
24 Nilpotent groups

24.1. Recall that if G is a group then

Z(G) = {a 2 G | ab = ba for all b 2 G}

Note that Z(G)CG. Take the canonical epimorphism ⇡ : G ! G/Z(G). Since
Z (G/Z(G)) C G/Z(G) we have:

⇡
�1 (Z (G/Z(G))) C G

Define:
Z1(G) :=Z(G)

Zi(G) :=⇡
�1
i

(Z (G/Zi�1(G))) for i > 1

where ⇡i : G ! G/Zi�1(G). We have Zi(G) C G for all i.

24.2 Definition. The upper central series of a group G is a sequence of normal
subgroups of G:

{e} = Z0(G) ✓ Z1(G) ✓ Z2(G) ✓ . . .

24.3 Definition. A group G is nilpotent if Zi(G) = G for some i.

If G is a nilpotent group then the nilpotency class of G is the smallest n � 0
such that Zn(G) = G.

24.4 Proposition. Every nilpotent group is solvable.

Proof. If G is nilpotent group then the upper central series of G

{e} = Z0(G) ✓ Z1(G) ✓ . . . ✓ Zn(G) = G

is a normal series.
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Moreover, for every i we have

Zi(G)/Zi�1(G) = Z(G/Zi�1(G))

so all quotients of the upper central series are abelian.

24.5 Note. Not every solvable group is nilpotent. Take e.g. GT . We have
Z(GT ) = {I}, and so

Zi(GT ) = {I}
for all i. Thus GT is not nilpotent. On the other hand GT is solvable with a
composition series

{I} ✓ {I, R1, R2} ✓ GT

24.6 Proposition.

1) Every abelian group is nilpotent.

2) Every finite p-group is nilpotent.

Proof.

1) If G is abelian then Z1(G) = G.

2) If G is a p-group then so is G/Zi(G) for every i. By Theorem 16.4 if G/Zi(G)
is non-trivial then its center Z(G/Zi(G)) a non-trivial group. This means that
if Zi(G) 6= G then Zi(G) ✓ Zi+1(G) and Zi(G) 6= Zi+1(G). Since G is finite
we must have Zn(G) = G for some G.

24.7 Definition. A central series of a group G is a normal series

{e} = G0 ✓ . . . ✓ Gk = G

such Gi C G and Gi+1/Gi ✓ Z(G/Gi) for all i.
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24.8 Proposition. If {e} = G0 ✓ . . . ✓ Gk = G is a central series of G then

Gi ✓ Zi(G)

Proof. Exercise.

24.9 Corollary. A group G is nilpotent i↵ it has a central series.

Proof. If G is nilpotent then

{e} = Z0(G) ✓ Z1(G) ✓ . . . ✓ Zn(G) = G

is a central series of G.

Conversely, if
{e} = G0 ✓ . . . ✓ Gk = G

is a central series of G then by (24.9) we have G = Gk ✓ Zk(G), so G = Zk(G),
and so G is nilpotent.

24.10 Note. Given a group G define

�0(G) :=G

�i(G) :=[G, �i�1(G)] for i > 0.

We have
. . . ✓ �1(G) ✓ �0(G) = G

24.11 Proposition. If G is a group then

1) �i(G) C G for all i
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2) �i(G)/�i+1(G) ✓ Z(G/�i+1(G)) for all i

Proof. Exercise.

24.12 Definition. If �n(G) = {e} then

{e} = �n(G) ✓ . . . ✓ �0(G) = G

is a central series of G. It is called the lower central series of G.

24.13 Proposition. A group G is nilpotent i↵ �n(G) = {e}

Proof. Exercise.

24.14 Theorem.

1) Every subgroup of a nilpotent group is nilpotent.

2) Ever quotient group of a nilpotent group is nilpotent.

Proof. Exercise.

24.15 Note. The properties of nilpotent group given in Theorem 24.14 are
analogous to the first two properties of solvable groups from Theorem 23.6. The
third part of that theorem (if H, G/H are solvable then so is G) is not true for
nilpotent groups. For example, take G = GT and H = {I, R1, R2}. Both H

and G/H are nilpotent, but by (24.5) G is not.
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24.16 Proposition. If G1, . . . , Gk are nilpotent groups then the direct product
G1 ⇥ · · · ⇥ Gk is also nilpotent.

Proof. It will be enough to show that the statement holds for k = 2, then the
general case will follow by induction with respect to k. Notice for any groups
G1, G2 we have �i(G1 ⇥ G2) = �i(G1) ⇥ �i(G2). If G1 and G2 are nilpotent
then by (24.13) there exists n � 0 such that �n(G1) = {e} and �n(G2) = {e}.
This implies that �n(G1 ⇥ G2) is trivial, and so using (24.13) again we obtain
that G1 ⇥ G2 is nilpotent.

24.17 Corollary. If p1, . . . , pk are primes and Pi is a pi-group then P1 ⇥ . . .⇥Pk

is a nilpotent group.

Proof. Follows from (24.6) and (24.16).

24.18 Theorem. Let G be a finite group. The following conditions are equiva-
lent.

1) G is nilpotent.

