) �= 0 at any non-periodic and non-antiperiodic 
Floquet eigenvalue z∗, separating a band and a gap on (−iA, iA). Indeed, the contrary 
would lead to Δz having an even-order zero at z∗. But that would imply at least two 
pairs of zero-level curves emanating from iR at z∗ and, thus, again would contradict 
Theorem 6.12.

We now turn our attention to the gaps, and specifically to the possibility (c) listed 
above. The splitting of a gap into two or more separate gaps would imply that Δ(z; m)
has a local minimum z0 on the gap at some m ∈ (0, 1) and simultaneously |Δ(z0; m)| ≤ 1. 
That, again, would contradict Theorem 6.12.

Thus, it remains to exclude possibility (d), namely the collapse of a gap. By 
Lemma 8.6, the central gap γo containing z = 0 stays open for any m ∈ (0, 1). Also, for 
small m ∈ (0, 1), it was shown in the proof of item 2 above that the signs of s(z; m) at 
the endpoints of any gap γ ⊂ (−iA, iA) \ {0} are opposite. These signs cannot change 
in the course of a deformation with respect to m ∈ (0, 1), by Corollary 8.2. Thus, each 
gap that was open for small m ∈ (0, 1) must contain a zero of s(z; m) and, therefore, as 
it was proven in item 2 above, must stay open for all m ∈ (0, 1). So, the genus 2A − 1
is preserved for all m ∈ (0, 1). Moreover, each gap contains a zero of s(z; m) and thus, 
according to Lemma 8.6, a movable Dirichlet eigenvalue.

So, we proved that each gap on (−iA, iA) contains exactly one movable Dirichlet 
eigenvalue. It is well known [33,39,71] that the number of movable Dirichlet eigenvalues is 
equal to the genus 2A −1. This, completes the proof of Theorem 8.8 for all m ∈ (0, 1). �
Remark 8.9. It follows from Remark 8.7 that s1(m) �= 0 for all m ∈ (0, 1).
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Fig. 3. Periodic (red) and antiperiodic (blue) eigenvalues (vertical axis) of the spectrum as a function of the 
elliptic parameter m (horizontal axis) for a few integer values of A. Bottom left: A = 3. Top left: A = 4. 
Right: A = 7. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

9. Dynamics of the spectrum as a function of A and m

We further illustrate the results of this work by presenting some concrete plots of 
the spectrum. We begin with the case of A ∈ N. Fig. 3 shows the periodic (red) and 
antiperiodic (blue) eigenvalues along the imaginary z-axis (vertical axis in the plot) as 
a function of the elliptic parameter m (horizontal axis) for a few integer values of A, 
namely: A = 3 (bottom left), A = 4 (top left) and A = 7 (right). Note how all gaps are 
closed when m = 0 and how they open immediately as soon as m > 0 and remain open 
for all m ∈ (0, 1). In the singular limit m → 1−, the band widths tend to zero, and the 
periodic and antiperiodic eigenvalues “collide” into the point spectrum of the operator 
L on the line.

Next, Fig. 4 shows the Lax spectrum (blue curves) in the complex z-plane for several 
non-integer values of A, illustrating the formation of new bands and gaps as a function 
of A. Note that the range of values for the real and imaginary parts of z allows one 
to see only a small portion of the Lax spectrum. For example, not visible outside the 
6 G. Biondini et al. / Advances in Mathematics 429 (2023) 109188
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Fig. 4. The Lax spectrum Σ(L) [computed numerically using Hill’s method (see [21])] with potential q ≡
A dn(x; m), m = 0.9, and increasing values of A, illustrating the formation of new bands and gaps for 
non-integer values of A.
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plot window are various bands and gaps along the imaginary axis (cf. Fig. 3) as well as 
the infinite number of spines growing off the real axis when A /∈ N. However, selecting 
a larger portion of the complex z-plane would have made it more difficult to see the 
dynamics of the bands and gaps near the origin. Starting from the smallest value of A
in the set (A = 3.99, top left panel), one can see how, as A increases, a spine is pulled 
towards the origin, which it reaches at approximately A = 3.9985 (top right panel). As 
A increases further, the spine moves along the imaginary axis, simultaneously shrinking 
to zero at approximately A = 3.999249 (left plot in the third row). (Note that, even 
though the band is effectively gone at this value of A, the corresponding potential is still 
not finite-band due to the infinitely many spines that are still present outside the plot 
window.) As A increases further, the band edges of the previous spine bifurcate along 
the imaginary axis, giving rise to a new gap. Finally, at A = 4 (left plot in the fourth 
row), the lower edge of this new gap reaches the origin. This is also exactly the value of 
A at which the infinitely many spines shrink to zero. As A increases further, the band 
centered at z = 0 reappears, a new spine gets sucked towards the origin, and the cycle 
repeats.

