MTH 628 ALGEBRAIC TOPOLOGY

Homework 4 (due Thu. 2017.04.20)

1. Let *X* be a CW-complex and let $C_*^{CW}(X)$ denote the cellular chain complex of *X*. Show that $H_n(C_*^{CW}(X) \otimes G) \cong H_n(X; G)$ for any abelian group *G* and any $n \ge 0$.

2. If *F* is a field then homology groups $H_n(X; F)$ have structure of vector spaces over *F*, so it makes sense to talk about dimension of $H_n(X; F)$. Show that for any finite CW-complex *X* and any field *F* we have:

$$\chi(X) = \sum_{n} (-1)^{n} \dim H_{n}(X;F)$$

where $\chi(X)$ is the Euler characteristic of *X*.

3. a) Let X be a space such that for all n > 0 we have $H_n(X;G) = 0$ for $G = \mathbb{Q}$ and for $G = \mathbb{Z}/p\mathbb{Z}$ for any prime number p. Show that $H_n(X;\mathbb{Z}) = 0$ for all n > 0.

b) Let $f: X \to Y$ be a map of path connected spaces such that for all n > 0 the homomorphism $f_*: H_n(X;G) \to H_n(Y;G)$ is an isomorphism for $G = \mathbb{Q}$ and for $G = \mathbb{Z}/p\mathbb{Z}$ for any prime number p. Show that the homomorphism $f_*: H_n(X;\mathbb{Z}) \to H_n(Y;\mathbb{Z})$ is an isomorphism for all n > 0.

4. For an abelian group *G* let T(G) denote the torsion subgroup of *G*, i.e. the subgroup consisting of all elements of finite order. For a space *X* let $T_n(X) = T(\tilde{H}_n(X))$. This defines a function from the category of topological spaces to the category of abelian groups. Do the functors T_n define a generalized reduced homology theory? Justify your answer.