2) Every Sylow subgroup of G is a normal subgroup.

3) G isomorphic to the direct product of its Sylow subgroups.

24.19 Lemma. If G is a finite group and P is a Sylow p-subgroup of G then

NG(NG(P )) = NG(P )
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Proof. Since P ✓ NG(P ) ✓ G and P is a Sylow p-subgroup of G therefore P is
a Sylow p-subgroup of NG(P ). Moreover, P C NG(P ), so P is the only Sylow
p-subgroup of G.

Take a 2 NG(NG(P )). We will show that a 2 NG(P ). We have

aPa
�1 ✓ aNG(P )a�1 = NG(P )

As a consequence aPa
�1 is a Sylow p-subgroup of NG(P ), and thus aPa

�1 = P .
By the definitions of normalizer this gives a 2 NG(P ).

24.20 Lemma. If H is a proper subgroup of a nilpotent group G (i.e. H ✓ G,
and H 6= G), then H is a proper subgroup of NG(H).

Proof. Let k � 0 be the biggest integer such that Zk(G) ✓ H. Take a 2
Zk+1(G) such that a 62 H. We will show that a 2 NG(H).

We have

H/Zk(G) ✓ G/Zk(G) and Zk+1(G)/Zk(G) = Z(G/Zk(G))

If follows that for every h 2 H we have

ahZk(G) = (aZk(G))(hZk(G)) = (hZk(G))(aZk(G)) = haZk(G)

Therefore ha = ahh
0 for some h

0 2 Zk(G) ✓ H, and so a
�1

ha = hh
0 2 H. As

a consequence a
�1

Ha = H, so a
�1 2 NG(H), and so also a 2 NG(H).

Proof of Theorem 24.18.

1) ) 2) Let P be a Sylow p-subgroup of G. It su�ces to show that NG(P ) = G.

Assume that this is not true. Then NG(P ) is a proper subgroup G, and so by
Lemma 24.20 it is also a proper subgroup of NG(NG(P )). On the other hand
by Lemma 24.19 we have NG(NG(P )) = NG(P ), so we obtain a contradiction.
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2) ) 3) Exercise.

3) ) 1) Follows from Corollary 24.17.
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25 Rings

25.1 Definition. A ring is a set R together with two binary operations: addition
(+) and multiplication (·) satisfying the following conditions:

1) R with addtion is an abelian group.

2) multiplication is associative: (ab)c = a(bc)

3) addition is distributive with respect to multiplication:

a(b + c) = ab + ac (a + b)c = ac + bc

The ring R is commutative if ab = ba for all a, b 2 R.

The ring R is a ring with identity if there is and element 1 2 R such that
a1 = 1a = a for all a 2 R. (Note: if such identity element exists then it is
unique)

25.2 Examples.

1) Z, Q, R, C are commutative rings with identity.

2) Z/nZ is a ring with multiplication given by

k(nZ) · l(nZ) := kl(nZ)

3) If R is a ring then

R[x] = {a0 + a1x + . . . + anx
n | ai 2 R, n � 0}

is the ring of polynomials with coe�cients in R and

R[[x]] = {a0 + a1x + . . . | ai 2 R}

is the ring of formal power series with coe�cients in R.

If R is a commutative ring then so are R[x], R[[x]]. If R has identity then
R[x], R[[x]] also have identity.
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4) If R is a ring then Mn(R) is the ring of n ⇥ n matrices with coe�cients
in R.

5) The set 2Z of even integers with the usual addition and multiplication is
a commutative ring without identity.

6) If G is an abelian group then the set Hom(G, G) of all homomorphisms
f : G ! G is a ring with multiplication given by composition of homomor-
phisms and addition defined by

(f + g)(a) := f(a) + g(a)

7) If R is a ring and G is a group then define

R[G] := {
X

g2G

agg | ag 2 R, ag 6= 0 for finitely many g only }

addition in R[G]:

X

g2G

agg +
X

g2G

bgg =
X

g2G

(ag + bg)g

multiplication in R[G]:
 
X

g2G

agg

! 
X

g2G

bgg

!
=
X

g2G

 
X

hh0=g

ahah0

!
g

The ring R[G] is called the group ring of G with coe�cients in R.

25.3 Definition. Let R be a ring. An element 0 6= a 2 R is a left (resp. right)
zero divisor in R if there exists 0 6= b 2 R such that ab = 0 (resp. ba = 0).

An element 0 6= a 2 R is a zero divisor if it is both left and right zero divisor.

25.4 Example. In Z/6Z we have 2 · 3 = 0, so 2 and 3 are zero divisors.
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25.5 Definition. An integral domain is a commutative ring with identity 1 6= 0
that has no zero divisors.

25.6 Proposition. Let R be an integral domain. If a, b, c 2 R are non-zero
elements such that

ac = bc

then a = b.

Proof. We have (a � b)c = 0. Since c 6= 0 and R has no zero divisors this gives
a � b = 0, and so a = b.

25.7 Definition. Let R be a ring with identity. An element a has a left (resp.
right) inverse if there exists b 2 R such that ba = 1 (resp. there exists c 2 R

such that cb = 1).

