MTH 628 ALGEBRAIC TOPOLOGY

Homework 5 (due Thu. 2017.05.11)

1. The following fact is true (and you don't need to prove it): if *G* is an abelian group such that $Hom(G, \mathbb{Z}) = 0$ and $Ext(G, \mathbb{Z}) = 0$ then G = 0. Let $f: X \to Y$ be a map of spaces. Show that the following conditions are equivalent:

- (i) $f_*: H_n(X) \to H_n(Y)$ is an isomorphism for all $n \ge 0$.
- (ii) $f^*: H^n(Y, \mathbb{Z}) \to H^n(X, \mathbb{Z})$ is an isomorphism for all $n \ge 0$.

2. Let *X* be a finite CW complex. Show that $H^n(X, \mathbb{Q}) \cong H_n(X, \mathbb{Q})$ for all *n*.

3. Let *X* be a path connected space, and let $x_0 \in X$. Show that for any abelian group *G* we have an isomorphism $H^1(X, G) \cong \text{Hom}(\pi_1(X, x_0), G)$.

4. Let *X* be a space and let *G* be an abelian group. Notice that we have function:

$$\Phi\colon C^n(X;G)\times C_n(X)\to G$$

given by $\Phi(\varphi, x) = \varphi(x)$. Show that this induces a well-defined function

 Φ^* : $H^n(X, G) \times H_n(X) \to G$