In summary, every time A increases by one unit, two more spines from the real axis 
gets pulled into the imaginary axis, and a two new Scwarz symmetric gaps open on 
the imaginary axis. When A hits the next integer value, the lower band edges in the 
upper-half plane and the corresponding one in the lower-half plane reach the point z = 0. 
Simultaneously, all remaining spines emanating from the real z-axis shrink to zero, giving 
rise to a finite-band potential. As A keeps increasing, the spines grow back, and the 
process repeats.

It is also interesting to briefly describe the dynamics of the zero-level curves of 
Im Δ(z; m) near z = 0. Thanks to (8.5) and (8.6), we know that Δzz(0; 0) = 0 if and 
only if A ∈ Z. One can also see that Δzzzz(0; 0) �= 0 when A ∈ Z. So, when A ∈ Z, there 
are exactly eight zero-level curves of ImΔ emanating from z = 0. As it follows from 
Corollary 8.4, under a small m > 0 deformation from m = 0, a pair of these level curves 
will move up along the imaginary z-axis, while the other pair will symmetrically move 
down along iR−. It also follows from (8.2) that s(z; 0) has a second-order zero at z = 0; 
that is, s1(0) �= 0, which will remain in place under a small m > 0 deformation according 
to (2.16), (2.17) and Corollary 8.4. This is another way to show that s1(m) �= 0 for small 
m > 0.

10. Discussion and concluding remarks

The results of this work provide an extension to the non-self-adjoint operator (1.2) of 
the classical works of Ince [45–47]. The results of this work also provide: (i) an example 
of Hill’s equation with a complex, PT-symmetric potential (and a corresponding com-
plex deformation of Ince’s equation) whose spectrum is purely real, which is especially 
relevant, since the study of quantum mechanics with non-Hermitian, PT-symmetric po-
tential continues to attract considerable interest (e.g. see [5,9,29] and references therein), 
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(ii) an example of a solvable connection problem for Heun’s ODE, and (iii) a perturbation 
approach to study the determination of the genus, and the movable Dirichlet eigenvalues 
was presented.

We point out that the fact that the elliptic potential (1.3) is finite-band for any 
A ∈ N can also be obtained as a consequence of the results of [39], where the potential 
q(x) = n (ζ(x) − ζ(x −ω2) − ζ(ω2)) was studied (where ζ(x) is Weierstrass’ zeta function 
and ω2 one of the lattice generators [76]) and was shown to be finite-band when n ∈ N

using the criteria introduced there (see Appendix A.7 for details). In Appendix A.7 we 
also discuss other elliptic potentials satisfying the criteria laid out in [39]. On the other 
hand, no discussion of the spectrum (i.e., location of the periodic/antiperiodic eigenvalues 
and of the spectral bands) was contained in [39].

It is also the case that the elliptic potential (1.3) is associated with the so-called 
Trebich-Verdier potentials [87] for Hill’s equation (which are known to be algebro-
geometric finite-band, see [85]) if and only if A ∈ N, as we show in Appendix A.8. 
To the best of our knowledge, this connection had not been previously made in the 
literature.

The family of elliptic potentials (1.3) is especially important from an applicative 
point of view, since (as was discussed in Section 1) it interpolates between the plane 
wave potential q(x) ≡ A when m = 0 and the Satsuma-Yajima (i.e., sech) potential 
q(x) ≡ A sech x when m = 1, which, when A ∈ N, gives rise to the celebrated A-soliton 
bound-state solution of the focusing NLS equation [(1.5) with s = 1].