An element a 2 R is a unit if it has both a left and a right inverse.

25.8 Proposition. If a is a unit of R then the left inverse and the right inverse
of a coincide.

Proof. If ba = 1 = ac then

b = b · 1 = b(ac) = (ba)c = 1 · c = c

25.9 Note. The set of all units of a ring R forms a group R
⇤ (with multiplica-

tion). E.g.:

Z
⇤ = {�1, 1} ⇠= Z/2Z

R
⇤ = R � {0}

(Z/14Z)⇤ = {1, 3, 5, 9, 11, 13} ⇠= Z/6Z
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25.10 Definition. A division ring is a ring R with identity 1 6= 0 such that every
non-zero element of R is a unit.

A field is a commutative division ring.

25.11 Examples.

1) R, Q, C are fields.

2) Z is an integral domain but it is not a field.

3) The ring of real quaternions is defined by

H := {a + bi + cj + dk | a, b, c, d 2 R}

Addition in H is coordinatewise. Multiplication is defined by the identities:

i
2 = j

2 = k
2 = �1, ij = �ji = k, jk = �kj = i, ki = �ik = j

The ring H is a (non-commutative) division ring with the identity

1 = 1 + 0i + 0j + 0k

The inverse of an element z = a + bi + cj + dk is given by

z
�1 = (a/kzk) � (b/kzk)i � (c/kzk)j � (d/kzk)k

where kzk =
p

a2 + b2 + c2 + d2

25.12 Proposition. The following conditions are equivalent.

1) Z/nZ is a field.

2) Z/nZ is an integral domain.

3) n is a prime number.

Proof. Exercise.
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26 Ring homomorphisms and ideals

26.1 Definition. Let R, S be rings. A ring homomorphism is a map

f : R ! S

such that

1) f(a + b) = f(a) + f(b)

2) f(ab) = f(a)f(b)

26.2 Note. If R, S are rings with identity then these conditions do not guarantee
that f(1R) = 1S.

Take e.g. rings with identity R1, R2 and define

R1 � R2 = {(r1, r2) | r1 2 R1, R2}

with addition and multiplication defined coordinatewise. Then R1 � R2 is a ring
with identity (1R1 , 1R2). The map

f : R1 ! R1 � R2, f(r1) = (r1, 0)

is a ring homomorphism, but f(1R1) 6= (1R1 , 1R2).

26.3 Note. Rings and ring homomorphisms form a category Ring.

26.4 Proposition. A ring homomorphism f : R ! S is an isomorphism of rings
i↵ f is a bijection.

Proof. Exercise.
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26.5 Definition. If f : R ! S is a ring homomorphism then

Ker(f) = {a 2 R | f(a) = 0}

26.6 Proposition. A ring homomorphism is 1-1 i↵ Ker(f) = {0}

Proof. The same as for groups (4.4).

26.7 Definition. A subring of a ring R is a subset S ✓ R such that S is an
additive subgroup of R and it is closed under the multiplication.

A left ideal of R is a subring I ✓ R such that for every a 2 I and b 2 R we
have ab 2 I. A right ideal of R is defined analogously.

A ideal of R is a subring I ✓ R such that I is both left and right ideal.

26.8 Notation. If I is an ideal of R then we write I C R.

26.9 Proposition. If f : R ! S is a ring homomorphism then Ker(f) is an
ideal of R.

Proof. Exercise.

26.10 Definition. If I is an ideal of a ring R then the quotient ring R/I is
defined as follows.

R/I := the set of left cosets of I in R

Addition: (a+I)+(b+I) = (a+ b)+I, multiplication: (a+I)(b+I) = ab+I.
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26.11 Note. If I C R then the map

⇡ : R ! R/I, ⇡(a) = a + I

is a ring homomorphism. It is called the canonical epimorphism of R onto R/I.

26.12 Theorem. If f : R ! S is a homomorphism of rings then there is a
unique homomorphism

f̄ : R/ Ker(f) ! S

such that the following diagram commutes:

R
f

//

⇡

✏✏

S

R/ Ker(f)

f̄

;;

Moreover, f̄ is a monomorphism and Im(f̄) = Im(f).

Proof. Similar to the proof of Theorem 6.1 for groups.

26.13 First Isomorphism Theorem. If f : R ! S is a homomorphism of rings
that is an epimorphism then

R/ Ker(f) ⇠= S

Proof. Take the map f̄ : R/ Ker(f) ! S. Then Im(f̄) = Im(f) = S, so f̄ is
an epimorphism. Also, f̄ is 1-1. Therefore f̄ is a bijective homomorphism and
thus it is an isomorphism.

26.14 Note. Let I, J C R. Check:
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1) I \ J C R

2) I + J C R where I + J = {a + b | a 2 I, b 2 J}

26.15 Second Isomorphism Theorem. If I, J are ideals of R then

I/(I \ J) ⇠= (I + J)/J

Proof. Exercise.

26.16 Third Isomorphism Theorem. If I, J are ideals of R and J ✓ I then
I/J is a ideal of R/J and

(R/J)/(I/J) ⇠= R/I

Proof. Exercise.
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