MTH 628 ALGEBRAIC TOPOLOGY
 Homework 3 (due Thu. 2017.04.06)

1. Let $f, g: S^{n} \rightarrow S^{n}$ be maps such that $f(x) \neq g(x)$ for all $x \in S^{n}$. Show that $\operatorname{deg}(f)=$ $(-1)^{n+1} \operatorname{deg}(g)$.
2. Let $f: S^{n} \rightarrow S^{n}$ be a map homotopic to a constant map. Show that there exist points $x, y \in S^{n}$ such that $f(x)=x$ and $f(y)=-y$.
3. Let X be a space, and let $U_{1}, \ldots, U_{n} \subseteq X$ be open sets such that $X=\bigcup_{i=1}^{n} U_{i}$. Assume that each intersection $U_{i_{1}} \cap \cdots \cap U_{i_{k}}$ is either empty or contractible. Show that $\widetilde{H}_{q}(X)=0$ for all $q \geq n-1$.
4. Let X be an n-dimensional CW-complex. Show that there exists a point $x \in X$ such that $H_{n}(X, X-\{x\}) \neq 0$.