The potential q(x) ≡ A sech x has also been used in relation to the semiclassical limit 
of the focusing NLS equation. This is because, by letting A = 1/ε and performing a 
simple rescaling x �→ εx and t �→ εt of the spatial temporal variables, (1.5) is mapped 
into the semiclassical focusing NLS equation

iεqt + ε2qxx + 2|q|2q = 0 , (10.1)

with the rescaled initial data q(x, 0) ≡ dn(x; m). The dynamics of solutions of (10.1) has 
been studied extensively in the literature (e.g., see [10,13,17,19,28,53,55,67,91]). In partic-
ular, it is known that, for a rather broad class of single-lobe initial conditions (including 
q(x) ≡ sech x), the dynamics gives rise to a focusing singularity (gradient catastrophe) 
that is regularized by the formation of high-intensity peaks regularly arranged in the 
pattern of genus-2 solutions of the NLS equation [10]. The caustic (i.e., breaking) curve 
along which the genus-2 region breaks off from the genus-0 region (characterized by a 
slowly modulated plane wave, in which the solution does not exhibit short-scale oscilla-
tions) has also been characterized, and it is conjectured that additional breaking curves 
exist, giving rise to regions of higher genus.

All of the above-cited works studied localized potentials on the line. However, sim-
ilar behavior was observed for (10.1) with periodic potentials in [11], where a formal 
asymptotic characterization of the spectrum of the Zakharov-Shabat system (1.6a) in 
the semiclassical scaling was obtained using WKB methods, and in particular it was 
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shown that the number of spectral bands is O(1/ε) as ε → 0+. Some of the numerical 
results of [11] about the localization of the spectrum were rigorously proved in [12]. The 
results of the present work provide some rigorous evidence, for the dn potential (1.3), in 
support of the formal results of [11] about the genus of the potential as a function of ε.

We emphasize that, even though we limited our attention to the focusing NLS equation 
for simplicity, all the equations of the infinite NLS hierarchy (including the modified 
KdV equation, higher-order NLS equation, sine-Gordon equation, etc.) share the same 
Zakharov-Shabat scattering problem (1.6a). Therefore, the results of this work provide a 
two-parameter family of finite-band potentials for all the equations in the focusing NLS 
hierarchy.

The results of this work open up a number of interesting avenues for further study. 
In particular, an obvious question is whether these potentials are stable under pertur-
bations. The stability of genus-1 solutions of the focusing NLS equation was recently 
studied in [22] by taking advantage of the machinery associated with the Lax represen-
tation. A natural question is therefore whether similar results can also be used for the 
higher-genus potentials when A > 1 or whether different methods are necessary.

Another interesting question is whether more general elliptic finite-band potentials 
related to (1.3) exist. Recall that, for the focusing NLS equation on the line, the potential 
q(x) = A sech x e−ia log(cosh x) (which reduces to q(x) = A sech x when a = 0) was shown 
in [90,91] to be amenable to exact analytical treatment. It is then natural to ask whether 
exactly solvable periodic potentials also exist related to q(x) = A dn(x; m) but with an 
extra non-trivial periodic phase.

Yet another question is related to the time evolution of the potential (1.3) according 
to the focusing NLS equation. When A = 1, time evolution is trivial, and the correspond-
ing solution of the NLS equation is simply q(x, t) = dn(x; m) ei(2−m)t. That is not the 
case when A > 1, however. For the Dirac operator (1.2) on the line with reflectionless 
potentials, sufficient conditions were obtained in [65] guaranteeing that, if the discrete 
spectrum is purely imaginary, the corresponding solution of the focusing NLS equation 
is periodic in time. A natural guess is that a similar result is also true for the elliptic 
potential (1.3) if all the corresponding temporal frequencies are commensurate.

The semiclassical limit of certain classes of periodic potentials (including the potential 
dn(x; m)) generates a so-called breather gas for the focusing NLS equation, which is to 
be understood as the thermodynamic limit of a finite-band solution of the focusing NLS 
equation where the genus G → ∞ and simultaneously all bands but one shrink in size 
exponentially fast in G (see [89] for details). In [92], inspired by [11], it was proposed 
that such gases be called periodic breather gases. Periodic gases have the important 
feature that, together with their spectral data (i.e., independent of the phase variables) 
such as the density of states, one also can obtain some information on a “realization” 
of the gas, namely, on the semiclassical evolution of the given periodic potential. Thus, 
progress in studying the (2A − 1)-band solutions of the focusing NLS equation (with 
A ∈ N) generated by the potential q(x) = A dn(x; m), and especially its large A limit, is 
of definite interest. In fact, finite-band solutions to integrable systems (such as the KdV 
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and NLS equations) generated by elliptic potentials, based on the work of Krichever [61], 
were studied in the literature. We will not go into the details of those results here, but it 
should be clear that any details about the family of finite-band solutions of the focusing 
NLS equation that homotopically “connect” the known behavior of the plane wave and 
the multi-soliton solutions will be very interesting to obtain and analyze.
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Appendix A

A.1. Notation and function spaces

The Pauli spin matrices, used throughout this work, are defined as

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (A.1)

Moreover, L∞(R; C2) is the space of essentially bounded Lebesgue measurable two-
component vector functions with the essential supremum norm. Given the interval Ixo

=
[xo, xo + l] we define the inner product between two-component Lebesgue measurable 
functions φ and ψ as

〈φ, ψ〉 :=
xo+l∫
xo

(
φ1ψ1 + φ2ψ2

)
dx . (A.2)

Then L2(Ixo
; C2) denotes the set of two-component Lebesgue measurable vector func-

tions that are square integrable, i.e., ‖φ‖L2(Ixo ;C2) := 〈φ, φ〉1/2 < ∞. Similarly, we define 
the inner product of two scalar Lebesgue measurable functions f and g as

〈f, g〉 :=
xo+l∫

fg dx . (A.3)

xo
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Then L2(Ixo
; C) denotes the set of scalar Lebesgue measurable functions that are square 

integrable, i.e., ‖f‖L2(Ixo ;C) := 〈f, f〉1/2 < ∞. Finally, we define the inner product of 
two infinite sequences c = {cn}n∈Z and d = {dn}n∈Z as

〈c, d〉 :=
∑
n∈Z

cndn . (A.4)

Then �2(Z) denotes the set of square-summable sequences, i.e., ‖c‖	2(Z) := 〈c, c〉1/2 < ∞. 
Finally, the space of continuous functions on the real axis is denoted C(R), and No :=
N ∪ {0}.

A.2. Proof of two lemmas

Proof of Lemma 2.10. To prove part (i) we begin by writing (1.1) as the coupled system of 
linear differential equations (1.6a). By Floquet theory z ∈ Σ(L) if and only if φ = eiνxψ, 
where ψ = (ψ1, ψ2)T with ψ(x +l; z) = ψ(x; z), and ν ∈ [0, 2π/l). Plugging this expression 
into (1.6a) yields the modified system

iψ1,x − iqψ2 = (z + ν)ψ1 , iψ2,x + iqψ1 = (−z + ν)ψ2 . (A.5)

Multiplying the first of these equations by ψ1 and taking the complex conjugate yields 
two equations, which we integrate over a full period, arriving at the expressions

i〈qψ2, ψ1〉 = −i〈ψ1, ψ1,x〉 − (z + ν)‖ψ1‖2
L2([0,l]) ,

i〈ψ1, qψ2〉 = i〈ψ1, ψ1,x〉 + (z + ν)‖ψ1‖2
L2([0,l]) ,

where boundary terms vanish since ψ1(x + l; z) = ψ1(x; z). Adding these two expressions 
then one gets

− Im z‖ψ1‖2
L2([0,l]) = Re〈qψ2, ψ1〉 . (A.6)

Similarly, the second equation of (A.5) yields

i〈ψ1, qψ2〉 = i〈ψ2, ψ2,x〉 + (−z + ν)‖ψ2‖2
L2([0,l]) ,

i〈qψ2, ψ1〉 = −i〈ψ2, ψ2,x〉 + (z − ν)‖ψ2‖2
L2([0,l]) ,

as well as

− Im z‖ψ2‖2
L2([0,l]) = Re〈qψ2, ψ1〉 . (A.7)

Equating (A.6) and (A.7) we conclude that if | Im z| > 0, then

‖ψ1‖L2([0,l]) = ‖ψ2‖L2([0,l]) . (A.8)
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Next, note that |〈qψ2, ψ1〉| ≤ 〈|qψ2|, |ψ1|〉. Also, since q is not constant, there exists 
(a, b) ⊂ (0, l) such that |q(x)| < ‖q‖∞ for x ∈ (a, b). Thus, for | Im z| > 0 it follows 
from (A.8) and the Hölder inequality that

0 < | Im z|‖ψ1‖2
L2([0,l]) = |Re〈qψ2, ψ1〉| < ‖q‖∞〈|ψ2|, |ψ1|〉

≤ ‖q‖∞‖ψ1‖2
L2([0,l]) .

Hence | Im z| < ‖q‖∞ for z ∈ Σ(L). The proof of (ii) which can be found in [12] follows 
from Lemma 2.9 and since Δ(z) is an entire function of z. �
Lemma A.1. Consider the Dirac operator (1.2). If the potential q ≡ A dn(x; m), then the 
monodromy matrix M(z; m) is an analytic function of m for any m ∈ [0, 1).

Proof. The result follows from two key facts. One is that dn(x; m) is an analytic function 
of m for all |m| ≤ 1 [98]. The second is the fact that solutions of ODEs with analytic de-
pendence on variables and parameters are analytic (see [18] pp. 23–32 and [48] p. 72). �
A.3. Solution of the ZS system at z = 0

We have seen that, for q real, the eigenvalue problem (1.1) can be reduced to second-
order scalar ODEs (3.3). Consider (3.3) with λ = 0, namely v±xx + (±iqx + q2)v± = 0. 
Using the ansatz v± = e±f , one gets ±fxx + (fx)2 ± iqx + q2 = 0. Then, letting g = fx
yields ±gx + g2 = ∓iqx − q2 with a solution given by g = ∓iq. In particular, it follows 
g2 = −q2. Hence, we have derived the following solution to the ODEs (3.3) for λ = 0, 
namely,

v±(x; 0) = e∓i
∫ x
0 q(s) ds . (A.9)

Next, using the invertible change of variables (3.1), one gets the following solution to the 
eigenvalue problem (1.1) when z = 0:

φ(x; 0) =
(

cos
( x∫

0

q(s) ds
)
,− sin

( x∫
0

q(s) ds
))T

. (A.10a)

Moreover, using Rofe-Beketov’s formula [80], one obtains a second linearly independent 
solution as:

φ̃(x; 0) =
(

sin
( x∫

0

q(s) ds
)
, cos

( x∫
0

q(s) ds
))T

. (A.10b)

Thus, the Floquet discriminant (2.5) for eigenvalue problem (1.1) at z = 0 is
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Δ(0) = cos
( l∫

0

q(s) ds
)
, (A.11)

where l is the period of the potential. We can now prove Lemma 2.17.

Proof of Lemma 2.17. Using well-known properties of the Jacobi elliptic functions (see 
[42,76]), when q(x) = A dn(x; m), (A.10a), (A.10b) and (A.11) yield, respectively

φ(x; 0, A,m) =
(

cos(A am(x;m)),− sin(A am(x;m))
)T

, (A.12a)

φ̃(x; 0, A,m) =
(

sin(A am(x;m)), cos(A am(x;m))
)T

, (A.12b)

Δ(0;A,m) = cos(Aπ) . (A.12c)

In particular, φ(0; 0, A, m) = (1, 0)T, and φ(2K; 0, A, m) = (cos(Aπ), sin(Aπ))T. There-
fore, we have that φ(x + 2K; 0, A, m) = φ(x; 0, A, m) if and only if A ∈ 2Z, and 
φ(x + 2K; 0, A, m) = −φ(x; 0, A, m) if and only if A ∈ 2Z + 1, with similar relations 
for φ̃. Thus, when A is an even integer, z = 0 ∈ Σ+(L), whereas when A is an odd inte-
ger, z = 0 ∈ Σ−(L). Finally, the above calculations also show that, for q ≡ A dn(x; m)
with A ∈ Z the eigenvalue z = 0 has geometric multiplicity two. �
A.4. Transformation of the ZS system into a Heun system

If the potential q is real, then the change of dependent variable φ = 1
2 diag(1, −i)(σ3 +

σ1) v, maps the ZS system (1.6a) into the equivalent system

vx = −i(zσ1 + qσ3)v . (A.13)

Then the transformation t = 2am(x; m) maps (A.13) to the trigonometric first-order 
system

vt = − i
2

(
Aσ3 + zσ1√

1 −m sin2 t
2

)
v , (A.14)

which is equivalent to (4.2). Finally, the transformation ζ = eit maps (A.14) to

ζvζ = −1
2

(
Aσ3 + zσ1√

1 − m
2
(
1 − 1

2(ζ + ζ−1)
)
)
v , (A.15)

and the transformation

v = Ξw , Ξ = diag
(

1, 1
z

√
1 − m

2 (1 − 1
2(ζ + ζ−1))

)
, (A.16)
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maps (A.15) to the Heun system (5.6) where λ = z2. The Heun system (5.6) has four 
(regular) singular points, located at ζ = 0, ζ1,2, ∞, where ζ1,2 are zeros of the denom-
inator in (5.6). The Frobenius exponents at the singularities can be derived directly 
from (5.6).

A.5. Augmented convergence and Perron’s rule

In general the Frobenius series (5.7a) with base point ζ = 0 only converges for |ζ| < |ζ1|
and the series (5.7b) with base point ζ = ∞ only converges for |ζ| > |ζ2|. Therefore, 
neither expansion is convergent on |ζ| = 1 in general. However, there exist certain values 
of λ for which one or both of the Frobenius series have a larger (i.e., augmented) radius 
of convergence. These are precisely the periodic/antiperiodic eigenvalues of the problem, 
and Perron’s rule provides a constructive way to identify them (see also [4,30,46,48,82]
for further details).

We begin by noting that, by dividing all coefficients by n2, all four three-term recur-
rence relations (5.8), (5.9), (5.10) and (5.11) can be rewritten as

e0c0 + f0c1 = 0 , n = 0 , (A.17a)

dncn−1 + encn + fncn+1 = 0 , n = 1, 2, . . . (A.17b)

with fn �= 0, and dn → d, en → e, and fn → f as n → ∞. Perron’s rule [30,77] states 
that, if ξ± are the roots of the quadratic equation

fξ2 + eξ + d = 0 , (A.18)

with |ξ−| < |ξ+|, then limn→∞ cn+1/cn = ξ+, unless the coefficients dn, en, fn satisfy the 
infinite continued fraction equation

eo
fo

=
d1

e1 −
d2f1

e2 −
d3f2

e3 − · · ·

, (A.19)

in which case limn→∞ cn+1/cn = ξ−. That is, Perron’s rule implies that, generically, the 
radius of convergence of the series Σ∞

n=0cnζ
n is 1/|ξ+|. However, if and only if (A.19)

holds, the radius of convergence is 1/|ξ−|, and therefore larger. In our case, the roots 
ξ± of (A.18) are exactly the singular points ζ1,2 of Heun’s ODE (5.2). Then, since en
depends on λ, (A.19) is a condition that determines the exceptional values of λ that 
guarantee augmented convergence. Indeed, (A.19) is equivalent to requiring that λ is an 
eigenvalue of T±

o (resp. T±
∞).
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A.6. Generalized convergence of closed operators

Here we briefly discuss the generalized convergence of closed operators, (see [56] p. 197 
for a detailed discussion). Consider C(X , Y ) the space of closed linear operators between 
Banach spaces. If T , S ∈ C(X , Y ), their graphs G(T ), G(S) are closed linear manifolds 
on the product space X ×Y . Set δ̂(T, S) = δ̂(G(T ), G(S)), i.e., the gap between T and 
S. (See [56] p. 197 for the definition of δ̂(T, S).) Similarly, we can define the distance
d̂(T, S) between T and S as equal to d̂(G(T ), G(S)). (See [56] p. 198 for the definition 
of d̂(T, S).) With this distance function C(X , Y ) becomes a metric space.

In this space the convergence of a sequence Tn → T ∈ C(X , Y ) is defined by 
(̂Tn, T ) → 0. Since δ̂(T, S) ≤ d̂(T, S) ≤ 2δ̂(T, S) ([56] p. 198) this is true if and only 
if δ̂(Tn, T ) → 0. In this case we say Tn → T in the generalized sense. This notion of 
generalized convergence for closed operators is a generalization of convergence in norm. 
Importantly, the convergence of closed operators in the generalized sense implies the 
continuity of a finite system of eigenvalues ([56] p. 213).

A.7. Gesztesy-Weikard criterion for finite-band potentials

According to Theorem 1.2 from [39], an elliptic potential Q(x) of the Dirac op-
erator (1.2) is finite-band if and only if its fundamental matrix solution Φ(x; z) is 
meromorphic in x for all z ∈ C.

Theorem A.2. Consider (1.2), then q ≡ A dn(x; m) with m ∈ (0, 1) is finite-band if and 
only if A ∈ Z.

Proof. The (simple) poles of dn(x; m) within the fundamental period 2jK + 4niK ′ are 
at x = iK ′ and x = 3iK ′ where K ′ := K(1 − m). By the Schwarz symmetry, it is 
sufficient to consider only the pole at iK ′. The residue at iK ′ is −i ([42], 8.151) and the 
local Laurent expansion is odd. Let Φ(u) := φ(x − iK ′; z) and note dn(u + iK ′; m) =
−i cn(u; m)/ sn(u; m) ([14], p. 20). Substitution into (1.6a) gives

uΦu(u) = [−izuσ3 + (A + u2p(u))σ2]Φ(u) =: B(u)Φ(u), (A.20)

where p(u) is analytic near u = 0 and even, and is meromorphic for all z ∈ C. The 
leading order term of B(u) is Aσ2 with eigenvalues λ = ±A. Thus, meromorphic Φ(u)
requires A ∈ Z.

To show that A ∈ Z is also a sufficient condition we need to show that Φ(u) does not 
contain logarithms, i.e., the regular singular point u = 0 is non-resonant. To do so we 
need to shift the spectrum of the leading term of B(u) to a single point, for example, 
−A, by successive shearing transformations. Without loss of generality, we can assume 
A > 0. Since

1 (1 − iσ1)σ2(1 + iσ1) = σ3,
1 (1 − iσ1)σ3(1 + iσ1) = −σ2, (A.21)
2 2
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we first diagonalize the leading term Aσ2 by the transformation Φ = (1 + iσ1)Φ̃. Then 
(A.20) becomes

uΦ̃u = [izuσ2 + (A + u2p(u))σ3]Φ̃. (A.22)

Then the shearing transformation Φ̃ = diag(u, 1)Ψ reduces (A.22) to

uΨu =
[(

A− 1 z

0 −A

)
+ u2

(
p(u) 0
−z −p(u)

)]
Ψ. (A.23)

After diagonalizing the leading term, we obtain

uΨ̃u =
[(

A− 1 0
0 −A

)
+ u2

(
p̃(u) r(u)
−z −p̃(u)

)]
Ψ̃, (A.24)

where p̃(u), r(u) are even and analytic at u = 0 functions. Thus, the coefficient of (A.24)
is an analytic and even matrix function.

If A = 1, one more shearing transformation would produce leading order term −1, 
which is non-resonant (no non trivial Jordan block) and, thus, the result would follow. If 
A > 1, we apply shearing transformations with the matrix diag(u2, 1) with consequent 
diagonalizations that will shift the (1, 1) entry of the leading term by −2 and preserve 
the analyticity and evenness of the coefficient. When the difference of the eigenvalues of 
the leading term becomes one, we repeat the last step of the case A = 1. �
Corollary A.3. For the Dirac operator (1.2), q ≡ A cn(x; m) with m ∈ (0, 1) and A > 0
is finite-band if and only if A =

√
mn with n ∈ Z, while q ≡ A sn(x; m) is not finite-band 

for any A > 0.

Proof. The functions sn(x; m) and cn(x; m) have the same locations of simple poles 
as dn(x; m). The residues of the poles at x = 2jK + iK ′ for j ∈ Z of cn(x; m) are 
(−1)j−1i/

√
m, it is clear that the choice of A given above leads to integer Frobenius 

exponents. To prove the non-resonance conditions, we notice that in Theorem A.2 we 
used only the fact that dn(x; m) has an odd Laurent expansion at the pole. Since this is 
also true for ([42], 8.151) the proof is complete. Similar arguments show that A sn(x; m)
is never finite-band. �
A.8. Connection between Heun’s equation and Treibich-Verdier potentials

It was shown in [85] that the Heun ODE in standard form:

d2y
2 +

(
γ + δ + ε

)
dy + αβζ − ξ

y = 0 (A.25)
dζ ζ ζ − 1 ζ − a dζ ζ(ζ − 1)(ζ − a)
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is associated with the so-called Treibich-Verdier potentials (defined below) for Hill’s 
equation [87], where α, β, γ, δ, ε, ξ, a (with each of them �= 0, 1) are complex parameters 
linked by the relation γ + δ + ε = α + β + 1. Specifically, the Heun equation (A.25) can 
be transformed into(

− d2

dx2 +
3∑

i=0
li(li + 1)℘(x + ωi) − E

)
f(x) = 0 (A.26)

via the transformation f(x) = yζ−l1/2(ζ − 1)−l2/2(ζ − a)−l3/2, where ℘(x) is the Weier-
strass ℘-function with periods {2ω1, 2ω3}, where ω1/ω3 /∈ R and

ω0 = 0 , ω2 = −ω1 − ω3 , ei = ℘(ωi) , z = ℘(x) − e1

e2 − e1
, a = e3 − e1

e2 − e1
,

E = (e2 − e1)[−4ξ + (−(α− β)2 + 2γ2 + 6γε + 2ε2 − 4γ − 4ε − δ2 + 2δ + 1)/3 + (−(α−
β)2 + 2γ2 + 6γδ + 2δ2 − 4γ − 4δ − ε2 + 2ε + 1)a/3], and the coefficients li in (A.26) are 
connected with the parameters in (A.25) as follows:

l0 = β − α− 1
2 , l1 = −γ + 1

2 , l2 = −δ + 1
2 , l3 = −ε + 1

2 . (A.27)

It is known that the potential 
∑3

i=0 li(li +1)℘(x +ωi) is a (finite-band) Treibich-Verdier 
potential if and only if li ∈ Z, i = 0, 1, 2, 3 [87]. Note that the periods {2ω1, 2ω3} of ℘(x)
are not uniquely determined.

In this subsection we show the special case of the Heun equation (5.2) considered in 
this work corresponds to a Treibich-Verdier potential if and only if A ∈ Z. To show this, 
we employ the conformal mapping ζ̃ := ζ/ζ1 Under this transformation, and recalling 
the relation ζ2 = 1/ζ1, the Heun equation (5.2) is mapped into

d2y

dζ̃2
+

3
2 ζ̃

2 −
( 2m−4

mζ1

)
ζ̃ + 1

2ζ2
1

ζ̃(ζ̃ − 1)(ζ̃ − 1/ζ2
1 )

dy
dζ̃

−
1
4A(A + 1)ζ̃2 +

(λ+A2(1−m/2)
mζ1

)
ζ̃ + 1

4ζ2
1
A(A− 1)

ζ̃2(ζ̃ − 1)(ζ̃ − 1/ζ2
1 )

y = 0 .

(A.28)
The four regular singularities {0, ζ1, ζ2, ∞} of (5.2) are mapped into {0, 1, 1/ζ2

1 , ∞}. 
Moreover, applying the change of dependent variable y(ζ) = ζρỹ(ζ) to (A.25)) yields

ỹζζ + P (ζ)ỹζ + Q(ζ)ỹ = 0 , (A.29)

where

P (ζ) = γ + 2ρ
ζ

+ δ

ζ − 1 + ε

ζ − a
,

Q(ζ) = ρ(ρ− 1 + γ)
2 + δρ + ερ + αβζ − ξ

.

ζ ζ(ζ − 1) ζ(ζ − a) ζ(ζ − 1)(ζ − a)
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Fig. A.5. Relations between the various ODEs and solutions discussed throughout this work.

Note that (A.28)) and (A.29) are of the same form with a = 1/ζ2
1 and ζ1 = [m −

2 + 2
√

1 −m]/m. Reducing to a common denominator for P (ζ) and comparing the 
corresponding coefficients with (A.28) leads to γ + 2ρ = 1/2, δ = 1/2 and ε = 1/2, 
which implies that l2 = l3 = 0. Repeating the same procedure for Q(ζ), we find that: 
(i) ρ = (A − 1)/2 or ρ = −A/2, and; (ii) −A(A + 1)/4 = −ρ(ρ − 1/2) + αβ.

Now we discuss the two possible cases for ρ: If ρ = (A − 1)/2, then γ = 3/2 − A

and αβ = 1/2 − A. Combining α + β = γ + δ + ε − 1 = γ, one obtains l1 = A − 1
and l0 = −1 − A or A. Alternatively, if ρ = −A/2, then γ = 1/2 + A, αβ = 0, and 
α + β = 1/2 + A. It turns out that l1 = −A and l0 = −1 − A or A. Either way, we 
therefore have that l0, l1 ∈ Z if and only if A ∈ Z.

A.9. Transformations A �→ −A and ζ �→ 1/ζ

The maps A �→ −A and ζ �→ 1/ζ allow one to establish a connection between several 
related objects. Specifically, using the change of independent variable (4.1), Hill’s equa-
tion H+v+ = λv+ is mapped into the following second-order ODE with trigonometric 
coefficients

4(1 −m sin2 t
2 )ytt − (m sin t)yt + (λ + A2(1 −m sin2 t

2 ) − i
2Am sin t)y = 0 . (A.30)

Next, applying the transformation ζ = eit to (A.30) yields another Heun ODE, namely,

ζ2F (ζ;m)yζζ + ζG(ζ;m)yζ + H̃(ζ;λ,A,m)y = 0 , (A.31)
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where F (ζ; m) and G(ζ; m) are still given by (5.3a) and (5.3b), respectively, and with 
H̃ := H(ζ; λ, −A, m). Note that the four regular singular points of (5.2)) and (A.31) are 
the same. The full chain of transformations and correspondences is summarized in the 
commutative diagram in Fig. A.5.
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